1
|
Hou X, Liu L, Li Y, Wang P, Pan X, Xu D, Lai D, Zhou L. Regulation of Histone Acetylation Modification on Biosynthesis of Secondary Metabolites in Fungi. Int J Mol Sci 2024; 26:25. [PMID: 39795886 DOI: 10.3390/ijms26010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/20/2024] [Accepted: 12/22/2024] [Indexed: 01/13/2025] Open
Abstract
The histone acetylation modification is a conservative post-translational epigenetic regulation in fungi. It includes acetylation and deacetylation at the lysine residues of histone, which are catalyzed by histone acetyltransferase (HAT) and deacetylase (HDAC), respectively. The histone acetylation modification plays crucial roles in fungal growth and development, environmental stress response, secondary metabolite (SM) biosynthesis, and pathogenicity. One of the most important roles is to regulate the gene expression that is responsible for SM biosynthesis in fungi. This mini-review summarized the regulation of histone acetylation modification by HATs and HDACs on the biosynthesis of SMs in fungi. In most cases, histone acetylation by HATs positively regulated the biosynthesis of fungal SMs, while HDACs had their negative regulations. Some HATs and HDACs were revealed to regulate fungal SM biosynthesis. Hda1 was found to be the most efficient regulator to affect the biosynthesis of SMs in fungi. The regulated fungal species were mainly from the genera of Aspergillus, Calcarisporium, Cladosporium, Fusarium, Monascus, Penicillium, and Pestalotiopsis. With the strategy of histone acetylation modification, the biosynthesis of some harmful SMs will be inhibited, while the production of useful bioactive SMs will be promoted in fungi. The subsequent research should focus on the study of regulatory mechanisms.
Collapse
Affiliation(s)
- Xuwen Hou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Liyao Liu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yu Li
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Pengfei Wang
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Xiaoqian Pan
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Dan Xu
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Daowan Lai
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Ligang Zhou
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China
| |
Collapse
|
2
|
Liao HX, Yang J, Wen JR, Nie HY, Zhao J, Xu FR, Liu XY, Dong X. β-Caryophyllene oxide inhibits lysine acetylation of histones in Fusarium proliferatum to block ribosomal biosynthesis and function. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 206:106213. [PMID: 39672623 DOI: 10.1016/j.pestbp.2024.106213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/10/2024] [Accepted: 11/13/2024] [Indexed: 12/15/2024]
Abstract
The natural bicyclic sesquiterpene, β-Caryophyllene oxide (BCPO), has demonstrated inhibitory activity against Fusarium species. While previous studies have documented its antifungal properties through various biochemical mechanisms, the role of BCPO in modulating epigenetic modifications of DNA via histone deacetylases (HDACs) has received comparatively less attention. The study aims to elucidate how BCPO inhibits Fusarium proliferatum by affecting histone acetylation. Our results indicate that BCPO enhances FPRO_01165 (FpSIR2) enzyme activity to 6.01 ng/min/mg, representing a 55.30 % increase. Molecular docking analysis and molecular dynamics simulation confirmed the interaction between BCPO and FpSIR2. Furthermore, high concentrations (HC) of BCPO significantly inhibited the growth of F. proliferatum, resulting in marked reductions in H3K9ac and H3K27ac modification levels. We conducted chromatin immunoprecipitation sequencing (ChIP-seq) to identify enrichments of H3K9ac and H3K27ac, while also obtaining transcriptomic data from the HC treatment group. Combined analyses revealed that decreased levels of H3K9ac and H3K27ac primarily affected ribosomal pathways in F. proliferatum, leading to downregulation of several ribosomal genes and their corresponding proteins, such as RPL4, RPS19, and RPS16. Our findings suggest that BCPO stimulates both the production and activity of FpSIR2, which subsequently inhibits histone lysine acetylation in F. proliferatum. This inhibition suppresses ribosome biosynthesis and function as well as overall growth in this pathogen. The property of BCPO to reduce acetylation provides new insights for developing highly efficient yet low-toxicity antifungal agents.
Collapse
Affiliation(s)
- Hong-Xin Liao
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jing Yang
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China; College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China
| | - Jin-Rui Wen
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Hong-Yan Nie
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Jun Zhao
- School of Geography, Nanjing Normal University, Nanjing 210023, People's Republic of China
| | - Fu-Rong Xu
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China
| | - Xiao-Yun Liu
- College of Life Sciences, Hubei Engineering Research Center for Protection and Utilization of Special Biological Resources in the Hanjiang River Basin, Jianghan University, Wuhan 430056, People's Republic of China.
| | - Xian Dong
- School of Chinese Materia Medica, Yunnan University of Chinese Medicine, Kunming 650500, People's Republic of China.
| |
Collapse
|
3
|
Zhang X, Zhou Y, Liu Y, Li B, Tian S, Zhang Z. Research Progress on the Mechanism and Function of Histone Acetylation Regulating the Interaction between Pathogenic Fungi and Plant Hosts. J Fungi (Basel) 2024; 10:522. [PMID: 39194848 DOI: 10.3390/jof10080522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/24/2024] [Accepted: 07/24/2024] [Indexed: 08/29/2024] Open
Abstract
Histone acetylation is a crucial epigenetic modification, one that holds the key to regulating gene expression by meticulously modulating the conformation of chromatin. Most histone acetylation enzymes (HATs) and deacetylation enzymes (HDACs) in fungi were originally discovered in yeast. The functions and mechanisms of HATs and HDACs in yeast that have been documented offer us an excellent entry point for gaining insights into these two types of enzymes. In the interaction between plants and pathogenic fungi, histone acetylation assumes a critical role, governing fungal pathogenicity and plant immunity. This review paper delves deep into the recent advancements in understanding how histone acetylation shapes the interaction between plants and fungi. It explores how this epigenetic modification influences the intricate balance of power between these two kingdoms of life, highlighting the intricate network of interactions and the subtle shifts in these interactions that can lead to either mutual coexistence or hostile confrontation.
Collapse
Affiliation(s)
- Xiaokang Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuzhu Zhou
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yangzhi Liu
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhanquan Zhang
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
4
|
Amin S, Rezaee S, Mousavi A, Zamanizadeh H. The Histone Deacetylase Inhibitor Trichostatin-A Modifies the Expression of Trichothecene Mycotoxin Regulatory Gene Tri5 in Fusarium graminearum. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3872. [PMID: 39737208 PMCID: PMC11682529 DOI: 10.30498/ijb.2024.437331.3872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/29/2024] [Indexed: 01/01/2025]
Abstract
Background Fusarium graminearum is the causal agent of Fusarium Head Blight (FHB) on wheat and produces deoxynivalenol (DON), known to cause extreme human and animal toxicosis. This species' genome contains genes involved in plant-pathogen interactions and regulated by chromatin modifications. Moreover, histone deacetylase inhibitors (HDACIs), including trichostatin A (TSA), have been employed to study gene transcription regulation because they can convert the structure of chromatin. Objectives The current study was designed to evaluate the effects of TSA on histone deacetylase (HDAC) and, trichodiene synthase (Tri5) gene expression in toxigenic and non-toxigenic F. graminearum isolates. Materials and Methods The mycelia were grown on potato dextrose broth (PDB) culture media supplemented with two concentrations of TSA and dimethyl sulfoxide (DMSO) (3 and 10 µg. mL-1) for 48 h, 72 h, and 96 h. Then, the mRNA levels were estimated via real-time quantitative reverse transcription-polymerase chain reaction (real-time qRT-PCR). Results We found that the levels of HADC and Tri5 varied over time and dosage in response to the use of TSA. The toxigenic isolate showed an increase in the Tri5 expression when treated with TSA, with the highest levels monitored when the concentration of the substance was 3 µg. mL-1 at 48 h. The non-toxigenic isolate also showed high levels of HDAC and Tri5 expression in the presence of TSA, but a sharp decrease in the Tri5 transcription was observed at 72 h when grown on culture media containing 10 µg. mL-1 of TSA. Conclusion Overall, our results suggest a mode of DON biosynthesis regulation in F. graminearum by chromatin modifications that may help us offer new strategies for tackling fungal infections.
Collapse
Affiliation(s)
- Shiva Amin
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Saeed Rezaee
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Amir Mousavi
- Department of Plant Molecular Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Hamidreza Zamanizadeh
- Department of Plant Protection, Science and Research Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Speckbacher V, Flatschacher D, Martini-Lösch N, Ulbrich L, Baldin C, Bauer I, Ruzsanyi V, Zeilinger S. The histone deacetylase Hda1 affects oxidative and osmotic stress response as well as mycoparasitic activity and secondary metabolite biosynthesis in Trichoderma atroviride. Microbiol Spectr 2024; 12:e0309723. [PMID: 38334386 PMCID: PMC10913545 DOI: 10.1128/spectrum.03097-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 01/10/2024] [Indexed: 02/10/2024] Open
Abstract
The mycoparasitic fungus Trichoderma atroviride is applied in agriculture as a biostimulant and biologic control agent against fungal pathogens that infest crop plants. Secondary metabolites are among the main agents determining the strength and progress of the mycoparasitic attack. However, expression of most secondary metabolism-associated genes requires specific cues, as they are silent under routine laboratory conditions due to their maintenance in an inactive heterochromatin state. Therefore, histone modifications are crucial for the regulation of secondary metabolism. Here, we functionally investigated the role of the class II histone deacetylase encoding gene hda1 of T. atroviride by targeted gene deletion, phenotypic characterization, and multi-omics approaches. Deletion of hda1 did not result in obvious phenotypic alterations but led to an enhanced inhibitory activity of secreted metabolites and reduced mycoparasitic abilities of T. atroviride against the plant-pathogenic fungi Botrytis cinerea and Rhizoctonia solani. The ∆hda1 mutants emitted altered amounts of four volatile organic compounds along their development, produced different metabolite profiles upon growth in liquid culture, and showed a higher susceptibility to oxidative and osmotic stress. Moreover, hda1 deletion affected the expression of several notable gene categories such as polyketide synthases, transcription factors, and genes involved in the HOG MAPK pathway.IMPORTANCEHistone deacetylases play crucial roles in regulating chromatin structure and gene transcription. To date, classical-Zn2+ dependent-fungal histone deacetylases are divided into two classes, of which each comprises orthologues of the two sub-groups Rpd3 and Hos2 and Hda1 and Hos3 of yeast, respectively. However, the role of these chromatin remodelers in mycoparasitic fungi is poorly understood. In this study, we provide evidence that Hda1, the class II histone deacetylases of the mycoparasitic fungus Trichoderma atroviride, regulates its mycoparasitic activity, secondary metabolite biosynthesis, and osmotic and oxidative stress tolerance. The function of Hda1 in regulating bioactive metabolite production and mycoparasitism reveals the importance of chromatin-dependent regulation in the ability of T. atroviride to successfully control fungal plant pathogens.
