1
|
Tafesh-Edwards G, Kyza Karavioti M, Markollari K, Bunnell D, Chtarbanova S, Eleftherianos I. Wolbachia endosymbionts in Drosophila regulate the resistance to Zika virus infection in a sex dependent manner. Front Microbiol 2024; 15:1380647. [PMID: 38903791 PMCID: PMC11188429 DOI: 10.3389/fmicb.2024.1380647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 05/22/2024] [Indexed: 06/22/2024] Open
Abstract
Drosophila melanogaster has been used extensively for dissecting the genetic and functional bases of host innate antiviral immunity and virus-induced pathology. Previous studies have shown that the presence of Wolbachia endosymbionts in D. melanogaster confers resistance to infection by certain viral pathogens. Zika virus is an important vector-borne pathogen that has recently expanded its range due to the wide geographical distribution of the mosquito vector. Here, we describe the effect of Wolbachia on the immune response of D. melanogaster adult flies following Zika virus infection. First, we show that the presence of Wolbachia endosymbionts promotes the longevity of uninfected D. melanogaster wild type adults and increases the survival response of flies following Zika virus injection. We find that the latter effect is more pronounced in females rather than in males. Then, we show that the presence of Wolbachia regulates Zika virus replication during Zika virus infection of female flies. In addition, we demonstrate that the antimicrobial peptide-encoding gene Drosocin and the sole Jun N-terminal kinase-specific MAPK phosphatase Puckered are upregulated in female adult flies, whereas the immune and stress response gene TotM is upregulated in male individuals. Finally, we find that the activity of RNA interference and Toll signaling remain unaffected in Zika virus-infected female and male adults containing Wolbachia compared to flies lacking the endosymbionts. Our results reveal that Wolbachia endosymbionts in D. melanogaster affect innate immune signaling activity in a sex-specific manner, which in turn influences host resistance to Zika virus infection. This information contributes to a better understanding of the complex interrelationship between insects, their endosymbiotic bacteria, and viral infection. Interpreting these processes will help us design more effective approaches for controlling insect vectors of infectious disease.
Collapse
Affiliation(s)
- Ghada Tafesh-Edwards
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Margarita Kyza Karavioti
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Klea Markollari
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| | - Dean Bunnell
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Stanislava Chtarbanova
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, AL, United States
| | - Ioannis Eleftherianos
- Infection and Innate Immunity Laboratory, Department of Biological Sciences, The George Washington University, Washington, DC, United States
| |
Collapse
|
2
|
Wang Z, Lin X, Shi W, Cao C. Nicotinic Acetylcholine Receptor Alpha6 Contributes to Antiviral Immunity via IMD Pathway in Drosophila melanogaster. Viruses 2024; 16:562. [PMID: 38675904 PMCID: PMC11054842 DOI: 10.3390/v16040562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Currently, insecticides that target nicotinic acetylcholine receptors (nAChR) are widely used. Studies on the sublethal effects of insecticides have found that they can affect the amount of virus in insects. The mechanism by which insecticides affect insect virus load remain unclear. Here, we show that nAChR targeting insecticide can affect viral replication through the immune deficiency (IMD) pathway. We demonstrate that a low dose of spinosad (6.8 ng/mL), acting as an antagonist to Drosophila melanogaster nicotinic acetylcholine receptor α6 (Dα6), significantly elevates Drosophila melanogaster sigmavirus (DMelSV) virus titers in adults of Drosophila melanogaster. Conversely, a high dose of spinosad (50 ng/mL), acting as an agonist to Dα6, substantially decreases viral load. This bidirectional regulation of virus levels is absent in Dα6-knockout flies, signifying the specificity of spinosad's action through Dα6. Furthermore, the knockdown of Dα6 results in decreased expression of genes in the IMD pathway, including dredd, imd, relish, and downstream antimicrobial peptide genes AttA and AttB, indicating a reduced innate immune response. Subsequent investigations reveal no significant difference in viral titers between relish mutant flies and Dα6-relish double mutants, suggesting that the IMD pathway's role in antiviral defense is dependent on Dα6. Collectively, our findings shed light on the intricate interplay between nAChR signaling and the IMD pathway in mediating antiviral immunity, highlighting the potential for nAChR-targeting compounds to inadvertently influence viral dynamics in insect hosts. This knowledge may inform the development of integrated pest management strategies that consider the broader ecological impact of insecticide use.
Collapse
Affiliation(s)
| | | | - Wangpeng Shi
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| | - Chuan Cao
- Department of Entomology, China Agricultural University, Beijing 100193, China; (Z.W.); (X.L.)
| |
Collapse
|
3
|
Campbell LI, Nwezeobi J, van Brunschot SL, Kaweesi T, Seal SE, Swamy RAR, Namuddu A, Maslen GL, Mugerwa H, Armean IM, Haggerty L, Martin FJ, Malka O, Santos-Garcia D, Juravel K, Morin S, Stephens ME, Muhindira PV, Kersey PJ, Maruthi MN, Omongo CA, Navas-Castillo J, Fiallo-Olivé E, Mohammed IU, Wang HL, Onyeka J, Alicai T, Colvin J. Comparative evolutionary analyses of eight whitefly Bemisia tabaci sensu lato genomes: cryptic species, agricultural pests and plant-virus vectors. BMC Genomics 2023; 24:408. [PMID: 37468834 DOI: 10.1186/s12864-023-09474-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND The group of > 40 cryptic whitefly species called Bemisia tabaci sensu lato are amongst the world's worst agricultural pests and plant-virus vectors. Outbreaks of B. tabaci s.l. and the associated plant-virus diseases continue to contribute to global food insecurity and social instability, particularly in sub-Saharan Africa and Asia. Published B. tabaci s.l. genomes have limited use for studying African cassava B. tabaci SSA1 species, due to the high genetic divergences between them. Genomic annotations presented here were performed using the 'Ensembl gene annotation system', to ensure that comparative analyses and conclusions reflect biological differences, as opposed to arising from different methodologies underpinning transcript model identification. RESULTS We present here six new B. tabaci s.l. genomes from Africa and Asia, and two re-annotated previously published genomes, to provide evolutionary insights into these globally distributed pests. Genome sizes ranged between 616-658 Mb and exhibited some of the highest coverage of transposable elements reported within Arthropoda. Many fewer total protein coding genes (PCG) were recovered compared to the previously published B. tabaci s.l. genomes and structural annotations generated via the uniform methodology strongly supported a repertoire of between 12.8-13.2 × 103 PCG. An integrative systematics approach incorporating phylogenomic analysis of nuclear and mitochondrial markers supported a monophyletic Aleyrodidae and the basal positioning of B. tabaci Uganda-1 to the sub-Saharan group of species. Reciprocal cross-mating data and the co-cladogenesis pattern of the primary obligate endosymbiont 'Candidatus Portiera aleyrodidarum' from 11 Bemisia genomes further supported the phylogenetic reconstruction to show that African cassava B. tabaci populations consist of just three biological species. We include comparative analyses of gene families related to detoxification, sugar metabolism, vector competency and evaluate the presence and function of horizontally transferred genes, essential for understanding the evolution and unique biology of constituent B. tabaci. s.l species. CONCLUSIONS These genomic resources have provided new and critical insights into the genetics underlying B. tabaci s.l. biology. They also provide a rich foundation for post-genomic research, including the selection of candidate gene-targets for innovative whitefly and virus-control strategies.
Collapse
Affiliation(s)
- Lahcen I Campbell
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.
| | - Joachim Nwezeobi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK.
- Wellcome Sanger Institute, Wellcome Genome Campus, Cambridge, Hinxton, UK.
| | - Sharon L van Brunschot
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- CSIRO Health and Biosecurity, Dutton Park, QLD, Australia
- School of Biological Sciences, The University of Queensland, Brisbane, QLD, Australia
| | - Tadeo Kaweesi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Rwebitaba Zonal Agricultural Research and Development Institute, Fort Portal, Uganda
| | - Susan E Seal
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Rekha A R Swamy
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | - Annet Namuddu
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- National Crops Resources Research Institute, Kampala, Uganda
| | - Gareth L Maslen
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Imperial College London, South Kensington, London, UK
| | - Habibu Mugerwa
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Irina M Armean
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Leanne Haggerty
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fergal J Martin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Osnat Malka
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Diego Santos-Garcia
- CNRS, Laboratory of Biometry and Evolutionary Biology UMR 5558, University of Lyon, Villeurbanne, France
- Center for Biology and Management of Populations, INRAe UMR1062, Montferrier-sur-Lez, France
| | - Ksenia Juravel
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shai Morin
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Paul Visendi Muhindira
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Paul J Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Royal Botanic Gardens, Kew, London, UK
| | - M N Maruthi
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| | | | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | - Elvira Fiallo-Olivé
- Instituto de Hortofruticultura Subtropical Y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Málaga, Algarrobo-Costa, Spain
| | | | - Hua-Ling Wang
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
- College of Forestry, Hebei Agricultural University, Baoding, Hebei, China
| | - Joseph Onyeka
- National Root Crops Research Institute (NRCRI), Umudike, Nigeria
| | - Titus Alicai
- National Crops Resources Research Institute, Kampala, Uganda
| | - John Colvin
- Natural Resources Institute, University of Greenwich, Chatham, Kent, UK
| |
Collapse
|
4
|
Ren F, Yan J, Wang X, Xie Y, Guo N, Swevers L, Sun J. Peptidoglycan Recognition Protein S5 of Bombyx mori Facilitates the Proliferation of Bombyx mori Cypovirus 1. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6338-6347. [PMID: 37053003 DOI: 10.1021/acs.jafc.3c00927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Bombyx mori cypovirus 1 (BmCPV1), a primary pathogen of the silkworm, is a typical dsRNA virus belonging to the Reoviridae family. In this study, a total of 2520 differentially expressed genes (DEGs) were identified by RNA-seq analysis of the silkworm midgut after BmCPV1 infection and Gene Ontology (GO) functional annotation showed that the DEGs predominantly functioned in binding (molecular function), cell (cellular component), and cellular processes (biological process). Additionally, the Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation revealed that the DEGs were mainly distributed in global and overview metabolism maps, translation, and signal transduction. Among the identified DEGs, BmPGRP-S5 belongs to the peptidoglycan recognition protein (PGRP) family. Previous studies have revealed that PGRPs were involved in the interactions between silkworm and BmCPV1. Here, we explored the effect of BmPGRP-S5 on BmCPV1 replication and demonstrated that BmPGRP-S5 promotes the proliferation of BmCPV1 in BmN cells through overexpression or knockdown experiments. Knocking down of BmPGRP-S5 in silkworm larvae similarly promoted the proliferation of BmCPV1. Through experimental validation, we therefore determined that BmPGRP-S5 acts as a proviral host factor for BmCPV1 infection. This study clarifies the proliferation mechanism of BmCPV1 and provides new insights into the functional role of BmPGRP-S5.
