1
|
Essghaier B, Naccache C, Ben-Miled H, Mottola F, Ben-Mahrez K, Mezghani Khemakhem M, Rocco L. Discovery and characterization of novel lipopeptides produced by Virgibacillus massiliensis with biosurfactant and antimicrobial activities. 3 Biotech 2024; 14:258. [PMID: 39372494 PMCID: PMC11452367 DOI: 10.1007/s13205-024-04100-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 09/18/2024] [Indexed: 10/08/2024] Open
Abstract
The study aimed to evaluate the biosurfactants (BSs) production by SM-23 strain of Virgibacillus identified by phenotypical and WGS analysis as Virgibacillus massiliensis. We first demonstrated the lipopeptides production by Virgibacillus massiliensis specie and studied their biochemical and molecular analysis as well as their biological potential. The GC-MS analysis indicated that methyl.2-hyroxydodecanoate was the major fatty acid compound with 33.22%. The maximum BSs production was obtained in LB medium supplemented by 1% olive oil (v/v) at 30 °C and 5% NaCl with 1.92 g/l. The obtained results revealed the significant biosurfactants/bioemulsifier potential compared to triton X100 with E24 of 100%, and an emulsification stability SE of 83%. The lipopeptides types were identified by FTIR analysis. A strong antimicrobial action was observed by the produced lipopeptides by the agar diffusion method against E.coli, K. pneumoniae, S. aureus, Fusarium sp, Alternaria sp, and Phytophtora sp. The complete genome sequencing showed genes involved in the synthesis of multiple compounds identified as amphipathic cyclic lipopeptides such as locillomycin/locillomycin B/locillomycin C and bacillibactin. Our results highlighted significant lipopeptides properties displayed by V. massiliensis that can be exploited to develop a novel strategy in the formulation of natural biocidal and fungicidal agents. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04100-9.
Collapse
Affiliation(s)
- Badiaa Essghaier
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Chahnez Naccache
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Houda Ben-Miled
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Filomena Mottola
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| | - Kamel Ben-Mahrez
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Maha Mezghani Khemakhem
- Biochemistry and Biotechnology Laboratory LR01ES05, Faculty of Sciences of Tunis, University of Tunis Elmanar, 2092 Elmanar II, Tunisia
| | - Lucia Rocco
- Department of Environmental Biological and Pharmaceutical and Technologies (DiSTABiF), University of Campania L.Vanvitelli-Via Vivaldi, 43-81100 Caserta, Italy
| |
Collapse
|
2
|
Balleux G, Höfte M, Arguelles-Arias A, Deleu M, Ongena M. Bacillus lipopeptides as key players in rhizosphere chemical ecology. Trends Microbiol 2024:S0966-842X(24)00197-5. [PMID: 39214821 DOI: 10.1016/j.tim.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Microbial natural products are widely explored for their therapeutic potential. Understanding the underlying evolutionary and adaptive forces driving their production remains a fundamental question in biology. Amphiphilic cyclic lipopeptides (CLPs), a prominent category of bacterial specialized metabolites, show strong antimicrobial activity, particularly against phytopathogens. It is thus assumed that these compounds are deployed by soil- or rhizosphere-dwelling bacteria as microbial weapons in competitive natural environments. Here, we challenge this reductionist perspective and present evidence that Bacillus CLPs are prominent chemical mediators of ecological interactions. They help Bacillus to communicate, compete, defend against predators, or cooperate and establish mutualistic relationships with other (micro)organisms. Additional parallel examples are highlighted in other genera, such as Pseudomonas. This broader perspective underscores the need for further investigation into the role of CLPs in shaping the adaptive strategies of key rhizobacterial species.
Collapse
Affiliation(s)
- Guillaume Balleux
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| | - Monica Höfte
- Laboratory of Phytopathology, Faculty of Bioscience Engineering, Ghent University, Ghent, 9000, Belgium
| | - Anthony Arguelles-Arias
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Magali Deleu
- Laboratory of Molecular Biophysics at Interfaces, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium
| | - Marc Ongena
- Microbial Processes and Interactions laboratory, TERRA Research Centre, Gembloux Agro-Bio Tech, University of Liège, Gembloux, 5030, Belgium.
| |
Collapse
|
3
|
Wang Z, Liu C, Shi Y, Huang M, Song Z, Simal-Gandara J, Li N, Shi J. Classification, application, multifarious activities and production improvement of lipopeptides produced by Bacillus. Crit Rev Food Sci Nutr 2024; 64:7451-7464. [PMID: 36876514 DOI: 10.1080/10408398.2023.2185588] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Lipopeptides, a class of compounds consisting of a peptide ring and a fatty acid chain, are secondary metabolites produced by Bacillus spp. As their hydrophilic and oleophilic properties, lipopeptides are widely used in food, medicine, environment and other industrial or agricultural fields. Compared with artificial synthetic surfactants, microbial lipopeptides have the advantages of low toxicity, high efficiency and versatility, resulting in urgent market demand and broad development prospect of lipopeptides. However, due to the complex metabolic network and precursor requirements of synthesis, the specific and strict synthesis pathway, and the coexistence of multiple homologous substances, the production of lipopeptides by microorganisms has the problems of high cost and low production efficiency, limiting the mass production of lipopeptides and large-scale application in industry. This review summarizes the types of Bacillus-produced lipopeptides and their biosynthetic pathways, introduces the versatility of lipopeptides, and describes the methods to improve the production of lipopeptides, including genetic engineering and optimization of fermentation conditions.
Collapse
Affiliation(s)
- Zhimin Wang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, Jinan, PR China
| | - Yingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Mingming Huang
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zunyang Song
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Analytical Chemistry and Food Science Department, Faculty of Science, Ourense, Spain
| | - Ningyang Li
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Jingying Shi
- Key Laboratory of Food Processing Technology and Quality Control in Shandong Province, College of Food Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
4
|
Sreelakshmi KP, Madhuri M, Swetha R, Rangarajan V, Roy U. Microbial lipopeptides: their pharmaceutical and biotechnological potential, applications, and way forward. World J Microbiol Biotechnol 2024; 40:135. [PMID: 38489053 DOI: 10.1007/s11274-024-03908-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/24/2024] [Indexed: 03/17/2024]
Abstract
As lead molecules, cyclic lipopeptides with antibacterial, antifungal, and antiviral properties have garnered a lot of attention in recent years. Because of their potential, cyclic lipopeptides have earned recognition as a significant class of antimicrobial compounds with applications in pharmacology and biotechnology. These lipopeptides, often with biosurfactant properties, are amphiphilic, consisting of a hydrophilic moiety, like a carboxyl group, peptide backbone, or carbohydrates, and a hydrophobic moiety, mostly a fatty acid. Besides, several lipopeptides also have cationic groups that play an important role in biological activities. Antimicrobial lipopeptides can be considered as possible substitutes for antibiotics that are conventional to address the current drug-resistant issues as pharmaceutical industries modify the parent antibiotic molecules to render them more effective against antibiotic-resistant bacteria and fungi, leading to the development of more resistant microbial strains. Bacillus species produce lipopeptides, which are secondary metabolites that are amphiphilic and are typically synthesized by non-ribosomal peptide synthetases (NRPSs). They have been identified as potential biocontrol agents as they exhibit a broad spectrum of antimicrobial activity. A further benefit of lipopeptides is that they can be produced and purified biotechnologically or biochemically in a sustainable manner using readily available, affordable, renewable sources without harming the environment. In this review, we discuss the biochemical and functional characterization of antifungal lipopeptides, as well as their various modes of action, method of production and purification (in brief), and potential applications as novel antibiotic agents.
Collapse
Affiliation(s)
- K P Sreelakshmi
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - M Madhuri
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - R Swetha
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India
| | - Utpal Roy
- Department of Biological Sciences, Birla Institute of Technology and Science-KK Birla Goa Campus Goa, NH 17 B Bypass Rd., Goa, 403726, India.
| |
Collapse
|
5
|
Rosenzweig AF, Wang Z, Morales-Amador A, Spotton K, Brady SF. A Family of Antibiotics That Evades Resistance by Binding Polyprenyl Phosphates. ACS Infect Dis 2023; 9:2394-2400. [PMID: 37937847 PMCID: PMC10904333 DOI: 10.1021/acsinfecdis.3c00475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
Cilagicin is a Gram-positive active antibiotic that has a dual polyprenyl phosphate binding mechanism that impedes resistance development. Here we bioinformatically screened predicted non-ribosomal polypeptide synthetase encoded structures to search for antibiotics that might similarly avoid resistance development. Synthesis and bioactivity screening of the predicted structures that we identified led to three antibiotics that are active against multidrug-resistant Gram-positive pathogens, two of which, paenilagicin and virgilagicin, did not lead to resistance even after prolonged antibiotic exposure.
