1
|
Shitada C, Sekizuka T, Yamamoto A, Sakamoto C, Hashino M, Kuroda M, Takahashi M. Comparative pathogenomic analysis reveals a highly tetanus toxin-producing clade of Clostridium tetani isolates in Japan. mSphere 2023; 8:e0036923. [PMID: 38009947 PMCID: PMC10732020 DOI: 10.1128/msphere.00369-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/12/2023] [Indexed: 11/29/2023] Open
Abstract
IMPORTANCE C. tetani is a spore-forming, anaerobic bacterium that produces a toxin causing muscle stiffness and paralysis. Tetanus is preventable with the toxoid vaccine, but it remains a significant public health threat in regions with low vaccine coverage. However, there are relatively few isolates and limited genomic information available worldwide. In Japan, about 100 cases are reported each year, but there have been no nationwide surveys of isolates, and no genomic information from Japanese isolates has been published. In our study, we analyzed the genomes of 151 strains from a limited survey of soil in Kumamoto, Japan. Our findings revealed a high degree of genetic diversity, and we also identified a subset of strains that produced significantly more toxin, which provides new insights into the pathogenesis of tetanus. Our findings lay the foundation for future studies to investigate the distribution and evolution of C. tetani in Japan and neighboring countries.
Collapse
Affiliation(s)
- Chie Shitada
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akihiko Yamamoto
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Chiyomi Sakamoto
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| | - Masanori Hashino
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motohide Takahashi
- Toxin and Biologicals Research Laboratory, Kumamoto Health Science University, Kumamoto, Japan
- The Chemo-Sero-Therapeutic Research Institute, Kumamoto, Japan
| |
Collapse
|
2
|
Le Bouquin S, Lucas C, Souillard R, Le Maréchal C, Petit K, Kooh P, Jourdan-Da Silva N, Meurens F, Guillier L, Mazuet C. Human and animal botulism surveillance in France from 2008 to 2019. Front Public Health 2022; 10:1003917. [PMID: 36504929 PMCID: PMC9730534 DOI: 10.3389/fpubh.2022.1003917] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/08/2022] [Indexed: 11/27/2022] Open
Abstract
Botulism is a human and animal neurological disease caused by the action of bacterial neurotoxins (botulinum toxins) produced by bacteria from the genus Clostridium. This disease induces flaccid paralysis that can result in respiratory paralysis and heart failure. Due to its serious potential impact on public health, botulism is a closely monitored notifiable disease in France through a case-based passive surveillance system. In humans, this disease is rare, with an average of 10 outbreaks reported each year, mainly due to the consumption of contaminated foods. Type B and to a lesser extend type A are responsible for the majority of cases of foodborne botulism. Each year, an average of 30 outbreaks are recorded on poultry farms, about 20 cases in wild birds and about 10 outbreaks in cattle, involving a large number of animals. Mosaic forms C/D and D/C in birds and cattle, respectively, are the predominant types in animals in France. Types C and D have also been observed to a lesser extent in animals. With the exception of botulinum toxin E, which was exceptionally detected throughout the period in wild birds, the types of botulism found in animal outbreaks are different from those identified in human outbreaks over the last ten years in France and no human botulism outbreaks investigated have been linked to animal botulism. In line with the One Health concept, we present the first integrative approach to the routine surveillance of botulism in humans and animals in France.
Collapse
Affiliation(s)
- Sophie Le Bouquin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), National Reference Laboratory for Avian Botulism, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France,*Correspondence: Sophie Le Bouquin
| | - Camille Lucas
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), National Reference Laboratory for Avian Botulism, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Rozenn Souillard
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), National Reference Laboratory for Avian Botulism, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Caroline Le Maréchal
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), National Reference Laboratory for Avian Botulism, Ploufragan-Plouzané-Niort Laboratory, Ploufragan, France
| | - Karine Petit
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | - Pauline Kooh
- ANSES, Risk Assessment Department, Maisons-Alfort, France
| | - Nathalie Jourdan-Da Silva
- Sante Publique France (French Public Health Agency), Direction des Maladies Infectieuses, Saint Maurice, France
| | - François Meurens
- French National Research Institute for Agriculture, Food and Environment (INRAE), Oniris, Unit of Biology, Epidemiology and Risk Analysis in Animal Health (BIOEPAR), Nantes, France,Department of Veterinary Microbiology and Immunology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | | - Christelle Mazuet
- Institut Pasteur, National Reference Center for Anaerobic Bacteria and Botulism, Université Paris Cité, Paris, France
| |
Collapse
|
3
|
Umeda K, Hirai Y, Nakamura H, Amo K. Comparative whole-genome sequence analysis of a BoNT/B5-producing Clostridium botulinum isolate from an infant botulism case of unknown source in Osaka, Japan. FEMS Microbiol Lett 2022; 369:6653520. [PMID: 35918187 DOI: 10.1093/femsle/fnac069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
A case of infant botulism of unknown origin, not involved in honey consumption, occurred in Osaka, Japan in 2020. A Clostridium botulinum type B strain named Osaka2020 was isolated from a stool sample of the patient. To clarify the epidemiology of the case, we performed whole-genome sequencing (WGS) of the isolate and compared it with strains from other sources. WGS analysis revealed that isolate Osaka2020 was classified into ST133 of a new sequence type, B5 subtype, and its toxin gene was encoded in a ∼274 kb plasmid. This plasmid was closely related to the pCLJ plasmid from strain 657Ba in the USA, reported to be conjugatively transferable to other strains. Moreover, isolate Osaka2020 also possesses another smaller plasmid that was common with some type A(B) infant botulism isolates in Japan. The phylogenetic tree from whole-genome SNP analysis showed that isolate Osaka2020 was the most closely related to a type B infant botulism isolate that occurred in Japan 10 years ago. Although no epidemiological connection among the two cases was confirmed, there is possibility that the cases are attributed to common causes such as some environmental substance.