Collapse
Affiliation(s)
- Feifei Ren
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Jiming Yan
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiong Wang
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Yukai Xie
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Nan Guo
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Aghia Paraskevi, Athens 15341, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Li J, Li J, Jing Z, Yu Q, Zheng G, Zhang B, Xing L, Zhang H, Wan F, Li C. Antiviral function of peptidoglycan recognition protein in Spodoptera exigua (Lepidoptera: Noctuidae). INSECT SCIENCE 2022. [PMID: 36464632 DOI: 10.1111/1744-7917.13158] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/16/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Peptidoglycan recognition proteins (PGRPs) are a class of molecules that play a critical role in insect immunity. Understanding the function of PGRPs is important to improve the efficiency of microbial insecticides. In this study, we investigated the role of PGRP-LB (a long type PGRP) in insect immunity against viruses using Spodoptera exigua and Spodoptera exigua multiple nucleopolyhedrovirus (SeMNPV) as an insect-virus model. We cloned and identified a PGRP-LB gene from S. exigua; the gene consisted of 7 exons that encoded a polypeptide of 234 amino acids with a signal peptide and a typical amidase domain. Expression analysis revealed that the abundance of SePGRP-LB transcripts in the fat body was greater than in other tissues. Overexpression of SePGRP-LB resulted in a significant decrease of 49% in the rate of SeMNPV-infected cells. In addition, the multiplication of SeMNPV was significantly decreased: a decrease of 79% in the production of occlusion-derived virion (ODV), and a maximum decrease of 50% in the production of budded virion (BV). In contrast, silencing of SePGRP-LB expression by RNA interference resulted in a significant 1.65-fold increase in the rate of SeMNPV-infected cells, a significant 0.54-fold increase in ODV production, a maximum 1.57-fold increase in BV production, and the larval survival dropped to 21%. Our findings show that SePGRP-LB has an antiviral function against SeMNPV, and therefore this gene may provide a target for lepidopteran pest control using virus insecticides.
Collapse
Affiliation(s)
- Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jie Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Zhaohao Jing
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Qianlong Yu
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Guiling Zheng
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Bin Zhang
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Longsheng Xing
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Huan Zhang
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fanghao Wan
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Changyou Li
- Shandong Engineering Research Center for Environment-Friendly Agricultural Pest Management, College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
6
|
Cheung YP, Park S, Pagtalunan J, Maringer K. The antiviral role of NF-κB-mediated immune responses and their antagonism by viruses in insects. J Gen Virol 2022; 103. [PMID: 35510990 DOI: 10.1099/jgv.0.001741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The antiviral role of innate immune responses mediated by the NF-κB family of transcription factors is well established in vertebrates but was for a long time less clear in insects. Insects encode two canonical NF-κB pathways, the Toll and Imd ('immunodeficiency') pathways, which are best characterised for their role in antibacterial and antifungal defence. An increasing body of evidence has also implicated NF-κB-mediated innate immunity in antiviral responses against some, but not all, viruses. Specific pattern recognition receptors (PRRs) and molecular events leading to NF-κB activation by viral pathogen-associated molecular patterns (PAMPs) have been elucidated for a number of viruses and insect species. Particularly interesting are recent findings indicating that the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) pathway detects viral RNA to activate NF-κB-regulated gene expression. We summarise the literature on virus-NF-κB pathway interactions across the class Insecta, with a focus on the dipterans Drosophila melanogaster and Aedes aegypti. We discuss potential reasons for differences observed between different virus-host combinations, and highlight similarities and differences between cGAS-STING signalling in insects versus vertebrates. Finally, we summarise the increasing number of known molecular mechanisms by which viruses antagonise NF-κB responses, which suggest that NF-κB-mediated immunity exerts strong evolutionary pressures on viruses. These developments in our understanding of insect antiviral immunity have relevance to the large number of insect species that impact on humans through their transmission of human, livestock and plant diseases, exploitation as biotechnology platforms, and role as parasites, pollinators, livestock and pests.
Collapse
Affiliation(s)
- Yin P Cheung
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Sohyun Park
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Justine Pagtalunan
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK.,Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, GU2 7XH, UK
| | - Kevin Maringer
- The Pirbright Institute, Pirbright, Surrey, GU24 0NF, UK
| |
Collapse
|
7
|
Roy M, Viginier B, Mayeux CA, Ratinier M, Fablet M. Infections by Transovarially Transmitted DMelSV in Drosophila Have No Impact on Ovarian Transposable Element Transcripts but Increase Their Amounts in the Soma. Genome Biol Evol 2021; 13:evab207. [PMID: 34498066 PMCID: PMC8459167 DOI: 10.1093/gbe/evab207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/01/2021] [Indexed: 12/21/2022] Open
Abstract
Transposable elements (TEs) are genomic parasites, which activity is tightly controlled in germline cells. Using Sindbis virus, it was recently demonstrated that viral infections affect TE transcript amounts in somatic tissues. However, the strongest evolutionary impacts are expected in gonads, because that is where the genomes of the next generations lie. Here, we investigated this aspect using the Drosophila melanogaster Sigma virus. It is particularly relevant in the genome/TE interaction given its tropism to ovaries, which is the organ displaying the more sophisticated TE control pathways. Our results in Drosophila simulans flies allowed us to confirm the existence of a strong homeostasis of the TE transcriptome in ovaries upon infection, which, however, rely on TE-derived small RNA modulations. In addition, we performed a meta-analysis of RNA-seq data and propose that the immune pathway that is triggered upon viral infection determines the direction of TE transcript modulation in somatic tissues.
Collapse
Affiliation(s)
- Marlène Roy
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
- EPHE, PSL Research University, INRA, Université de Lyon, Université Claude Bernard Lyon1, UMR754, IVPC, Lyon, France
| | - Barbara Viginier
- EPHE, PSL Research University, INRA, Université de Lyon, Université Claude Bernard Lyon1, UMR754, IVPC, Lyon, France
| | - Camille A Mayeux
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| | - Maxime Ratinier
- EPHE, PSL Research University, INRA, Université de Lyon, Université Claude Bernard Lyon1, UMR754, IVPC, Lyon, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, CNRS, UMR 5558, Villeurbanne, France
| |
Collapse
|
8
|
Bombyx mori β-1,3-Glucan Recognition Protein 4 ( BmβGRP4) Could Inhibit the Proliferation of B. mori Nucleopolyhedrovirus through Promoting Apoptosis. INSECTS 2021; 12:insects12080743. [PMID: 34442307 PMCID: PMC8396850 DOI: 10.3390/insects12080743] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 01/12/2023]
Abstract
β-1,3-glucan recognition proteins (βGRPs) as pattern recognition receptors (PRRs) play an important role in recognizing various pathogens and trigger complicated signaling pathways in insects. In this study, we identified a Bombyx mori β-1,3-glucan recognition protein gene named BmβGRP4, which showed differential expression, from a previous transcriptome database. The full-length cDNA sequence was 1244 bp, containing an open reading frame (ORF) of 1128 bp encoding 375 amino acids. BmβGRP4 was strongly expressed in the larval stages and highly expressed in the midgut of B. mori larvae in particular. After BmNPV infection, the expression of BmβGRP4 was reduced significantly in the midgut. Furthermore, a significant increase in the copy number of BmNPV was observed after the knockdown of BmβGRP4 in 5th instar larvae, while the overexpression of BmβGRP4 suppressed the proliferation of BmNPV in BmN cells. Subsequently, the expression analysis of several apoptosis-related genes and observation of the apoptosis morphology demonstrated that overexpression of BmβGRP4 facilitated apoptosis induced by BmNPV in BmN cells. Moreover, BmβGRP4 positively regulated the phosphatase and tensin homolog gene (BmPTEN), while expression of the inhibitor of apoptosis gene (BmIAP) was negatively regulated by BmβGRP4. Hence, we hypothesize that BmNPV infection might suppress BmPTEN and facilitate BmIAP to inhibit cell apoptosis by downregulating the expression of BmβGRP4 to escape host antiviral defense. Taken together, these results show that BmβGRP4 may play a role in B. mori response to BmNPV infection and lay a foundation for studying its functions.
