1
|
Chung TH, Dhillon SK, Shin C, Pant D, Dhar BR. Microbial electrosynthesis technology for CO 2 mitigation, biomethane production, and ex-situ biogas upgrading. Biotechnol Adv 2024; 77:108474. [PMID: 39521393 DOI: 10.1016/j.biotechadv.2024.108474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 09/07/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
Currently, global annual CO2 emissions from fossil fuel consumption are extremely high, surpassing tens of billions of tons, yet our capacity to capture and utilize CO2 remains below a small fraction of the amount generated. Microbial electrosynthesis (MES) systems, an integration of microbial metabolism with electrochemistry, have emerged as a highly efficient and promising bio-based carbon-capture-and-utilization technology over other conventional techniques. MES is a unique technology for lowering the atmospheric CO2 as well as CO2 in the biogas, and also simultaneously convert them to renewable bioenergy, such as biomethane. As such, MES techniques could be applied for biogas upgrading to generate high purity biomethane, which has the potential to meet natural gas standards. This article offers a detailed overview and assessment of the latest advancements in MES for biomethane production and biogas upgrading, in terms of selecting optimal methane production pathways and associated electron transfer processes, different electrode materials and types, inoculum sources and microbial communities, ion-exchange membrane, externally applied energy level, operating temperature and pH, mode of operation, CO2 delivery method, selection of inorganic carbon source and its concentration, start-up time, and system pressure. It also highlights the current MES challenges associated with upscaling, design and configuration, long-term stability, energy demand, techno-economics, achieving net negative carbon emission, and other operational issues. Moreover, we provide a summary of current and future opportunities to integrate MES with other unique biosystems, such as methanotrophic bioreactors, and incorporate quorum sensing, 3D printing, and machine learning to further develop MES as a better biomethane-producer and biogas upgrading technique.
Collapse
Affiliation(s)
- Tae Hyun Chung
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Simran Kaur Dhillon
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada
| | - Chungheon Shin
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, United States; Codiga Resource Recovery Center (CR2C), Stanford, CA, United States
| | - Deepak Pant
- Electrochemistry Excellence Centre, Materials & Chemistry Unit, Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
2
|
Wang Y, Yu S, Zheng X, Wu X, Pu Y, Wu G, Chu N, He X, Li D, Jianxiong Zeng R, Jiang Y. Delineating cathodic extracellular electron transfer pathways in microbial electrosynthesis: Modulation of polarized potential and Pt@C addition. BIORESOURCE TECHNOLOGY 2024; 402:130754. [PMID: 38685518 DOI: 10.1016/j.biortech.2024.130754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/25/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
Microbial electrosynthesis (MES) is an innovative technology that employs microbes to synthesize chemicals by reducing CO2. A comprehensive understanding of cathodic extracellular electron transfer (CEET) is essential for the advancement of this technology. This study explores the impact of different cathodic potentials on CEET and its response to introduction of hydrogen evolution materials (Pt@C). Without the addition of Pt@C, H2-mediated CEET contributed up to 94.4 % at -1.05 V. With the addition of Pt@C, H2-mediated CEET contributions were 76.6 % (-1.05 V) and 19.9 % (-0.85 V), respectively. BRH-c20a was enriched as the dominated microbe (>80 %), and its relative abundance was largely affected by the addition of Pt@C NPs. This study highlights the tunability of MES performance through cathodic potential control and the addition of metal nanoparticles.
Collapse
Affiliation(s)
- Yue Wang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Siyang Yu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xue Zheng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xiaobing Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ying Pu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Gaoying Wu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Na Chu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohong He
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Daping Li
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Raymond Jianxiong Zeng
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yong Jiang
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
3
|
Abadikhah M, Liu M, Persson F, Wilén BM, Farewell A, Sun J, Modin O. Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells. Biofilm 2023; 6:100161. [PMID: 37859795 PMCID: PMC10582064 DOI: 10.1016/j.bioflm.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.
Collapse
Affiliation(s)
- Marie Abadikhah
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ming Liu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Beijing, 100124, China
| | - Frank Persson
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Jie Sun
- College of Physics and Information Engineering, Fuzhou University, and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Oskar Modin
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
4
|
Michalska K, Brown RK, Schröder U. Carbon source priority and availability limit bidirectional electron transfer in freshwater mixed culture electrochemically active bacterial biofilms. BIORESOUR BIOPROCESS 2023; 10:64. [PMID: 38647932 PMCID: PMC10991894 DOI: 10.1186/s40643-023-00685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/02/2023] [Indexed: 04/25/2024] Open
Abstract
This study investigated, if a mixed electroactive bacterial (EAB) culture cultivated heterotrophically at a positive applied potential could be adapted from oxidative to reductive or bidirectional extracellular electron transfer (EET). To this end, a periodic potential reversal regime between - 0.5 and 0.2 V vs. Ag/AgCl was applied. This yielded biofilm detachment and mediated electroautotrophic EET in combination with carbonate, i.e., dissolved CO2, as the sole carbon source, whereby the emerged mixed culture (S1) contained previously unknown EAB. Using acetate (S2) as well as a mixture of acetate and carbonate (S3) as the main carbon sources yielded primarily alternating electrogenic organoheterotropic metabolism with the higher maximum oxidation current densities recorded for mixed carbon media, exceeding on average 1 mA cm-2. More frequent periodic polarization reversal resulted in the increase of maximum oxidative current densities by about 50% for S2-BES and 80% for S3-BES, in comparison to half-batch polarization. The EAB mixed cultures developed accordingly, with S1 represented by mostly aerobes (84.8%) and being very different in composition to S2 and S3, dominated by anaerobes (96.9 and 96.5%, respectively). S2 and S3 biofilms remained attached to the electrodes. There was only minor evidence of fully reversible bidirectional EET. In conclusion the three triplicates fed with organic and/or inorganic carbon sources demonstrated two forms of diauxie: Firstly, S1-BES showed a preference for the electrode as the electron donor via mediated EET. Secondly, S2-BES and S3-BES showed a preference for acetate as electron donor and c-source, as long as this was available, switching to CO2 reduction, when acetate was depleted.