Collapse
Affiliation(s)
- Kaoru Umeda
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Yuji Hirai
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Hiromi Nakamura
- Division of Microbiology, Osaka Institute of Public Health, Osaka, Japan
| | - Kiyoko Amo
- Department of Pediatric Emergency Medicine, Osaka City General Hospital, Osaka, Japan
| |
Collapse
|
4
|
Halpin JL, Foltz V, Dykes JK, Chatham-Stephens K, Lúquez C. Clostridium botulinum Type B Isolated From a Wound Botulism Case Due to Injection Drug Use Resembles Other Local Strains Originating From Hawaii. Front Microbiol 2021; 12:678473. [PMID: 34367084 PMCID: PMC8339428 DOI: 10.3389/fmicb.2021.678473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Accepted: 06/09/2021] [Indexed: 11/30/2022] Open
Abstract
Clostridium botulinum produces botulinum neurotoxin (BoNT), which can lead to death if untreated. In the United States, over 90% of wound botulism cases are associated with injection drug use of black tar heroin. We sought to determine the phylogenetic relatedness of C. botulinum isolated from an injection drug use wound botulism case and isolates from endogenous infant botulism cases in Hawaii. Nineteen C. botulinum type B isolates from Hawaii and one type B isolate from California were analyzed by whole-genome sequencing. The botulinum toxin gene (bont) subtype was determined using CLC Genomics Workbench, and the seven-gene multi-locus sequence type (MLST) was identified by querying PubMLST. Mashtree and pairwise average nucleotide identity were used to find nearest neighbors, and Lyve-SET approximated a phylogeny. Eighteen of the isolates harbored the bont/B5 gene: of those, 17 were classified as sequence type ST36 and one was classified as ST104. A single isolate from Hawaii harbored bont/B1 and was determined to belong to ST110, and the isolate from California harbored bont/B1 and belonged to ST30. A tree constructed with Lyve-SET showed a high degree of homology among all the Hawaiian C. botulinum isolates that harbor the bont/B5 gene. Our results indicate that the bont/B-expressing isolates recovered from Hawaii are closely related to each other, suggesting local contamination of the drug paraphernalia or the wound itself with spores rather than contamination of the drug at manufacture or during transport. These findings may assist in identifying interventions to decrease wound botulism among persons who inject drugs.