Collapse
|
9
|
Talactac MR, Hernandez EP, Hatta T, Yoshii K, Kusakisako K, Tsuji N, Tanaka T. The antiviral immunity of ticks against transmitted viral pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 119:104012. [PMID: 33484780 DOI: 10.1016/j.dci.2021.104012] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 01/08/2021] [Accepted: 01/09/2021] [Indexed: 06/12/2023]
Abstract
Ticks, being obligate hematophagous arthropods, are exposed to various blood-borne pathogens, including arboviruses. Consequently, their feeding behavior can readily transmit economically important viral pathogens to humans and animals. With this tightly knit vector and pathogen interaction, the replication and transmission of tick-borne viruses (TBVs) must be highly regulated by their respective tick vectors to avoid any adverse effect on the ticks' biological development and viability. Knowledge about the tick-virus interface, although gaining relevant advances in recent years, is advancing at a slower pace than the scientific developments related to mosquito-virus interactions. The unique and complicated feeding behavior of ticks, compared to that of other blood-feeding arthropods, also limits the studies that would further elaborate the antiviral immunity of ticks against TBVs. Hence, knowledge of molecular and cellular immune mechanisms at the tick-virus interface, will further elucidate the successful viral replication of TBVs in ticks and their effective transmission to human and animal hosts.
Collapse
Affiliation(s)
- Melbourne Rio Talactac
- Department of Clinical and Population Health, College of Veterinary Medicine and Biomedical Sciences, Cavite State University, Cavite, 4122, Philippines
| | - Emmanuel Pacia Hernandez
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Takeshi Hatta
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Kentaro Yoshii
- National Research Center for the Control and Prevention of Infectious Diseases, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan
| | - Kodai Kusakisako
- Laboratory of Veterinary Parasitology, School of Veterinary Medicine, Kitasato University, Towada, Aomori, 034-8628, Japan
| | - Naotoshi Tsuji
- Department of Parasitology and Tropical Medicine, Kitasato University School of Medicine, 1-15-1 Kitasato, Minami, Sagamihara, Kanagawa, 252-0374, Japan
| | - Tetsuya Tanaka
- Laboratory of Infectious Diseases, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima, 890-0065, Japan.
| |
Collapse
|
10
|
Feng M, Fei S, Xia J, Labropoulou V, Swevers L, Sun J. Antimicrobial Peptides as Potential Antiviral Factors in Insect Antiviral Immune Response. Front Immunol 2020; 11:2030. [PMID: 32983149 PMCID: PMC7492552 DOI: 10.3389/fimmu.2020.02030] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 07/27/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial peptides (AMPs) with antiviral activity (antiviral peptides: AVPs) have become a research hotspot and already show immense potential to become pharmaceutically available antiviral drugs. AVPs have exhibited huge potential in inhibiting viruses by targeting various stages of their life cycle. Insects are the most speciose group of animals that inhabit almost all ecosystems and habitats on the land and are a rich source of natural AMPs. However, insect AVP mining, functional research, and drug development are still in their infancy. This review aims to summarize the currently validated insect AVPs, explore potential new insect AVPs and to discuss their possible mechanism of synthesis and action, with a view to providing clues to unravel the mechanisms of insect antiviral immunity and to develop insect AVP-derived antiviral drugs.
Collapse
Affiliation(s)
- Min Feng
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China.,Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Shigang Fei
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Junming Xia
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Vassiliki Labropoulou
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology, Institute of Biosciences and Applications, National Centre for Scientific Research Demokritos, Athens, Greece
| | - Jingchen Sun
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
11
|
Martin M, Hiroyasu A, Guzman RM, Roberts SA, Goodman AG. Analysis of Drosophila STING Reveals an Evolutionarily Conserved Antimicrobial Function. Cell Rep 2019; 23:3537-3550.e6. [PMID: 29924997 DOI: 10.1016/j.celrep.2018.05.029] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 03/15/2018] [Accepted: 05/08/2018] [Indexed: 01/24/2023] Open
Abstract
The vertebrate protein STING, an intracellular sensor of cyclic dinucleotides, is critical to the innate immune response and the induction of type I interferon during pathogenic infection. Here, we show that a STING ortholog (dmSTING) exists in Drosophila, which, similar to vertebrate STING, associates with cyclic dinucleotides to initiate an innate immune response. Following infection with Listeria monocytogenes, dmSTING activates an innate immune response via activation of the NF-κB transcription factor Relish, part of the immune deficiency (IMD) pathway. DmSTING-mediated activation of the immune response reduces the levels of Listeria-induced lethality and bacterial load in the host. Of significance, dmSTING triggers an innate immune response in the absence of a known functional cyclic guanosine monophosphate (GMP)-AMP synthase (cGAS) ortholog in the fly. Together, our results demonstrate that STING is an evolutionarily conserved antimicrobial effector between flies and mammals, and it comprises a key component of host defense against pathogenic infection in Drosophila.
Collapse
Affiliation(s)
- Marina Martin
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - R Marena Guzman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Steven A Roberts
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA; Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
12
|
Identification of Regulatory Host Genes Involved in Sigma Virus Replication Using RNAi Knockdown in Drosophila. INSECTS 2019; 10:insects10100339. [PMID: 31614679 PMCID: PMC6835446 DOI: 10.3390/insects10100339] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/01/2019] [Accepted: 10/08/2019] [Indexed: 01/15/2023]
Abstract
The Drosophila melanogaster sigma virus, a member of the Rhabdoviridae family, specifically propagates itself in D. melanogaster. It contains six genes in the order of 3′-N–P–X–M–G–L-5′. The sigma virus is the only arthropod-specific virus of the Rhabdoviridae family. Sigma-virus-infected Drosophila may suffer from irreversible paralysis when exposed to a high CO2 concentration, but generally, no other symptoms are reported. A recent study reported that host gene expression in immune pathways was not changed in sigma-virus-infected Drosophila, which does not necessarily suggest that they are not involved in virus–host interactions. The present study aimed to identify host genes associated with sigma virus replication. Immune pathways JAK-STAT and IMD were selected for detailed study. The results showed that the genome copy number of the sigma virus increased after knocking down the immune pathway genes domeless and PGRP-LC in Drosophila S2 cells. The knocking down of domeless and PGRP-LC significantly up-regulated the expression of the L gene compared to the other viral genes. We propose that the immune pathways respond to sigma virus infection by altering L expression, hence suppressing viral replication. This effect was further tested in vivo, when D. melanogaster individuals injected with dsdome and dsPGRP-LC showed not only an increase in sigma virus copy number, but also a reduced survival rate when treated with CO2. Our study proved that host immunity influences viral replication, even in persistent infection. Knocking down the key components of the immune process deactivates immune controls, thus facilitating viral expression and replication. We propose that the immunity system of D. melanogaster regulates the replication of the sigma virus by affecting the L gene expression. Studies have shown minimal host–virus interaction in persistent infection. However, our study demonstrated that the immunity continued to affect viral replication even in persistent infection because knocking down the key components of the immune process disabled the relevant immune controls and facilitated viral expression and replication.
Collapse
|
13
|
Liu W, Wang Y, Zhou J, Zhang Y, Ma Y, Wang D, Jiang Y, Shi S, Qin L. Peptidoglycan recognition proteins regulate immune response of Antheraea pernyi in different ways. J Invertebr Pathol 2019; 166:107204. [DOI: 10.1016/j.jip.2019.107204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/17/2019] [Accepted: 05/23/2019] [Indexed: 12/14/2022]
|
14
|
West C, Rus F, Chen Y, Kleino A, Gangloff M, Gammon DB, Silverman N. IIV-6 Inhibits NF-κB Responses in Drosophila. Viruses 2019; 11:v11050409. [PMID: 31052481 PMCID: PMC6563256 DOI: 10.3390/v11050409] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 04/23/2019] [Accepted: 04/28/2019] [Indexed: 02/02/2023] Open
Abstract
The host immune response and virus-encoded immune evasion proteins pose constant, mutual selective pressure on each other. Virally encoded immune evasion proteins also indicate which host pathways must be inhibited to allow for viral replication. Here, we show that IIV-6 is capable of inhibiting the two Drosophila NF-κB signaling pathways, Imd and Toll. Antimicrobial peptide (AMP) gene induction downstream of either pathway is suppressed when cells infected with IIV-6 are also stimulated with Toll or Imd ligands. We find that cleavage of both Imd and Relish, as well as Relish nuclear translocation, three key points in Imd signal transduction, occur in IIV-6 infected cells, indicating that the mechanism of viral inhibition is farther downstream, at the level of Relish promoter binding or transcriptional activation. Additionally, flies co-infected with both IIV-6 and the Gram-negative bacterium, Erwinia carotovora carotovora, succumb to infection more rapidly than flies singly infected with either the virus or the bacterium. These findings demonstrate how pre-existing infections can have a dramatic and negative effect on secondary infections, and establish a Drosophila model to study confection susceptibility.
Collapse
Affiliation(s)
- Cara West
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Florentina Rus
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Ying Chen
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Anni Kleino
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | - Monique Gangloff
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK.
| | - Don B Gammon
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX T5390, USA.