Collapse
Affiliation(s)
| | | | | | - Laura Ulbrich
- Umweltmonitoring und Forensische Chemie, Hochschule Hamm-Lippstadt, Hamm, Germany
| | - Clara Baldin
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | - Susanne Zeilinger
- Department of Microbiology, Universität Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Wang B, Duan G, Liu L, Long Z, Bai X, Ou M, Wang P, Jiang D, Li D, Sun W. UvHOS3-mediated histone deacetylation is essential for virulence and negatively regulates ustilaginoidin biosynthesis in Ustilaginoidea virens. MOLECULAR PLANT PATHOLOGY 2024; 25:e13429. [PMID: 38353606 PMCID: PMC10866089 DOI: 10.1111/mpp.13429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/16/2024]
Abstract
Ustilaginoidea virens is the causal agent of rice false smut, which has recently become one of the most important rice diseases worldwide. Ustilaginoidins, a major type of mycotoxins produced in false smut balls, greatly deteriorates grain quality. Histone acetylation and deacetylation are involved in regulating secondary metabolism in fungi. However, little is yet known on the functions of histone deacetylases (HDACs) in virulence and mycotoxin biosynthesis in U. virens. Here, we characterized the functions of the HDAC UvHOS3 in U. virens. The ΔUvhos3 deletion mutant exhibited the phenotypes of retarded growth, increased mycelial branches and reduced conidiation and virulence. The ΔUvhos3 mutants were more sensitive to sorbitol, sodium dodecyl sulphate and oxidative stress/H2 O2 . ΔUvhos3 generated significantly more ustilaginoidins. RNA-Seq and metabolomics analyses also revealed that UvHOS3 is a key negative player in regulating secondary metabolism, especially mycotoxin biosynthesis. Notably, UvHOS3 mediates deacetylation of H3 and H4 at H3K9, H3K18, H3K27 and H4K8 residues. Chromatin immunoprecipitation assays indicated that UvHOS3 regulates mycotoxin biosynthesis, particularly for ustilaginoidin and sorbicillinoid production, by modulating the acetylation level of H3K18. Collectively, this study deepens the understanding of molecular mechanisms of the HDAC UvHOS3 in regulating virulence and mycotoxin biosynthesis in phytopathogenic fungi.
Collapse
Affiliation(s)
- Bo Wang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Guohua Duan
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Ling Liu
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Zhaoyi Long
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Xiaolong Bai
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Mingming Ou
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Peiying Wang
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Du Jiang
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionSanya Institute of China Agricultural UniversitySanyaChina
| | - Dayong Li
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| | - Wenxian Sun
- College of Plant Protection and the Ministry of Agriculture Key Laboratory of Pest Monitoring and Green ManagementChina Agricultural UniversityBeijingChina
- College of Plant ProtectionJilin Agricultural UniversityChangchunChina
| |
Collapse
|
7
|
Villota-Salazar NA, Ramos-García VH, González-Prieto JM, Hernández-Delgado S. Effects of chemical inhibition of histone deacetylase proteins in the growth and virulence of Macrophomina phaseolina (Tassi) Goid. Rev Argent Microbiol 2023; 55:296-306. [PMID: 37296064 DOI: 10.1016/j.ram.2023.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 01/31/2023] [Accepted: 04/14/2023] [Indexed: 06/12/2023] Open
Abstract
Chromatin remodeling enzymes are important "writers", "readers" and "erasers" of the epigenetic code. These proteins are responsible for the placement, recognition, and removal of molecular marks in histone tails that trigger structural and functional changes in chromatin. This is also the case for histone deacetylases (HDACs), i.e., enzymes that remove acetyl groups from histone tails, signaling heterochromatin formation. Chromatin remodeling is necessary for cell differentiation processes in eukaryotes, and fungal pathogenesis in plants includes many adaptations to cause disease. Macrophomina phaseolina (Tassi) Goid. is a nonspecific, necrotrophic ascomycete phytopathogen that causes charcoal root disease. M. phaseolina is a frequent and highly destructive pathogen in crops such as common beans (Phaseolus vulgaris L.), particularly under both water and high temperature stresses. Here, we evaluated the effects of the classical HDAC inhibitor trichostatin A (TSA) on M. phaseolinain vitro growth and virulence. During inhibition assays, the growth of M. phaseolina in solid media, as well as the size of the microsclerotia, were reduced (p<0.05), and the colony morphology was remarkably affected. Under greenhouse experiments, treatment with TSA reduced (p<0.05) fungal virulence in common bean cv. BAT 477. Tests of LIPK, MAC1 and PMK1 gene expression during the interaction of fungi with BAT 477 revealed noticeable deregulation. Our results provide additional evidence about the role of HATs and HDACs in important biological processes of M. phaseolina.
Collapse
Affiliation(s)
- Nubia Andrea Villota-Salazar
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Víctor Hugo Ramos-García
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Juan Manuel González-Prieto
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico
| | - Sanjuana Hernández-Delgado
- Biotecnología Vegetal, Centro de Biotecnología Genómica, Instituto Politécnico Nacional, Blvd. del Maestro s/n esq. Elías Piña, Col. Narciso Mendoza, 88710 Reynosa, Tamaulipas, Mexico.
| |
Collapse
|
8
|
Liu Q, Zheng Y, Liu B, Tang F, Shao Y. Histone deacetylase MrHos3 negatively regulates the production of citrinin and pigments in Monascus ruber. J Basic Microbiol 2023; 63:1128-1138. [PMID: 37236161 DOI: 10.1002/jobm.202300138] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/25/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023]
Abstract
Monascus spp. can produce a variety of beneficial metabolites widely used in food and pharmaceutical industries. However, some Monascus species contain the complete gene cluster responsible for citrinin biosynthesis, which raises our concerns about the safety of their fermented products. In this study, the gene Mrhos3, encoding histone deacetylase (HDAC), was deleted to evaluate its effects on the production of mycotoxin (citrinin) and the edible pigments as well as the developmental process of Monascus ruber M7. The results showed that absence of Mrhos3 caused an enhancement of citrinin content by 105.1%, 82.4%, 111.9%, and 95.7% at the 5th, 7th, 9th, and 11th day, respectively. Furthermore, deletion of Mrhos3 increased the relative expression of citrinin biosynthetic pathway genes including pksCT, mrl1, mrl2, mrl4, mrl6, and mrl7. In addition, deletion of Mrhos3 led to an increase in total pigment content and six classic pigment components. Western blot results revealed that deletion of Mrhos3 could significantly elevate the acetylation level of H3K9, H4K12, H3K18, and total protein. This study provides an important insight into the effects of hos3 gene on the secondary metabolites production in filamentous fungi.
Collapse
Affiliation(s)
- Qianrui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yunfan Zheng
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Baixue Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fufang Tang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanchun Shao
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
9
|
Complementary Strategies to Unlock Biosynthesis Gene Clusters Encoding Secondary Metabolites in the Filamentous Fungus Podospora anserina. J Fungi (Basel) 2022; 9:jof9010009. [PMID: 36675830 PMCID: PMC9864250 DOI: 10.3390/jof9010009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The coprophilous ascomycete Podospora anserina is known to have a high potential to synthesize a wide array of secondary metabolites (SMs). However, to date, the characterization of SMs in this species, as in other filamentous fungal species, is far less than expected by the functional prediction through genome mining, likely due to the inactivity of most SMs biosynthesis gene clusters (BGCs) under standard conditions. In this work, our main objective was to compare the global strategies usually used to deregulate SM gene clusters in P. anserina, including the variation of culture conditions and the modification of the chromatin state either by genetic manipulation or by chemical treatment, and to show the complementarity of the approaches between them. In this way, we showed that the metabolomics-driven comparative analysis unveils the unexpected diversity of metabolic changes in P. anserina and that the integrated strategies have a mutual complementary effect on the expression of the fungal metabolome. Then, our results demonstrate that metabolite production is significantly influenced by varied cultivation states and epigenetic modifications. We believe that the strategy described in this study will facilitate the discovery of fungal metabolites of interest and will improve the ability to prioritize the production of specific fungal SMs with an optimized treatment.
Collapse
|
10
|
Mapook A, Hyde KD, Hassan K, Kemkuignou BM, Čmoková A, Surup F, Kuhnert E, Paomephan P, Cheng T, de Hoog S, Song Y, Jayawardena RS, Al-Hatmi AMS, Mahmoudi T, Ponts N, Studt-Reinhold L, Richard-Forget F, Chethana KWT, Harishchandra DL, Mortimer PE, Li H, Lumyong S, Aiduang W, Kumla J, Suwannarach N, Bhunjun CS, Yu FM, Zhao Q, Schaefer D, Stadler M. Ten decadal advances in fungal biology leading towards human well-being. FUNGAL DIVERS 2022; 116:547-614. [PMID: 36123995 PMCID: PMC9476466 DOI: 10.1007/s13225-022-00510-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/28/2022] [Indexed: 11/04/2022]
Abstract
Fungi are an understudied resource possessing huge potential for developing products that can greatly improve human well-being. In the current paper, we highlight some important discoveries and developments in applied mycology and interdisciplinary Life Science research. These examples concern recently introduced drugs for the treatment of infections and neurological diseases; application of -OMICS techniques and genetic tools in medical mycology and the regulation of mycotoxin production; as well as some highlights of mushroom cultivaton in Asia. Examples for new diagnostic tools in medical mycology and the exploitation of new candidates for therapeutic drugs, are also given. In addition, two entries illustrating the latest developments in the use of fungi for biodegradation and fungal biomaterial production are provided. Some other areas where there have been and/or will be significant developments are also included. It is our hope that this paper will help realise the importance of fungi as a potential industrial resource and see the next two decades bring forward many new fungal and fungus-derived products.
Collapse
Affiliation(s)
- Ausana Mapook
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Kevin D. Hyde
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Innovative Institute of Plant Health, Zhongkai University of Agriculture and Engineering, Haizhu District, Guangzhou, 510225 China
| | - Khadija Hassan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Blondelle Matio Kemkuignou
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
| | - Adéla Čmoková
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Frank Surup
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| | - Eric Kuhnert
- Centre of Biomolecular Drug Research (BMWZ), Institute for Organic Chemistry, Leibniz University Hannover, Schneiderberg 38, 30167 Hannover, Germany
| | - Pathompong Paomephan
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400 Thailand
| | - Tian Cheng
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Laboratory of Fungal Genetics and Metabolism, Institute of Microbiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Sybren de Hoog
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Guizhou Medical University, Guiyang, China
- Microbiology, Parasitology and Pathology Graduate Program, Federal University of Paraná, Curitiba, Brazil
| | - Yinggai Song
- Department of Dermatology, Peking University First Hospital, Peking University, Beijing, China
| | - Ruvishika S. Jayawardena
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Abdullah M. S. Al-Hatmi
- Center of Expertise in Mycology, Radboud University Medical Center / Canisius Wilhelmina Hospital, Nijmegen, The Netherlands
- Natural and Medical Sciences Research Center, University of Nizwa, Nizwa, Oman
| | - Tokameh Mahmoudi
- Department of Biochemistry, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), 33882 Villenave d’Ornon, France
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), Tulln an der Donau, Austria
| | | | - K. W. Thilini Chethana
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Dulanjalee L. Harishchandra
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097 China
| | - Peter E. Mortimer
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Huili Li
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Saisamorm Lumyong
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
- Academy of Science, The Royal Society of Thailand, Bangkok, 10300 Thailand
| | - Worawoot Aiduang
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Jaturong Kumla
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Nakarin Suwannarach
- Research Center of Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200 Thailand
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200 Thailand
| | - Chitrabhanu S. Bhunjun
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
| | - Feng-Ming Yu
- Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- School of Science, Mae Fah Luang University, Chiang Rai, 57100 Thailand
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Qi Zhao
- Yunnan Key Laboratory of Fungal Diversity and Green Development, Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 Yunnan China
| | - Doug Schaefer
- Centre for Mountain Futures (CMF), Kunming Institute of Botany, Chinese Academy of Science, Kunming, 650201 Yunnan China
| | - Marc Stadler
- Department Microbial Drugs, Helmholtz Centre for Infection Research (HZI), and German Centre for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Inhoffenstrasse 7, 38124 Brunswick, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Brunswick, Germany
| |
Collapse
|
11
|
Zehetbauer F, Seidl A, Berger H, Sulyok M, Kastner F, Strauss J. RimO (SrrB) is required for carbon starvation signaling and production of secondary metabolites in Aspergillus nidulans. Fungal Genet Biol 2022; 162:103726. [PMID: 35843417 DOI: 10.1016/j.fgb.2022.103726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/17/2022] [Accepted: 07/09/2022] [Indexed: 11/20/2022]
Abstract
Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.