Collapse
Affiliation(s)
- Adam F Rosenzweig
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Zongqiang Wang
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Adrián Morales-Amador
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Kaylyn Spotton
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| | - Sean F Brady
- Laboratory of Genetically Encoded Small Molecules, The Rockefeller University, 1230 York Avenue, New York, New York 10065, United States
| |
Collapse
|
6
|
Lagzian A, Riseh RS, Sarikhan S, Ghorbani A, Khodaygan P, Borriss R, Guzzi PH, Veltri P. Genome mining conformance to metabolite profile of Bacillus strains to control potato pathogens. Sci Rep 2023; 13:19095. [PMID: 37925555 PMCID: PMC10625545 DOI: 10.1038/s41598-023-46672-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 11/03/2023] [Indexed: 11/06/2023] Open
Abstract
Biocontrol agents are safe and effective methods for controlling plant disease pathogens, such as Fusarium solani, which causes dry wilt, and Pectobacterium spp., responsible for potato soft rot disease. Discovering agents that can effectively control both fungal and bacterial pathogens in potatoes has always presented a challenge. Biological controls were investigated using 500 bacterial strains isolated from rhizospheric microbial communities, along with two promising biocontrol strains: Pseudomonas (T17-4 and VUPf5). Bacillus velezensis (Q12 and US1) and Pseudomonas chlororaphis VUPf5 exhibited the highest inhibition of fungal growth and pathogenicity in both laboratory (48%, 48%, 38%) and greenhouse (100%, 85%, 90%) settings. Q12 demonstrated better control against bacterial pathogens in vivo (approximately 50%). Whole-genome sequencing of Q12 and US1 revealed a genome size of approximately 4.1 Mb. Q12 had 4413 gene IDs and 4300 coding sequences, while US1 had 4369 gene IDs and 4255 coding sequences. Q12 exhibited a higher number of genes classified under functional subcategories related to stress response, cell wall, capsule, levansucrase synthesis, and polysaccharide metabolism. Both Q12 and US1 contained eleven secondary metabolite gene clusters as identified by the antiSMASH and RAST servers. Notably, Q12 possessed the antibacterial locillomycin and iturin A gene clusters, which were absent in US1. This genetic information suggests that Q12 may have a more pronounced control over bacterial pathogens compared to US1. Metabolic profiling of the superior strains, as determined by LC/MS/MS, validated our genetic findings. The investigated strains produced compounds such as iturin A, bacillomycin D, surfactin, fengycin, phenazine derivatives, etc. These compounds reduced spore production and caused deformation of the hyphae in F. solani. In contrast, B. velezensis UR1, which lacked the production of surfactin, fengycin, and iturin, did not affect these structures and failed to inhibit the growth of any pathogens. Our findings suggest that locillomycin and iturin A may contribute to the enhanced control of bacterial pectolytic rot by Q12.
Collapse
Affiliation(s)
- Arezoo Lagzian
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Sajjad Sarikhan
- Molecular Bank, Iranian Biological Resource Center (IBRC), ACECR, Tehran, Iran
| | - Abozar Ghorbani
- Nuclear Agriculture Research School, Nuclear Science and Technology Research Institute, Karaj, Iran.
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rainer Borriss
- Institute of Biology, Humboldt University Berlin, Berlin, Germany
| | - Pietro Hiram Guzzi
- Department of Surgical and Medical Sciences, University of Catanzaro, Catanzaro, Italy.
| | - Pierangelo Veltri
- Department of Informatics Modeling Electronics and System Engineering, University of Calabria, Calabria, Italy
| |
Collapse
|
7
|
Vater J, Tam LTT, Jähne J, Herfort S, Blumenscheit C, Schneider A, Luong PT, Thao LTP, Blom J, Klee SR, Schweder T, Lasch P, Borriss R. Plant-Associated Representatives of the Bacillus cereus Group Are a Rich Source of Antimicrobial Compounds. Microorganisms 2023; 11:2677. [PMID: 38004689 PMCID: PMC10672896 DOI: 10.3390/microorganisms11112677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 11/26/2023] Open
Abstract
Seventeen bacterial strains able to suppress plant pathogens have been isolated from healthy Vietnamese crop plants and taxonomically assigned as members of the Bacillus cereus group. In order to prove their potential as biocontrol agents, we perform a comprehensive analysis that included the whole-genome sequencing of selected strains and the mining for genes and gene clusters involved in the synthesis of endo- and exotoxins and secondary metabolites, such as antimicrobial peptides (AMPs). Kurstakin, thumolycin, and other AMPs were detected and characterized by different mass spectrometric methods, such as MALDI-TOF-MS and LIFT-MALDI-TOF/TOF fragment analysis. Based on their whole-genome sequences, the plant-associated isolates were assigned to the following species and subspecies: B. cereus subsp. cereus (6), B. cereus subsp. bombysepticus (5), Bacillus tropicus (2), and Bacillus pacificus. These three isolates represent novel genomospecies. Genes encoding entomopathogenic crystal and vegetative proteins were detected in B. cereus subsp. bombysepticus TK1. The in vitro assays revealed that many plant-associated isolates enhanced plant growth and suppressed plant pathogens. Our findings indicate that the plant-associated representatives of the B. cereus group are a rich source of putative antimicrobial compounds with potential in sustainable agriculture. However, the presence of virulence genes might restrict their application as biologicals in agriculture.
Collapse
Affiliation(s)
- Joachim Vater
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Le Thi Thanh Tam
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Jennifer Jähne
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Stefanie Herfort
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Christian Blumenscheit
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Andy Schneider
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Pham Thi Luong
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Le Thi Phuong Thao
- Division of Pathology and Phyto-Immunology, Plant Protection Research Institute (PPRI), Duc Thang, Bac Tu Liem, Hanoi, Vietnam; (L.T.T.T.); (P.T.L.); (L.T.P.T.)
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig Universität Giessen, 35392 Giessen, Germany;
| | - Silke R. Klee
- Highly Pathogenic Microorganisms Unit (ZBS2), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany;
| | - Thomas Schweder
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany;
- Pharmaceutical Biotechnology, University of Greifswald, 17489 Greifswald, Germany
| | - Peter Lasch
- Proteomics and Spectroscopy Unit (ZBS6), Center for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (J.V.); (J.J.); (S.H.); (C.B.); (A.S.); (P.L.)
| | - Rainer Borriss
- Institute of Marine Biotechnology e.V. (IMaB), 17489 Greifswald, Germany;
- Institute of Biology, Humboldt University Berlin, 10115 Berlin, Germany
| |
Collapse
|
8
|
Zammuto V, Rizzo MG, De Pasquale C, Ferlazzo G, Caccamo MT, Magazù S, Guglielmino SPP, Gugliandolo C. Lichenysin-like Polypeptide Production by Bacillus licheniformis B3-15 and Its Antiadhesive and Antibiofilm Properties. Microorganisms 2023; 11:1842. [PMID: 37513014 PMCID: PMC10384595 DOI: 10.3390/microorganisms11071842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
We report the ability of the crude biosurfactant (BS B3-15), produced by the marine, thermotolerant Bacillus licheniformis B3-15, to hinder the adhesion and biofilm formation of Pseudomonas aeruginosa ATCC 27853 and Staphylococcus aureus ATCC 29213 to polystyrene and human cells. First, we attempted to increase the BS yield, optimizing the culture conditions, and evaluated the surface-active properties of cell-free supernatants. Under phosphate deprivation (0.06 mM) and 5% saccharose, the yield of BS (1.5 g/L) increased by 37%, which could be explained by the earlier (12 h) increase in lchAA expression compared to the non-optimized condition (48 h). Without exerting any anti-bacterial activity, BS (300 µg/mL) prevented the adhesion of P. aeruginosa and S. aureus to polystyrene (47% and 36%, respectively) and disrupted the preformed biofilms, being more efficient against S. aureus (47%) than P. aeruginosa (26%). When added to human cells, the BS reduced the adhesion of P. aeruginosa and S. aureus (10× and 100,000× CFU/mL, respectively) without altering the epithelial cells' viability. As it is not cytotoxic, BS B3-15 could be useful to prevent or remove bacterial biofilms in several medical and non-medical applications.