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| |
Collapse
|
15
|
Jiang L, Liu W, Guo H, Dang Y, Cheng T, Yang W, Sun Q, Wang B, Wang Y, Xie E, Xia Q. Distinct Functions of Bombyx mori Peptidoglycan Recognition Protein 2 in Immune Responses to Bacteria and Viruses. Front Immunol 2019; 10:776. [PMID: 31031766 PMCID: PMC6473039 DOI: 10.3389/fimmu.2019.00776] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 03/25/2019] [Indexed: 11/13/2022] Open
Abstract
Peptidoglycan recognition protein (PGRP) is an important pattern recognition receptor in innate immunity that is vital for bacterial recognition and defense in insects. Few studies report the role of PGRP in viral infection. Here we cloned two forms of PGRP from the model lepidopteran Bombyx mori: BmPGRP2-1 is a transmembrane protein, whereas BmPGRP2-2 is an intracellular protein. BmPGRP2-1 bound to diaminopimelic acid (DAP)-type peptidoglycan (PGN) to activate the canonical immune deficiency (Imd) pathway. BmPGRP2-2 knockdown reduced B. mori nucleopolyhedrovirus (BmNPV) multiplication and mortality in cell lines and in silkworm larvae, while its overexpression increased viral replication. Transcriptome and quantitative PCR (qPCR) results confirmed that BmPGRP2 negatively regulated phosphatase and tensin homolog (PTEN). BmPGRP2-2 expression was induced by BmNPV, and the protein suppressed PTEN-phosphoinositide 3-kinase (PI3K)/Akt signaling to inhibit cell apoptosis, suggesting that BmNPV modulates BmPGRP2-2-PTEN-PI3K/Akt signaling to evade host antiviral defense. These results demonstrate that the two forms of BmPGRP2 have different functions in host responses to bacteria and viruses.
Collapse
Affiliation(s)
- Liang Jiang
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqiang Liu
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Huizhen Guo
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Yinghui Dang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Tingcai Cheng
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Wanying Yang
- Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Qiang Sun
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Bingbing Wang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Yumei Wang
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Enyu Xie
- Biological Science Research Center, Southwest University, Chongqing, China
| | - Qingyou Xia
- Biological Science Research Center, Southwest University, Chongqing, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| |
Collapse
|
16
|
Choi KM, Joo MS, Cho DH, Bae JS, Jung JM, Hwang JY, Kwon MG, Seo JS, Hwang SD, Jee BY, Kim DH, Park CI. Characterization of gene expression profiles and functional analysis of peptidoglycan recognition protein 2 from rock bream (Oplegnathus fasciatus). FISH & SHELLFISH IMMUNOLOGY 2019; 84:1068-1074. [PMID: 30439496 DOI: 10.1016/j.fsi.2018.11.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/18/2018] [Accepted: 11/10/2018] [Indexed: 06/09/2023]
Abstract
Peptidoglycan recognition protein 2 (PGRP2) is a Zn2+-dependent peptidase that plays important roles in binding to microbial components of the cell membrane, inducing phagocytosis and antimicrobial activity. Rock bream (Oplegnathus fasciatus) PGRP2 (RbPGRP2) was identified in the intestine by next generation sequencing (NGS) analysis. The open reading frame (ORF) the RbPGRP2 cDNA (470 amino acid residues) contains a peptidoglycan recognition protein domain (residues 300 to 446). Alignment analysis revealed that RbPGRP2 shares 37.6-53.5% overall sequence identity with the PGRP2s of other species. Phylogenetic analysis revealed that RbPGRP2 clustered together with PGRP2s from teleosts. In healthy rock bream, RbPGRP2 was found to be ubiquitously expressed in all of the examined tissues, especially in the liver. RbPGRP2 expression was significantly upregulated in all of the examined tissues of rock bream after infection with Edwardsiella piscicida, Streptococcus iniae and red sea bream iridovirus (RSIV) compared with the control. Purified rRbPGRP2 interactions with bacteria and inhibited the growth of bacteria in the presence of Zn2+. These results indicate that RbPGRP2 plays an important role in the innate immune response against bacterial infection.
Collapse
Affiliation(s)
- Kwang-Min Choi
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong Hee Cho
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jin-Sol Bae
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Ji-Min Jung
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Jee Youn Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mun-Gyeong Kwon
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Jung Soo Seo
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Bo-Yeong Jee
- Aquatic Animal Disease Control Center, National Institute of Fisheries Science (NIFS), 216 Gijanghaean-ro, Gijang-eup, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu, Busan, Republic of Korea.
| | - Chan-Il Park
- Institute of Marine Industry, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
17
|
Drosophila as a Model to Study Brain Innate Immunity in Health and Disease. Int J Mol Sci 2018; 19:ijms19123922. [PMID: 30544507 PMCID: PMC6321579 DOI: 10.3390/ijms19123922] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/05/2018] [Accepted: 12/05/2018] [Indexed: 12/21/2022] Open
Abstract
Innate immunity is the first line of defense against invading pathogens and plays an essential role in defending the brain against infection, injury, and disease. It is currently well recognized that central nervous system (CNS) infections can result in long-lasting neurological sequelae and that innate immune and inflammatory reactions are highly implicated in the pathogenesis of neurodegeneration. Due to the conservation of the mechanisms that govern neural development and innate immune activation from flies to mammals, the lack of a classical adaptive immune system and the availability of numerous genetic and genomic tools, the fruit fly Drosophila melanogaster presents opportunities to investigate the cellular and molecular mechanisms associated with immune function in brain tissue and how they relate to infection, injury and neurodegenerative diseases. Here, we present an overview of currently identified innate immune mechanisms specific to the adult Drosophila brain.
Collapse
|
18
|
Zhao P, Xia F, Jiang L, Guo H, Xu G, Sun Q, Wang B, Wang Y, Lu Z, Xia Q. Enhanced antiviral immunity against Bombyx mori cytoplasmic polyhedrosis virus via overexpression of peptidoglycan recognition protein S2 in transgenic silkworms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 87:84-89. [PMID: 29902708 DOI: 10.1016/j.dci.2018.05.021] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/13/2018] [Accepted: 05/30/2018] [Indexed: 06/08/2023]
Abstract
In insect innate immunity, peptidoglycan recognition proteins act as pattern recognition receptors, helping hosts combat invasive microorganisms. Bombyx mori cytoplasmic polyhedrosis virus (BmCPV) is the main silkworm pathogen that invades the midgut columnar cell layer. We previously reported that B. mori peptidoglycan recognition protein S2 (BmPGRP-S2) was upregulated in silkworm larvae after BmCPV infection. Here, we constructed a transgenic vector overexpressing BmPGRP-S2 under the control of a midgut-specific promoter. Transgenic silkworm lines (PGRPS2-1 and PGRPS2-2) were generated via embryonic microinjection. BmPGRP-S2 was successfully overexpressed in transgenic silkworms and BmE cells. After oral inoculation with BmCPV, the mortality of PGRPS2-1 and PGRPS2-2 decreased by approximately 36% and 32%, respectively, compared with that of the non-transgenic line, and BmCPV mRNA contents were significantly lower. In the PGRPS2-1 line, imd, relish, and the antimicrobial peptide (AMP) genes attacin2, gloverin2, and moricin showed increased expression after viral infection; however, the Toll pathway was not activated. These results indicate that BmPGRP-S2 overexpression can activate the Imd pathway and induce AMP upregulation, enhancing silkworm antiviral resistance.
Collapse
Affiliation(s)
- Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Fei Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Liang Jiang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Huizhen Guo
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Guowen Xu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Qiang Sun
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Bingbing Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Yumei Wang
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Zhongyan Lu
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
19
|
Tham HW, Balasubramaniam V, Ooi MK, Chew MF. Viral Determinants and Vector Competence of Zika Virus Transmission. Front Microbiol 2018; 9:1040. [PMID: 29875751 PMCID: PMC5974093 DOI: 10.3389/fmicb.2018.01040] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 05/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zika virus (ZIKV) has emerged as a new global health threat. Since its first discovery in Zika forest in Uganda, this virus has been isolated from several mosquito species, including Aedes aegypti and Aedes albopictus. The geographical distribution of these mosquito species across tropical and subtropical regions has led to several outbreaks, including the recent pandemic in Brazil, followed by the Pacific islands and other areas of North and South America. This has gained attention of the scientific community to elucidate the epidemiology and transmission of ZIKV. Despite its strong attention on clinical aspects for healthcare professionals, the relationships between ZIKV and its principal vectors, A. aegypti and A. albopictus, have not gained substantial interest in the scientific research community. As such, this review aims to summarize the current knowledge on ZIKV tropism and some important mechanisms which may be employed by the virus for effective strategies on viral survival in mosquitoes. In addition, this review identifies the areas of research that should be placed attention to, for which to be exploited for novel mosquito control strategies.