Collapse
Affiliation(s)
- Franz Zehetbauer
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Angelika Seidl
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Harald Berger
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Michael Sulyok
- University of Natural Resources and Life Sciences, Vienna, Department of Agrobiotechnology, Institute of Bioanalytics and Agro-Metabolomics, Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria.
| | - Florian Kastner
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| | - Joseph Strauss
- University of Natural Resources and Life Sciences, Vienna, Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, Konrad Lorenz-Straße 24, 3430 Tulln an der Donau, Austria.
| |
Collapse
|
12
|
Schüller A, Studt-Reinhold L, Strauss J. How to Completely Squeeze a Fungus-Advanced Genome Mining Tools for Novel Bioactive Substances. Pharmaceutics 2022; 14:1837. [PMID: 36145585 PMCID: PMC9505985 DOI: 10.3390/pharmaceutics14091837] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/23/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Fungal species have the capability of producing an overwhelming diversity of bioactive substances that can have beneficial but also detrimental effects on human health. These so-called secondary metabolites naturally serve as antimicrobial "weapon systems", signaling molecules or developmental effectors for fungi and hence are produced only under very specific environmental conditions or stages in their life cycle. However, as these complex conditions are difficult or even impossible to mimic in laboratory settings, only a small fraction of the true chemical diversity of fungi is known so far. This also implies that a large space for potentially new pharmaceuticals remains unexplored. We here present an overview on current developments in advanced methods that can be used to explore this chemical space. We focus on genetic and genomic methods, how to detect genes that harbor the blueprints for the production of these compounds (i.e., biosynthetic gene clusters, BGCs), and ways to activate these silent chromosomal regions. We provide an in-depth view of the chromatin-level regulation of BGCs and of the potential to use the CRISPR/Cas technology as an activation tool.
Collapse
Affiliation(s)
| | | | - Joseph Strauss
- Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, A-3430 Tulln/Donau, Austria
| |
Collapse
|
13
|
Recent advances in metabolic regulation and bioengineering of gibberellic acid biosynthesis in Fusarium fujikuroi. World J Microbiol Biotechnol 2022; 38:131. [PMID: 35689127 DOI: 10.1007/s11274-022-03324-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/29/2022] [Indexed: 12/24/2022]
Abstract
The plant growth hormone gibberellic acid (GA3), as one of the representative secondary metabolites, is widely used in agriculture, horticulture and brewing industry. GA3 is detected in both plants and several fungi with the ability to stimulate plant growth. Currently, the main mode of industrial production of GA3 is depended on the microbial fermentation via long-period submerged fermentation using Fusarium fujikuroi as the only producing strain, qualified for its natural productivity. However, the demand of large-sale industrialization of GA3 was still restricted by the low productivity. The biosynthetic route of GA3 in F. fujikuroi is now well-defined. Furthermore, the multi-level regulation mechanisms involved in the whole network of GA3 production have also been gradually unveiled by the past two decades based on the identification and characterization of several global regulators and their mutual functions. Combined with the quick development of genetic manipulation techniques, the rational modification of producing strain F. fujikuroi development become practical for higher productivity achievement. Herein, we review the latest advances in the molecular regulation of GA3 biosynthesis in F. fujikuroi and conclude a comprehensive network involving nitrogen depression, global regulator, histone modification and G protein signaling pathway. Correspondingly, the bioengineering strategies covering conventional random mutation, genetic manipulating platform development, metabolic edition and fermentation optimization were also systematically proposed.
Collapse
|
14
|
Yang K, Tian J, Keller NP. Post-translational modifications drive secondary metabolite biosynthesis in Aspergillus: a review. Environ Microbiol 2022; 24:2857-2881. [PMID: 35645150 PMCID: PMC9545273 DOI: 10.1111/1462-2920.16034] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/23/2022] [Accepted: 04/26/2022] [Indexed: 12/26/2022]
Abstract
Post‐translational modifications (PTMs) are important for protein function and regulate multiple cellular processes and secondary metabolites (SMs) in fungi. Aspergillus species belong to a genus renown for an abundance of bioactive secondary metabolites, many important as toxins, pharmaceuticals and in industrial production. The genes required for secondary metabolites are typically co‐localized in biosynthetic gene clusters (BGCs), which often localize in heterochromatic regions of genome and are ‘turned off’ under laboratory condition. Efforts have been made to ‘turn on’ these BGCs by genetic manipulation of histone modifications, which could convert the heterochromatic structure to euchromatin. Additionally, non‐histone PTMs also play critical roles in the regulation of secondary metabolism. In this review, we collate the known roles of epigenetic and PTMs on Aspergillus SM production. We also summarize the proteomics approaches and bioinformatics tools for PTM identification and prediction and provide future perspectives on the emerging roles of PTM on regulation of SM biosynthesis in Aspergillus and other fungi.
Collapse
Affiliation(s)
- Kunlong Yang
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China.,Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| | - Jun Tian
- School of Life Science, Jiangsu Normal University, Xuzhou, 221116, Jiangsu Province, People's Republic of China
| | - Nancy P Keller
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, 53705, USA
| |
Collapse
|
15
|
Lai Y, Wang L, Zheng W, Wang S. Regulatory Roles of Histone Modifications in Filamentous Fungal Pathogens. J Fungi (Basel) 2022; 8:565. [PMID: 35736048 PMCID: PMC9224773 DOI: 10.3390/jof8060565] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Filamentous fungal pathogens have evolved diverse strategies to infect a variety of hosts including plants and insects. The dynamic infection process requires rapid and fine-tuning regulation of fungal gene expression programs in response to the changing host environment and defenses. Therefore, transcriptional reprogramming of fungal pathogens is critical for fungal development and pathogenicity. Histone post-translational modification, one of the main mechanisms of epigenetic regulation, has been shown to play an important role in the regulation of gene expressions, and is involved in, e.g., fungal development, infection-related morphogenesis, environmental stress responses, biosynthesis of secondary metabolites, and pathogenicity. This review highlights recent findings and insights into regulatory mechanisms of histone methylation and acetylation in fungal development and pathogenicity, as well as their roles in modulating pathogenic fungi-host interactions.
Collapse
Affiliation(s)
- Yiling Lai
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lili Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilu Zheng
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sibao Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences (CAS), Shanghai 200032, China; (L.W.); (W.Z.)
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Akiyama DY, Rocha MC, Costa JH, Teles CB, da Silva Zuccoli G, Malavazi I, Fill TP. The Penicillium brasilianum Histone Deacetylase Clr3 Regulates Secondary Metabolite Production and Tolerance to Oxidative Stress. J Fungi (Basel) 2022; 8:jof8050514. [PMID: 35628769 PMCID: PMC9146837 DOI: 10.3390/jof8050514] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/10/2022] [Accepted: 05/13/2022] [Indexed: 02/01/2023] Open
Abstract
Most of the biosynthetic gene clusters (BGCs) found in microbes are silent under standard laboratory cultivation conditions due to the lack of expression triggering stimuli, representing a considerable drawback in drug discovery. To access the full biosynthetic potential, studies towards the activation of cryptic BGCs are essential. Histone acetylation status is an important regulator of chromatin structure, which impacts cell physiology and the expression of BGCs. In this study, clr3, a gene encoding a histone deacetylase in Penicillium brasilianum LaBioMMi 136, is deleted and associated phenotypic and metabolic changes are evaluated. The results indicate reduced growth under oxidative stress conditions in the ∆clr3 strain, higher intracellular reactive oxygen species (ROS) levels, and a different transcriptional profile of 13 ROS-related genes of both strains under basal and ROS-induced conditions. Moreover, the production of 14 secondary metabolites, including austin-related meroterpenoids, brasiliamides, verruculogen, penicillic acid, and cyclodepsipeptides was evaluated in the ∆clr3 strain, most of them being reduced. Accordingly, the addition of epigenetic modulators responsible for HDAC inhibition into P. brasilianum’s growth media also culminated in the reduction in secondary metabolite production. The results suggest that Clr3 plays an essential role in secondary metabolite biosynthesis in P. brasilianum, thus offering new strategies for the regulation of natural product synthesis by assessing chromatin modification.
Collapse
Affiliation(s)
- Daniel Yuri Akiyama
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Marina Campos Rocha
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
| | - Jonas Henrique Costa
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
| | - Caroline Brandão Teles
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Giuliana da Silva Zuccoli
- Department of Biochemistry and Tissue Biology, Institute of Biology, State University of Campinas, Campinas 13083-970, SP, Brazil; (C.B.T.); (G.d.S.Z.)
| | - Iran Malavazi
- Department of Genetic and Evolution, Federal University of São Carlos, São Carlos 13565-905, SP, Brazil;
- Correspondence: (I.M.); (T.P.F.)
| | - Taicia Pacheco Fill
- Department of Organic Chemistry, Institute of Chemistry, State University of Campinas, Campinas 13083-970, SP, Brazil; (D.Y.A.); (J.H.C.)
- Correspondence: (I.M.); (T.P.F.)
| |
Collapse
|
17
|
Li Z, Zhang H, Cai C, Lin Z, Zhen Z, Chu J, Guo K. Histone acetyltransferase GCN5-mediated lysine acetylation modulates salt stress aadaption of Trichoderma. Appl Microbiol Biotechnol 2022; 106:3033-3049. [PMID: 35376971 DOI: 10.1007/s00253-022-11897-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 02/28/2022] [Accepted: 03/19/2022] [Indexed: 11/02/2022]
Abstract
Trichoderma viride has a wide range of applications in plant growth promotion, biological control, cellulase production, and biomass utilization. Salinity is a major limitation to Trichoderma strains in the natural environment and fermentation environment, and to improve the adaptability of Trichoderma to salt stress is of great significance to its applications in industry and agriculture. Histone acetylation plays important roles in the regulation of physiological and biochemical processes including various stress responses. GCN5 is the most representative histone acetylase, which plays vital roles in chromatin remodeling of promoters to facilitate the transcription activation. In this paper, we identified a GCN5-encoding gene TvGCN5 in T. viride Tv-1511, and characterized the function and regulating mechanism of TvGCN5-mediated acetylation of histone H3 in the salt adoption of Tv-1511, by constructions of the deletion mutants (Tv-1511-△GCN5) and overexpression mutants (Tv-1511-GCN5-OE) of TvGCN5. Results showed that compared with wild-type Tv-1511, the over-expression of TvGCN5 resulted in the longer mycelia diameter and more biomass under salt stress. Furthermore, Tv-1511-△GCN5 strains obtained the improved sodium (Na+) compartmentation and antioxidant capacity by upregulating the transcriptional levels of genes encoding PM H+-ATPase, vacuolar H+-ATPase, and antioxidant enzymes. Notably, the changes in the transcriptional expressions of these genes are tightly modulated by the TvGCN5-mediated acetylated level of histone H3 in their promoter regions. In all, these results reveal that TvGCN5 plays an important role in stress tolerance of T. viride Tv-1511, and provides potential insight to facilitate the application of epigenetic modulation in the expanding utilization of Trichoderma. KEY POINTS: • Overexpresison of TvGCN5 improves the adoption of T. viride Tv-1511 to salt stress by increasing acetylation level of histone H3 on the promoter regions of sodium-transport and antioxidant-related genes, at H3K9ac, H3K14ac, H3K23ac, and H3K27ac. • Overexprsison of TvGCN5 enhances the ion transport and compartmentation capacity by upregulating the expressions and activities of PM and vacuolar H+-ATPase to tolerate salt stress. • Overexprsison of TvGCN5 promotes the antioxidant capacity by increasing the expressions and activities of antioxidant enzymes in response to salt stress.