Collapse
Affiliation(s)
- Jessica L. Halpin
- Centers for Disease Control and Prevention, Atlanta, GA, United States
| | | | | | | | | |
Collapse
|
5
|
Smith TJ, Williamson CHD, Hill KK, Johnson SL, Xie G, Anniballi F, Auricchio B, Fernández RA, Caballero PA, Keim P, Sahl JW. The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type A and F Gene Clusters Is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Front Microbiol 2021; 12:566908. [PMID: 33716993 PMCID: PMC7952441 DOI: 10.3389/fmicb.2021.566908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Charles H D Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Karen K Hill
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Fabrizio Anniballi
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Auricchio
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia A Caballero
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
6
|
Smith TJ, Xie G, Williamson CHD, Hill KK, Fernández RA, Sahl JW, Keim P, Johnson SL. Genomic Characterization of Newly Completed Genomes of Botulinum Neurotoxin-Producing Species from Argentina, Australia, and Africa. Genome Biol Evol 2021; 12:229-242. [PMID: 32108238 DOI: 10.1093/gbe/evaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory
| | | | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory
| | | | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University
| | | |
Collapse
|
7
|
Brunt J, van Vliet AHM, Carter AT, Stringer SC, Amar C, Grant KA, Godbole G, Peck MW. Diversity of the Genomes and Neurotoxins of Strains of Clostridium botulinum Group I and Clostridium sporogenes Associated with Foodborne, Infant and Wound Botulism. Toxins (Basel) 2020; 12:toxins12090586. [PMID: 32932818 PMCID: PMC7551954 DOI: 10.3390/toxins12090586] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 12/23/2022] Open
Abstract
Clostridium botulinum Group I and Clostridium sporogenes are closely related bacteria responsible for foodborne, infant and wound botulism. A comparative genomic study with 556 highly diverse strains of C. botulinum Group I and C. sporogenes (including 417 newly sequenced strains) has been carried out to characterise the genetic diversity and spread of these bacteria and their neurotoxin genes. Core genome single-nucleotide polymorphism (SNP) analysis revealed two major lineages; C. botulinum Group I (most strains possessed botulinum neurotoxin gene(s) of types A, B and/or F) and C. sporogenes (some strains possessed a type B botulinum neurotoxin gene). Both lineages contained strains responsible for foodborne, infant and wound botulism. A new C. sporogenes cluster was identified that included five strains with a gene encoding botulinum neurotoxin sub-type B1. There was significant evidence of horizontal transfer of botulinum neurotoxin genes between distantly related bacteria. Population structure/diversity have been characterised, and novel associations discovered between whole genome lineage, botulinum neurotoxin sub-type variant, epidemiological links to foodborne, infant and wound botulism, and geographic origin. The impact of genomic and physiological variability on the botulism risk has been assessed. The genome sequences are a valuable resource for future research (e.g., pathogen biology, evolution of C. botulinum and its neurotoxin genes, improved pathogen detection and discrimination), and support enhanced risk assessments and the prevention of botulism.
Collapse
Affiliation(s)
- Jason Brunt
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, UK
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| | - Arnoud H. M. van Vliet
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7AL, UK;
| | - Andrew T. Carter
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Sandra C. Stringer
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
| | - Corinne Amar
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Kathie A. Grant
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Gauri Godbole
- Gastrointestinal Pathogens Unit, National Infection Service, Public Health England, London NW9 5EQ, UK; (C.A.); (K.A.G.); (G.G.)
| | - Michael W. Peck
- Gut Health and Food Safety, Quadram Institute, Norwich Research Park, Norwich NR4 7UQ, UK; (A.T.C.); (S.C.S.)
- Correspondence: (J.B.); (M.W.P.)
| |
Collapse
|
8
|
Alegbeleye OO, Sant’Ana AS. Pathogen subtyping tools for risk assessment and management of produce-borne outbreaks. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2020.02.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
9
|
Gonzalez-Escalona N, Sharma SK. Closing Clostridium botulinum Group I Genomes Using a Combination of Short- and Long-Reads. Front Microbiol 2020; 11:239. [PMID: 32153532 PMCID: PMC7050642 DOI: 10.3389/fmicb.2020.00239] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/31/2020] [Indexed: 11/13/2022] Open
Abstract
Clostridium botulinum is a Gram-positive, spore-forming anaerobic bacterium that produces botulinum neurotoxin (BoNT). Closing their genomes provides information about their neurotoxin clusters' arrangement(s) and their location (e.g., chromosome or plasmid) which cannot be assessed using draft genomes. Therefore, we tested the use of long-read sequencing (nanopore sequencing) in combination with short-read sequencing to close two toxin-producing strains. These genomes could be used by the Public Health Emergency Preparedness and Response staff during botulism outbreaks. The genomes of two toxin-producing C. botulinum strains, one from an environmental sample (83F_CFSAN034202) and the other from a clinical sample (CDC51232_CFSAN034200) were sequenced using MinION and MiSeq devices. The genomes, including the chromosomes and the plasmids, were closed by a combination of long-read and short-read sequencing. They belonged to different C. botulinum sequence types (STs), with 83F belonging to ST4 and CDC51232 to ST7. A whole genome single nucleotide polymorphism (SNP) analysis clustered these two strains with strains in lineage 2 (e.g., 6CDC297) and 4 (e.g., NCTC2916) from Group I, respectively. These two strains were also bivalent strains with the BoNTB and BoNTA4 clusters located in the larger plasmid for CDC51232, and the BoNTB and BoNTA1 clusters located both in the chromosome for 83F. Overall, this study showed the advantage of combining these two sequencing methods to obtain high quality closed C. botulinum genomes that could be used for SNP phylogenies (source tracking) as well as for fast identification of BoNT clusters and their gene arrangements.