Collapse
Affiliation(s)
- Vincenzo Zammuto
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- ATHENA Green Solutions S.r.l., Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Maria Giovanna Rizzo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Claudia De Pasquale
- Laboratory of Immunology and Biotherapy, Department of Human Pathology, Via Consolare Valeria, 1, 98124 Messina, Italy
| | - Guido Ferlazzo
- Department of Experimental Medicine (DIMES), University of Genoa, 16132 Genova, Italy
- Unit of Experimental Pathology and Immunology, IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Maria Teresa Caccamo
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Magazù
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- ATHENA Green Solutions S.r.l., Viale Ferdinando Stagno d'Alcontres 31, 98166 Messina, Italy
- Department of Mathematical and Computer Sciences, Physical Sciences and Earth Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Pietro Paolo Guglielmino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Concetta Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
- Research Centre for Extreme Environments and Extremophiles, Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| |
Collapse
|
9
|
Murphy A, Corney M, Monson RE, Matilla MA, Salmond GPC, Leeper FJ. Biosynthesis of Antifungal Solanimycin May Involve an Iterative Nonribosomal Peptide Synthetase Module. ACS Chem Biol 2023; 18:1148-1157. [PMID: 37068480 PMCID: PMC10204066 DOI: 10.1021/acschembio.2c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 04/05/2023] [Indexed: 04/19/2023]
Abstract
Dickeya solani, a plant-pathogenic bacterium, produces solanimycin, a potent hybrid polyketide/nonribosomal peptide (PKS/NRPS) anti-fungal compound. The biosynthetic gene cluster responsible for synthesis of this compound has been identified. Because of instability, the complete structure of the compound has not yet been elucidated, but LC-MS2 identified that the cluster produces two main compounds, solanimycin A and B, differing by a single hydroxyl group. The fragmentation pattern revealed that the central part of solanimycin A is a hexapeptide, Gly-Dha-Dha-Dha-Dha-Dha (where Dha is dehydroalanine). This is supported by isotopic labeling studies using labeled serine and glycine. The N-terminal group is a polyketide-derived C16 acyl group containing a conjugated hexaene, a hydroxyl, and an amino group. The additional hydroxyl group in solanimycin B is on the α-carbon of the glycine residue. The incorporation of five sequential Dha residues is unprecedented because there is only one NRPS module in the cluster that is predicted to activate and attach serine (which is subsequently dehydrated to Dha), meaning that this NRPS module must act iteratively. While a few other iterative NRPS modules are known, they all involve iteration of two or three modules. We believe that the repetitive use of a single module makes the solanimycin biosynthetic pathway unique among NRPSs so far reported.
Collapse
Affiliation(s)
- Annabel
C. Murphy
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Matthew Corney
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Rita E. Monson
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Miguel A. Matilla
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - George P. C. Salmond
- Department
of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QW, U.K.
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
10
|
Luo C, Chen M, Luo K, Yin X, Onchari MM, Wang X, Zhang J, Zhong H, Tian B. Genome Sequencing and Genetic Engineering Reveal the Contribution of Bacitracin Produced by Bacillus paralicheniformis CPL618 to Anti-Staphylococcus aureus Activity. Curr Microbiol 2023; 80:135. [PMID: 36913050 DOI: 10.1007/s00284-023-03196-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 01/19/2023] [Indexed: 03/14/2023]
Abstract
Staphylococcus aureus is one of the important pathogens causing human diseases, especially its treatment has great challenges due to its resistance to methicillin and vancomycin. The Bacillus strains are known to be major sources of second metabolites that can function as drugs. Therefore, it is of great value to excavate metabolites with good inhibitory activity against S. aureus from Bacillus strains. In this study, a strain Bacillus paralicheniformis CPL618 with good antagonistic activity against S. aureus was isolated and genome analysis showed that the size was 4,447,938 bp and contained four gene clusters fen, bac, dhb, and lch which are potentially responsible for four cyclic peptides fengycin, bacitracin, bacillibactin, and lichenysin biosynthesis, respectively. These gene clusters were knockout by homologous recombination. The bacteriostatic experiment results showed that the antibacterial activity of ∆bac decreased 72.3% while Δfen, Δdhb, and ΔlchA did not significantly changed as that of wild type. Interestingly, the maximum bacitracin yield was up to 92 U/mL in the LB medium, which was extremely unusual in wild type strains. To further improve the production of bacitracin, transcription regulators abrB and lrp were knocked out, the bacitracin produced by ΔabrB, Δlrp, and ΔabrB + lrp was 124 U/mL, 112 U/mL, and 160 U/ml, respectively. Although no new anti-S. aureus compounds was found by using genome mining in this study, the molecular mechanisms of high yield of bacitracin and anti-S. aureus in B. paralicheniformis CPL618 were clarified. Moreover, B. paralicheniformis CPL618 was further genetically engineered for industrial production of bacitracin.
Collapse
Affiliation(s)
- Chuping Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| | - Meilin Chen
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Kecheng Luo
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiulian Yin
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, Huaiyin Institute of Technology, Huaian, 223003, China
| | - Mary M Onchari
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Xiaohua Wang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Jinfeng Zhang
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Haijing Zhong
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China
| | - Baoxia Tian
- Jiangsu Provincial Key Construction Laboratory of Probiotics Preparation, Huaiyin, Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
11
|
Pistorius D, Buntin K, Richard E, Rust M, Bouquet C, Wollbrett S, Weber E, Dietschin D, Bruccoleri R, Oakeley E, Petersen F. Valhidepsin Lipopeptides from Chromobacterium vaccinii: Structures, Biosynthesis, and Coregulation with FR900359 Production. JOURNAL OF NATURAL PRODUCTS 2023; 86:246-255. [PMID: 36745695 DOI: 10.1021/acs.jnatprod.2c00825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Microbial secondary metabolites continue to provide a valuable source of both chemical matter and inspiration for drug discovery in a broad range of therapeutic areas. Beyond this, the corresponding microorganisms represent a sustainable modality for biotechnological production of structurally complex molecules at the quantities required for drug development or even commercial manufacturing. Chromobacterium vaccinii, which has recently been reported as a producer of the pharmacologically highly important Gq inhibitor FR900359 (FR), represents such an example. The characterization of an orphan biosynthetic gene cluster (BGC) located directly downstream of the frs BCG led to the discovery of eight new lipopeptides, valhidepsins A-H (1-8), produced by C. vaccinii. Their chemical structures were elucidated through analysis of 1D and 2D NMR data and high-resolution MS/MS fragmentation methods. The valhidepsins did not display significant antibiotic nor cytotoxic activities but showed surfactant properties. The cluster-compound correlation was demonstrated by generation of a knockout mutant, which abolished production of valhidepsins. This knockout mutant yielded a significantly increased isolated yield of FR.
Collapse
Affiliation(s)
- Dominik Pistorius
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Kathrin Buntin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Etienne Richard
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Michael Rust
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Caroline Bouquet
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Séverine Wollbrett
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Eric Weber
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Daniele Dietschin
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | | | - Edward Oakeley
- Chemical Biology & Therapeutics, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| | - Frank Petersen
- Global Discovery Chemistry, Novartis Institutes for BioMedical Research, Novartis Pharma AG, Novartis Campus, 4056 Basel, Switzerland
| |
Collapse
|
12
|
Iqbal S, Begum F, Rabaan AA, Aljeldah M, Al Shammari BR, Alawfi A, Alshengeti A, Sulaiman T, Khan A. Classification and Multifaceted Potential of Secondary Metabolites Produced by Bacillus subtilis Group: A Comprehensive Review. Molecules 2023; 28:molecules28030927. [PMID: 36770594 PMCID: PMC9919246 DOI: 10.3390/molecules28030927] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/31/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023] Open
Abstract
Despite their remarkable biosynthetic potential, Bacillus subtilis have been widely overlooked. However, their capability to withstand harsh conditions (extreme temperature, Ultraviolet (UV) and γ-radiation, and dehydration) and the promiscuous metabolites they synthesize have created increased commercial interest in them as a therapeutic agent, a food preservative, and a plant-pathogen control agent. Nevertheless, the commercial-scale availability of these metabolites is constrained due to challenges in their accessibility via synthesis and low fermentation yields. In the context of this rising in interest, we comprehensively visualized the antimicrobial peptides produced by B. subtilis and highlighted their prospective applications in various industries. Moreover, we proposed and classified these metabolites produced by the B. subtilis group based on their biosynthetic pathways and chemical structures. The biosynthetic pathway, bioactivity, and chemical structure are discussed in detail for each class. We believe that this review will spark a renewed interest in the often disregarded B. subtilis and its remarkable biosynthetic capabilities.