Collapse
Affiliation(s)
- Zhe Li
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China. .,State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China.
| | - Hao Zhang
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Chunjing Cai
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Zhong Lin
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China.
| | - Zhen Zhen
- Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, 524088, People's Republic of China
| | - Jie Chu
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| | - Kai Guo
- Biology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 250014, China
| |
Collapse
|
18
|
Combination Strategy of Genetic Dereplication and Manipulation of Epigenetic Regulators Reveals a Novel Compound from Plant Endophytic Fungus. Int J Mol Sci 2022; 23:ijms23073686. [PMID: 35409046 PMCID: PMC8998291 DOI: 10.3390/ijms23073686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/10/2022] Open
Abstract
The strategies of genetic dereplication and manipulation of epigenetic regulators to activate the cryptic gene clusters are effective to discover natural products with novel structure in filamentous fungi. In this study, a combination of genetic dereplication (deletion of pesthetic acid biosynthetic gene, PfptaA) and manipulation of epigenetic regulators (deletion of histone methyltransferase gene PfcclA and histone deacetylase gene PfhdaA) was developed in plant endophytic fungus Pestalotiopsis fici. The deletion of PfptaA with PfcclA and/or PfhdaA led to isolation of 1 novel compound, pestaloficiol X (1), as well as another 11 known compounds with obvious yield changes. The proposed biosynthesis pathway of pestaloficiol X was speculated using comparative analysis of homologous biosynthetic gene clusters. Moreover, phenotypic effects on the conidial development and response to oxidative stressors in the mutants were explored. Our results revealed that the new strain with deletion of PfcclA or PfhdaA in ΔPfptaA background host can neutralise the hyperformation of conidia in the PfptaA mutant, and that the ΔPfptaA ΔPfhdaA mutant was generally not sensitive to oxidative stressors as much as the ΔPfptaA ΔcclA mutant in comparison with the single mutant ΔPfptaA or the parental strains. This combinatorial approach can be applied to discover new natural products in filamentous fungi.
Collapse
|
19
|
Ramos-García VH, Villota-Salazar NA, González-Prieto JM, Cortés-Espinosa DV. Different histone deacetylase inhibitors reduce growth, virulence as well as changes in the morphology of the fungus Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 2022; 38:63. [DOI: 10.1007/s11274-022-03249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 02/11/2022] [Indexed: 11/29/2022]
|
20
|
Pillay LC, Nekati L, Makhwitine PJ, Ndlovu SI. Epigenetic Activation of Silent Biosynthetic Gene Clusters in Endophytic Fungi Using Small Molecular Modifiers. Front Microbiol 2022; 13:815008. [PMID: 35237247 PMCID: PMC8882859 DOI: 10.3389/fmicb.2022.815008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/19/2022] [Indexed: 11/29/2022] Open
Abstract
The discovery of silent biosynthetic gene clusters (BGCs) in fungi provides unlimited prospects to harness the secondary metabolites encoded by gene clusters for various applications, including pharmaceuticals. Amplifying these prospects is the new interest in exploring fungi living in the extremes, such as those associated with plants (fungal endophytes). Fungal species in endosymbiosis relationship with plants are recognized as the future factories of clinically relevant agents since discovering that they can produce similar metabolites as their plant host. The endophytes produce these compounds in natural environments as a defense mechanism against pathogens that infect the plant host or as a strategy for mitigating competitors. The signaling cascades leading to the expression of silent biosynthetic gene clusters in the natural environment remain unknown. Lack of knowledge on regulatory circuits of biosynthetic gene clusters limits the ability to exploit them in the laboratory. They are often silent and require tailor-designed strategies for activation. Epigenetic modification using small molecular compounds that alter the chromatin network, leading to the changes in secondary metabolites profile, has achieved considerable success. This review aims to comprehensively analyze the secondary metabolite profiles expressed after treatment with various epigenetic modifiers. We first describe the regulatory circuits governing the expression of secondary metabolites in fungi. Following this, we provide a detailed review of the small molecular modifiers, their mechanism(s) of action, and the diverse chemistries resulting from epigenetic modification. We further show that genetic deletion or epigenetic inhibition of histone deacetylases does not always lead to the overexpression or induction of silent secondary metabolites. Instead, the response is more complex and often leads to differential expression of secondary metabolites. Finally, we propose using this strategy as an initial screening tool to dereplicate promising fungal species.
Collapse
Affiliation(s)
| | | | | | - Sizwe I. Ndlovu
- Discipline of Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
21
|
Differential regulation and production of secondary metabolites among isolates of the fungal wheat pathogen Zymoseptoria tritici. Appl Environ Microbiol 2022; 88:e0229621. [PMID: 35108092 PMCID: PMC8939313 DOI: 10.1128/aem.02296-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genome of the wheat pathogenic fungus, Zymoseptoria tritici, represents extensive presence-absence variation in gene content. Here, we addressed variation in biosynthetic gene clusters (BGCs) content and biochemical profiles among three isolates. We analysed secondary metabolite properties based on genome, transcriptome and metabolome data. The isolates represent highly distinct genome architecture, but harbor similar repertoire of BGCs. Expression profiles for most BGCs show comparable patterns of regulation among the isolates, suggesting a conserved "biochemical infection program". For all three isolates, we observed a strong up-regulation of a putative abscisic acid (ABA) gene cluster during biotrophic host colonization, indicating that Z. tritici potentially interfere with host defenses by the biosynthesis of this phytohormone. Further, during in vitro growth the isolates show similar metabolomes congruent with the predicted BGC content. We assessed if secondary metabolite production is regulated by histone methylation using a mutant impaired in formation of facultative heterochromatin (H3K27me3). In contrast to other ascomycete fungi, chromatin modifications play a less prominent role in regulation of secondary metabolites. In summary, we show that Z. tritici has a conserved program of secondary metabolite production contrasting the immense variation in effector expression, some of these metabolites might play a key role during host colonization. Importance Zymoseptoria tritici is one of the most devastating pathogens of wheat. So far the molecular determinants of virulence and their regulation are poorly understood. Previous studies have focused on proteinasous virulence factors and their extensive diversity. In this study, we focus on secondary metabolites produced by Z. tritici. Using a comparative framework, we here characterize core and non-core metabolites produced by Z. tritici by combining genome, transcriptome and metabolome datasets. Our findings indicate highly conserved biochemical profiles contrasting genetic and phenotypic diversity of the field isolates investigated here. This discovery has relevance for future crop protection strategies.
Collapse
|
22
|
Histone deacetylase MrRpd3 plays a major regulational role in the mycotoxin production of Monascus ruber. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
23
|
Atanasoff-Kardjalieff AK, Studt L. Secondary Metabolite Gene Regulation in Mycotoxigenic Fusarium Species: A Focus on Chromatin. Toxins (Basel) 2022; 14:96. [PMID: 35202124 PMCID: PMC8880415 DOI: 10.3390/toxins14020096] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 12/31/2022] Open
Abstract
Fusarium is a species-rich group of mycotoxigenic plant pathogens that ranks as one of the most economically important fungal genera in the world. During growth and infection, they are able to produce a vast spectrum of low-molecular-weight compounds, so-called secondary metabolites (SMs). SMs often comprise toxic compounds (i.e., mycotoxins) that contaminate precious food and feed sources and cause adverse health effects in humans and livestock. In this context, understanding the regulation of their biosynthesis is crucial for the development of cropping strategies that aim at minimizing mycotoxin contamination in the field. Nevertheless, currently, only a fraction of SMs have been identified, and even fewer are considered for regular monitoring by regulatory authorities. Limitations to exploit their full chemical potential arise from the fact that the genes involved in their biosynthesis are often silent under standard laboratory conditions and only induced upon specific stimuli mimicking natural conditions in which biosynthesis of the respective SM becomes advantageous for the producer. This implies a complex regulatory network. Several components of these gene networks have been studied in the past, thereby greatly advancing the understanding of SM gene regulation and mycotoxin biosynthesis in general. This review aims at summarizing the latest advances in SM research in these notorious plant pathogens with a focus on chromatin structure.
Collapse
Affiliation(s)
| | - Lena Studt
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna (BOKU), 3430 Tulln an der Donau, Austria;
| |
Collapse
|
24
|
Chen X, Wu L, Lan H, Sun R, Wen M, Ruan D, Zhang M, Wang S. Histone acetyltransferases MystA and MystB contribute to morphogenesis and aflatoxin biosynthesis by regulating acetylation in fungus Aspergillus flavus. Environ Microbiol 2021; 24:1340-1361. [PMID: 34863014 DOI: 10.1111/1462-2920.15856] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/19/2021] [Indexed: 11/28/2022]
Abstract
Myst family is highly conserved histone acetyltransferases in eukaryotic cells and is known to play crucial roles in various cellular processes; however, acetylation catalysed by acetyltransferases is unclear in filamentous fungi. Here, we identified two classical nonessential Myst enzymes and analysed their functions in Aspergillus flavus, which generates aflatoxin B1, one of the most carcinogenic secondary metabolites. MystA and MystB located in nuclei and cytoplasm, and mystA could acetylate H4K16ac, while mystB acetylates H3K14ac, H3K18ac and H3K23ac. Deletion mystA resulted in decreased conidiation, increased sclerotia formation and aflatoxin production. Deletion of mystB leads to significant defects in conidiation, sclerotia formation and aflatoxin production. Additionally, double-knockout mutant (ΔmystA/mystB) display a stronger and similar defect to ΔmystB mutant, indicating that mystB plays a major role in regulating development and aflatoxin production. Both mystA and mystB play important role in crop colonization. Moreover, catalytic domain MOZ and the catalytic site E199/E243 were important for the acetyltransferase function of Myst. Notably, chromatin immunoprecipitation results indicated that mystB participated in oxidative detoxification by regulating the acetylation level of H3K14, and further regulated nsdD to affect sclerotia formation and aflatoxin production. This study provides new evidences to discover the biological functions of histone acetyltransferase in A. flavus.
Collapse
Affiliation(s)
- Xuan Chen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Lianghuan Wu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huahui Lan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ruilin Sun
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Meifang Wen
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Danrui Ruan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mengjuan Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihua Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
25
|
Bauer I, Graessle S. Fungal Lysine Deacetylases in Virulence, Resistance, and Production of Small Bioactive Compounds. Genes (Basel) 2021; 12:1470. [PMID: 34680865 PMCID: PMC8535771 DOI: 10.3390/genes12101470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 12/13/2022] Open
Abstract
The growing number of immunocompromised patients begs for efficient therapy strategies against invasive fungal infections. As conventional antifungal treatment is increasingly hampered by resistance to commonly used antifungals, development of novel therapy regimens is required. On the other hand, numerous fungal species are industrially exploited as cell factories of enzymes and chemicals or as producers of medically relevant pharmaceuticals. Consequently, there is immense interest in tapping the almost inexhaustible fungal portfolio of natural products for potential medical and industrial applications. Both the pathogenicity and production of those small metabolites are significantly dependent on the acetylation status of distinct regulatory proteins. Thus, classical lysine deacetylases (KDACs) are crucial virulence determinants and important regulators of natural products of fungi. In this review, we present an overview of the members of classical KDACs and their complexes in filamentous fungi. Further, we discuss the impact of the genetic manipulation of KDACs on the pathogenicity and production of bioactive molecules. Special consideration is given to inhibitors of these enzymes and their role as potential new antifungals and emerging tools for the discovery of novel pharmaceutical drugs and antibiotics in fungal producer strains.
Collapse
Affiliation(s)
| | - Stefan Graessle
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, 6020 Innsbruck, Austria;
| |
Collapse
|
26
|
Liu W, Triplett L, Chen XL. Emerging Roles of Posttranslational Modifications in Plant-Pathogenic Fungi and Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2021; 59:99-124. [PMID: 33909479 DOI: 10.1146/annurev-phyto-021320-010948] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Posttranslational modifications (PTMs) play crucial roles in regulating protein function and thereby control many cellular processes and biological phenotypes in both eukaryotes and prokaryotes. Several recent studies illustrate how plant fungal and bacterial pathogens use these PTMs to facilitate development, stress response, and host infection. In this review, we discuss PTMs that have key roles in the biological and infection processes of plant-pathogenic fungi and bacteria. The emerging roles of PTMs during pathogen-plant interactions are highlighted. We also summarize traditional tools and emerging proteomics approaches for PTM research. These discoveries open new avenues for investigating the fundamental infection mechanisms of plant pathogens and the discovery of novel strategies for plant disease control.