Collapse
Affiliation(s)
- Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - Shashi K Sharma
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| |
Collapse
|
10
|
Neoh HM, Tan XE, Sapri HF, Tan TL. Pulsed-field gel electrophoresis (PFGE): A review of the "gold standard" for bacteria typing and current alternatives. INFECTION GENETICS AND EVOLUTION 2019; 74:103935. [PMID: 31233781 DOI: 10.1016/j.meegid.2019.103935] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 06/18/2019] [Accepted: 06/20/2019] [Indexed: 12/01/2022]
Abstract
Pulsed-field gel electrophoresis (PFGE) is considered the "gold standard" for bacteria typing. The method involves enzyme restriction of bacteria DNA, separation of the restricted DNA bands using a pulsed-field electrophoresis chamber, followed by clonal assignment of bacteria based on PFGE banding patterns. Various PFGE protocols have been developed for typing different bacteria, leading it to be one of the most widely used methods for phylogenetic studies, food safety surveillance, infection control and outbreak investigations. On the other hand, as PFGE is lengthy and labourious, several PCR-based typing methods can be used as alternatives for research purposes. Recently, matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) and whole genome sequencing (WGS) have also been proposed for bacteria typing. In fact, as WGS provides more information, such as antimicrobial resistance and virulence of the tested bacteria in comparison to PFGE, more and more laboratories are currently transitioning from PFGE to WGS for bacteria typing. Nevertheless, PFGE will remain an affordable and relevant technique for small laboratories and hospitals in years to come.
Collapse
Affiliation(s)
- Hui-Min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Malaysia.
| | - Xin-Ee Tan
- Department of Infection and Immunity, School of Medicine, Jichi Medical University, Japan
| | - Hassriana Fazilla Sapri
- Department of Medical Microbiology & Immunology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| | - Toh Leong Tan
- Department of Emergency Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Malaysia
| |
Collapse
|
11
|
Keisam S, Tuikhar N, Ahmed G, Jeyaram K. Toxigenic and pathogenic potential of enteric bacterial pathogens prevalent in the traditional fermented foods marketed in the Northeast region of India. Int J Food Microbiol 2019; 296:21-30. [PMID: 30826539 DOI: 10.1016/j.ijfoodmicro.2019.02.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/27/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023]
Abstract
The microbial risk involved with natural food fermentation is largely unknown. Here, we report the prevalence of enteric bacterial pathogens in the traditional fermented foods marketed in Northeast region of India. A total of 682 samples of 39 food types (broadly categorized into fermented soybean, bamboo shoot, fish, milk and pork products) collected over four different seasons from seven states of India were analyzed in this study. Cultivation-independent analysis by MiSeq amplicon sequencing of V4-V5 region of the 16S rRNA gene showed the bacterial community structure in the foods. Among the WHO prioritized foodborne bacterial pathogens, we detected the prevalence of phylotypes related to Clostridium botulinum, Bacillus cereus, Staphylococcus aureus, Clostridium perfringens, Listeria monocytogenes, and Escherichia coli in these ethnic foods. We also observed the occurrence of other well known human enteric pathogens like Proteus mirabilis, Clostridium difficile, and Yersinia enterocolitica. Further pathogen-specific qPCR assays confirmed a higher population (>107 cells/g) of B. cereus, P. mirabilis, and a C. botulinum related phylotype in the fermented soybean, fish, and pork products. We noticed a general trend of higher pathogen occurrence during the colder months without any seasonal variation of total bacterial load in the fermented foods. Further qPCR analysis on toxigenic and pathogenic potential, and toxins production by immunoassays showed that all the soybean samples and the isolated B. cereus cultures were positive for diarrheal toxins (Nhe and Hb1), and nearly half of the samples were positive for emetic toxin (cereulide). Similarly, the food samples and associated swarming P. mirabilis cultures were positive with the pathogenic factors like hemolysin (hpm), urease (ure) and multidrug resistance. However, we could not confirm the presence of botulinum neurotoxin (toxins A, B, E, and F) in the C. botulinum positive food samples. This is the first baseline data of the enteric bacterial pathogens prevalent in the traditional fermented foods of India, which will support the sustained effort of WHO to estimate the global foodborne disease burden. The unusual presence of P. mirabilis in the fermented foods marketed in the Indian region with high incidence of urolithiasis cases is a concern. Our study emphasizes the need of the hour to have a coordinated action to control and prevent the spread of enteric bacterial pathogens through fermented foods marketed in India. Moreover, replacing the indigenous process with a defined starter culture based controlled fermentation will enhance the safety of Indian fermented foods.