Collapse
Affiliation(s)
- Karina Michalska
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Robert Keith Brown
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany
| | - Uwe Schröder
- Institute of Biochemistry, University of Greifswald, Felix-Hausdorff-Str. 4, 17489, Greifswald, Germany.
| |
Collapse
|
5
|
Abadikhah M, Rodriguez MDC, Persson F, Wilén BM, Farewell A, Modin O. Evidence of competition between electrogens shaping electroactive microbial communities in microbial electrolysis cells. Front Microbiol 2022; 13:959211. [PMID: 36590422 PMCID: PMC9800620 DOI: 10.3389/fmicb.2022.959211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
In single-chamber microbial electrolysis cells (MECs), organic compounds are oxidized at the anode, liberating electrons that are used for hydrogen evolution at the cathode. Microbial communities on the anode and cathode surfaces and in the bulk liquid determine the function of the MEC. The communities are complex, and their assembly processes are poorly understood. We investigated MEC performance and community composition in nine MECs with a carbon cloth anode and a cathode of carbon nanoparticles, titanium, or stainless steel. Differences in lag time during the startup of replicate MECs suggested that the initial colonization by electrogenic bacteria was stochastic. A network analysis revealed negative correlations between different putatively electrogenic Deltaproteobacteria on the anode. Proximity to the conductive anode surface is important for electrogens, so the competition for space could explain the observed negative correlations. The cathode communities were dominated by hydrogen-utilizing taxa such as Methanobacterium and had a much lower proportion of negative correlations than the anodes. This could be explained by the diffusion of hydrogen throughout the cathode biofilms, reducing the need to compete for space.
Collapse
Affiliation(s)
- Marie Abadikhah
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden,*Correspondence: Marie Abadikhah, ✉
| | - Miguel de Celis Rodriguez
- Department of Genetics, Physiology and Microbiology, Complutense University of Madrid, Madrid, Spain
| | - Frank Persson
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Institute of Chemistry and Molecular Biology and the Center for Antibiotic Resistance Research, University of Gothenburg, Gothenburg, Sweden
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
6
|
Singh A, Schnürer A. AcetoBase Version 2: a database update and re-analysis of formyltetrahydrofolate synthetase amplicon sequencing data from anaerobic digesters. Database (Oxford) 2022; 2022:6609150. [PMID: 35708586 PMCID: PMC9216588 DOI: 10.1093/database/baac041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/14/2022]
Abstract
AcetoBase is a public repository and database of formyltetrahydrofolate synthetase (FTHFS) sequences. It is the first systematic collection of bacterial FTHFS nucleotide and protein sequences from genomes and metagenome-assembled genomes and of sequences generated by clone library sequencing. At its publication in 2019, AcetoBase (Version 1) was also the first database to establish connections between the FTHFS gene, the Wood–Ljungdahl pathway and 16S ribosomal RNA genes. Since the publication of AcetoBase, there have been significant improvements in the taxonomy of many bacterial lineages and accessibility/availability of public genomics and metagenomics data. The update to the AcetoBase reference database described here (Version 2) provides new sequence data and taxonomy, along with improvements in web functionality and user interface. The evaluation of this latest update by re-analysis of publicly accessible FTHFS amplicon sequencing data previously analysed with AcetoBase Version 1 revealed significant improvements in the taxonomic assignment of FTHFS sequences. Database URL: https://acetobase.molbio.slu.se
Collapse
Affiliation(s)
- Abhijeet Singh
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, BioCenter, Anaerobic Microbiology and Biotechnology Group, Swedish University of Agricultural Sciences , Almas Allé 5, Uppsala SE-750 07, Sweden
| |
Collapse
|
7
|
Cheng D, Ngo HH, Guo W, Chang SW, Nguyen DD, Zhang S, Deng S, An D, Hoang NB. Impact factors and novel strategies for improving biohydrogen production in microbial electrolysis cells. BIORESOURCE TECHNOLOGY 2022; 346:126588. [PMID: 34929329 DOI: 10.1016/j.biortech.2021.126588] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microbial electrolysis cell (MEC) system is an environmentally friendly method for clean biohydrogen production from a wide range of biowastes owing to low greenhouse gas emissions. This approach has relatively higher yields and lower energy costs for biohydrogen production compared to conventional biological technologies and direct water electrolysis, respectively. However, biohydrogen production efficiency and operating costs of MEC still need further optimization to realize its large-scale application.This paper provides a unique review of impact factors influencing biohydrogen production in MECs, such as microorganisms and electrodes. Novel strategies, including inhibition of methanogens, development of novel cathode catalyst, advanced reactor design and integrated systems, to enhance low-cost biohydrogen production, are discussed based on recent publications in terms of their opportunities, bottlenecks and future directions. In addition, the current challenges, and effective future perspectives towards the practical application of MECs are described in this review.