Collapse
Affiliation(s)
- Hong-Wai Tham
- Biology Research Laboratory, Faculty of Pharmacy, SEGi University, Petaling Jaya, Malaysia
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Man K. Ooi
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia
| | - Miaw-Fang Chew
- Centre for Virus and Vaccine Research, School of Science and Technology, Sunway University, Subang Jaya, Malaysia
| |
Collapse
|
20
|
Swevers L, Liu J, Smagghe G. Defense Mechanisms against Viral Infection in Drosophila: RNAi and Non-RNAi. Viruses 2018; 10:E230. [PMID: 29723993 PMCID: PMC5977223 DOI: 10.3390/v10050230] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 04/20/2018] [Accepted: 04/27/2018] [Indexed: 12/20/2022] Open
Abstract
RNAi is considered a major antiviral defense mechanism in insects, but its relative importance as compared to other antiviral pathways has not been evaluated comprehensively. Here, it is attempted to give an overview of the antiviral defense mechanisms in Drosophila that involve both RNAi and non-RNAi. While RNAi is considered important in most viral infections, many other pathways can exist that confer antiviral resistance. It is noted that very few direct recognition mechanisms of virus infections have been identified in Drosophila and that the activation of immune pathways may be accomplished indirectly through cell damage incurred by viral replication. In several cases, protection against viral infection can be obtained in RNAi mutants by non-RNAi mechanisms, confirming the variability of the RNAi defense mechanism according to the type of infection and the physiological status of the host. This analysis is aimed at more systematically investigating the relative contribution of RNAi in the antiviral response and more specifically, to ask whether RNAi efficiency is affected when other defense mechanisms predominate. While Drosophila can function as a useful model, this issue may be more critical for economically important insects that are either controlled (agricultural pests and vectors of diseases) or protected from parasite infection (beneficial insects as bees) by RNAi products.
Collapse
Affiliation(s)
- Luc Swevers
- Institute of Biosciences & Applications, NCSR "Demokritos", 15341 Athens, Greece.
| | - Jisheng Liu
- School of Life Sciences, Guangzhou University, 510006 Guangzhou, China.
| | - Guy Smagghe
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium.
| |
Collapse
|
21
|
Dumón AD, Argüello Caro EB, Mattio MF, Alemandri V, Del Vas M, Truol G. Co-infection with a wheat rhabdovirus causes a reduction in Mal de Río Cuarto virus titer in its planthopper vector. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:232-240. [PMID: 28891462 DOI: 10.1017/s0007485317000803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Mal de Río Cuarto virus (MRCV, Fijivirus, Reoviridae) causes one of the most important diseases in maize (Zea mays L.) in Argentina and has been detected in mixed infections with a rhabdovirus closely related to Maize yellow striate virus. In nature both viruses are able to infect maize and several grasses including wheat, and are transmitted in a persistent propagative manner by Delphacodes kuscheli Fennah (Hemiptera: Delphacidae). This work describes the interactions between MRCV and rhabdovirus within their natural vector and the consequences of such co-infection regarding virus transmission and symptom expression. First- and third-instar D. kuscheli nymphs were fed on MRCV-infected wheat plants or MRCV-rhabdovirus-infected oat plants, and two latency periods were considered. Transmission efficiency and viral load of MRCV-transmitting and non-transmitting planthoppers were determined by real-time quantitative polymerase chain reaction analysis (RTqPCR). Vector transmission efficiency was related to treatments (life stages at acquisition and latency periods). Nevertheless, no correlation between transmission efficiency and type of inoculum used to infect insects with MRCV was found. Treatment by third-instar nymphs 17 days after Acquisition Access Period was the most efficient for MRCV transmission, regardless of the type of inoculum. Plants co-infected with MRCV and rhabdovirus showed the typical MRCV symptoms earlier than plants singly infected with MRCV. The transmitting planthoppers showed significantly higher MRCV titers than non-transmitting insects fed on single or mixed inocula, confirming that successful MRCV transmission is positively associated with viral accumulation in the insect. Furthermore, MRCV viral titers were higher in transmitting planthoppers that acquired this virus from a single inoculum than in those that acquired the virus from a mixed inoculum, indicating that the presence of the rhabdovirus somehow impaired MRCV replication and/or acquisition. This is the first study about interactions between MRCV and a rhabdovirus closely related to Maize yellow striate virus in this insect vector (D. kuscheli), and contributes to a better understanding of planthopper-virus interactions and their epidemiological implications.
Collapse
Affiliation(s)
- A D Dumón
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA,Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba,Argentina
| | - E B Argüello Caro
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA,Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba,Argentina
| | - M F Mattio
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA,Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba,Argentina
| | - V Alemandri
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA,Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba,Argentina
| | - M Del Vas
- Instituto de Biotecnología (IB), CICVyA-INTA,de los Reseros y Nicolás Repetto s/n (1686),Hurlingham,Buenos Aires,Argentina
| | - G Truol
- Instituto de Patología Vegetal (IPAVE), CIAP-INTA,Camino 60 Cuadras km 5 ½ X5020ICA, Córdoba,Argentina
| |
Collapse
|
22
|
Abstract
The power and ease of Drosophila genetics and the medical relevance of mosquito-transmitted viruses have made dipterans important model organisms in antiviral immunology. Studies of virus-host interactions at the molecular and population levels have illuminated determinants of resistance to virus infection. Here, we review the sources and nature of variation in antiviral immunity and virus susceptibility in model dipteran insects, specifically the fruit fly Drosophila melanogaster and vector mosquitoes of the genera Aedes and Culex. We first discuss antiviral immune mechanisms and describe the virus-specificity of these responses. In the following sections, we review genetic and microbiota-dependent variation in antiviral immunity. In the final sections, we explore less well-studied sources of variation, including abiotic factors, sexual dimorphism, infection history, and endogenous viral elements. We borrow from work on other pathogen types and non-dipteran species when it parallels or complements studies in dipterans. Understanding natural variation in virus-host interactions may lead to the identification of novel restriction factors and immune mechanisms and shed light on the molecular determinants of vector competence.
Collapse
Affiliation(s)
- William H Palmer
- Institute of Evolutionary Biology and Centre for Infection, Evolution and Immunity, University of Edinburgh, Edinburgh EH9 3FL UK.
| | - Finny S Varghese
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| | - Ronald P van Rij
- Department of Medical Microbiology, Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, P.O. Box 9101, Nijmegen 6500 HB, The Netherlands.
- Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
23
|
Lopez W, Page AM, Carlson DJ, Ericson BL, Cserhati MF, Guda C, Carlson KA. Analysis of immune-related genes during Nora virus infection of Drosophila melanogaster using next generation sequencing. AIMS Microbiol 2018; 4:123-139. [PMID: 29707694 PMCID: PMC5915338 DOI: 10.3934/microbiol.2018.1.123] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Drosophila melanogaster depends upon the innate immune system to regulate and combat viral infection. This is a complex, yet widely conserved process that involves a number of immune pathways and gene interactions. In addition, expression of genes involved in immunity are differentially regulated as the organism ages. This is particularly true for viruses that demonstrate chronic infection, as is seen with Nora virus. Nora virus is a persistent non-pathogenic virus that replicates in a horizontal manner in D. melanogaster. The genes involved in the regulation of the immune response to Nora virus infection are largely unknown. In addition, the temporal response of immune response genes as a result of infection has not been examined. In this study, D. melanogaster either infected with Nora virus or left uninfected were aged for 2, 10, 20 and 30 days. The RNA from these samples was analyzed by next generation sequencing (NGS) and the resulting immune-related genes evaluated by utilizing both the PANTHER and DAVID databases, as well as comparison to lists of immune related genes and FlyBase. The data demonstrate that Nora virus infected D. melanogaster exhibit an increase in immune related gene expression over time. In addition, at day 30, the data demonstrate that a persistent immune response may occur leading to an upregulation of specific immune response genes. These results demonstrate the utility of NGS in determining the potential immune system genes involved in Nora virus replication, chronic infection and involvement of antiviral pathways.
Collapse
Affiliation(s)
- Wilfredo Lopez
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Alexis M Page
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Darby J Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Brad L Ericson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| | - Matyas F Cserhati
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Chittibabu Guda
- Department of Genetics, Cell Biology and Anatomy, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Kimberly A Carlson
- Biology Department, University of Nebraska at Kearney, Kearney, NE 68849, USA
| |
Collapse
|
24
|
Kolliopoulou A, Taning CNT, Smagghe G, Swevers L. Viral Delivery of dsRNA for Control of Insect Agricultural Pests and Vectors of Human Disease: Prospects and Challenges. Front Physiol 2017; 8:399. [PMID: 28659820 PMCID: PMC5469917 DOI: 10.3389/fphys.2017.00399] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/26/2017] [Indexed: 12/12/2022] Open
Abstract
RNAi is applied as a new and safe method for pest control in agriculture but efficiency and specificity of delivery of dsRNA trigger remains a critical issue. Various agents have been proposed to augment dsRNA delivery, such as engineered micro-organisms and synthetic nanoparticles, but the use of viruses has received relatively little attention. Here we present a critical view of the potential of the use of recombinant viruses for efficient and specific delivery of dsRNA. First of all, it requires the availability of plasmid-based reverse genetics systems for virus production, of which an overview is presented. For RNA viruses, their application seems to be straightforward since dsRNA is produced as an intermediate molecule during viral replication, but DNA viruses also have potential through the production of RNA hairpins after transcription. However, application of recombinant virus for dsRNA delivery may not be straightforward in many cases, since viruses can encode RNAi suppressors, and virus-induced silencing effects can be determined by the properties of the encoded RNAi suppressor. An alternative is virus-like particles that retain the efficiency and specificity determinants of natural virions but have encapsidated non-replicating RNA. Finally, the use of viruses raises important safety issues which need to be addressed before application can proceed.