Collapse
Affiliation(s)
- Santosh Keisam
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India; Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Ngangyola Tuikhar
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India; Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Giasuddin Ahmed
- Department of Biotechnology, Gauhati University, Guwahati 781014, India
| | - Kumaraswamy Jeyaram
- Microbial Resources Division, Institute of Bioresources and Sustainable Development, Takyelpat, Imphal 795001, India.
| |
Collapse
|
12
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
13
|
Kohda T, Nakamura K, Hosomi K, Torii Y, Kozaki S, Mukamoto M. Characterization of the functional activity of botulinum neurotoxin subtype B6. Microbiol Immunol 2018; 61:482-489. [PMID: 28898517 DOI: 10.1111/1348-0421.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 08/30/2017] [Accepted: 09/07/2017] [Indexed: 12/01/2022]
Abstract
Clostridium botulinum produces the highly potent neurotoxin, botulinum neurotoxin (BoNT), which is classified into seven serotypes (A-G); the subtype classification is confirmed by the diversity of amino acid sequences among the serotypes. BoNT from the Osaka05 strain is associated with type B infant botulism and has been classified as BoNT/B subtype B6 (BoNT/B6) by phylogenetic analysis and the antigenicity of its C-terminal heavy chain (HC ) domain. However, the molecular bases for its properties, including its potency, are poorly understood. In this study, BoNT/B6 holotoxin was purified and the biological activity and receptor binding activity of BoNT/B6 compared with those of the previously-characterized BoNT/B1 and BoNT/B2 subtypes. The derivative BoNT/B6 was found to be already nicked and in an activated form, indicating that endogenous protease production may be higher in this strain than in the other two strains. BoNT/B1 exhibited the greatest lethal activity in mice, followed by BoNT/B6, which is consistent with the sensitivity of PC12 cells. No significant differences were seen in the enzymatic activities of the BoNT/Bs against their substrate. HC /B1 and HC /B6 exhibited similar binding affinities to synaptotagmin II (SytII), which is a specific protein receptor for BoNT/B. Binding to the SytII/ganglioside complex is functionally related to the toxic action; however, the receptor recognition sites are conserved. These results suggest that the distinct characteristics and differences in biological sensitivity of BoNT/B6 may be attributable to the function of its Hc .domain.
Collapse
Affiliation(s)
- Tomoko Kohda
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Keiji Nakamura
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Koji Hosomi
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Yasushi Torii
- Department of Animal Science, Tokyo University of Agriculture, Funako, Atsugi, 243-0034 Kanagawa, Japan
| | - Shunji Kozaki
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| | - Masafumi Mukamoto
- Department of Veterinary Science, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Rinkuouraikita, Izumisano, 598-8531 Osaka, Japan
| |
Collapse
|
14
|
Differentiating Botulinum Neurotoxin-Producing Clostridia with a Simple, Multiplex PCR Assay. Appl Environ Microbiol 2017; 83:AEM.00806-17. [PMID: 28733282 PMCID: PMC5583490 DOI: 10.1128/aem.00806-17] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/10/2017] [Indexed: 12/13/2022] Open
Abstract
Diverse members of the genus Clostridium produce botulinum neurotoxins (BoNTs), which cause a flaccid paralysis known as botulism. While multiple species of clostridia produce BoNTs, the majority of human botulism cases have been attributed to Clostridium botulinum groups I and II. Recent comparative genomic studies have demonstrated the genomic diversity within these BoNT-producing species. This report introduces a multiplex PCR assay for differentiating members of C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Coding region sequences unique to each of the four species/subgroups were identified by in silico analyses of thousands of genome assemblies, and PCR primers were designed to amplify each marker. The resulting multiplex PCR assay correctly assigned 41 tested isolates to the appropriate species or subgroup. A separate PCR assay to determine the presence of the ntnh gene (a gene associated with the botulinum neurotoxin gene cluster) was developed and validated. The ntnh gene PCR assay provides information about the presence or absence of the botulinum neurotoxin gene cluster and the type of gene cluster present (ha positive [ha+] or orfX+). The increased availability of whole-genome sequence data and comparative genomic tools enabled the design of these assays, which provide valuable information for characterizing BoNT-producing clostridia. The PCR assays are rapid, inexpensive tests that can be applied to a variety of sample types to assign isolates to species/subgroups and to detect clostridia with botulinum neurotoxin gene (bont) clusters. IMPORTANCE Diverse clostridia produce the botulinum neurotoxin, one of the most potent known neurotoxins. In this study, a multiplex PCR assay was developed to differentiate clostridia that are most commonly isolated in connection with human botulism cases: C. botulinum group I, C. sporogenes, and two major subgroups within C. botulinum group II. Since BoNT-producing and nontoxigenic isolates can be found in each species, a PCR assay to determine the presence of the ntnh gene, which is a universally present component of bont gene clusters, and to provide information about the type (ha+ or orfX+) of bont gene cluster present in a sample was also developed. The PCR assays provide simple, rapid, and inexpensive tools for screening uncharacterized isolates from clinical or environmental samples. The information provided by these assays can inform epidemiological studies, aid with identifying mixtures of isolates and unknown isolates in culture collections, and confirm the presence of bacteria of interest.