Collapse
Affiliation(s)
- Dongle Cheng
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam.
| | - Wenshan Guo
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Soon Woong Chang
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Dinh Duc Nguyen
- Department of Environmental Energy Engineering, Kyonggi University, 442-760, Republic of Korea
| | - Shicheng Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Shihai Deng
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Ding An
- School of Environment, Harbin Institute of Technology, Harbin Institute of Technology, Nangang District, Harbin, 150090, China
| | - Ngoc Bich Hoang
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
8
|
Zhang J, Liu H, Zhang Y, Wu P, Li J, Ding P, Jiang Q, Cui MH. Heterotrophic precultivation is a better strategy than polarity reversal for the startup of acetate microbial electrosynthesis reactor. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Thanarasu A, Periyasamy K, Subramanian S. An integrated anaerobic digestion and microbial electrolysis system for the enhancement of methane production from organic waste: Fundamentals, innovative design and scale-up deliberation. CHEMOSPHERE 2022; 287:131886. [PMID: 34523450 DOI: 10.1016/j.chemosphere.2021.131886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/19/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
In the foreseeable future, renewable energy generation from electromethanogenesis to be more cost-effective energy. Electromethanogenesis system is a recent and efficient CO2 to methane technology to upgrade biogas to 100% methane for power generation. And this can be attained through by integrating anaerobic digestion with microbial electrolysis system. Microbial electrolysis system can able to support carbon reduction on cathode and oxidation on anode by CO2 capture thereby provides more CH4 production from an integrated anaerobic digestion system. Scale-up the recent advance technique of microbial electrolysis system in the anaerobic digestion process for 100% methane production for power generation is need of the hour. The overall objective of this review is to facilitate the recent technology of microbial electrolysis system in the anaerobic digestion process. At first, the function of electromethanogenesis system and innovative integrated design method are outlined. Secondly, different external parameters such as applied voltage, operating temperature, pH etc are examined for the significance on process optimization. Eventually, electrode selections, electrode spacing, surface chemistry and surface area are critically reviewed for the scale-up considerations of integration process.
Collapse
Affiliation(s)
- Amudha Thanarasu
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Karthik Periyasamy
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India
| | - Sivanesan Subramanian
- Department of Applied Science & Technology, AC Tech Campus, Anna University, Chennai, India.
| |
Collapse
|
10
|
Valorisation of CO2 into Value-Added Products via Microbial Electrosynthesis (MES) and Electro-Fermentation Technology. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7040291] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Microbial electrocatalysis reckons on microbes as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well-known in this context; both prefer the oxidation of organic and inorganic matter for producing electricity. Notably, the synthesis of high energy-density chemicals (fuels) or their precursors by microorganisms using bio-cathode to yield electrical energy is called Microbial Electrosynthesis (MES), giving an exceptionally appealing novel way for producing beneficial products from electricity and wastewater. This review accentuates the concept, importance and opportunities of MES, as an emerging discipline at the nexus of microbiology and electrochemistry. Production of organic compounds from MES is considered as an effective technique for the generation of various beneficial reduced end-products (like acetate and butyrate) as well as in reducing the load of CO2 from the atmosphere to mitigate the harmful effect of greenhouse gases in global warming. Although MES is still an emerging technology, this method is not thoroughly known. The authors have focused on MES, as it is the next transformative, viable alternative technology to decrease the repercussions of surplus carbon dioxide in the environment along with conserving energy.
Collapse
|
11
|
Singh A, Moestedt J, Berg A, Schnürer A. Microbiological Surveillance of Biogas Plants: Targeting Acetogenic Community. Front Microbiol 2021; 12:700256. [PMID: 34484143 PMCID: PMC8415747 DOI: 10.3389/fmicb.2021.700256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/21/2021] [Indexed: 11/15/2022] Open
Abstract
Acetogens play a very important role in anaerobic digestion and are essential in ensuring process stability. Despite this, targeted studies of the acetogenic community in biogas processes remain limited. Some efforts have been made to identify and understand this community, but the lack of a reliable molecular analysis strategy makes the detection of acetogenic bacteria tedious. Recent studies suggest that screening of bacterial genetic material for formyltetrahydrofolate synthetase (FTHFS), a key marker enzyme in the Wood-Ljungdahl pathway, can give a strong indication of the presence of putative acetogens in biogas environments. In this study, we applied an acetogen-targeted analyses strategy developed previously by our research group for microbiological surveillance of commercial biogas plants. The surveillance comprised high-throughput sequencing of FTHFS gene amplicons and unsupervised data analysis with the AcetoScan pipeline. The results showed differences in the acetogenic community structure related to feed substrate and operating parameters. They also indicated that our surveillance method can be helpful in the detection of community changes before observed changes in physico-chemical profiles, and that frequent high-throughput surveillance can assist in management towards stable process operation, thus improving the economic viability of biogas plants. To our knowledge, this is the first study to apply a high-throughput microbiological surveillance approach to visualise the potential acetogenic population in commercial biogas digesters.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Jan Moestedt
- Tekniska Verken i Linköping AB, Department R&D, Linköping, Sweden
| | | | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
12
|
Electrodeposited Hybrid Biocathode-Based CO 2 Reduction via Microbial Electro-Catalysis to Biofuels. MEMBRANES 2021; 11:membranes11030223. [PMID: 33810075 PMCID: PMC8004817 DOI: 10.3390/membranes11030223] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 11/30/2022]
Abstract
Microbial electrosynthesis is a new approach to converting C1 carbon (CO2) to more complex carbon-based products. In the present study, CO2, a potential greenhouse gas, was used as a sole carbon source and reduced to value-added chemicals (acetate, ethanol) with the help of bioelectrochemical reduction in microbial electrosynthesis systems (MES). The performance of MES was studied with varying electrode materials (carbon felt, stainless steel, and cobalt electrodeposited carbon felt). The MES performance was assessed in terms of acetic acid and ethanol production with the help of gas chromatography (GC). The electrochemical characterization of the system was analyzed with chronoamperometry and cyclic voltammetry. The study revealed that the MES operated with hybrid cobalt electrodeposited carbon felt electrode yielded the highest acetic acid (4.4 g/L) concentration followed by carbon felt/stainless steel (3.7 g/L), plain carbon felt (2.2 g/L), and stainless steel (1.87 g/L). The alcohol concentration was also observed to be highest for the hybrid electrode (carbon felt/stainless steel/cobalt oxide is 0.352 g/L) as compared to the bare electrodes (carbon felt is 0.22 g/L) tested, which was found to be in correspondence with the pH changes in the system. Electrochemical analysis revealed improved electrotrophy in the hybrid electrode, as confirmed by the increased redox current for the hybrid electrode as compared to plain electrodes. Cyclic voltammetry analysis also confirmed the role of the biocatalyst developed on the electrode in CO2 sequestration.