Collapse
Affiliation(s)
- Wende Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China;
| | - Lindsay Triplett
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, Connecticut 06511, USA;
| | - Xiao-Lin Chen
- State Key Laboratory of Agricultural Microbiology and Provincial Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China;
| |
Collapse
|
27
|
Wang J, Liu C, Chen Y, Zhao Y, Ma Z. Protein acetylation and deacetylation in plant-pathogen interactions. Environ Microbiol 2021; 23:4841-4855. [PMID: 34398483 DOI: 10.1111/1462-2920.15725] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 12/12/2022]
Abstract
Protein acetylation and deacetylation catalysed by lysine acetyltransferases (KATs) and deacetylases (KDACs), respectively, are major mechanisms regulating various cellular processes. During the fight between microbial pathogens and host plants, both apply a set of measures, including acetylation interference, to strengthen themselves while suppressing the other. In this review, we first summarize KATs and KDACs in plants and their pathogens. Next, we introduce diverse acetylation and deacetylation mechanisms affecting protein functions, including the regulation of enzyme activity and specificity, protein-protein or protein-DNA interactions, subcellular localization and protein stability. We then focus on the current understanding of acetylation and deacetylation in plant-pathogen interactions. Additionally, we also discuss potential acetylation-related approaches for controlling plant diseases.
Collapse
Affiliation(s)
- Jing Wang
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Chao Liu
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, and Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, China
| |
Collapse
|
28
|
Wang H, Chen B, Tian J, Kong Z. Verticillium dahliae VdBre1 is required for cotton infection by modulating lipid metabolism and secondary metabolites. Environ Microbiol 2020; 23:1991-2003. [PMID: 33185953 DOI: 10.1111/1462-2920.15319] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/19/2020] [Accepted: 11/09/2020] [Indexed: 01/01/2023]
Abstract
The soil-borne ascomycete Verticillium dahliae causes wilt disease in more than two hundred dicotyledonous plants including the economically important crop cotton, and results in a severe reduction in cotton fiber yield and quality. During infection, V. dahliae secretes numerous secondary metabolites, which act as toxic factors to promote the infection process. However, the mechanism underlying how V. dahliae secondary metabolites regulate cotton infection remains largely unexplored. In this study, we report that VdBre1, an ubiquitin ligase (E3) enzyme to modify H2B, regulates radial growth and conidia production of V. dahliae. The VdBre1 deletion strains show nonpathogenic symptoms on cotton, and microscopic inspection and penetration assay indicated that penetration ability of the ∆VdBre1 strain was dramatically reduced. RNA-seq revealed that a total of 1643 differentially expressed genes between the ∆VdBre1 strain and the wild type strain V592, among which genes related to lipid metabolism were significantly overrepresented. Remarkably, the volume of lipid droplets in the ∆VdBre1 conidia was shown to be smaller than that of wild-type strains. Further metabolomics analysis revealed that the pathways of lipid metabolism and secondary metabolites, such as steroid biosynthesis and metabolism of terpenoids and polyketides, have dramatically changed in the ∆VdBre1 metabolome. Taken together, these results indicate that VdBre1 plays crucial roles in cotton infection and pathogenecity, by globally regulating lipid metabolism and secondary metabolism of V. dahliae.
Collapse
Affiliation(s)
- Huan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Juan Tian
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.,State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
29
|
Schüller A, Wolansky L, Berger H, Studt L, Gacek-Matthews A, Sulyok M, Strauss J. A novel fungal gene regulation system based on inducible VPR-dCas9 and nucleosome map-guided sgRNA positioning. Appl Microbiol Biotechnol 2020; 104:9801-9822. [PMID: 33006690 PMCID: PMC7595996 DOI: 10.1007/s00253-020-10900-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/16/2022]
Abstract
Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled "dead" Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively growing cells and stationary cultures to identify the cognate nucleosome-free regions (NFRs). Based on these maps, different single-guide RNAs (sgRNAs) were designed and tested for their targeting and activation potential. Our results demonstrate that the system can be used to regulate several genes in parallel and, depending on the VPR-dCas9 positioning, expression can be pushed to very high levels. We have used the system to turn on individual genes within two different biosynthetic gene clusters (BGCs) which are silent under normal growth conditions. This method also opens opportunities to stepwise activate individual genes in a cluster to decipher the correlated biosynthetic pathway. Graphical abstract KEYPOINTS: • An inducible RNA-guided transcriptional regulator based on VPR-dCas9 was established in Aspergillus nidulans. • Genome-wide nucleosome positioning maps were created that facilitate sgRNA positioning. • The system was successfully applied to activate genes within two silent biosynthetic gene clusters.
Collapse
Affiliation(s)
- Andreas Schüller
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Lisa Wolansky
- Institute Krems Bioanalytics , IMC FH Krems University of Applied Sciences , Krems, Austria
| | - Harald Berger
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Lena Studt
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
| | - Agnieszka Gacek-Matthews
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria
- Institute of Microbiology, Functional Microbiology Division, University of Veterinary Sciences Vienna, Wien, Austria
| | - Michael Sulyok
- Institute of Bioanalytics and Agrometabolomics, Department of Agrobiotechnology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad-Lorenz-Straße 20, A-3430 Tulln an der Donau, Austria
| | - Joseph Strauss
- Fungal Genetics Lab, Institute of Microbial Genetics, Department of Applied Genetics and Cell Biology, BOKU-University of Natural Resources and Life Sciences Vienna, BOKU-Campus Tulln, Konrad Lorenz Strasse 24, A-3430, Tulln an der Donau, Austria.
| |
Collapse
|
30
|
Chen J, Liu Q, Zeng L, Huang X. Protein Acetylation/Deacetylation: A Potential Strategy for Fungal Infection Control. Front Microbiol 2020; 11:574736. [PMID: 33133044 PMCID: PMC7579399 DOI: 10.3389/fmicb.2020.574736] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Protein acetylation is a universal post-translational modification that fine-tunes the major cellular processes of many life forms. Although the mechanisms regulating protein acetylation have not been fully elucidated, this modification is finely tuned by both enzymatic and non-enzymatic mechanisms. Protein deacetylation is the reverse process of acetylation and is mediated by deacetylases. Together, protein acetylation and deacetylation constitute a reversible regulatory protein acetylation network. The recent application of mass spectrometry-based proteomics has led to accumulating evidence indicating that reversible protein acetylation may be related to fungal virulence because a substantial amount of virulence factors are acetylated. Additionally, the relationship between protein acetylation/deacetylation and fungal drug resistance has also been proven and the potential of deacetylase inhibitors as an anti-infective treatment has attracted attention. This review aimed to summarize the research progress in understanding fungal protein acetylation/deacetylation and discuss the mechanism of its mediation in fungal virulence, providing novel targets for the treatment of fungal infection.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| |
Collapse
|
31
|
Winter C, Fehr M, Craig IR, Grammenos W, Wiebe C, Terteryan-Seiser V, Rudolf G, Mentzel T, Quintero Palomar MA. Trifluoromethyloxadiazoles: inhibitors of histone deacetylases for control of Asian soybean rust. PEST MANAGEMENT SCIENCE 2020; 76:3357-3368. [PMID: 32369266 DOI: 10.1002/ps.5874] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/20/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Trifluoromethyloxadiazoles (TFMOs) are selective inhibitors of class II histone deacetylases (HDACs). To date, class II HDACs have not been addressed as target enzymes by commercial fungicides. RESULTS Antifungal testing of a broad variety of TFMOs against several important plant pathogens showed activity against only rusts, and especially Phakopsora pachyrhizi, the cause of Asian soybean rust. A structure-activity relationship was established, leading to highly active fungicides that inhibit fungal class II and HOS3-type HDACs of Aspergillus nidulans. Studies of the enzyme-inhibitor binding mode using protein structural information based on the crystal structure of human HDAC4 argue that TFMOs inhibit these enzymes only after undergoing hydration. CONCLUSION Fungal class II HDACs are potential target enzymes for the control of at least some biotrophic crop diseases, in particular Asian soybean rust. As with any novel mode-of-action, class II HDAC fungicides would offer the potential to control fungal isolates that show reduced sensitivity toward existing commercial fungicides.
Collapse
Affiliation(s)
| | - Marcus Fehr
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | - Ian R Craig
- BASF SE, Digitalization in R&D, Ludwigshafen, Germany
| | | | | | | | - Georg Rudolf
- BASF SE, Agricultural Solutions, Ludwigshafen, Germany
| | | | | |
Collapse
|
32
|
Sang X, Yang M, Su J. Research on endophytic fungi for producing huperzine A on a large-scale. Crit Rev Microbiol 2020; 46:654-664. [PMID: 32970952 DOI: 10.1080/1040841x.2020.1819771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Huperzine A (HupA) is an effective inhibitor of acetylcholinesterase and has attracted great interest as a therapeutic candidate for Alzheimer's disease. However, the use of HupA is limited by resource scarcity as well as by its low yields from Huperzia serrata, its primary plant source. Recent studies have shown that this compound is produced by various endophytic fungi, thereby providing a promising alternative source, as fungi are much more amenable than plants owing to their simpler genetics and the ease of manipulation. In this review, we summarize the progress in research on the methods to increase HupA production, including fermentation conditions, fungal elicitors, gene expression, and the activation of key enzymes. This review provides guidance for further studies on HupA-producing endophytic fungi aimed at efficient HupA synthesis and accumulation, and offers new approaches for studies on the regulation of high-value bioactive secondary metabolites.
Collapse
Affiliation(s)
- Xiao Sang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Minhe Yang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| | - Jingqian Su
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University, Fuzhou, Fujian, PR China
| |
Collapse
|
33
|
Abstract
Most genomes within the species complex of Fusarium oxysporum are organized into two compartments: the core chromosomes (CCs) and accessory chromosomes (ACs). As opposed to CCs, which are conserved and vertically transmitted to carry out essential housekeeping functions, lineage- or strain-specific ACs are believed to be initially horizontally acquired through unclear mechanisms. These two genomic compartments are different in terms of gene density, the distribution of transposable elements, and epigenetic markers. Although common in eukaryotes, the functional importance of ACs is uniquely emphasized among fungal species, specifically in relationship to fungal pathogenicity and their adaptation to diverse hosts. With a focus on the cross-kingdom fungal pathogen F. oxysporum, this review provides a summary of the differences between CCs and ACs based on current knowledge of gene functions, genome structures, and epigenetic signatures, and explores the transcriptional crosstalk between the core and accessory genomes.
Collapse
|
34
|
Zhang N, Yang Z, Zhang Z, Liang W. BcRPD3-Mediated Histone Deacetylation Is Involved in Growth and Pathogenicity of Botrytis cinerea. Front Microbiol 2020; 11:1832. [PMID: 32849432 PMCID: PMC7403187 DOI: 10.3389/fmicb.2020.01832] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/13/2020] [Indexed: 12/12/2022] Open
Abstract
Histone deacetylase activity plays an important role in transcriptional repression. Botrytis cinerea is an important necrotrophic fungal pathogen distributed worldwide and parasites a wide range of hosts. However, the molecular mechanisms of how B. cinerea regulates growth and host infection remain largely unknown. Here, the function of BcRPD3, a histone deacetylase of B. cinerea, was investigated. Overexpression of the BcRPD3 gene resulted in significantly decreased acetylation levels of histone H3 and H4. The BcRPD3 overexpression strains showed slightly delayed vegetative growth, dramatically impaired infection structure formation, oxidative stress response, and virulence. RNA-Seq analysis revealed that enzymatic activity related genes, including 9 genes reported to function as virulence factors, were downregulated in BcRPD3 overexpression strain. Chromatin immunoprecipitation followed by qPCR confirmed the enrichment of BcRPD3 and H3Kac at the promoter regions of these nine genes. These observations indicated that BcRPD3 regulated the transcription of enzymatic activity related genes by controlling the acetylation level of histones, thereby affecting the vegetative growth, infection structure formation, oxidative stress response, and virulence of B. cinerea.