Collapse
|
15
|
Halpin JL, Joseph L, Dykes JK, McCroskey L, Smith E, Toney D, Stroika S, Hise K, Maslanka S, Lúquez C. Pulsotype Diversity of Clostridium botulinum Strains Containing Serotypes A and/or B Genes. Foodborne Pathog Dis 2017; 14:494-501. [PMID: 28692343 DOI: 10.1089/fpd.2017.2280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Clostridium botulinum strains are prevalent in the environment and produce a potent neurotoxin that causes botulism, a rare but serious paralytic disease. In 2010, a national PulseNet database was established to curate C. botulinum pulsotypes and facilitate epidemiological investigations, particularly for serotypes A and B strains frequently associated with botulism cases in the United States. Between 2010 and 2014 we performed pulsed-field gel electrophoresis (PFGE) using a PulseNet protocol, uploaded the resulting PFGE patterns into a national database, and analyzed data according to PulseNet criteria (UPGMA clustering, Dice coefficient, 1.5% position tolerance, and 1.5% optimization). A retrospective data analysis was undertaken on 349 entries comprised of type A and B strains isolated from foodborne and infant cases to determine epidemiological relevance, resolution of the method, and the diversity of the database. Most studies to date on the pulsotype diversity of C. botulinum have encompassed very small sets of isolates; this study, with over 300 isolates, is more comprehensive than any published to date. Epidemiologically linked isolates had indistinguishable patterns, except in four instances and there were no obvious geographic trends noted. Simpson's Index of Diversity (D) has historically been used to demonstrate species diversity and abundance within a group, and is considered a standard descriptor for PFGE databases. Simpson's Index was calculated for each restriction endonuclease (SmaI, XhoI), the pattern combination SmaI-XhoI, as well as for each toxin serotype. The D values indicate that both enzymes provided better resolution for serotype B isolates than serotype A. XhoI as the secondary enzyme provided little additional discrimination for C. botulinum. SmaI patterns can be used to exclude unrelated isolates during a foodborne outbreak, but pulsotypes should always be considered concurrently with available epidemiological data.
Collapse
Affiliation(s)
- Jessica L Halpin
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Lavin Joseph
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Janet K Dykes
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Loretta McCroskey
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Elise Smith
- 2 PFGE Molecular Subtyping Laboratory, Virginia Division of Consolidated Laboratory Services , Richmond, Virginia
| | - Denise Toney
- 2 PFGE Molecular Subtyping Laboratory, Virginia Division of Consolidated Laboratory Services , Richmond, Virginia
| | - Steven Stroika
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Kelley Hise
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Susan Maslanka
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| | - Carolina Lúquez
- 1 National Botulism and Enteric Toxins Team, Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention , Atlanta, Georgia
| |
Collapse
|
16
|
Butler RR, Schill KM, Wang Y, Pombert JF. Genetic Characterization of the Exceptionally High Heat Resistance of the Non-toxic Surrogate Clostridium sporogenes PA 3679. Front Microbiol 2017; 8:545. [PMID: 28421047 PMCID: PMC5376575 DOI: 10.3389/fmicb.2017.00545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2017] [Accepted: 03/15/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium sporogenes PA 3679 is a non-toxic endospore former that is widely used as a surrogate for Clostridium botulinum by the food processing industry to validate thermal processing strategies. PA 3679 produces spores of exceptionally high heat resistance without botulinum neurotoxins, permitting the use of PA 3679 in inoculated pack studies while ensuring the safety of food processing facilities. To identify genes associated with this heat resistance, the genomes of C. sporogenes PA 3679 isolates were compared to several other C. sporogenes strains. The most significant difference was the acquisition of a second spoVA operon, spoVA2, which is responsible for transport of dipicolinic acid into the spore core during sporulation. Interestingly, spoVA2 was also found in some C. botulinum species which phylogenetically cluster with PA 3679. Most other C. sporogenes strains examined both lack the spoVA2 locus and are phylogenetically distant within the group I Clostridium, adding to the understanding that C. sporogenes are dispersed C. botulinum strains which lack toxin genes. C. sporogenes strains are thus a very eclectic group, and few strains possess the characteristic heat resistance of PA 3679.