Collapse
Affiliation(s)
- Anna Kolliopoulou
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| | - Clauvis N. T. Taning
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent UniversityGhent, Belgium
| | - Luc Swevers
- Insect Molecular Genetics and Biotechnology Research Group, Institute of Biosciences and Applications, NCSR “Demokritos,”Aghia Paraskevi, Greece
| |
Collapse
|
25
|
Wang ZZ, Shi M, Huang YC, Wang XW, Stanley D, Chen XX. A peptidoglycan recognition protein acts in whitefly (Bemisia tabaci) immunity and involves in Begomovirus acquisition. Sci Rep 2016; 6:37806. [PMID: 27892529 PMCID: PMC5124967 DOI: 10.1038/srep37806] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/02/2016] [Indexed: 11/09/2022] Open
Abstract
Peptidoglycan recognition proteins (PGRPs) are multifunctional pattern recognition proteins. Here, we report that a PGRP gene, BtPGRP, encodes a PGRP from the whitefly Bemisia tabaci (MEAM1) that binds and kills bacteria in vitro. We analyzed BtPGRP transcriptional profiling, and the distribution of the cognate protein within the midgut. Fungal infection and wasp parasitization induced expression of BtPGRP. Silencing BtPGRP with artificial media amended with dsRNA led to reduced expression of a gene encoding an antimicrobial peptide, B. tabaci c-type lysozyme. Begomovirus infection also led to increased expression of BtPGRP. We propose that BtPGRP has a potential Tomato yellow leaf curl virus (TYLCV) binding site because we detected in vitro interaction between BtPGRP and TYLCV by immunocapture PCR, and recorded the co-localization of TYLCV and BtPGRP in midguts. This work addresses a visible gap in understanding whitefly immunity and provides insight into how the whitefly immunity acts in complex mechanisms of Begomovirus transmission among plants.
Collapse
Affiliation(s)
- Zhi-Zhi Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Min Shi
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Yi-Cun Huang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - David Stanley
- Biological Control of Insects Research Laboratory, Agricultural Research Service, U.S., Department of Agriculture, 1503 S. Providence Road, Columbia MO 65203, USA
| | - Xue-Xin Chen
- Ministry of Agriculture Key Lab of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| |
Collapse
|
26
|
Piontkivska H, Matos LF, Paul S, Scharfenberg B, Farmerie WG, Miyamoto MM, Wayne ML. Role of Host-Driven Mutagenesis in Determining Genome Evolution of Sigma Virus (DMelSV; Rhabdoviridae) in Drosophila melanogaster. Genome Biol Evol 2016; 8:2952-2963. [PMID: 27614234 PMCID: PMC5630973 DOI: 10.1093/gbe/evw212] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Sigma virus (DMelSV) is ubiquitous in natural populations of Drosophila melanogaster. Host-mediated, selective RNA editing of adenosines to inosines (ADAR) may contribute to control of viral infection by preventing transcripts from being transported into the cytoplasm or being translated accurately; or by increasing the viral genomic mutation rate. Previous PCR-based studies showed that ADAR mutations occur in DMelSV at low frequency. Here we use SOLiDTM deep sequencing of flies from a single host population from Athens, GA, USA to comprehensively evaluate patterns of sequence variation in DMelSV with respect to ADAR. GA dinucleotides, which are weak targets of ADAR, are strongly overrepresented in the positive strand of the virus, consistent with selection to generate ADAR resistance on this complement of the transient, double-stranded RNA intermediate in replication and transcription. Potential ADAR sites in a worldwide sample of viruses are more likely to be “resistant” if the sites do not vary among samples. Either variable sites are less constrained and hence are subject to weaker selection than conserved sites, or the variation is driven by ADAR. We also find evidence of mutations segregating within hosts, hereafter referred to as hypervariable sites. Some of these sites were variable only in one or two flies (i.e., rare); others were shared by four or even all five of the flies (i.e., common). Rare and common hypervariable sites were indistinguishable with respect to susceptibility to ADAR; however, polymorphism in rare sites were more likely to be consistent with the action of ADAR than in common ones, again suggesting that ADAR is deleterious to the virus. Thus, in DMelSV, host mutagenesis is constraining viral evolution both within and between hosts.
Collapse
Affiliation(s)
- Helen Piontkivska
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH
| | - Luis F Matos
- Department of Entomology & Nematology, University of Florida, Gainesville, FL Department of Biology, Eastern Washington University, Cheney, WA
| | - Sinu Paul
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH Division of Vaccine Discovery, La Jolla Institute for Allergy and Immunology, La Jolla, CA
| | - Brian Scharfenberg
- Department of Biological Sciences and School of Biomedical Sciences, Kent State University, Kent, OH Ohio University Heritage College of Osteopathic Medicine, Athens, OH
| | - William G Farmerie
- Interdisciplinary Center for Biotechnology Research University of Florida, Gainesville, FL
| | | | - Marta L Wayne
- Department of Biology, University of Florida, Gainesville, FL Emerging Pathogens Institute University of Florida, Gainesville, FL
| |
Collapse
|
27
|
Cheng G, Liu Y, Wang P, Xiao X. Mosquito Defense Strategies against Viral Infection. Trends Parasitol 2016; 32:177-186. [PMID: 26626596 PMCID: PMC4767563 DOI: 10.1016/j.pt.2015.09.009] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/25/2015] [Accepted: 09/28/2015] [Indexed: 01/23/2023]
Abstract
Mosquito-borne viral diseases are a major concern of global health and result in significant economic losses in many countries. As natural vectors, mosquitoes are very permissive to and allow systemic and persistent arbovirus infection. Intriguingly, persistent viral propagation in mosquito tissues neither results in dramatic pathological sequelae nor impairs the vectorial behavior or lifespan, indicating that mosquitoes have evolved mechanisms to tolerate persistent infection and developed efficient antiviral strategies to restrict viral replication to nonpathogenic levels. Here we provide an overview of recent progress in understanding mosquito antiviral immunity and advances in the strategies by which mosquitoes control viral infection in specific tissues.
Collapse
Affiliation(s)
- Gong Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, PR China.
| | - Yang Liu
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, PR China; School of Life Science, Tsinghua University, Beijing 100084, PR China
| | - Penghua Wang
- Department of Microbiology and Immunology, School of Medicine, New York Medical College, Valhalla, NY 10595, USA
| | - Xiaoping Xiao
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, PR China
| |
Collapse
|
28
|
Barandoc-Alviar K, Ramirez GM, Rotenberg D, Whitfield AE. Analysis of Acquisition and Titer of Maize Mosaic Rhabdovirus in Its Vector, Peregrinus maidis (Hemiptera: Delphacidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2016; 16:iev154. [PMID: 28076276 PMCID: PMC5779079 DOI: 10.1093/jisesa/iev154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 12/09/2015] [Indexed: 06/06/2023]
Abstract
The corn planthopper, Peregrinus maidis (Ashmead) (Hemiptera: Delphacidae), transmits Maize mosaic rhabdovirus (MMV), an important pathogen of maize and sorghum, in a persistent propagative manner. To better understand the vectorial capacity of P. maidis, we determined the efficiency of MMV acquisition by nymphal and adult stages, and characterized MMV titer through development. Acquisition efficiency, i.e., proportion of insects that acquired the virus, was determined by reverse transcriptase polymerase chain reaction (RT-PCR) and virus titer of individual insects was estimated by quantitative RT-PCR. Acquisition efficiency of MMV differed significantly between nymphs and adults. MMV titer increased significantly over time and throughout insect development from nymphal to adult stage, indication of virus replication in the vector during development. There was a positive association between the vector developmental stage and virus titer. Also, the average titer in male insects was threefold higher than female titers, and this difference persisted up to 30 d post adult eclosion. Overall, our findings indicate that nymphs are more efficient than adults at acquiring MMV and virus accumulated in the vector over the course of nymphal development. Furthermore, sustained infection over the lifespan of P. maidis indicates a potentially high capacity of this vector to transmit MMV.
Collapse
Affiliation(s)
| | - Girly M Ramirez
- Department of Statistics, Kansas State University, Manhattan, KS 66506, USA, and
| | - Dorith Rotenberg
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Anna E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA,
| |
Collapse
|
29
|
Cao C, Magwire MM, Bayer F, Jiggins FM. A Polymorphism in the Processing Body Component Ge-1 Controls Resistance to a Naturally Occurring Rhabdovirus in Drosophila. PLoS Pathog 2016; 12:e1005387. [PMID: 26799957 PMCID: PMC4723093 DOI: 10.1371/journal.ppat.1005387] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 12/17/2015] [Indexed: 12/30/2022] Open
Abstract
Hosts encounter an ever-changing array of pathogens, so there is continual selection for novel ways to resist infection. A powerful way to understand how hosts evolve resistance is to identify the genes that cause variation in susceptibility to infection. Using high-resolution genetic mapping we have identified a naturally occurring polymorphism in a gene called Ge-1 that makes Drosophila melanogaster highly resistant to its natural pathogen Drosophila melanogaster sigma virus (DMelSV). By modifying the sequence of the gene in transgenic flies, we identified a 26 amino acid deletion in the serine-rich linker region of Ge-1 that is causing the resistance. Knocking down the expression of the susceptible allele leads to a decrease in viral titre in infected flies, indicating that Ge-1 is an existing restriction factor whose antiviral effects have been increased by the deletion. Ge-1 plays a central role in RNA degradation and the formation of processing bodies (P bodies). A key effector in antiviral immunity, the RNAi induced silencing complex (RISC), localises to P bodies, but we found that Ge-1-based resistance is not dependent on the small interfering RNA (siRNA) pathway. However, we found that Decapping protein 1 (DCP1) protects flies against sigma virus. This protein interacts with Ge-1 and commits mRNA for degradation by removing the 5’ cap, suggesting that resistance may rely on this RNA degradation pathway. The serine-rich linker domain of Ge-1 has experienced strong selection during the evolution of Drosophila, suggesting that this gene may be under long-term selection by viruses. These findings demonstrate that studying naturally occurring polymorphisms that increase resistance to infections enables us to identify novel forms of antiviral defence, and support a pattern of major effect polymorphisms controlling resistance to viruses in Drosophila. Hosts and their pathogens are engaged in a never-ending arms race, and hosts must continually evolve new defences to protect themselves from infection. In the fruit fly Drosophila melanogaster we show that virus resistance can evolve through a single mutation. In flies that are highly resistant to a naturally occurring virus called sigma virus we identified a deletion in the protein-coding region of a gene called Ge-1. We experimentally confirmed that this was the cause of resistance by deleting this region in transgenic flies. Furthermore, we show that even the susceptible allele of Ge-1 helps protect flies against the virus, suggesting that this mutation has made an existing antiviral defence more effective. Ge-1 plays a central role in RNA degradation in regions of the cytoplasm called P bodies, and our results suggest that this pathway has been recruited during evolution to protect D. melanogaster against sigma virus. The protein domain that contains the deletion has experienced strong selection during its evolution, suggesting that it may be involved in an ongoing arms race with viruses.