Collapse
Affiliation(s)
- Ning Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Zhenzhou Yang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhonghua Zhang
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wenxing Liang
- Key Lab of Integrated Crop Pest Management of Shandong, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
35
|
Tucker JS, Guess TE, McClelland EE. The Role of Testosterone and Gibberellic Acid in the Melanization of Cryptococcus neoformans. Front Microbiol 2020; 11:1921. [PMID: 32922377 PMCID: PMC7456850 DOI: 10.3389/fmicb.2020.01921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 07/21/2020] [Indexed: 12/14/2022] Open
Abstract
Cryptococcus neoformans, a spore-producing pathogenic yeast, affects immunocompromised individuals causing meningoencephalitis. Once C. neoformans is introduced via the respiratory tract, it is engulfed by macrophages and other phagocytes. One of C. neoformans's primary virulence factors is the pigment melanin, which is formed in the cell wall and protects the yeast against UV radiation and oxidizing agents produced by macrophages during phagocytosis. To better understand the observed sex bias (3:1; male:female) in C. neoformans infections, the phenotype of various virulence factors was determined in the presence of exogenous sex hormones. C. neoformans melanized faster in the presence of testosterone than it did in the presence of estradiol. Using a combination of RNA sequencing analysis and ELISA results, we identified a growth hormone, gibberellic acid (GA), produced in C. neoformans that was highly upregulated in the presence of testosterone. A variety of knockout strains of genes involved in the GA biosynthesis pathway showed significantly reduced melanization in the presence of testosterone. Additionally, inhibitors of GA also reduced melanization in the presence of testosterone. Thus, these data suggest that the gibberellic biosynthesis pathway is involved in melanization in C. neoformans, and the melanization difference observed in the presence of testosterone may be due to increased production of GA, which may partly explain the sex bias observed in C. neoformans infections.
Collapse
Affiliation(s)
- Jamila S Tucker
- University of Kentucky, Lexington, KY, United States.,Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| | - Tiffany E Guess
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States.,Vanderbilt University Medical Center, Nashville, TN, United States
| | - Erin E McClelland
- Department of Biology, Middle Tennessee State University, Murfreesboro, TN, United States
| |
Collapse
|
36
|
Ding Z, Zhou H, Wang X, Huang H, Wang H, Zhang R, Wang Z, Han J. Deletion of the Histone Deacetylase HdaA in Endophytic Fungus Penicillium chrysogenum Fes1701 Induces the Complex Response of Multiple Bioactive Secondary Metabolite Production and Relevant Gene Cluster Expression. Molecules 2020; 25:molecules25163657. [PMID: 32796640 PMCID: PMC7464707 DOI: 10.3390/molecules25163657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/09/2020] [Indexed: 12/04/2022] Open
Abstract
Epigenetic regulation plays a critical role in controlling fungal secondary metabolism. Here, we report the pleiotropic effects of the epigenetic regulator HdaA (histone deacetylase) on secondary metabolite production and the associated biosynthetic gene clusters (BGCs) expression in the plant endophytic fungus Penicillium chrysogenum Fes1701. Deletion of the hdaA gene in strain Fes1701 induced a significant change of the secondary metabolite profile with the emergence of the bioactive indole alkaloid meleagrin. Simultaneously, more meleagrin/roquefortine-related compounds and less chrysogine were synthesized in the ΔhdaA strain. Transcriptional analysis of relevant gene clusters in ΔhdaA and wild strains indicated that disruption of hdaA had different effects on the expression levels of two BGCs: the meleagrin/roquefortine BGC was upregulated, while the chrysogine BGC was downregulated. Interestingly, transcriptional analysis demonstrated that different functional genes in the same BGC had different responses to the disruption of hdaA. Thereinto, the roqO gene, which encodes a key catalyzing enzyme in meleagrin biosynthesis, showed the highest upregulation in the ΔhdaA strain (84.8-fold). To our knowledge, this is the first report of the upregulation of HdaA inactivation on meleagrin/roquefortine alkaloid production in the endophytic fungus P. chrysogenum. Our results suggest that genetic manipulation based on the epigenetic regulator HdaA is an important strategy for regulating the productions of secondary metabolites and expanding bioactive natural product resources in endophytic fungi.
Collapse
Affiliation(s)
- Zhuang Ding
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
- Correspondence: ; Tel./Fax: +86-635-8239136
| | - Haibo Zhou
- Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China;
| | - Xiao Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Huiming Huang
- School of Life Science, Liaocheng University, Liaocheng 252059, China;
| | - Haotian Wang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu 233000, China;
| | - Ruiyan Zhang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Zhengping Wang
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| | - Jun Han
- Institute of BioPharmaceutical Research, Liaocheng University, Liaocheng 252059, China; (X.W.); (R.Z.); (Z.W.); (J.H.)
| |
Collapse
|
37
|
Shostak K, Bonner C, Sproule A, Thapa I, Shields SWJ, Blackwell B, Vierula J, Overy D, Subramaniam R. Activation of biosynthetic gene clusters by the global transcriptional regulator TRI6 in Fusarium graminearum. Mol Microbiol 2020; 114:664-680. [PMID: 32692880 DOI: 10.1111/mmi.14575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/06/2020] [Accepted: 07/12/2020] [Indexed: 12/30/2022]
Abstract
In F. graminearum, the transcription factor TRI6 positively regulates the trichothecene biosynthetic gene cluster (BGC) leading to the production of the secondary metabolite 15-acetyl deoxynivalenol. Secondary metabolites are not essential for survival, instead, they enable the pathogen to successfully infect its host. F. graminearum has the potential to produce a diverse array of secondary metabolites (SMs). However, given high functional specificity and energetic cost, most of these clusters remain silent, unless the organism is subjected to an environment conducive to SM production. Alternatively, secondary metabolite gene clusters (SMCs) can be activated by genetically manipulating their activators or repressors. In this study, a combination of transcriptomic and metabolomics analyses with a deletion and overexpressor mutants of TRI6 was used to establish the role of TRI6 in the regulation of several BGCs in F. graminearum. Evidence for direct and indirect regulation of BGCs by TRI6 was obtained by chromatin immunoprecipitation and yeast two-hybrid experiments. The results showed that the trichothecene genes are under direct control, while the gramillin gene cluster is indirectly controlled by TRI6 through its interaction with the pathway-specific transcription factor GRA2.
Collapse
Affiliation(s)
- Kristina Shostak
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Christopher Bonner
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Amanda Sproule
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Indira Thapa
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Samuel W J Shields
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Barbara Blackwell
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - John Vierula
- Department of Biology, Carleton University, Ottawa, ON, Canada
| | - David Overy
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| | - Rajagopal Subramaniam
- Department of Biology, Carleton University, Ottawa, ON, Canada.,Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, Ottawa, ON, Canada
| |
Collapse
|
38
|
Epigenetic manipulation of filamentous fungi for biotechnological applications: a systematic review. Biotechnol Lett 2020; 42:885-904. [PMID: 32246346 DOI: 10.1007/s10529-020-02871-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 03/21/2020] [Indexed: 01/11/2023]
Abstract
The study of the epigenetic regulation of gene function has reached pivotal importance in life sciences in the last decades. The mechanisms and effects of processes such as DNA methylation, histone posttranslational modifications and non-coding RNAs, as well as their impact on chromatin structure and dynamics, are clearly involved in physiology homeostasis in plants, animals and microorganisms. In the fungal kingdom, studies on the model yeasts Saccharomyces cerevisiae and Schizosaccharomyces pombe contributed enormously to the elucidation of the eukaryote epigenetic landscape. Epigenetic regulation plays a central role in the expression of virulence attributes of human pathogens such as Candida albicans. In this article, we review the most recent studies on the effects of drugs capable of altering epigenetic states and on the impact of chromatin structure-related genes deletion in filamentous fungi. Emphasis is given on plant and insect pathogens, endophytes, secondary metabolites and cellulases/xylanases producing species.
Collapse
|
39
|
Cen YK, Lin JG, Wang YL, Wang JY, Liu ZQ, Zheng YG. The Gibberellin Producer Fusarium fujikuroi: Methods and Technologies in the Current Toolkit. Front Bioeng Biotechnol 2020; 8:232. [PMID: 32292777 PMCID: PMC7118215 DOI: 10.3389/fbioe.2020.00232] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 03/06/2020] [Indexed: 12/18/2022] Open
Abstract
In recent years, there has been a noticeable increase in research interests on the Fusarium species, which includes prevalent plant pathogens and human pathogens, common microbial food contaminants and industrial microbes. Taken the advantage of gibberellin synthesis, Fusarium fujikuroi succeed in being a prevalent plant pathogen. At the meanwhile, F. fujikuroi was utilized for industrial production of gibberellins, a group of extensively applied phytohormone. F. fujikuroi has been known for its outstanding performance in gibberellin production for almost 100 years. Research activities relate to this species has lasted for a very long period. The slow development in biological investigation of F. fujikuroi is largely due to the lack of efficient research technologies and molecular tools. During the past decade, technologies to analyze the molecular basis of host-pathogen interactions and metabolic regulations have been developed rapidly, especially on the aspects of genetic manipulation. At the meanwhile, the industrial fermentation technologies kept sustained development. In this article, we reviewed the currently available research tools/methods for F. fujikuroi research, focusing on the topics about genetic engineering and gibberellin production.
Collapse
Affiliation(s)
- Yu-Ke Cen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Guang Lin
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - You-Liang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Jun-You Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
40
|
Dhar N, Chen JY, Subbarao KV, Klosterman SJ. Hormone Signaling and Its Interplay With Development and Defense Responses in Verticillium-Plant Interactions. FRONTIERS IN PLANT SCIENCE 2020; 11:584997. [PMID: 33250913 PMCID: PMC7672037 DOI: 10.3389/fpls.2020.584997] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 10/12/2020] [Indexed: 05/19/2023]
Abstract
Soilborne plant pathogenic species in the fungal genus Verticillium cause destructive Verticillium wilt disease on economically important crops worldwide. Since R gene-mediated resistance is only effective against race 1 of V. dahliae, fortification of plant basal resistance along with cultural practices are essential to combat Verticillium wilts. Plant hormones involved in cell signaling impact defense responses and development, an understanding of which may provide useful solutions incorporating aspects of basal defense. In this review, we examine the current knowledge of the interplay between plant hormones, salicylic acid, jasmonic acid, ethylene, brassinosteroids, cytokinin, gibberellic acid, auxin, and nitric oxide, and the defense responses and signaling pathways that contribute to resistance and susceptibility in Verticillium-host interactions. Though we make connections where possible to non-model systems, the emphasis is placed on Arabidopsis-V. dahliae and V. longisporum interactions since much of the research on this interplay is focused on these systems. An understanding of hormone signaling in Verticillium-host interactions will help to determine the molecular basis of Verticillium wilt progression in the host and potentially provide insight on alternative approaches for disease management.