Collapse
Affiliation(s)
- Robert R Butler
- Department of Biology, Illinois Institute of TechnologyChicago, IL, USA
| | - Kristin M Schill
- United States Food and Drug Administration, Center for Food Safety and Applied NutritionBedford Park, IL, USA
| | - Yun Wang
- United States Food and Drug Administration, Center for Food Safety and Applied NutritionBedford Park, IL, USA
| | | |
Collapse
|
17
|
Wang S, Weller D, Falardeau J, Strawn LK, Mardones FO, Adell AD, Moreno Switt AI. Food safety trends: From globalization of whole genome sequencing to application of new tools to prevent foodborne diseases. Trends Food Sci Technol 2016. [DOI: 10.1016/j.tifs.2016.09.016] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Anniballi F, Fillo S, Giordani F, Auricchio B, Tehran DA, di Stefano E, Mandarino G, De Medici D, Lista F. Multiple-locus variable number of tandem repeat analysis as a tool for molecular epidemiology of botulism: The Italian experience. INFECTION GENETICS AND EVOLUTION 2016; 46:28-32. [PMID: 27771520 DOI: 10.1016/j.meegid.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/17/2016] [Accepted: 10/18/2016] [Indexed: 01/17/2023]
Abstract
Clostridium botulinum is the bacterial agent of botulism, a rare but severe neuro-paralytic disease. Because of its high impact, in Italy botulism is monitored by an ad hoc surveillance system. The National Reference Centre for Botulism, as part of this system, collects and analyzes all demographic, epidemiologic, microbiological, and molecular data recovered during cases and/or outbreaks occurred in Italy. A panel of 312 C. botulinum strains belonging to group I were submitted to MLVA sub-typing. Strains, isolated from clinical specimens, food and environmental samples collected during the surveillance activities, were representative of all forms of botulism from all Italian regions. Through clustering analysis isolates were grouped into 12 main clusters. No regional or temporal clustering was detected, demonstrating the high heterogeneity of strains circulating in Italy. This study confirmed that MLVA is capable of sub-typing C. botulinum strains. Moreover, MLVA is effective at tracing and tracking the source of contamination and is helpful for the surveillance system in terms of planning and upgrading of procedures, activities and data collection forms.
Collapse
Affiliation(s)
- Fabrizio Anniballi
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Silvia Fillo
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Francesco Giordani
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Bruna Auricchio
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Domenico Azarnia Tehran
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Enrica di Stefano
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| | - Giuseppina Mandarino
- PENTA - The Joint Laboratory on Models and Methodology to Predict and Manage Large Scale Threats to Public Health - International Affair Unit. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Dario De Medici
- National Reference Centre for Botulism, Department of Veterinary Public Health and Food Safety. Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Florigio Lista
- Histology and Molecular Biology Unit, Section Two, Army Medical and Veterinary Research Centre, 00184 Rome, Italy
| |
Collapse
|
19
|
Abstract
C. botulinum Groups I and II form botulinum neurotoxin and cause foodborne botulism. Increased knowledge of C. botulinum Group I and II genomes and neurotoxin diversity. Impact on food safety via improved surveillance and tracing/tracking during outbreaks. New insights into C. botulinum biology, food chain transmission, evolution.
The deadly botulinum neurotoxin formed by Clostridium botulinum is the causative agent of foodborne botulism. The increasing availability of C. botulinum genome sequences is starting to allow the genomic diversity of C. botulinum Groups I and II and their neurotoxins to be characterised. This information will impact on microbiological food safety through improved surveillance and tracing/tracking during outbreaks, and a better characterisation of C. botulinum Groups I and II, including the risk presented, and new insights into their biology, food chain transmission, and evolution.
Collapse
|
20
|
Mazuet C, Legeay C, Sautereau J, Ma L, Bouchier C, Bouvet P, Popoff MR. Diversity of Group I and II Clostridium botulinum Strains from France Including Recently Identified Subtypes. Genome Biol Evol 2016; 8:1643-60. [PMID: 27189984 PMCID: PMC4943176 DOI: 10.1093/gbe/evw101] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2016] [Indexed: 01/31/2023] Open
Abstract
In France, human botulism is mainly food-borne intoxication, whereas infant botulism is rare. A total of 99 group I and II Clostridium botulinum strains including 59 type A (12 historical isolates [1947-1961], 43 from France [1986-2013], 3 from other countries, and 1 collection strain), 31 type B (3 historical, 23 recent isolates, 4 from other countries, and 1 collection strain), and 9 type E (5 historical, 3 isolates, and 1 collection strain) were investigated by botulinum locus gene sequencing and multilocus sequence typing analysis. Historical C. botulinum A strains mainly belonged to subtype A1 and sequence type (ST) 1, whereas recent strains exhibited a wide genetic diversity: subtype A1 in orfX or ha locus, A1(B), A1(F), A2, A2b2, A5(B2') A5(B3'), as well as the recently identified A7 and A8 subtypes, and were distributed into 25 STs. Clostridium botulinum A1(B) was the most frequent subtype from food-borne botulism and food. Group I C. botulinum type B in France were mainly subtype B2 (14 out of 20 historical and recent strains) and were divided into 19 STs. Food-borne botulism resulting from ham consumption during the recent period was due to group II C. botulinum B4. Type E botulism is rare in France, 5 historical and 1 recent strains were subtype E3. A subtype E12 was recently identified from an unusual ham contamination. Clostridium botulinum strains from human botulism in France showed a wide genetic diversity and seems to result not from a single evolutionary lineage but from multiple and independent genetic rearrangements.