Collapse
Affiliation(s)
- Sajid Iqbal
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology (NUST), Islamabad 44000, Pakistan
- Correspondence: or
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan (AWKUM), Mardan 23200, Pakistan
| | - Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Mohammed Aljeldah
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Basim R. Al Shammari
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, University of Hafr Al Batin, Hafr Al Batin 39831, Saudi Arabia
| | - Abdulsalam Alawfi
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
| | - Amer Alshengeti
- Department of Pediatrics, College of Medicine, Taibah University, Al-Madinah 41491, Saudi Arabia
- Department of Infection Prevention and Control, Prince Mohammad Bin Abdulaziz Hospital, National Guard Health Affairs, Al-Madinah 41491, Saudi Arabia
| | - Tarek Sulaiman
- Infectious Diseases Section, Medical Specialties Department, King Fahad Medical City, Riyadh 12231, Saudi Arabia
| | - Alam Khan
- Department of Life Sciences, Abasyn University Islamabad Campus, Islamabad 44000, Pakistan
| |
Collapse
|
13
|
Feng Z, Xu M, Yang J, Zhang R, Geng Z, Mao T, Sheng Y, Wang L, Zhang J, Zhang H. Molecular characterization of a novel strain of Bacillus halotolerans protecting wheat from sheath blight disease caused by Rhizoctonia solani Kühn. FRONTIERS IN PLANT SCIENCE 2022; 13:1019512. [PMID: 36325560 PMCID: PMC9618607 DOI: 10.3389/fpls.2022.1019512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
UNLABELLED Rhizoctonia solani Kühn naturally infects and causes Sheath blight disease in cereal crops such as wheat, rice and maize, leading to severe reduction in grain yield and quality. In this work, a new bacterial strain Bacillus halotolerans LDFZ001 showing efficient antagonistic activity against the pathogenic strain Rhizoctonia solani Kühn sh-1 was isolated. Antagonistic, phylogenetic and whole genome sequencing analyses demonstrate that Bacillus halotolerans LDFZ001 strongly suppressed the growth of Rhizoctonia solani Kühn sh-1, showed a close evolutionary relationship with B. halotolerans F41-3, and possessed a 3,965,118 bp circular chromosome. Bioinformatic analysis demonstrated that the genome of Bacillus halotolerans LDFZ001 contained ten secondary metabolite biosynthetic gene clusters (BGCs) encoding five non-ribosomal peptide synthases, two polyketide synthase, two terpene synthases and one bacteriocin synthase, and a new kijanimicin biosynthetic gene cluster which might be responsible for the biosynthesis of novel compounds. Gene-editing experiments revealed that functional expression of phosphopantetheinyl transferase (SFP) and major facilitator superfamily (MFS) transporter genes in Bacillus halotolerans LDFZ001 was essential for its antifungal activity against R. solani Kühn sh-1. Moreover, the existence of two identical chitosanases may also make contribution to the antipathogen activity of Bacillus halotolerans LDFZ001. Our findings will provide fundamental information for the identification and isolation of new sheath blight resistant genes and bacterial strains which have a great potential to be used for the production of bacterial control agents. IMPORTANCE A new Bacillus halotolerans strain Bacillus halotolerans LDFZ001 resistant to sheath blight in wheat is isolated. Bacillus halotolerans LDFZ001 harbors a new kijanimicin biosynthetic gene cluster, and the functional expression of SFP and MFS contribute to its antipathogen ability.
Collapse
Affiliation(s)
- Zhibin Feng
- College of Life Science, Ludong University, Yantai, China
| | - Mingzhi Xu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Jin Yang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Renhong Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Zigui Geng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
| | - Tingting Mao
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Yuting Sheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Limin Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Juan Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- College of Agriculture, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, Yantai, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, Yantai, China
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, Yantai, China
| |
Collapse
|
14
|
Maldonado Desena F, De la Cruz Ceferino N, Gómez Cornelio S, Alvarez Villagomez C, Herrera Candelario JL, De la Rosa García S. Bacteria Halotolerant from Karst Sinkholes as a Source of Biosurfactants and Bioemulsifiers. Microorganisms 2022; 10:microorganisms10071264. [PMID: 35888984 PMCID: PMC9319531 DOI: 10.3390/microorganisms10071264] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/16/2022] Open
Abstract
Halotolerant bacteria with biosurfactant (BS) and bioemulsifiers (BE) activity can coexist in Karstic sinkholes with marine influence. Two sinkholes in the Yucatan peninsula were selected to isolate bacteria with BE and BS activity stable in NaCl. The optimal time, the effect of nitrogen and carbon source in the medium, and the conditions (agitation, pH and salinity) for the production of BS and BE compounds in planktonic and sessile (stimulate the formation of biofilms in cell roller) culture were determined. Eighty strains showed the highest emulsification activity (EI24 ≥ 50%) and drop-collapse ≥ 4 mm. 87% of the strains are moderately halotolerant, and 21% bordered the limit of extreme halotolerance. Twenty-four strains maintained or improved their BS and BE activity under salinity conditions at 5% and 10%, being the most active genera Bacillus, Paenibacillus and Lysinibacillus, identified by sequencing of the 16S rRNA gene. The results show that the nitrogen source positively affects the BS and BE activity, regardless of the type of culture. The sessile culture markedly stimulated BS activity with significant differences. However, we did not find a greater influence on the culture conditions. The results suggest that halotolerant bacteria from sinkholes could be implemented in bioremediation and other biotechnological applications.
Collapse
Affiliation(s)
- Félix Maldonado Desena
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cardenas Km 0.5, Ranchería Emialiano Zapata, Villahermosa 86150, Tabasco, Mexico; (F.M.D.); (N.D.l.C.C.); (C.A.V.); (J.L.H.C.)
| | - Navila De la Cruz Ceferino
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cardenas Km 0.5, Ranchería Emialiano Zapata, Villahermosa 86150, Tabasco, Mexico; (F.M.D.); (N.D.l.C.C.); (C.A.V.); (J.L.H.C.)
| | - Sergio Gómez Cornelio
- Ingeniería en Biotecnología, Universidad Politécnica del Centro, Carretera Federal, Villahermosa-Teapa Km 22.5, Tumbulushal Centro, Villahermosa 86290, Tabasco, Mexico;
| | - Carina Alvarez Villagomez
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cardenas Km 0.5, Ranchería Emialiano Zapata, Villahermosa 86150, Tabasco, Mexico; (F.M.D.); (N.D.l.C.C.); (C.A.V.); (J.L.H.C.)
| | - José Luis Herrera Candelario
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cardenas Km 0.5, Ranchería Emialiano Zapata, Villahermosa 86150, Tabasco, Mexico; (F.M.D.); (N.D.l.C.C.); (C.A.V.); (J.L.H.C.)
| | - Susana De la Rosa García
- División Académica de Ciencias Biológicas, Universidad Juárez Autónoma de Tabasco, Carr. Villahermosa-Cardenas Km 0.5, Ranchería Emialiano Zapata, Villahermosa 86150, Tabasco, Mexico; (F.M.D.); (N.D.l.C.C.); (C.A.V.); (J.L.H.C.)