Collapse
|
13
|
Microbial Electrolysis Cells for Decentralised Wastewater Treatment: The Next Steps. WATER 2021. [DOI: 10.3390/w13040445] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional wastewater treatment methods have become aged and inefficient, meaning alternative methods are essential to protect the environment and ensure water and energy security worldwide. The use of microbial electrolysis cells (MEC) for wastewater treatment provides an innovative alternative, working towards circular wastewater treatment for energy production. This study evaluates the factors hindering industrial adoption of this technology and proposes the next steps for further research and development. Existing pilot-scale investigations are studied to critically assess the main limitations, focusing on the electrode material, feedstock, system design and inoculation and what steps need to be taken for industrial adoption of the technology. It was found that high strength influents lead to an increase in energy production, improving economic viability; however, large variations in waste streams indicated that a homogenous solution to wastewater treatment is unlikely with changes to the MEC system specific to different waste streams. The current capital cost of implementing MECs is high and reducing the cost of the electrodes should be a priority. Previous pilot-scale studies have predominantly used carbon-based materials. Significant reductions in relative performance are observed when electrodes increase in size. Inoculation time was found to be a significant barrier to quick operational performance. Economic analysis of the technology indicated that MECs offer an attractive option for wastewater treatment, namely greater energy production and improved treatment efficiency. However, a significant reduction in capital cost is necessary to make this economically viable. MEC based systems should offer improvements in system reliability, reduced downtime, improved treatment rates and improved energy return. Discussion of the merits of H2 or CH4 production indicates that an initial focus on methane production could provide a stepping-stone in the adoption of this technology while the hydrogen market matures.
Collapse
|
14
|
Liang D, He W, Li C, Wang F, Crittenden JC, Feng Y. Remediation of nitrate contamination by membrane hydrogenotrophic denitrifying biofilm integrated in microbial electrolysis cell. WATER RESEARCH 2021; 188:116498. [PMID: 33080455 DOI: 10.1016/j.watres.2020.116498] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 09/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Complete biological denitrification is usually restricted in electron donor lacking waters. Hydrogenotrophic denitrification attracts attention for its clean and cost-efficiency advantages. Therein, the hydrogen could be effectively generated by microbial electrolysis cells (MECs) from organic wastes. In this study, a gas diffusion membrane (GDM) integrated MEC (MMEC) was constructed and provided a novel non-polluting approach for nitrate contaminated water remediation, in which the hydrogen was recovered from substrate degradation in anode and diffused across GDM as electron donor for denitrification. The high overall nitrogen removal of 91 ± 0.1%-95 ± 1.9% and 90 ± 1.6%-94 ± 2.2% were respectively achieved in Ti-MMEC and SS-MMEC with titanium and stainless-steel mesh as cathode at all applied voltages (0.4-0.8 V). Decreasing applied voltage from 0.8 to 0.4 V significantly improved the electron utilization efficiency for denitrification from 26 ± 3.6% to 73 ± 0.1% in Ti-MMEC. Integrating MEC with GDM greatly improved TN removal by 40% under applied voltage of 0.8 V. The hydrogenotrophic denitrifiers of Rhodocyclaceae, Paracoccus, and Dethiobacter, dominated in MMECs facilitating TN removal. Functional denitrification related genes including napAB, nirKS, norBC and nosZ predicted by PICRUSt2 based on 16S rRNA gene data demonstrated higher abundance in MMECs.
Collapse
Affiliation(s)
- Dandan Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Weihua He
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| | - Chao Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - Fei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China
| | - John C Crittenden
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China; Brook Byers Institute for Sustainable Systems and School of Civil and Environmental Engineering, Georgia Institute of Technology, 828 West Peachtree Street, Atlanta, GA 30332, United States
| | - Yujie Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, P. R. China.
| |
Collapse
|
15
|
Tharak A, Venkata Mohan S. Electrotrophy of biocathodes regulates microbial-electro-catalyzation of CO 2 to fatty acids in single chambered system. BIORESOURCE TECHNOLOGY 2021; 320:124272. [PMID: 33142252 DOI: 10.1016/j.biortech.2020.124272] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/11/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
Microbial electrochemical conversion of CO2 to value-added products needs effectual biocathodes. In this study, three different working electrodes (biocathode) namely carbon cloth (CC, MES1), stainless steel mesh (SS, MES2) and hybrid electrode (CC + SS, MES3) were evaluated in membrane-less single-chambered Microbial electrosynthesis systems (MESs). Performance of MES was assessed by total volatile fatty acids (VFA) productivity and, reductive current generations upon continuous poised potential (-0.4 V vs. Ag/AgCl (3.5 M KCl)). MES3 showed higher VFA synthesis (CC + SS; 1.4 g VFA/L), followed by MES1 (CC; 1.1 g VFA/L) and MES2 (SS; 0.8 g VFA/L) with corresponding reductive current generation of -1.13 mA, -2.74 mA and -0.39 mA. Electro-kinetics revealed the biocathode efficacy towards enhanced electrotrophy with confined electron losses by regulating electron flux in the system. The study infers the potential of hybrid electrode as an efficient biocathode for the reduction of CO2 to VFA synthesis.