Collapse
Affiliation(s)
- Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
- Nikhilesh Dhar,
| | - Jie-Yin Chen
- Department of Plant Pathology, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Salinas, CA, United States
| | - Steven J. Klosterman
- United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
- *Correspondence: Steven J. Klosterman,
| |
Collapse
|
41
|
Zumaquero A, Kanematsu S, Nakayashiki H, Matas A, Martínez-Ferri E, Barceló-Muñóz A, Pliego-Alfaro F, López-Herrera C, Cazorla FM, Pliego C. Transcriptome analysis of the fungal pathogen Rosellinia necatrix during infection of a susceptible avocado rootstock identifies potential mechanisms of pathogenesis. BMC Genomics 2019; 20:1016. [PMID: 31878883 PMCID: PMC6933693 DOI: 10.1186/s12864-019-6387-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/12/2019] [Indexed: 01/04/2023] Open
Abstract
Background White root rot disease caused by Rosellinia necatrix is one of the most important threats affecting avocado productivity in tropical and subtropical climates. Control of this disease is complex and nowadays, lies in the use of physical and chemical methods, although none have proven to be fully effective. Detailed understanding of the molecular mechanisms underlying white root rot disease has the potential of aiding future developments in disease resistance and management. In this regard, this study used RNA-Seq technology to compare the transcriptomic profiles of R. necatrix during infection of susceptible avocado ‘Dusa’ roots with that obtained from the fungus cultured in rich medium. Results The transcriptomes from three biological replicates of R. necatrix colonizing avocado roots (RGA) and R. necatrix growing on potato dextrose agar media (RGPDA) were analyzed using Illumina sequencing. A total of 12,104 transcripts were obtained, among which 1937 were differentially expressed genes (DEG), 137 exclusively expressed in RGA and 160 in RGPDA. During the root infection process, genes involved in the production of fungal toxins, detoxification and transport of toxic compounds, hormone biosynthesis, gene silencing and plant cell wall degradation were overexpressed. Interestingly, 24 out of the 137 contigs expressed only during R. necatrix growth on avocado roots, were predicted as candidate effector proteins (CEP) with a probability above 60%. The PHI (Pathogen Host Interaction) database revealed that three of the R. necatrix CEP showed homology with previously annotated effectors, already proven experimentally via pathogen-host interaction. Conclusions The analysis of the full-length transcriptome of R. necatrix during the infection process is suggesting that the success of this fungus to infect roots of diverse crops might be attributed to the production of different compounds which, singly or in combination, interfere with defense or signaling mechanisms shared among distinct plant families. The transcriptome analysis of R. necatrix during the infection process provides useful information and facilitates further research to a more in -depth understanding of the biology and virulence of this emergent pathogen. In turn, this will make possible to evolve novel strategies for white root rot management in avocado.
Collapse
Affiliation(s)
- A Zumaquero
- Department of Genomics and Biotechnology, IFAPA, Fruticultura Subtropical y Mediterránea, Unidad Asociada de I + D + i al CSIC, Cortijo de la Cruz s/n, 29140, Málaga, Spain
| | - S Kanematsu
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan.,Present Address: NIFTS, NARO, 2-1 Fujimoto, Tsukuba, 360-8605, Japan
| | - H Nakayashiki
- Division of Apple Research, Institute of Fruit Tree and Tea Science, National Agriculture and Food Research Organization (NARO), 92-24 Nabeyashiki, Shimokuriyagawa, Morioka, Iwate, 020-0123, Japan
| | - A Matas
- Department of Botany and Plant Physiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Unidad Asociada IHSM-IFAPA, University of Málaga, 29071, Málaga, Spain
| | - E Martínez-Ferri
- Department of Crop Ecophysiology, IFAPA, Fruticultura Subtropical y Mediterránea, Unidad Asociada de I + D + i al CSIC, Cortijo de la Cruz s/n, 29140, Málaga, Spain
| | - A Barceló-Muñóz
- Department of Genomics and Biotechnology, IFAPA, Fruticultura Subtropical y Mediterránea, Unidad Asociada de I + D + i al CSIC, Cortijo de la Cruz s/n, 29140, Málaga, Spain
| | - F Pliego-Alfaro
- Department of Botany and Plant Physiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Unidad Asociada IHSM-IFAPA, University of Málaga, 29071, Málaga, Spain
| | - C López-Herrera
- Instituto de Agricultura Sostenible, CSIC, Apdo. 4084, 144080, Córdoba, Spain
| | - F M Cazorla
- Department of Microbiology, Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), University of Málaga, 29071, Málaga, Spain
| | - C Pliego
- Department of Genomics and Biotechnology, IFAPA, Fruticultura Subtropical y Mediterránea, Unidad Asociada de I + D + i al CSIC, Cortijo de la Cruz s/n, 29140, Málaga, Spain.
| |
Collapse
|
42
|
Zhang Y, Wang L, Liang S, Zhang P, Kang R, Zhang M, Wang M, Chen L, Yuan H, Ding S, Li H. FpDep1, a component of Rpd3L histone deacetylase complex, is important for vegetative development, ROS accumulation, and pathogenesis in Fusarium pseudograminearum. Fungal Genet Biol 2019; 135:103299. [PMID: 31706014 DOI: 10.1016/j.fgb.2019.103299] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 10/26/2019] [Accepted: 11/04/2019] [Indexed: 10/25/2022]
Abstract
Histone deacetylases (HDACs) play essential roles in modulating chromatin structure to provide accessibility to gene regulators. Increasing evidence has linked HADCs to pathogenesis control in the filamentous plant fungi. However, its function remains unclear in Fusarium pseudograminearum, which has led to the emergence of the disease Fusarium crown rot in China. Here we identified the FpDEP1 gene, an orthologue of Saccharomyces cerevisiae DEP1 encoding a component of the Rpd3 histone deacetylase complex in F. pseudograminearum. The gene deletion mutant, ΔFpdep1, showed significantly retarded growth on PDA plates with reduced aerial hyphae formation. Pathogenicity tests displayed no typical leaf lesions and limited expansion capability of coleoptiles. Histopathological analysis indicated the ΔFpdep1 deletion mutant differentiated infectious hyphae and triggered massive reactive oxygen species (ROS) accumulation during the early infection stage, resulting in limited expansion to neighbor cells which was concurring with sensitivity to H2O2 and SDS tests in vitro. FM4-64 staining revealed that the ΔFpdep1 deletion mutant was delayed in endocytosis. The FpDEP1-GFP transgene complemented the mutant phenotypes and the fusion protein co-localized with DAPI staining, indicating that the FpDEP1 gene product is localized to the nucleus in spores and mycelia. Immunoprecipitation coupled with LC-MS/MS and yeast two-hybrid screening identified the Rpd3L-like HDAC complex containing at least FpDep1, FpSds3, FpSin3, FpRpd3, FpRxt3, FpCti6, FpRho23, and FpUme6. These results suggest that FpDep1 is involved in a HDAC complex functioning on fungal development and pathogenesis in F. pseudograminearum.
Collapse
Affiliation(s)
- Yinshan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Limin Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shen Liang
- Horticulture Research Institute, Henan Academy of Agricultural Sciences, Zhengzhou, Henan 450009 China
| | - Panpan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Ruijiao Kang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Mengjuan Zhang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Min Wang
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Linlin Chen
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Hongxia Yuan
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China
| | - Shengli Ding
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| | - Honglian Li
- Henan Agricultural University/Collaborative Innovation Center of Henan Grain Crops/National Key Laboratory of Wheat and Maize Crop Science, Zhengzhou 450002, China.
| |
Collapse
|
43
|
Li X, Pan L, Wang B, Pan L. The Histone Deacetylases HosA and HdaA Affect the Phenotype and Transcriptomic and Metabolic Profiles of Aspergillus niger. Toxins (Basel) 2019; 11:toxins11090520. [PMID: 31500299 PMCID: PMC6784283 DOI: 10.3390/toxins11090520] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/24/2022] Open
Abstract
Histone acetylation is an important modification for the regulation of chromatin accessibility and is controlled by two kinds of histone-modifying enzymes: histone acetyltransferases (HATs) and histone deacetylases (HDACs). In filamentous fungi, there is increasing evidence that HATs and HDACs are critical factors related to mycelial growth, stress response, pathogenicity and production of secondary metabolites (SMs). In this study, seven A. niger histone deacetylase-deficient strains were constructed to investigate their effects on the strain growth phenotype as well as the transcriptomic and metabolic profiles of secondary metabolic pathways. Phenotypic analysis showed that deletion of hosA in A. niger FGSC A1279 leads to a significant reduction in growth, pigment production, sporulation and stress resistance, and deletion of hdaA leads to an increase in pigment production in liquid CD medium. According to the metabolomic analysis, the production of the well-known secondary metabolite fumonisin was reduced in both the hosA and hdaA mutants, and the production of kojic acid was reduced in the hdaA mutant and slightly increased in the hosA mutant. Results suggested that the histone deacetylases HosA and HdaA play a role in development and SM biosynthesis in A. niger FGSC A1279. Histone deacetylases offer new strategies for regulation of SM synthesis.
Collapse
Affiliation(s)
- Xuejie Li
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Lijie Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Bin Wang
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| | - Li Pan
- School of Biology and Biological Engineering, South China University of Technology, No. 382 Waihuan East Rd, Guangzhou Higher Education Mega Center, Guangzhou 510006, China.
| |
Collapse
|
44
|
Lan H, Wu L, Sun R, Keller NP, Yang K, Ye L, He S, Zhang F, Wang S. The HosA Histone Deacetylase Regulates Aflatoxin Biosynthesis Through Direct Regulation of Aflatoxin Cluster Genes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1210-1228. [PMID: 30986121 DOI: 10.1094/mpmi-01-19-0033-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Histone deacetylases (HDACs) always function as corepressors and sometimes as coactivators in the regulation of fungal development and secondary metabolite production. However, the mechanism through which HDACs play positive roles in secondary metabolite production is still unknown. Here, classical HDAC enzymes were identified and analyzed in Aspergillus flavus, a fungus that produces one of the most carcinogenic secondary metabolites, aflatoxin B1 (AFB1). Characterization of the HDACs revealed that a class I family HDAC, HosA, played crucial roles in growth, reproduction, the oxidative stress response, AFB1 biosynthesis, and pathogenicity. To a lesser extent, a class II family HDAC, HdaA, was also involved in sclerotia formation and AFB1 biosynthesis. An in vitro analysis of HosA revealed that its HDAC activity was considerably diminished at nanomolar concentrations of trichostatin A. Notably, chromatin immunoprecipitation experiments indicated that HosA bound directly to AFB1 biosynthesis cluster genes to regulate their expression. Finally, we found that a transcriptional regulator, SinA, interacts with HosA to regulate fungal development and AFB1 biosynthesis. Overall, our results reveal a novel mechanism by which classical HDACs mediate the induction of secondary metabolite genes in fungi.
Collapse
Affiliation(s)
- Huahui Lan
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lianghuan Wu
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ruilin Sun
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Nancy P Keller
- Departments of Bacteriology, Medical Microbiology, and Immunology, University of Wisconsin-Madison, Madison, WI, U.S.A
| | - Kunlong Yang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liuqing Ye
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shuibin He
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Feng Zhang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shihua Wang
- Fujian Key Laboratory of Pathogenic Fungi Mycotoxins of Fujian Province, Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, and School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
45
|
Collemare J, Seidl MF. Chromatin-dependent regulation of secondary metabolite biosynthesis in fungi: is the picture complete? FEMS Microbiol Rev 2019; 43:591-607. [PMID: 31301226 PMCID: PMC8038932 DOI: 10.1093/femsre/fuz018] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Accepted: 06/18/2019] [Indexed: 01/07/2023] Open
Abstract
Fungal secondary metabolites are small molecules that exhibit diverse biological activities exploited in medicine, industry and agriculture. Their biosynthesis is governed by co-expressed genes that often co-localize in gene clusters. Most of these secondary metabolite gene clusters are inactive under laboratory conditions, which is due to a tight transcriptional regulation. Modifications of chromatin, the complex of DNA and histone proteins influencing DNA accessibility, play an important role in this regulation. However, tinkering with well-characterised chemical and genetic modifications that affect chromatin alters the expression of only few biosynthetic gene clusters, and thus the regulation of the vast majority of biosynthetic pathways remains enigmatic. In the past, attempts to activate silent gene clusters in fungi mainly focused on histone acetylation and methylation, while in other eukaryotes many other post-translational modifications are involved in transcription regulation. Thus, how chromatin regulates the expression of gene clusters remains a largely unexplored research field. In this review, we argue that focusing on only few well-characterised chromatin modifications is significantly hampering our understanding of the chromatin-based regulation of biosynthetic gene clusters. Research on underexplored chromatin modifications and on the interplay between different modifications is timely to fully explore the largely untapped reservoir of fungal secondary metabolites.