Collapse
Affiliation(s)
- Chuan Cao
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| | - Michael M. Magwire
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Florian Bayer
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Francis M. Jiggins
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
30
|
Chen Y, Redinbaugh MG, Michel AP. Molecular interactions and immune responses between Maize fine streak virus and the leafhopper vector Graminella nigrifrons through differential expression and RNA interference. INSECT MOLECULAR BIOLOGY 2015; 24:391-401. [PMID: 25693649 DOI: 10.1111/imb.12166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Graminella nigrifrons is the only known vector for Maize fine streak virus (MFSV). In this study, we used real-time quantitative PCR to compare the expression profiles of transcripts that putatively function in the insect immune response: four peptidoglycan recognition proteins (PGRP-SB1, -SD, -LC and LB), Toll, spaetzle, defensin, Dicer-2 (Dcr-2), Argonaut-2 (Ago-2) and Arsenic resistance protein 2 (Ars-2). Except for PGRP-LB and defensin, transcripts involved in humoral pathways were significantly suppressed in G. nigrifrons fed on MFSV-infected maize. The abundance of three RNA interference (RNAi) pathway transcripts (Dcr-2, Ago-2, Ars-2) was significantly lower in nontransmitting relative to transmitting G. nigrifrons. Injection with double-stranded RNA (dsRNA) encoding segments of the PGRP-LC and Dcr-2 transcripts effectively reduced transcript levels by 90 and 75% over 14 and 22 days, respectively. MFSV acquisition and transmission were not significantly affected by injection of either dsRNA. Knock-down of PGRP-LC resulted in significant mortality (greater than 90%) at 27 days postinjection, and resulted in more abnormal moults relative to those injected with Dcr-2 or control dsRNA. The use of RNAi to silence G. nigrifrons transcripts will facilitate the study of gene function and pathogen transmission, and may provide approaches for developing novel targets of RNAi-based pest control.
Collapse
Affiliation(s)
- Y Chen
- Department of Entomology, the Ohio State University, Ohio Agricultural Research and Development Center (OSU-OARDC), Wooster, OH, USA
| | | | | |
Collapse
|
31
|
Gao K, Deng XY, Qian HY, Qin GX, Hou CX, Guo XJ. Cloning and expression analysis of a peptidoglycan recognition protein in silkworm related to virus infection. Gene 2014; 552:24-31. [DOI: 10.1016/j.gene.2014.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 08/21/2014] [Accepted: 09/02/2014] [Indexed: 01/06/2023]
|
32
|
Rückert C, Bell-Sakyi L, Fazakerley JK, Fragkoudis R. Antiviral responses of arthropod vectors: an update on recent advances. Virusdisease 2014; 25:249-60. [PMID: 25674592 DOI: 10.1007/s13337-014-0217-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 04/30/2014] [Indexed: 01/24/2023] Open
Abstract
Arthropod vectors, such as mosquitoes, ticks, biting midges and sand flies, transmit many viruses that can cause outbreaks of disease in humans and animals around the world. Arthropod vector species are invading new areas due to globalisation and environmental changes, and contact between exotic animal species, humans and arthropod vectors is increasing, bringing with it the regular emergence of new arboviruses. For future strategies to control arbovirus transmission, it is important to improve our understanding of virus-vector interactions. In the last decade knowledge of arthropod antiviral immunity has increased rapidly. RNAi has been proposed as the most important antiviral response in mosquitoes and it is likely to be the most important antiviral response in all arthropods. However, other newly-discovered antiviral strategies such as melanisation and the link between RNAi and the JAK/STAT pathway via the cytokine Vago have been characterised in the last few years. This review aims to summarise the most important and most recent advances made in arthropod antiviral immunity.
Collapse
Affiliation(s)
- Claudia Rückert
- The Pirbright Institute, Ash Road, Pirbright, Surrey, GU24 0NF UK ; The Roslin Institute & Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, EH25 9RG UK
| | | | | | | |
Collapse
|
33
|
Cassone BJ, Wijeratne S, Michel AP, Stewart LR, Chen Y, Yan P, Redinbaugh MG. Virus-independent and common transcriptome responses of leafhopper vectors feeding on maize infected with semi-persistently and persistent propagatively transmitted viruses. BMC Genomics 2014; 15:133. [PMID: 24524215 PMCID: PMC3929756 DOI: 10.1186/1471-2164-15-133] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 01/29/2014] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Insects are the most important epidemiological factors for plant virus disease spread, with >75% of viruses being dependent on insects for transmission to new hosts. The black-faced leafhopper (Graminella nigrifrons Forbes) transmits two viruses that use different strategies for transmission: Maize chlorotic dwarf virus (MCDV) which is semi-persistently transmitted and Maize fine streak virus (MFSV) which is persistently and propagatively transmitted. To date, little is known regarding the molecular and cellular mechanisms in insects that regulate the process and efficiency of transmission, or how these mechanisms differ based on virus transmission strategy. RESULTS RNA-Seq was used to examine transcript changes in leafhoppers after feeding on MCDV-infected, MFSV-infected and healthy maize for 4 h and 7 d. After sequencing cDNA libraries constructed from whole individuals using Illumina next generation sequencing, the Rnnotator pipeline in Galaxy was used to reassemble the G. nigrifrons transcriptome. Using differential expression analyses, we identified significant changes in transcript abundance in G. nigrifrons. In particular, transcripts implicated in the innate immune response and energy production were more highly expressed in insects fed on virus-infected maize. Leafhoppers fed on MFSV-infected maize also showed an induction of transcripts involved in hemocoel and cell-membrane linked immune responses within four hours of feeding. Patterns of transcript expression were validated for a subset of transcripts by quantitative real-time reverse transcription polymerase chain reaction using RNA samples collected from insects fed on healthy or virus-infected maize for between a 4 h and seven week period. CONCLUSIONS We expected, and found, changes in transcript expression in G. nigrifrons feeding of maize infected with a virus (MFSV) that also infects the leafhopper, including induction of immune responses in the hemocoel and at the cell membrane. The significant induction of the innate immune system in G. nigrifrons fed on a foregut-borne virus (MCDV) that does not infect leafhoppers was less expected. The changes in transcript accumulation that occur independent of the mode of pathogen transmission could be key for identifying insect factors that disrupt vector-mediated plant virus transmission.
Collapse
|
34
|
Panayidou S, Ioannidou E, Apidianakis Y. Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence 2014; 5:253-69. [PMID: 24398387 DOI: 10.4161/viru.27524] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila-microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection.
Collapse
Affiliation(s)
- Stavria Panayidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | - Eleni Ioannidou
- Department of Biological Sciences; University of Cyprus; Nicosia, Cyprus
| | | |
Collapse
|
35
|
Xu J, Cherry S. Viruses and antiviral immunity in Drosophila. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:67-84. [PMID: 23680639 PMCID: PMC3826445 DOI: 10.1016/j.dci.2013.05.002] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Revised: 04/26/2013] [Accepted: 05/02/2013] [Indexed: 05/10/2023]
Abstract
Viral pathogens present many challenges to organisms, driving the evolution of a myriad of antiviral strategies to combat infections. A wide variety of viruses infect invertebrates, including both natural pathogens that are insect-restricted, and viruses that are transmitted to vertebrates. Studies using the powerful tools in the model organism Drosophila have expanded our understanding of antiviral defenses against diverse viruses. In this review, we will cover three major areas. First, we will describe the tools used to study viruses in Drosophila. Second, we will survey the major viruses that have been studied in Drosophila. And lastly, we will discuss the well-characterized mechanisms that are active against these diverse pathogens, focusing on non-RNAi mediated antiviral mechanisms. Antiviral RNAi is discussed in another paper in this issue.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | |
Collapse
|
36
|
Keebaugh ES, Schlenke TA. Insights from natural host-parasite interactions: the Drosophila model. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 42:111-23. [PMID: 23764256 PMCID: PMC3808516 DOI: 10.1016/j.dci.2013.06.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 06/01/2013] [Accepted: 06/01/2013] [Indexed: 05/15/2023]
Abstract
Immune responses against opportunistic pathogens have been extensively studied in Drosophila, leading to a detailed map of the genetics behind innate immunity networks including the Toll, Imd, Jak-Stat, and JNK pathways. However, immune mechanisms of other organisms, such as plants, have primarily been investigated using natural pathogens. It was the use of natural pathogens in plant research that revealed the plant R-Avr system, a specialized immune response derived from antagonistic coevolution between plant immune proteins and their natural pathogens' virulence proteins. Thus, we recommend that researchers begin to use natural Drosophila pathogens to identify novel immune strategies that may have arisen through antagonistic coevolution with common natural pathogens. In this review, we address the benefits of using natural pathogens in research, describe the known natural pathogens of Drosophila, and discuss the future prospects for research on natural pathogens of Drosophila.