- Correspondence:
| |
Collapse
|
15
|
Eltokhy MA, Saad BT, Eltayeb WN, Yahia IS, Aboshanab KM, Ashour MSE. Exploring the Nature of the Antimicrobial Metabolites Produced by Paenibacillus ehimensis Soil Isolate MZ921932 Using a Metagenomic Nanopore Sequencing Coupled with LC-Mass Analysis. Antibiotics (Basel) 2021; 11:antibiotics11010012. [PMID: 35052889 PMCID: PMC8773065 DOI: 10.3390/antibiotics11010012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022] Open
Abstract
The continuous emergence of multidrug-resistant (MDR) pathogens poses a global threat to public health. Accordingly, global efforts are continuously conducted to find new approaches to infection control by rapidly discovering antibiotics, particularly those that retain activities against MDR pathogens. In this study, metagenomic nanopore sequence analysis coupled with spectroscopic methods has been conducted for rapid exploring of the various active metabolites produced by Paenibacillus ehimensis soil isolate. Preliminary soil screening resulted in selection of a Gram-positive isolate identified via 16S ribosomal RNA gene sequencing as Paenibacillus ehimensis MZ921932. The isolate showed a broad range of activity against MDR Gram-positive, Gram-negative, and Candida spp. A metagenomics sequence analysis of the soil sample harboring Paenibacillus ehimensis isolate MZ921932 (NCBI GenBank accession PRJNA785410) revealed the presence of conserved biosynthetic gene clusters of petrobactin, tridecaptin, locillomycin (β-lactone), polymyxin, and macrobrevin (polyketides). The liquid chromatography/mass (LC/MS) analysis of the Paenibacillus ehimensis metabolites confirmed the presence of petrobactin, locillomycin, and macrobrevin. In conclusion, Paenibacillus ehimensis isolate MZ921932 is a promising rich source for broad spectrum antimicrobial metabolites. The metagenomic nanopore sequence analysis was a rapid, easy, and efficient method for the preliminary detection of the nature of the expected active metabolites. LC/MS spectral analysis was employed for further confirmation of the nature of the respective active metabolites.
Collapse
Affiliation(s)
- Mohamed A. Eltokhy
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Bishoy T. Saad
- Department of Bioinformatics, HITS Solutions Co., Cairo 11765, Egypt;
| | - Wafaa N. Eltayeb
- Department of Microbiology, Faculty of Pharmacy, Misr International University (MIU), Cairo 19648, Egypt; (M.A.E.); (W.N.E.)
| | - Ibrahim S. Yahia
- Laboratory of Nano-Smart Materials for Science and Technology (LNSMST), Department of Physics, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
- Nanoscience Laboratory for Environmental and Biomedical Applications (NLEBA), Semiconductor Lab., Department of Physics, Faculty of Education, Ain Shams University, Roxy, Cairo 11757, Egypt
| | - Khaled M. Aboshanab
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Str., Cairo 11566, Egypt
- Correspondence: ; Tel.: +20-010-075-82620; Fax: +20-202-240-51107
| | - Mohamed S. E. Ashour
- Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Cairo 11651, Egypt;
| |
Collapse
|
16
|
Sharma J, Sundar D, Srivastava P. Biosurfactants: Potential Agents for Controlling Cellular Communication, Motility, and Antagonism. Front Mol Biosci 2021; 8:727070. [PMID: 34708073 PMCID: PMC8542798 DOI: 10.3389/fmolb.2021.727070] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 09/02/2021] [Indexed: 12/29/2022] Open
Abstract
Biosurfactants are surface-active molecules produced by microorganisms, either on the cell surface or secreted extracellularly. They form a thin film on the surface of microorganisms and help in their detachment or attachment to other cell surfaces. They are involved in regulating the motility of bacteria and quorum sensing. Here, we describe the various types of biosurfactants produced by microorganisms and their role in controlling motility, antagonism, virulence, and cellular communication.
Collapse
Affiliation(s)
| | - Durai Sundar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| | - Preeti Srivastava
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
17
|
Potential of Bacillus velezensis as a probiotic in animal feed: a review. J Microbiol 2021; 59:627-633. [PMID: 34212287 DOI: 10.1007/s12275-021-1161-1] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022]
Abstract
Bacillus velezensis is a plant growth-promoting bacterium that can also inhibit plant pathogens. However, based on its properties, it is emerging as a probiotic in animal feed. This review focuses on the potential characteristics of B. velezensis for use as a probiotic in the animal feed industry. The review was conducted by collecting recently published articles from peer-reviewed journals. Google Scholar and PubMed were used as search engines to access published literature. Based on the information obtained, the data were divided into three groups to discuss the (i) probiotic characteristics of B. velezensis, (ii) probiotic potential for fish, and (iii) the future potential of this species to be developed as a probiotic for the animal feed industry. Different strains of B. velezensis isolated from different sources were found to have the ability to produce antimicrobial compounds and have a beneficial effect on the gut microbiota, with the potential to be a candidate probiotic in the animal feed industry. This review provides valuable information about the characteristics of B. velezensis, which can provide researchers with a better understanding of the use of this species in the animal feed industry.
Collapse
|
18
|
Booysen E, Dicks LMT. Does the Future of Antibiotics Lie in Secondary Metabolites Produced by Xenorhabdus spp.? A Review. Probiotics Antimicrob Proteins 2021; 12:1310-1320. [PMID: 32844362 DOI: 10.1007/s12602-020-09688-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The over-prescription of antibiotics for treatment of infections is primarily to blame for the increase in bacterial resistance. Added to the problem is the slow rate at which novel antibiotics are discovered and the many processes that need to be followed to classify antimicrobials safe for medical use. Xenorhabdus spp. of the family Enterobacteriaceae, mutualistically associated with entomopathogenic nematodes of the genus Steinernema, produce a variety of antibacterial peptides, including bacteriocins, depsipeptides, xenocoumacins and PAX (peptide antimicrobial-Xenorhabdus) peptides, plus additional secondary metabolites with antibacterial and antifungal activity. The secondary metabolites of some strains are active against protozoa and a few have anti-carcinogenic properties. It is thus not surprising that nematodes invaded by a single strain of a Xenorhabdus species are not infected by other microorganisms. In this review, the antimicrobial compounds produced by Xenorhabdus spp. are listed and the gene clusters involved in synthesis of these secondary metabolites are discussed. We also review growth conditions required for increased production of antimicrobial compounds.
Collapse
Affiliation(s)
- E Booysen
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa
| | - L M T Dicks
- Department of Microbiology, Stellenbosch University, Stellenbosch, 7600, South Africa.
| |
Collapse
|
19
|
Carolin C F, Kumar PS, Ngueagni PT. A review on new aspects of lipopeptide biosurfactant: Types, production, properties and its application in the bioremediation process. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124827. [PMID: 33352424 DOI: 10.1016/j.jhazmat.2020.124827] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 12/08/2020] [Indexed: 06/12/2023]
Abstract
Nowadays, the worldwide search regarding renewable products from natural resources is increasing due to the toxicity of chemical counterparts. Biosurfactants are surface-active compounds that contain several physiological functions that are used in industries like food, pharmaceutical, petroleum and agriculture. Microbial lipopeptides have gained more attention among the researchers for their low toxicity, efficient action and good biodegradability when compared with other surfactants. Because of their versatile properties, lipopeptide compounds are utilized in the remediation of organic and inorganic pollutants. This review presented a depth evaluation of lipopeptide surfactants in the bioremediation process and their properties to maintain a sustainable environment. Lipopeptide can acts as a replacement to chemical surfactants only if they meet industrial-scale production and low-cost substrates. This review also demonstrated the production of a lipopeptide biosurfactant from a low-cost substrate and depicted plausible techniques to manage the substrate residues to determine its ability in the different applications particularly in the bioremediation process.