Collapse
Affiliation(s)
- Athmakuri Tharak
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering (DEEE), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.
| |
Collapse
|
16
|
Abstract
Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks. Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl coenzyme A (acetyl-CoA) and ultimately acetate using the Wood-Ljungdahl pathway (WLP). Acetobacterium woodii is the type strain of the Acetobacterium genus and has been critical for understanding the biochemistry and energy conservation in acetogens. Members of the Acetobacterium genus have been isolated from a variety of environments or have had genomes recovered from metagenome data, but no systematic investigation has been done on the unique and various metabolisms of the genus. To gain a better appreciation for the metabolic breadth of the genus, we sequenced the genomes of 4 isolates (A. fimetarium, A. malicum, A. paludosum, and A. tundrae) and conducted a comparative genome analysis (pan-genome) of 11 different Acetobacterium genomes. A unifying feature of the Acetobacterium genus is the carbon-fixing WLP. The methyl (cluster II) and carbonyl (cluster III) branches of the Wood-Ljungdahl pathway are highly conserved across all sequenced Acetobacterium genomes, but cluster I encoding the formate dehydrogenase is not. In contrast to A. woodii, all but four strains encode two distinct Rnf clusters, Rnf being the primary respiratory enzyme complex. Metabolism of fructose, lactate, and H2:CO2 was conserved across the genus, but metabolism of ethanol, methanol, caffeate, and 2,3-butanediol varied. Additionally, clade-specific metabolic potential was observed, such as amino acid transport and metabolism in the psychrophilic species, and biofilm formation in the A. wieringae clade, which may afford these groups an advantage in low-temperature growth or attachment to solid surfaces, respectively. IMPORTANCE Acetogens are anaerobic bacteria capable of fixing CO2 or CO to produce acetyl-CoA and ultimately acetate using the Wood-Ljungdahl pathway (WLP). This autotrophic metabolism plays a major role in the global carbon cycle and, if harnessed, can help reduce greenhouse gas emissions. Overall, the data presented here provide a framework for examining the ecology and evolution of the Acetobacterium genus and highlight the potential of these species as a source for production of fuels and chemicals from CO2 feedstocks.
Collapse
|
17
|
Singh A, Nylander JAA, Schnürer A, Bongcam-Rudloff E, Müller B. High-Throughput Sequencing and Unsupervised Analysis of Formyltetrahydrofolate Synthetase (FTHFS) Gene Amplicons to Estimate Acetogenic Community Structure. Front Microbiol 2020; 11:2066. [PMID: 32983047 PMCID: PMC7481360 DOI: 10.3389/fmicb.2020.02066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The formyltetrahydrofolate synthetase (FTHFS) gene is a molecular marker of choice to study the diversity of acetogenic communities. However, current analyses are limited due to lack of a high-throughput sequencing approach for FTHFS gene amplicons and a dedicated bioinformatics pipeline for data analysis, including taxonomic annotation and visualization of the sequence data. In the present study, we combined the barcode approach for multiplexed sequencing with unsupervised data analysis to visualize acetogenic community structure. We used samples from a biogas digester to develop proof-of-principle for our combined approach. We successfully generated high-throughput sequence data for the partial FTHFS gene and performed unsupervised data analysis using the novel bioinformatics pipeline “AcetoScan” presented in this study, which resulted in taxonomically annotated OTUs, phylogenetic tree, abundance plots and diversity indices. The results demonstrated that high-throughput sequencing can be used to sequence the FTHFS amplicons from a pool of samples, while the analysis pipeline AcetoScan can be reliably used to process the raw sequence data and visualize acetogenic community structure. The method and analysis pipeline described in this paper can assist in the identification and quantification of known or potentially new acetogens. The AcetoScan pipeline is freely available at https://github.com/abhijeetsingh1704/AcetoScan.
Collapse
Affiliation(s)
- Abhijeet Singh
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Johan A A Nylander
- Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,National Bioinformatics Infrastructure Sweden, SciLifeLab, Uppsala, Sweden
| | - Anna Schnürer
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Erik Bongcam-Rudloff
- SLU-Global Bioinformatics Centre, Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Bettina Müller
- Anaerobic Microbiology and Biotechnology Group, Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
18
|
Luo H, Qi J, Zhou M, Liu G, Lu Y, Zhang R, Zeng C. Enhanced electron transfer on microbial electrosynthesis biocathode by polypyrrole-coated acetogens. BIORESOURCE TECHNOLOGY 2020; 309:123322. [PMID: 32305841 DOI: 10.1016/j.biortech.2020.123322] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/02/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Extracellular electron transfer (EET) is a significant pathway to transport electrons between bacteria and electrode in microbial electrosynthesis systems (MESs). To enhance EET in the MES, a high-conductivity polymer, polypyrrole (PPy), was coated on the surface of mixed culture acetogens in situ and the PPy-coated bacteria were inoculated on the cathode of MES. The charge transfer resistance of PPy-coated biocathode was 33%-70% of that with PPy-uncoated. Acetate production rate and Faradic efficiency in PPy-coated biocathodes increased by 3 to 6 times. After 960 h operation, Acetobacterium, Desulfovibrio, and Acinetobacter dominate the community on the coated and uncoated biocathode. Quinone loop and NADH dehydrogenase to ubiquinone were involved in electron transfer pathway of biocathode and stimulated by PPy coating. Low-level expression of C-type cytochromes on biocathode indicated its less important role in inward EET. The study provided useful information for applications of high-conductivity chemicals in microbial electrosynthesis.