Collapse
Affiliation(s)
| | - Christine Legeay
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Jean Sautereau
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Laurence Ma
- Plateforme Genomique-Pôle Biomics, Institut Pasteur, Paris, France
| | | | - Philippe Bouvet
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| | - Michel R Popoff
- Bactéries Anaérobies et Toxines, Institut Pasteur, Paris, France
| |
Collapse
|
21
|
Williamson CHD, Sahl JW, Smith TJ, Xie G, Foley BT, Smith LA, Fernández RA, Lindström M, Korkeala H, Keim P, Foster J, Hill K. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genomics 2016; 17:180. [PMID: 26939550 PMCID: PMC4778365 DOI: 10.1186/s12864-016-2502-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 11/24/2022] Open
Abstract
Background Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. Results Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants. Conclusions This study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles H D Williamson
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jason W Sahl
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Brian T Foley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Leonard A Smith
- Medical Countermeasures Technology, United States Army Medical Research and Material Command, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, (5500), Mendoza, Argentina.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jeffrey Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA. .,Present Address: Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| | - Karen Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
22
|
Genomic Epidemiology of Clostridium botulinum Isolates from Temporally Related Cases of Infant Botulism in New South Wales, Australia. J Clin Microbiol 2015; 53:2846-53. [PMID: 26109442 DOI: 10.1128/jcm.00143-15] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/15/2015] [Indexed: 01/24/2023] Open
Abstract
Infant botulism is a potentially life-threatening paralytic disease that can be associated with prolonged morbidity if not rapidly diagnosed and treated. Four infants were diagnosed and treated for infant botulism in NSW, Australia, between May 2011 and August 2013. Despite the temporal relationship between the cases, there was no close geographical clustering or other epidemiological links. Clostridium botulinum isolates, three of which produced botulism neurotoxin serotype A (BoNT/A) and one BoNT serotype B (BoNT/B), were characterized using whole-genome sequencing (WGS). In silico multilocus sequence typing (MLST) found that two of the BoNT/A-producing isolates shared an identical novel sequence type, ST84. The other two isolates were single-locus variants of this sequence type (ST85 and ST86). All BoNT/A-producing isolates contained the same chromosomally integrated BoNT/A2 neurotoxin gene cluster. The BoNT/B-producing isolate carried a single plasmid-borne bont/B gene cluster, encoding BoNT subtype B6. Single nucleotide polymorphism (SNP)-based typing results corresponded well with MLST; however, the extra resolution provided by the whole-genome SNP comparisons showed that the isolates differed from each other by >3,500 SNPs. WGS analyses indicated that the four infant botulism cases were caused by genomically distinct strains of C. botulinum that were unlikely to have originated from a common environmental source. The isolates did, however, cluster together, compared with international isolates, suggesting that C. botulinum from environmental reservoirs throughout NSW have descended from a common ancestor. Analyses showed that the high resolution of WGS provided important phylogenetic information that would not be captured by standard seven-loci MLST.
Collapse
|
23
|
Implications of Genome-Based Discrimination between Clostridium botulinum Group I and Clostridium sporogenes Strains for Bacterial Taxonomy. Appl Environ Microbiol 2015; 81:5420-9. [PMID: 26048939 DOI: 10.1128/aem.01159-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 05/26/2015] [Indexed: 01/08/2023] Open
Abstract
Taxonomic classification of Clostridium botulinum is based on the production of botulinum neurotoxin (BoNT), while closely related, nontoxic organisms are classified as Clostridium sporogenes. However, this taxonomic organization does not accurately mirror phylogenetic relationships between these species. A phylogenetic reconstruction using 2,016 orthologous genes shared among strains of C. botulinum group I and C. sporogenes clearly separated these two species into discrete clades which showed ∼93% average nucleotide identity (ANI) between them. Clustering of strains based on the presence of variable orthologs revealed 143 C. sporogenes clade-specific genetic signatures, a subset of which were further evaluated for their ability to correctly classify a panel of presumptive C. sporogenes strains by PCR. Genome sequencing of several C. sporogenes strains lacking these signatures confirmed that they clustered with C. botulinum strains in a core genome phylogenetic tree. Our analysis also identified C. botulinum strains that contained C. sporogenes clade-specific signatures and phylogenetically clustered with C. sporogenes strains. The genome sequences of two bont/B2-containing strains belonging to the C. sporogenes clade contained regions with similarity to a bont-bearing plasmid (pCLD), while two different strains belonging to the C. botulinum clade carried bont/B2 on the chromosome. These results indicate that bont/B2 was likely acquired by C. sporogenes strains through horizontal gene transfer. The genome-based classification of these species used to identify candidate genes for the development of rapid assays for molecular identification may be applicable to additional bacterial species that are challenging with respect to their classification.
Collapse
|