Collapse
Affiliation(s)
- Femina Carolin C
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India.
| | - P Tsopbou Ngueagni
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai - 603110, India; Laboratoire de Chimie Inorganique Appliquée, Faculté des Sciences, Université de Yaoundé I, B.P: 812, Yaoundé, Cameroon
| |
Collapse
|
20
|
Sagaya Jansi R, Khusro A, Agastian P, Alfarhan A, Al-Dhabi NA, Arasu MV, Rajagopal R, Barcelo D, Al-Tamimi A. Emerging paradigms of viral diseases and paramount role of natural resources as antiviral agents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 759:143539. [PMID: 33234268 PMCID: PMC7833357 DOI: 10.1016/j.scitotenv.2020.143539] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 05/04/2023]
Abstract
In the current scenario, the increasing prevalence of diverse microbial infections as well as emergence and re-emergence of viral epidemics with high morbidity and mortality rates are major public health threat. Despite the persistent production of antiviral drugs and vaccines in the global market, viruses still remain as one of the leading causes of deadly human diseases. Effective control of viral diseases, particularly Zika virus disease, Nipah virus disease, Severe acute respiratory syndrome, Coronavirus disease, Herpes simplex virus infection, Acquired immunodeficiency syndrome, and Ebola virus disease remain promising goal amidst the mutating viral strains. Current trends in the development of antiviral drugs focus solely on testing novel drugs or repurposing drugs against potential targets of the viruses. Compared to synthetic drugs, medicines from natural resources offer less side-effect to humans and are often cost-effective in the productivity approaches. This review intends not only to emphasize on the major viral disease outbreaks in the past few decades and but also explores the potentialities of natural substances as antiviral traits to combat viral pathogens. Here, we spotlighted a comprehensive overview of antiviral components present in varied natural sources, including plants, fungi, and microorganisms in order to identify potent antiviral agents for developing alternative therapy in future.
Collapse
Affiliation(s)
- R Sagaya Jansi
- Department of Bioinformatics, Stella Maris College, Chennai, India
| | - Ameer Khusro
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India
| | - Paul Agastian
- Department of Plant Biology and Biotechnology, Loyola College, Chennai, India.
| | - Ahmed Alfarhan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia.
| | - Naif Abdullah Al-Dhabi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Mariadhas Valan Arasu
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rajakrishnan Rajagopal
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Damia Barcelo
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia; Water and Soil Research Group, Department of Environmental Chemistry, IDAEA-CSIC, JORDI GIRONA 18-26, 08034 Barcelona, Spain
| | - Amal Al-Tamimi
- Ecology Department, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| |
Collapse
|
21
|
Théatre A, Hoste ACR, Rigolet A, Benneceur I, Bechet M, Ongena M, Deleu M, Jacques P. Bacillus sp.: A Remarkable Source of Bioactive Lipopeptides. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 181:123-179. [DOI: 10.1007/10_2021_182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
22
|
Agarwal G, Gabrani R. Antiviral Peptides: Identification and Validation. Int J Pept Res Ther 2020; 27:149-168. [PMID: 32427225 PMCID: PMC7233194 DOI: 10.1007/s10989-020-10072-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 04/30/2020] [Accepted: 05/08/2020] [Indexed: 12/26/2022]
Abstract
Despite rapid advances in the human healthcare, the infection caused by certain viruses results in high morbidity and mortality accentuate the importance for development of new antivirals. The existing antiviral drugs are limited, due to their inadequate response, increased rate of resistance and several adverse side effects. Therefore, one of the newly emerging field “peptide-based therapeutics” against viruses is being explored and seems promising. Over the last few years, a lot of scientific effort has been made for the identification of novel and potential peptide-based therapeutics using various advanced technologies. Consequently, there are more than 60 approved peptide drugs available for sale in the market of United States, Europe, Japan, and some Asian countries. Moreover, the number of peptide drugs undergoing the clinical trials is rising gradually year by year. The peptide-based antiviral therapeutics have been approved for the Human immunodeficiency virus (HIV), Influenza virus and Hepatitis virus (B and C). This review enlightens the various peptide sources and the different approaches that have contributed to the search of potential antiviral peptides. These include computational approaches, natural and biological sources (library based high throughput screening) for the identification of lead peptide molecules against their target. Further the applications of few advanced techniques based on combinatorial chemistry and molecular biology have been illustrated to measure the binding parameters such as affinity and kinetics of the screened interacting partners. The employment of these advanced techniques can contribute to investigate antiviral peptide therapeutics for emerging infections.
Collapse
Affiliation(s)
- Garima Agarwal
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| | - Reema Gabrani
- Department of Biotechnology, Center for Emerging Diseases, Jaypee Institute of Information Technology, Noida, UP 201309 India
| |
Collapse
|
23
|
Antimicrobial secondary metabolites from agriculturally important bacteria as next-generation pesticides. Appl Microbiol Biotechnol 2019; 104:1013-1034. [PMID: 31858191 DOI: 10.1007/s00253-019-10300-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/25/2019] [Accepted: 12/03/2019] [Indexed: 10/25/2022]
Abstract
The whole organisms can be packaged as biopesticides, but secondary metabolites secreted by microorganisms can also have a wide range of biological activities that either protect the plant against pests and pathogens or act as plant growth promotors which can be beneficial for the agricultural crops. In this review, we have compiled information about the most important secondary metabolites of three important bacterial genera currently used in agriculture pest and disease management.
Collapse
|
24
|
Pereira JQ, Ritter AC, Cibulski S, Brandelli A. Functional genome annotation depicts probiotic properties of Bacillus velezensis FTC01. Gene 2019; 713:143971. [DOI: 10.1016/j.gene.2019.143971] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/03/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
|
25
|
Kaspar F, Neubauer P, Gimpel M. Bioactive Secondary Metabolites from Bacillus subtilis: A Comprehensive Review. JOURNAL OF NATURAL PRODUCTS 2019; 82:2038-2053. [PMID: 31287310 DOI: 10.1021/acs.jnatprod.9b00110] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Bacillus subtilis is widely underappreciated for its inherent biosynthetic potential. This report comprehensively summarizes the known bioactive secondary metabolites from B. subtilis and highlights potential applications as plant pathogen control agents, drugs, and biosurfactants. B. subtilis is well known for the production of cyclic lipopeptides exhibiting strong surfactant and antimicrobial activities, such as surfactins, iturins, and fengycins. Several polyketide-derived macrolides as well as nonribosomal peptides, dihydroisocoumarins, and linear lipopeptides with antimicrobial properties have been reported, demonstrating the biosynthetic arsenal of this bacterium. Promising efforts toward the application of B. subtilis strains and their natural products in areas of agriculture and medicine are underway. However, industrial-scale availability of these compounds is currently limited by low fermentation yields and challenging accessibility via synthesis, necessitating the development of genetically engineered strains and optimized cultivation processes. We hope that this review will attract renewed interest in this often-overlooked bacterium and its impressive biosynthetic skill set.
Collapse
Affiliation(s)
- Felix Kaspar
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Peter Neubauer
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| | - Matthias Gimpel
- Institute of Biotechnology , Technical University of Berlin , Ackerstraße 76 , 13355 Berlin , Germany
| |
Collapse
|
26
|
Sinha S, Nge CE, Leong CY, Ng V, Crasta S, Alfatah M, Goh F, Low KN, Zhang H, Arumugam P, Lezhava A, Chen SL, Kanagasundaram Y, Ng SB, Eisenhaber F, Eisenhaber B. Genomics-driven discovery of a biosynthetic gene cluster required for the synthesis of BII-Rafflesfungin from the fungus Phoma sp. F3723. BMC Genomics 2019; 20:374. [PMID: 31088369 PMCID: PMC6518819 DOI: 10.1186/s12864-019-5762-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 05/02/2019] [Indexed: 12/20/2022] Open
Abstract
Background Phomafungin is a recently reported broad spectrum antifungal compound but its biosynthetic pathway is unknown. We combed publicly available Phoma genomes but failed to find any putative biosynthetic gene cluster that could account for its biosynthesis. Results Therefore, we sequenced the genome of one of our Phoma strains (F3723) previously identified as having antifungal activity in a high-throughput screen. We found a biosynthetic gene cluster that was predicted to synthesize a cyclic lipodepsipeptide that differs in the amino acid composition compared to Phomafungin. Antifungal activity guided isolation yielded a new compound, BII-Rafflesfungin, the structure of which was determined. Conclusions We describe the NRPS-t1PKS cluster ‘BIIRfg’ compatible with the synthesis of the cyclic lipodepsipeptide BII-Rafflesfungin [HMHDA-L-Ala-L-Glu-L-Asn-L-Ser-L-Ser-D-Ser-D-allo-Thr-Gly]. We report new Stachelhaus codes for Ala, Glu, Asn, Ser, Thr, and Gly. We propose a mechanism for BII-Rafflesfungin biosynthesis, which involves the formation of the lipid part by BIIRfg_PKS followed by activation and transfer of the lipid chain by a predicted AMP-ligase on to the first PCP domain of the BIIRfg_NRPS gene. Electronic supplementary material The online version of this article (10.1186/s12864-019-5762-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Swati Sinha
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| | - Choy-Eng Nge
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Chung Yan Leong
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Veronica Ng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Sharon Crasta
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Mohammad Alfatah
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Falicia Goh
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Kia-Ngee Low
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Huibin Zhang
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore
| | - Prakash Arumugam
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Alexander Lezhava
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore
| | - Swaine L Chen
- Genome Institue of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), 60 Biopolis Street, #02-01 Genome, Singapore, 138672, Republic of Singapore.,Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, 1E Kent Ridge Road, NUHS Tower Block, Level 10, Singapore, 119228, Republic of Singapore
| | - Yoganathan Kanagasundaram
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Siew Bee Ng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.,School of Computer Science and Engineering (SCSE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore, 637553, Republic of Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore, 138671, Republic of Singapore.