Collapse
Affiliation(s)
- Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiaxin Qi
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Meizhou Zhou
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
19
|
Dykstra CM, Cheng C, Pavlostathis SG. Comparison of Carbon Dioxide with Anaerobic Digester Biogas as a Methanogenic Biocathode Feedstock. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:8949-8957. [PMID: 32544322 DOI: 10.1021/acs.est.9b07438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
BES biogas upgrading studies have typically used bicarbonate or commercial gas mixtures as a biocathode substrate instead of anaerobic digester biogas. Therefore, the objective of this study was to (i) compare the performance of a methanogenic BES between CO2-fed and biogas-fed cycles; (ii) investigate possible factors that may account for observed performance differences; and (iii) assess the performance of a biogas-fed biocathode at various applied cathode potentials. The maximum 1-d CH4 production rate in a biogas-fed biocathode (3003 mmol/m2-d) was 350% higher than in a CO2-fed biocathode (666 mmol/m2-d), and the biogas-fed biocathode was capable of maintaining high performance despite a variable biogas feed composition. Anode oxidation of reduced gases (e.g., CH4 and H2S) from biogas may theoretically contribute 4% to 35% of the total charge transfer from anode to cathode at applied cathode potentials of -0.80 to -0.55 V (vs SHE). The introduction of biogas did not significantly change the biocathode archaeal community (dominated by a Methanobrevibacter sp. phylotype), but the bacterial community shifted away from Bacteroidetes and toward Proteobacteria, which may have contributed to the improved performance of the biogas-fed system. This study shows that anaerobic digester biogas is a promising biocathode feedstock for BES biogas upgrading.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- School of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, California 92182-0003, United States
| | - Cheng Cheng
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
- College of Environment and Ecology, Chongqing University, Chongqing 400045, P. R. China
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332-0512, United States
| |
Collapse
|
20
|
Hou J, Huang L, Zhou P, Qian Y, Li N. Understanding the interdependence of strain of electrotroph, cathode potential and initial Cu(II) concentration for simultaneous Cu(II) removal and acetate production in microbial electrosynthesis systems. CHEMOSPHERE 2020; 243:125317. [PMID: 31722262 DOI: 10.1016/j.chemosphere.2019.125317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Metallurgical microbial electrosynthesis systems (MES) are holding great promise for simultaneous heavy metal removal and acetate production from heavy metal-contaminated and organics-barren waters. How critical parameters of strain of electrotroph, cathode potential and initial heavy metal concentration affect MES performance, however, is not yet fully understood. Heavy metal of Cu(II) and four Cu(II)-tolerant electrotrophs (Stenotrophomonas maltophilia JY1, Citrobacter sp. JY3, Pseudomonas aeruginosa JY5 and Stenotrophomonas sp. JY6) were employed to evaluate MES performance at various cathode potentials (-900 or -600 mV vs. standard hydrogen electrode) and initial Cu(II) concentrations (60-120 mg L-1). Each electrotrophs exhibited incremental Cu(II) removals with increased Cu(II) at -900 mV, higher than at -600 mV or in the abiotic controls. Acetate production by JY1 and JY6 decreased with the increase in initial Cu(II), compared to an initial increase and a decrease thereafter for JY3 and JY5. For each electrotrophs, the biofilms than the planktonic cells released more amounts of extracellular polymeric substances (EPS) with a compositional diversity and stronger Cu(II) complexation at -900 mV. These were higher than at -600 mV, or in the controls either under open circuit conditions or in the absence of Cu(II). This work demonstrates the interdependence of strain of electrotroph, cathode potential and initial Cu(II) on simultaneous Cu(II) removal and acetate production through the release of different amounts of EPS with diverse composites, contributing to enhancing the controlled MES for efficient recovery of value-added products from Cu(II)-contaminated and organics-barren waters.
Collapse
Affiliation(s)
- Jiaxin Hou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Liping Huang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Peng Zhou
- College of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yitong Qian
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ning Li
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
21
|
Philips J. Extracellular Electron Uptake by Acetogenic Bacteria: Does H 2 Consumption Favor the H 2 Evolution Reaction on a Cathode or Metallic Iron? Front Microbiol 2020; 10:2997. [PMID: 31998274 PMCID: PMC6966493 DOI: 10.3389/fmicb.2019.02997] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/11/2019] [Indexed: 12/30/2022] Open
Abstract
Some acetogenic bacteria are capable of using solid electron donors, such as a cathode or metallic iron [Fe(0)]. Acetogens using a cathode as electron donor are of interest for novel applications such as microbial electrosynthesis, while microorganisms using Fe(0) as electron donor cause detrimental microbial induced corrosion. The capacity to use solid electron donors strongly differs between acetogenic strains, which likely relates to their extracellular electron transfer (EET) mechanism. Different EET mechanisms have been proposed for acetogenic bacteria, including a direct mechanism and a H2 dependent indirect mechanism combined with extracellular hydrogenases catalyzing the H2 evolution reaction on the cathode or Fe(0) surface. Interestingly, low H2 partial pressures often prevail during acetogenesis with solid electron donors. Hence, an additional mechanism is here proposed: the maintenance of low H2 partial pressures by microbial H2 consumption, which thermodynamically favors the H2 evolution reaction on the cathode or Fe(0) surface. This work elaborates how the H2 partial pressure affects the H2 evolution onset potential and the H2 evolution rate on a cathode, as well as the free energy change of the anoxic corrosion reaction. In addition, the H2 consumption characteristics, i.e., H2 threshold (thermodynamic limit for H2 consumption) and H2 consumption kinetic parameters, of acetogenic bacteria are reviewed and evidence is discussed for strongly different H2 consumption characteristics. Different acetogenic strains are thus expected to maintain different H2 partial pressures on a cathode or Fe(0) surface, while those that maintain lower H2 partial pressures (lower H2 threshold, higher H2 affinity) more strongly increase the H2 evolution reaction. Consequently, I hypothesize that the different capacities of acetogenic bacteria to use solid electron donors are related to differences in their H2 consumption characteristics. The focus of this work is on acetogenic bacteria, but similar considerations are likely also relevant for other hydrogenotrophic microorganisms.