Collapse
Affiliation(s)
| | - Michael F Seidl
- Corresponding author: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands. E-mail: ; Present address: Theoretical Biology and Bioinformatics, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
| |
Collapse
|
46
|
Elías-Villalobos A, Barrales RR, Ibeas JI. Chromatin modification factors in plant pathogenic fungi: Insights from Ustilago maydis. Fungal Genet Biol 2019; 129:52-64. [PMID: 30980908 DOI: 10.1016/j.fgb.2019.04.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 01/10/2023]
Abstract
Adaptation to the environment is a requirement for the survival of every organism. For pathogenic fungi this also implies coping with the different conditions that occur during the infection cycle. After detecting changes to external media, organisms must modify their gene expression patterns in order to accommodate the new circumstances. Control of gene expression is a complex process that involves the coordinated action of multiple regulatory elements. Chromatin modification is a well-known mechanism for controlling gene expression in response to environmental changes in all eukaryotes. In pathogenic fungi, chromatin modifications are known to play crucial roles in controlling host interactions and their virulence capacity, yet little is known about the specific genes they directly target and to which signals they respond. The smut fungus Ustilago maydis is an excellent model system in which multiple molecular and cellular approaches are available to study biotrophic interactions. Many target genes regulated during the infection process have been well studied, however, how they are controlled and specifically how chromatin modifications affect gene regulation in the context of infection is not well known in this organism. Here, we analyse the presence of chromatin modifying enzymes and complexes in U. maydis and discuss their putative roles in this plant pathogen in the context of findings from other organisms, including other plant pathogens such as Magnaporthe oryzae and Fusarium graminearum. We propose U. maydis as a remarkable organism with interesting chromatin features, which would allow finding new functions of chromatin modifications during plant pathogenesis.
Collapse
Affiliation(s)
- Alberto Elías-Villalobos
- Centre de Recherche en Biologie cellulaire de Montpellier (CRBM), UMR5237-Centre National de la Recherche Scientifique-Université de Montpellier, Montpellier, France.
| | - Ramón R Barrales
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain.
| | - José I Ibeas
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide, de Sevilla-Consejo Superior de Investigaciones Científicas-Junta de Andalucía, Sevilla, Spain
| |
Collapse
|
47
|
Shi TQ, Gao J, Wang WJ, Wang KF, Xu GQ, Huang H, Ji XJ. CRISPR/Cas9-Based Genome Editing in the Filamentous Fungus Fusarium fujikuroi and Its Application in Strain Engineering for Gibberellic Acid Production. ACS Synth Biol 2019; 8:445-454. [PMID: 30616338 DOI: 10.1021/acssynbio.8b00478] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The filamentous fungus Fusarium fujikuroi is well-known for its production of natural plant growth hormones: a series of gibberellic acids (GAs). Some GAs, including GA1, GA3, GA4, and GA7, are biologically active and have been widely applied in agriculture. However, the low efficiency of traditional genetic tools limits the further research toward making this fungus more efficient and able to produce tailor-made GAs. Here, we established an efficient CRISPR/Cas9-based genome editing tool for F. fujikuroi. First, we compared three different nuclear localization signals (NLS) and selected an efficient NLS from histone H2B (HTBNLS) to enable the import of the Cas9 protein into the fungal nucleus. Then, different sgRNA expression strategies, both in vitro and different promoter-based in vivo strategies, were explored. The promoters of the U6 small nuclear RNA and 5S rRNA, which were identified in F. fujikuroi, had the highest editing efficiency. The 5S rRNA-promoter-driven genome editing efficiency reached up to 79.2%. What's more, multigene editing was also explored and showed good results. Finally, we used the developed genome editing tool to engineer the metabolic pathways responsible for the accumulation of a series GAs in the filamentous fungus F. fujikuroi, and successfully changed its GA product profile, from GA3 to tailor-made GA4 and GA7 mixtures. Since these mixtures are more efficient for agricultural use, especially for fruit growth, the developed strains will greatly improve industrial GA production.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Jian Gao
- School of Marine and Bioengineering, Yancheng Institute of Technology, Yancheng 224051, People’s Republic of China
| | - Wei-Jian Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Kai-Feng Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - Guo-Qin Xu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
| | - He Huang
- College of Pharmaceutical Sciences, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People’s Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People’s Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University, No. 5 Xinmofan Road, Nanjing 210009, People’s Republic of China
| |
Collapse
|
48
|
Pfannenstiel BT, Keller NP. On top of biosynthetic gene clusters: How epigenetic machinery influences secondary metabolism in fungi. Biotechnol Adv 2019; 37:107345. [PMID: 30738111 DOI: 10.1016/j.biotechadv.2019.02.001] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/10/2019] [Accepted: 02/05/2019] [Indexed: 02/07/2023]
Abstract
Fungi produce an abundance of bioactive secondary metabolites which can be utilized as antibiotics and pharmaceutical drugs. The genes encoding secondary metabolites are contiguously arranged in biosynthetic gene clusters (BGCs), which supports co-regulation of all genes required for any one metabolite. However, an ongoing challenge to harvest this fungal wealth is the finding that many of the BGCs are 'silent' in laboratory settings and lie in heterochromatic regions of the genome. Successful approaches allowing access to these regions - in essence converting the heterochromatin covering BGCs to euchromatin - include use of epigenetic stimulants and genetic manipulation of histone modifying proteins. This review provides a comprehensive look at the chromatin remodeling proteins which have been shown to regulate secondary metabolism, the use of chemical inhibitors used to induce BGCs, and provides future perspectives on expansion of epigenetic tools and concepts to mine the fungal metabolome.
Collapse
Affiliation(s)
- Brandon T Pfannenstiel
- Department of Genetics, University of Wisconsin-Madison, Madison, WI 53706, United States
| | - Nancy P Keller
- Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706, United States; Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, United States.
| |
Collapse
|
49
|
Kang X, Liu C, Shen P, Hu L, Lin R, Ling J, Xiong X, Xie B, Liu D. Genomic Characterization Provides New Insights Into the Biosynthesis of the Secondary Metabolite Huperzine a in the Endophyte Colletotrichum gloeosporioides Cg01. Front Microbiol 2019; 9:3237. [PMID: 30671042 PMCID: PMC6331491 DOI: 10.3389/fmicb.2018.03237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Accepted: 12/13/2018] [Indexed: 01/07/2023] Open
Abstract
A reliable source of Huperzine A (HupA) meets an urgent need due to its wide use in Alzheimer's disease treatment. In this study, we sequenced and characterized the whole genomes of two HupA-producing endophytes, Penicillium polonicum hy4 and Colletotrichum gloeosporioides Cg01, to clarify the mechanism of HupA biosynthesis. The whole genomes of hy4 and Cg01 were 33.92 and 55.77 Mb, respectively. We compared the differentially expressed genes (DEGs) between the induced group (with added extracts of Huperzia serrata) and a control group. We focused on DEGs with similar expression patterns in hy4 and Cg01. The DEGs identified in GO (Gene ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathways were primarily located in carbon and nitrogen metabolism and nucleolus, ribosome, and rRNA processing. Furthermore, we analyzed the gene expression for HupA biosynthesis genes proposed in plants, which include lysine decarboxylase (LDC), copper amine oxidase (CAO), polyketides synthases (PKS), etc. Two LDCs, one CAO, and three PKSs in Cg01 were selected as prime candidates for further validation. We found that single candidate biosynthesis-gene knock-out did not influence the HupA production, while both LDC gene knock-out led to increased HupA production. These results reveal that HupA biosynthesis in endophytes might differ from that proposed in plants, and imply that the HupA-biosynthesis genes in endophytic fungi might co-evolve with the plant machinery rather than being acquired through horizontal gene transfer (HGT). Moreover, we analyzed the function of the differentially expressed epigenetic modification genes. HupA production of the histone acetyltransferase (HAT) deletion mutant ΔCgSAS-2 was not changed, while that of the histone methyltransferase (HMT) and histone deacetylase (HDAC) deletion mutants ΔCgClr4, ΔCgClr3, and ΔCgSir2-6 was reduced. Recovery of HupA-biosynthetic ability can be achieved by retro-complementation, demonstrating that HMT and HDACs associated with histone modification are involved in the regulation of HupA biosynthesis in endophytic fungi. This is the first report on epigenetic modification in high value secondary metabolite- producing endophytes. These findings shed new light on HupA biosynthesis and regulation in HupA-producing endophytes and are crucial for industrial production of HupA from fungi.
Collapse
Affiliation(s)
- Xincong Kang
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Chichuan Liu
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Pengyuan Shen
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Liqin Hu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China
| | - Runmao Lin
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Ling
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xingyao Xiong
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Bingyan Xie
- Institutes of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongbo Liu
- Horticulture and Landscape College, Hunan Agricultural University, Changsha, China,Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, Hunan Agricultural University, Changsha, China,State Key Laboratory of Subhealth Intervention Technology, Changsha, China,Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha, China,*Correspondence: Dongbo Liu
| |
Collapse
|
50
|
Pidroni A, Faber B, Brosch G, Bauer I, Graessle S. A Class 1 Histone Deacetylase as Major Regulator of Secondary Metabolite Production in Aspergillus nidulans. Front Microbiol 2018; 9:2212. [PMID: 30283426 PMCID: PMC6156440 DOI: 10.3389/fmicb.2018.02212] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/30/2018] [Indexed: 12/23/2022] Open
Abstract
An outstanding feature of filamentous fungi is their ability to produce a wide variety of small bioactive molecules that contribute to their survival, fitness, and pathogenicity. The vast collection of these so-called secondary metabolites (SMs) includes molecules that play a role in virulence, protect fungi from environmental damage, act as toxins or antibiotics that harm host tissues, or hinder microbial competitors for food sources. Many of these compounds are used in medical treatment; however, biosynthetic genes for the production of these natural products are arranged in compact clusters that are commonly silent under growth conditions routinely used in laboratories. Consequently, a wide arsenal of yet unknown fungal metabolites is waiting to be discovered. Here, we describe the effects of deletion of hosA, one of four classical histone deacetylase (HDAC) genes in Aspergillus nidulans; we show that HosA acts as a major regulator of SMs in Aspergillus with converse regulatory effects depending on the metabolite gene cluster examined. Co-inhibition of all classical enzymes by the pan HDAC inhibitor trichostatin A and the analysis of HDAC double mutants indicate that HosA is able to override known regulatory effects of other HDACs such as the class 2 type enzyme HdaA. Chromatin immunoprecipitation analysis revealed a direct correlation between hosA deletion, the acetylation status of H4 and the regulation of SM cluster genes, whereas H3 hyper-acetylation could not be detected in all the upregulated SM clusters examined. Our data suggest that HosA has inductive effects on SM production in addition to its classical role as a repressor via deacetylation of histones. Moreover, a genome wide transcriptome analysis revealed that in addition to SMs, expression of several other important protein categories such as enzymes of the carbohydrate metabolism or proteins involved in disease, virulence, and defense are significantly affected by the deletion of HosA.
Collapse
Affiliation(s)
- Angelo Pidroni
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Birgit Faber
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Gerald Brosch
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Ingo Bauer
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefan Graessle
- Division of Molecular Biology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|