| |
Collapse
|
27
|
Luo C, Chen Y, Liu X, Wang X, Wang X, Li X, Zhao Y, Wei L. Engineered biosynthesis of cyclic lipopeptide locillomycins in surrogate host Bacillus velezensis FZB42 and derivative strains enhance antibacterial activity. Appl Microbiol Biotechnol 2019; 103:4467-4481. [PMID: 30989253 DOI: 10.1007/s00253-019-09784-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 03/13/2019] [Accepted: 03/19/2019] [Indexed: 01/03/2023]
Abstract
Locillomycins are cyclic lipononapeptides assembled by a nonlinear hexamodular NRPS and have strong antibacterial activity. In this study, we genetically engineered Bacillus velezensis FZB42 as a surrogate host for the heterologous expression of the loc gene cluster for locillomycins. The fosmid N13 containing whole loc gene cluster was screened from the B. velezensis 916 genomic library. Subsequently, a spectinomycin resistance cassette, and the cassette fused with an IPTG inducible promoter Pspac, was introduced in the fosmid N13 using λ Red recombination system, respectively. The resulting fosmids, designated N13+Spec and N13+PSSpec, were used for the transformation of B. velezensis FZB42 to obtain derivative strains FZBNPLOC and FZBPSLOC. RT-PCR and qRT-PCR results revealed the efficient heterologous expression of the loc gene cluster in both derivative strains. Particularly, there was positive correlation between the derivative FZBPSLOC strain and the enhanced production of locillomycins upon addition of the inducer IPTG with the highest production of locillomycins at 15-fold more than that of B. velezensis 916. This overproduction of locillomycins was also related to the enhancement of antibacterial activity against methicillin-resistant Staphylococcus aureus, and exhibited moderate changes in its hemolytic activity. Together our findings demonstrate that the nonlinear hexamodular NRPS, encoded by the loc gene cluster from B. velezensis 916, is sufficient for the biosynthesis of cyclic lipononapeptide locillomycins in the surrogate host B. velezensis FZB42. Moreover, the FZBPSLOC strain will also be useful for further development of novel locillomycins derivatives with improved antibacterial activity.
Collapse
Affiliation(s)
- Chuping Luo
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China.
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| | - Yongxing Chen
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xuehui Liu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Xiaohua Wang
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Xiaoyu Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xiangqian Li
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Yuping Zhao
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China.
| |
Collapse
|
28
|
Caulier S, Nannan C, Gillis A, Licciardi F, Bragard C, Mahillon J. Overview of the Antimicrobial Compounds Produced by Members of the Bacillus subtilis Group. Front Microbiol 2019; 10:302. [PMID: 30873135 PMCID: PMC6401651 DOI: 10.3389/fmicb.2019.00302] [Citation(s) in RCA: 321] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/05/2019] [Indexed: 12/19/2022] Open
Abstract
Over the last seven decades, applications using members of the Bacillus subtilis group have emerged in both food processes and crop protection industries. Their ability to form survival endospores and the plethora of antimicrobial compounds they produce has generated an increased industrial interest as food preservatives, therapeutic agents and biopesticides. In the growing context of food biopreservation and biological crop protection, this review suggests a comprehensive way to visualize the antimicrobial spectrum described within the B. subtilis group, including volatile compounds. This classification distinguishes the bioactive metabolites based on their biosynthetic pathways and chemical nature: i.e., ribosomal peptides (RPs), volatile compounds, polyketides (PKs), non-ribosomal peptides (NRPs), and hybrids between PKs and NRPs. For each clade, the chemical structure, biosynthesis and antimicrobial activity are described and exemplified. This review aims at constituting a convenient and updated classification of antimicrobial metabolites from the B. subtilis group, whose complex phylogeny is prone to further development.
Collapse
Affiliation(s)
- Simon Caulier
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium.,Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Catherine Nannan
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Annika Gillis
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Florent Licciardi
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Laboratory of Phytopathology-Applied Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
29
|
Olishevska S, Nickzad A, Déziel E. Bacillus and Paenibacillus secreted polyketides and peptides involved in controlling human and plant pathogens. Appl Microbiol Biotechnol 2019; 103:1189-1215. [DOI: 10.1007/s00253-018-9541-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 11/22/2018] [Accepted: 11/23/2018] [Indexed: 12/25/2022]
|
30
|
Abdellaziz L, Chollet M, Abderrahmani A, Béchet M, Yaici L, Chataigné G, Arias AA, Leclère V, Jacques P. Lipopeptide biodiversity in antifungal Bacillus strains isolated from Algeria. Arch Microbiol 2018; 200:1205-1216. [PMID: 29947835 DOI: 10.1007/s00203-018-1537-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 05/18/2018] [Accepted: 05/29/2018] [Indexed: 10/14/2022]
Abstract
Several Bacillus strains have been well studied for their ability to control soil-borne plant diseases. This property is linked to the production of several families of lipopeptides. Depending of their structure, these compounds show antifungal and/or plant systemic resistance inducing activities. In this work, the biodiversity of lipopeptides produced by different antifungal Bacillus strains isolated from seeds, rhizospheric, and non-rhizospheric soils in Algeria was analyzed. Sixteen active strains were characterized by PCR for their content in genes involved in lipopeptide biosynthesis and by MALDI-ToF for their lipopeptide production, revealing a high biodiversity of products. The difficulty to detect kurstakin genes led us to design two new sets of specific primers. An interesting potential of antifungal activity and the synthesis of two forms of fengycins differing in the eighth amino acid (Gln/Glu) were found from the strain 8. Investigation of its genome led to the finding of an adenylation domain of the fengycin synthetase predicted to activate the glutamate residue instead of the glutamine one. According to the comparison of both the results of MALDI-ToF-MS and genome analysis, it was concluded that this adenylation domain could activate both residues at the same time. This study highlighted that the richness of the Algerian ecosystems in Bacillus strains is able to produce: surfactin, pumilacidin, lichenysin, kurstakin, and different types of fengycins.
Collapse
Affiliation(s)
- Lamia Abdellaziz
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Marlène Chollet
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Ahmed Abderrahmani
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Max Béchet
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Lamia Yaici
- Microbiological Team, Cellular and Molecular Biological Laboratory, Faculty of Biological Sciences, University of Sciences and Technology Houari Boumediene, Algiers, Algeria.,Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Gabrielle Chataigné
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Anthony Arguelles Arias
- Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium
| | - Valérie Leclère
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France
| | - Philippe Jacques
- Univ. Lille, INRA, ISA, Univ. Artois, Univ. Littoral Côte d'Opale, EA 7394-ICV-Institut Charles Viollette, 59000, Lille, France. .,Microbial Processes and Interactions, Gembloux Agro-Bio Tech, TERRA Teaching and Research Centre, University of Liege, Gembloux, Belgium.
| |
Collapse
|
31
|
Zhao P, Xue Y, Gao W, Li J, Zu X, Fu D, Bai X, Zuo Y, Hu Z, Zhang F. Bacillaceae-derived peptide antibiotics since 2000. Peptides 2018; 101:10-16. [PMID: 29269072 DOI: 10.1016/j.peptides.2017.12.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/18/2017] [Accepted: 12/18/2017] [Indexed: 10/18/2022]
Abstract
Members of the Bacillaceae family, including Bacillus spp., Brevibacillus spp., Paenibacillus spp., Aneurinibacillus sp., and Halobacillus sp., are an important source of structurally diverse classes of short peptides of ∼ 30 residues or fewer possessing peculiar and rapid killing activity against various pathogens. Additionally, many have unique structures that enhance resistance to hydrolysis by proteases, and these are ideal therapeutic tools and potential alternatives to current antibiotics. The need for novel antibiotic lead compounds is urgent, and this review summarises 119 Bacillaceae compounds published since 2000, including 12 surfactin-like lipopeptides, 16 iturinic lipopeptides, fengycin C, 33 other cyclic lipopeptides, 26 linear lipopeptides, two thiopeptides, four 2,5-diketopiperazines, 20 typical cyclic peptides, and five standard linear peptides. The current and potential therapeutic applications of these peptides, including structure, antibacterial, antifungal, and antiviral activities, are discussed.