Collapse
Affiliation(s)
- Jo Philips
- Department of Engineering, Aarhus University, Aarhus, Denmark
| |
Collapse
|
22
|
Annie Modestra J, Venkata Mohan S. Capacitive biocathodes driving electrotrophy towards enhanced CO 2 reduction for microbial electrosynthesis of fatty acids. BIORESOURCE TECHNOLOGY 2019; 294:122181. [PMID: 31610485 DOI: 10.1016/j.biortech.2019.122181] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 09/16/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Electron transfer towards biocathode is a rate limiting step for CO2 reduction during microbial electrosynthesis (MES). Current study is designed to offer an understanding on electrotrophy using four different electrode materials viz., carbon cloth (CC), stainless-steel mesh (SS), combination of both (CC-SS) and a hybrid material (CC-SS-AC with activated carbon (AC)) as capacitive biocathodes for MES. Non turn-over and turn-over electrochemical investigations revealed electrode properties in terms of electron transfer, capacitance and redox catalytic currents relatively higher with CC-SS-AC and CC-SS. Acetic acid production was higher in CC-SS-AC (4.31 g/l) than CC-SS (4.21 g/l), CC (3.5 g/l) and SS (2.83 g/l) along with noticeable ethanol production with all the biocathodes except SS. Interestingly, long-term operation of all biocathodes witnessed reduction in resistance visualized through Nyquist impedance spectra relatively efficient with CC-SS-AC. Biocompatible property of CC-SS-AC with increased surface area was presumed to be a critical factor for enhancing electrotrophy linked with capacitive nature of biocathode towards enhanced bioelectrochemical CO2 reduction.
Collapse
Affiliation(s)
- J Annie Modestra
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500 007, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-Indian Institute of Chemical Technology (CSIR-IICT) Campus, Hyderabad, India.
| |
Collapse
|
23
|
Zakaria BS, Dhar BR. Progress towards catalyzing electro-methanogenesis in anaerobic digestion process: Fundamentals, process optimization, design and scale-up considerations. BIORESOURCE TECHNOLOGY 2019; 289:121738. [PMID: 31300305 DOI: 10.1016/j.biortech.2019.121738] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/26/2019] [Accepted: 06/30/2019] [Indexed: 06/10/2023]
Abstract
Electro-methanogenesis represents an emerging bio-methane production pathway that can be achieved through integrating microbial electrolysis cell (MEC) with conventional anaerobic digester (AD). Since 2009, a significant number of publications have reported superior methane productivity and kinetics from MEC-AD integrated systems. The overall objective of this review is to communicate the recent advances towards promoting electro-methanogenesis in the anaerobic digestion process. Firstly, the electro-methanogenesis pathways and functional roles of key microbial members are summarized. Secondly, various extrinsic process parameters, such as applied voltage/potential, pH, and temperature are discussed with emphasis on process optimization. Moreover, available methods for the inoculation and start-up of MEC-AD process are critically reviewed. Finally, system design and scale-up considerations, such as the selection of electrode materials, surface area and surface chemistry of electrode materials, and electrode spacing are summarized.
Collapse
Affiliation(s)
- Basem S Zakaria
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, 9211-116 Street NW, Edmonton, AB T6G 1H9, Canada.
| |
Collapse
|
24
|
Saheb‐Alam S, Persson F, Wilén B, Hermansson M, Modin O. Response to starvation and microbial community composition in microbial fuel cells enriched on different electron donors. Microb Biotechnol 2019; 12:962-975. [PMID: 31228355 PMCID: PMC6680615 DOI: 10.1111/1751-7915.13449] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/21/2019] [Accepted: 05/22/2019] [Indexed: 11/30/2022] Open
Abstract
In microbial fuel cells (MFCs), microorganisms generate electrical current by oxidizing organic compounds. MFCs operated with different electron donors harbour different microbial communities, and it is unknown how that affects their response to starvation. We analysed the microbial communities in acetate- and glucose-fed MFCs and compared their responses to 10 days starvation periods. Each starvation period resulted in a 4.2 ± 1.4% reduction in electrical current in the acetate-fed MFCs and a 10.8 ± 3.9% reduction in the glucose-fed MFCs. When feed was resumed, the acetate-fed MFCs recovered immediately, whereas the glucose-fed MFCs required 1 day to recover. The acetate-fed bioanodes were dominated by Desulfuromonas spp. converting acetate into electrical current. The glucose-fed bioanodes were dominated by Trichococcus sp., functioning as a fermenter, and a member of Desulfuromonadales, using the fermentation products to generate electrical current. Suspended biomass and biofilm growing on non-conductive regions within the MFCs had different community composition than the bioanodes. However, null models showed that homogenizing dispersal of microorganisms within the MFCs affected the community composition, and in the glucose-fed MFCs, the Trichococcus sp. was abundant in all locations. The different responses to starvation can be explained by the more complex pathway requiring microbial interactions to convert glucose into electrical current.
Collapse
Affiliation(s)
- Soroush Saheb‐Alam
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Frank Persson
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Britt‐Marie Wilén
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| | - Malte Hermansson
- Chemistry and Molecular BiologyUniversity of GothenburgGothenburgSweden
| | - Oskar Modin
- Department of Architecture and Civil EngineeringDivision of Water Environment TechnologyChalmers University of TechnologyGothenburgSweden
| |
Collapse
|
25
|
A variety of hydrogenotrophic enrichment cultures catalyse cathodic reactions. Sci Rep 2019; 9:2356. [PMID: 30787309 PMCID: PMC6382808 DOI: 10.1038/s41598-018-38006-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 12/18/2018] [Indexed: 12/03/2022] Open
Abstract
Biocathodes where living microorganisms catalyse reduction of CO2 can potentially be used to produce valuable chemicals. Microorganisms harbouring hydrogenases may play a key role for biocathode performance since H2 generated on the electrode surface can act as an electron donor for CO2 reduction. In this study, the possibility of catalysing cathodic reactions by hydrogenotrophic methanogens, acetogens, sulfate-reducers, denitrifiers, and acetotrophic methanogens was investigated. The cultures were enriched from an activated sludge inoculum and performed the expected metabolic functions. All enrichments formed distinct microbial communities depending on their electron donor and electron acceptor. When the cultures were added to an electrochemical cell, linear sweep voltammograms showed a shift in current generation close to the hydrogen evolution potential (−1 V versus SHE) with higher cathodic current produced at a more positive potential. All enrichment cultures except the denitrifiers were also used to inoculate biocathodes of microbial electrolysis cells operated with H+ and bicarbonate as electron acceptors and this resulted in current densities between 0.1–1 A/m2. The microbial community composition of biocathodes inoculated with different enrichment cultures were as different from each other as they were different from their suspended culture inoculum. It was noteworthy that Methanobacterium sp. appeared on all the biocathodes suggesting that it is a key microorganism catalysing biocathode reactions.
Collapse
|
26
|
Jiang Y, May HD, Lu L, Liang P, Huang X, Ren ZJ. Carbon dioxide and organic waste valorization by microbial electrosynthesis and electro-fermentation. WATER RESEARCH 2019; 149:42-55. [PMID: 30419466 DOI: 10.1016/j.watres.2018.10.092] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/09/2023]
Abstract
Carbon-rich waste materials (solid, liquid, or gaseous) are largely considered to be a burden on society due to the large capital and energy costs for their treatment and disposal. However, solid and liquid organic wastes have inherent energy and value, and similar as waste CO2 gas they can be reused to produce value-added chemicals and materials. There has been a paradigm shift towards developing a closed loop, biorefinery approach for the valorization of these wastes into value-added products, and such an approach enables a more carbon-efficient and circular economy. This review quantitatively analyzes the state-of-the-art of the emerging microbial electrochemical technology (MET) platform and provides critical perspectives on research advancement and technology development. The review offers side-by-side comparison between microbial electrosynthesis (MES) and electro-fermentation (EF) processes in terms of principles, key performance metrics, data analysis, and microorganisms. The study also summarizes all the processes and products that have been developed using MES and EF to date for organic waste and CO2 valorization. It finally identifies the technological and economic potentials and challenges on future system development.
Collapse
Affiliation(s)
- Yong Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China; Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, SC, USA
| | - Lu Lu
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA
| | - Peng Liang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China.
| | - Xia Huang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, PR China
| | - Zhiyong Jason Ren
- Department of Civil, Environmental, and Architectural Engineering, University of Colorado Boulder, Boulder, CO, 80309, USA; Department of Civil and Environmental Engineering and Andlinger Center for Energy and the Environment, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
27
|
Dou Z, Dykstra CM, Pavlostathis SG. Bioelectrochemically assisted anaerobic digestion system for biogas upgrading and enhanced methane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 633:1012-1021. [PMID: 29758854 DOI: 10.1016/j.scitotenv.2018.03.255] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The objective of this study was to evaluate the effect of biofilm and external voltage on the performance and microbial community composition of batch-fed, combined anaerobic digestion-bioelectrochemical cell (AD-BEC) systems under different operational conditions. A dextrin/peptone mixture was fed at a range of organic loading rates (0.34 to 1.37g COD/L-d). The hybrid system with both suspended biomass and biofilm without any external potential application achieved a substantially higher initial soluble COD consumption (53.7±2.3% vs. 39.7±3.7) and methane (CH4) production (331 vs. 225mL) within one day of feeding than the conventional AD system (suspended biomass only). Compared to the conventional AD system, the hybrid systems had higher resilience to shock organic loadings. A range of external potential (0.5 to 2.0V vs. Ag/AgCl) was applied to AD-BEC reactors, developed with two different start-up procedures. A potential of 2.0V resulted in water electrolysis leading to a higher CH4 production rate (105 vs. 84mL/L-d) and biogas CH4 content (88.5±1.4 vs. 64.5±1.9%) in the AD-BEC reactor (closed vs. open circuit condition, respectively). Application of external potential enriched putative exoelectrogens at the anode biofilm and hydrogenotrophic methanogens at the cathode biofilm, which may have contributed to the observed enhanced CH4 production in the AD-BEC system. A phylotype related to Methanobacterium formicicum, a hydrogenotrophic methanogen, dominated the archaeal community in the AD-BEC cathode biofilm.
Collapse
Affiliation(s)
- Zeou Dou
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0512, USA.
| |
Collapse
|