Collapse
Affiliation(s)
- Pengchao Zhao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yun Xue
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China.
| | - Weina Gao
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Jinghua Li
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xiangyang Zu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Dongliao Fu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Xuefei Bai
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Yanjun Zuo
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhigang Hu
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| | - Fengshou Zhang
- College of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, 471023, China
| |
Collapse
|
32
|
Plipastatin A1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74 contributes to the control of gray mold disease in tomato. 3 Biotech 2018; 8:125. [PMID: 29450115 DOI: 10.1007/s13205-018-1144-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 01/30/2018] [Indexed: 01/28/2023] Open
Abstract
Certain Bacillus species have the capacity to produce cyclic lipopeptides and these lipopeptides are promising determinants contributing to the biocontrol of plant diseases. In the current study, a cyclic lipopeptide plipastatin A1 was isolated from the fermentation broth of a marine sediment-derived Bacillus amyloliquefaciens SH-B74 by the combination of solid-phase extraction and reversed-phase high-performance liquid chromatography, and its structure was identified by tandem mass spectrometry, high-resolution electro-spray ionization mass spectrometry, and gas chromatography-mass spectrometry together with nuclear magnetic resonance analysis. Moreover, data from activity evaluation revealed that plipastatin A1 has excellent in vitro activity on the suppression of the conidia germination of B. cinerea, the causal agent of gray mold disease in tomato. Furthermore, plipastatin A1 can successfully decrease the incidence of gray mold disease on tomato leaves at 50 µM concentration. This study indicates that B. amyloliquefaciens SH-B74 appears to be a potentially sustainable pesticide to control gray mold disease in tomato plants, and its cyclic lipopeptide plipastatin A1 plays an important role in the in vitro and in planta biocontrol of B. cinerea.
Collapse
|
33
|
Draft Genome Sequence of Bacillus velezensis GF610, a Producer of Potent Anti- Listeria Agents. GENOME ANNOUNCEMENTS 2017; 5:5/41/e01046-17. [PMID: 29025938 PMCID: PMC5637498 DOI: 10.1128/genomea.01046-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacillus velezensis GF610 was isolated from soil in Illinois, USA, and found to produce amyloliquecidin GF610, a potent two-component antimicrobial peptide. We report here the GF610 strain draft genome sequence, which contains 4.29 Mb and an overall GC content of 45.91%.
Collapse
|
34
|
Yaseen Y, Gancel F, Béchet M, Drider D, Jacques P. Study of the correlation between fengycin promoter expression and its production by Bacillus subtilis under different culture conditions and the impact on surfactin production. Arch Microbiol 2017; 199:1371-1382. [PMID: 28735377 DOI: 10.1007/s00203-017-1406-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Revised: 06/01/2017] [Accepted: 06/26/2017] [Indexed: 11/28/2022]
Abstract
This work aimed to rely expression of the fengycin promoter to fengycin production under different culture conditions. To this end, Bacillus subtilis BBG208, derived from BBG21, which is a fengycin overproducing strain carrying the green fluorescent protein (GFP) under the control of fengycin promoter, was used to assess the effects of different carbon and nitrogen sources on surfactin and fengycin production and the fengycin promoter expression. The data showed that some carbon sources oriented synthesis of one family of lipopeptides, while most of the nitrogen sources allowed high co-production of fengycin and surfactin. High expressions of promoter Pfen and fengycin synthesis were obtained with urea or urea + ammonium mixture as nitrogen source and mannitol as carbon source. Moreover, temperature, pH and oxygenation influenced their biosynthesis based on the nutrition conditions. Optimization of the production medium increased the fengycin production to 768 mg L-1, which is the highest level reported for this strain. This study defines the suitable nutrient conditions allowing as well the highest expression of the fengycin promoter and portrays the conditions relying on the fengycin and surfactin production.
Collapse
Affiliation(s)
- Yazen Yaseen
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Frédérique Gancel
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Max Béchet
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Djamel Drider
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France.,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium
| | - Philippe Jacques
- Charles Viollette Institute, University Lille 1, Sciences and Technologies, Cité Scientifique, 59655, Villeneuve d'Ascq, France. .,Terra Teaching and Research Centre, Microbial Processes and Interactions, Gembloux Agro-Bio Tech, University of Liege, Gembloux, B-5030, Liège, Belgium.
| |
Collapse
|
35
|
Yang J, Zhu X, Cao M, Wang C, Zhang C, Lu Z, Lu F. Genomics-Inspired Discovery of Three Antibacterial Active Metabolites, Aurantinins B, C, and D from Compost-Associated Bacillus subtilis fmb60. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:8811-8820. [PMID: 27806569 DOI: 10.1021/acs.jafc.6b04455] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Fmb60 is a wild-type Bacillus subtilis isolated from compost with significant broad-spectrum antimicrobial activities. Two novel PKS clusters were recognized in the genome sequence of fmb60, and then three polyene antibiotics, aurantinins B, C, and D, 1-3, were obtained by bioactivity-guided isolation from the fermentation of fmb60. The structures of aurantinins B-D were elucidated by LC-HRMS and NMR data analysis. Aurantinins C and D were identified as new antimicrobial compounds. The three aurantinins showed significant activity against multidrug-resistant Staphylococcus aureus and Clostridium sporogenes. However, aurantinins B-D did not exhibit any cytotoxicity (IC50 > 100 μg/mL) against LO2 and Caco2 cell lines by MTT assay. Furthermore, using S. aureus as a model bacterium to explore the antibacterial mechanism of aurantinins B-D, it was revealed that the bactericidal activity of aurantinins B-D was related to their ability to disrupt the cell membrane.
Collapse
Affiliation(s)
- Jie Yang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Xiaoyu Zhu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Mingming Cao
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Changbao Wang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Chong Zhang
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Zhaoxin Lu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| | - Fengxia Lu
- College of Food Science and Technology, Nanjing Agricultural University , 1 Weigang, Nanjing 210095, China
| |
Collapse
|
36
|
Zhao X, Kuipers OP. Identification and classification of known and putative antimicrobial compounds produced by a wide variety of Bacillales species. BMC Genomics 2016; 17:882. [PMID: 27821051 PMCID: PMC5100339 DOI: 10.1186/s12864-016-3224-y] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Gram-positive bacteria of the Bacillales are important producers of antimicrobial compounds that might be utilized for medical, food or agricultural applications. Thanks to the wide availability of whole genome sequence data and the development of specific genome mining tools, novel antimicrobial compounds, either ribosomally- or non-ribosomally produced, of various Bacillales species can be predicted and classified. Here, we provide a classification scheme of known and putative antimicrobial compounds in the specific context of Bacillales species. RESULTS We identify and describe known and putative bacteriocins, non-ribosomally synthesized peptides (NRPs), polyketides (PKs) and other antimicrobials from 328 whole-genome sequenced strains of 57 species of Bacillales by using web based genome-mining prediction tools. We provide a classification scheme for these bacteriocins, update the findings of NRPs and PKs and investigate their characteristics and suitability for biocontrol by describing per class their genetic organization and structure. Moreover, we highlight the potential of several known and novel antimicrobials from various species of Bacillales. CONCLUSIONS Our extended classification of antimicrobial compounds demonstrates that Bacillales provide a rich source of novel antimicrobials that can now readily be tapped experimentally, since many new gene clusters are identified.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Oscar P Kuipers
- Department of Molecular Genetics, University of Groningen, Nijenborgh 7, Groningen, 9747AG, The Netherlands.
| |
Collapse
|