Collapse
Affiliation(s)
- Erin S Keebaugh
- Department of Biology, Emory University, 1510 Clifton Road, Atlanta, GA, United States.
| | | |
Collapse
|
37
|
The role of innate immunity in conditioning mosquito susceptibility to West Nile virus. Viruses 2013; 5:3142-70. [PMID: 24351797 PMCID: PMC3967165 DOI: 10.3390/v5123142] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 11/13/2013] [Accepted: 12/09/2013] [Indexed: 01/02/2023] Open
Abstract
Arthropod-borne viruses (arboviruses) represent an emerging threat to human and livestock health globally. In particular, those transmitted by mosquitoes present the greatest challenges to disease control efforts. An understanding of the molecular basis for mosquito innate immunity to arbovirus infection is therefore critical to investigations regarding arbovirus evolution, virus-vector ecology, and mosquito vector competence. In this review, we discuss the current state of understanding regarding mosquito innate immunity to West Nile virus. We draw from the literature with respect to other virus-vector pairings to attempt to draw inferences to gaps in our knowledge about West Nile virus and relevant vectors.
Collapse
|
38
|
Kingsolver MB, Huang Z, Hardy RW. Insect antiviral innate immunity: pathways, effectors, and connections. J Mol Biol 2013; 425:4921-36. [PMID: 24120681 DOI: 10.1016/j.jmb.2013.10.006] [Citation(s) in RCA: 218] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Revised: 10/01/2013] [Accepted: 10/02/2013] [Indexed: 11/28/2022]
Abstract
Insects are infected by a wide array of viruses some of which are insect restricted and pathogenic, and some of which are transmitted by biting insects to vertebrates. The medical and economic importance of these viruses heightens the need to understand the interaction between the infecting pathogen and the insect immune system in order to develop transmission interventions. The interaction of the virus with the insect host innate immune system plays a critical role in the outcome of infection. The major mechanism of antiviral defense is the small, interfering RNA pathway that responds through the detection of virus-derived double-stranded RNA to suppress virus replication. However, other innate antimicrobial pathways such as Imd, Toll, and Jak-STAT and the autophagy pathway have also been shown to play important roles in antiviral immunity. In this review, we provide an overview of the current understanding of the main insect antiviral pathways and examine recent findings that further our understanding of the roles of these pathways in facilitating a systemic and specific response to infecting viruses.
Collapse
|
39
|
Xu J, Grant G, Sabin LR, Gordesky-Gold B, Yasunaga A, Tudor M, Cherry S. Transcriptional pausing controls a rapid antiviral innate immune response in Drosophila. Cell Host Microbe 2013; 12:531-43. [PMID: 23084920 DOI: 10.1016/j.chom.2012.08.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/27/2012] [Accepted: 08/31/2012] [Indexed: 12/21/2022]
Abstract
Innate immune responses are characterized by precise gene expression whereby gene subsets are temporally induced to limit infection, although the mechanisms involved are incompletely understood. We show that antiviral immunity in Drosophila requires the transcriptional pausing pathway, including negative elongation factor (NELF) that pauses RNA polymerase II (Pol II) and positive elongation factor b (P-TEFb), which releases paused Pol II to produce full-length transcripts. We identify a set of genes that is rapidly transcribed upon arbovirus infection, including components of antiviral pathways (RNA silencing, autophagy, JAK/STAT, Toll, and Imd) and various Toll receptors. Many of these genes require P-TEFb for expression and exhibit pausing-associated chromatin features. Furthermore, transcriptional pausing is critical for antiviral immunity in insects because NELF and P-TEFb are required to restrict viral replication in adult flies and vector mosquito cells. Thus, transcriptional pausing primes virally induced genes to facilitate rapid gene induction and robust antiviral responses.
Collapse
Affiliation(s)
- Jie Xu
- Department of Microbiology, Penn Genome Frontiers Institute, University of Pennsylvania, Philadelphia, PA 19146, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Merkling SH, van Rij RP. Beyond RNAi: antiviral defense strategies in Drosophila and mosquito. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:159-170. [PMID: 22824741 DOI: 10.1016/j.jinsphys.2012.07.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 07/11/2012] [Accepted: 07/12/2012] [Indexed: 06/01/2023]
Abstract
Virus transmission and spread by arthropods is a major economic and public health concern. The ongoing dissemination of arthropod-borne viruses by blood-feeding insects is an important incentive to study antiviral immunity in these animals. RNA interference is a major mechanism for antiviral defense in insects, including the fruit fly Drosophila melanogaster and several vector mosquitoes. However, recent data suggest that the evolutionary conserved Toll, Imd and Jak-Stat signaling pathways also contribute to antiviral immunity. Moreover, symbionts, such as the intracellular bacterium Wolbachia and the gut microflora, influence the course of virus infection in insects. These results add an additional level of complexity to antiviral immunity, but also provide novel opportunities to control the spread of arboviruses. In this review, we provide an overview of the current knowledge and recent developments in antiviral immunity in Dipteran insects, with a focus on non-RNAi mediated inducible responses.
Collapse
Affiliation(s)
- Sarah H Merkling
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen Centre for Molecular Life Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands
| | | |
Collapse
|
41
|
Transcriptome of the plant virus vector Graminella nigrifrons, and the molecular interactions of maize fine streak rhabdovirus transmission. PLoS One 2012; 7:e40613. [PMID: 22808205 PMCID: PMC3395673 DOI: 10.1371/journal.pone.0040613] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 06/11/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Leafhoppers (HEmiptera: Cicadellidae) are plant-phloem feeders that are known for their ability to vector plant pathogens. The black-faced leafhopper (Graminella nigrifrons) has been identified as the only known vector for the Maize fine streak virus (MFSV), an emerging plant pathogen in the Rhabdoviridae. Within G. nigrifrons populations, individuals can be experimentally separated into three classes based on their capacity for viral transmission: transmitters, acquirers and non-acquirers. Understanding the molecular interactions between vector and virus can reveal important insights in virus immune defense and vector transmission. RESULTS RNA sequencing (RNA-Seq) was performed to characterize the transcriptome of G. nigrifrons. A total of 38,240 ESTs of a minimum 100 bp were generated from two separate cDNA libraries consisting of virus transmitters and acquirers. More than 60% of known D. melanogaster, A. gambiae, T. castaneum immune response genes mapped to our G. nigrifrons EST database. Real time quantitative PCR (RT-qPCR) showed significant down-regulation of three genes for peptidoglycan recognition proteins (PGRP - SB1, SD, and LC) in G. nigrifrons transmitters versus control leafhoppers. CONCLUSIONS Our study is the first to characterize the transcriptome of a leafhopper vector species. Significant sequence similarity in immune defense genes existed between G. nigrifrons and other well characterized insects. The down-regulation of PGRPs in MFSV transmitters suggested a possible role in rhabdovirus transmission. The results provide a framework for future studies aimed at elucidating the molecular mechanisms of plant virus vector competence.
Collapse
|
42
|
Walker PJ, Dietzgen RG, Joubert DA, Blasdell KR. Rhabdovirus accessory genes. Virus Res 2011; 162:110-25. [PMID: 21933691 PMCID: PMC7114375 DOI: 10.1016/j.virusres.2011.09.004] [Citation(s) in RCA: 128] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Revised: 09/02/2011] [Accepted: 09/04/2011] [Indexed: 12/16/2022]
Abstract
The Rhabdoviridae is one of the most ecologically diverse families of RNA viruses with members infecting a wide range of organisms including placental mammals, marsupials, birds, reptiles, fish, insects and plants. The availability of complete nucleotide sequences for an increasing number of rhabdoviruses has revealed that their ecological diversity is reflected in the diversity and complexity of their genomes. The five canonical rhabdovirus structural protein genes (N, P, M, G and L) that are shared by all rhabdoviruses are overprinted, overlapped and interspersed with a multitude of novel and diverse accessory genes. Although not essential for replication in cell culture, several of these genes have been shown to have roles associated with pathogenesis and apoptosis in animals, and cell-to-cell movement in plants. Others appear to be secreted or have the characteristics of membrane-anchored glycoproteins or viroporins. However, most encode proteins of unknown function that are unrelated to any other known proteins. Understanding the roles of these accessory genes and the strategies by which rhabdoviruses use them to engage, divert and re-direct cellular processes will not only present opportunities to develop new anti-viral therapies but may also reveal aspects of cellar function that have broader significance in biology, agriculture and medicine.
Collapse
Affiliation(s)
- Peter J Walker
- CSIRO Livestock Industries, Australian Animal Health Laboratory, 5 Portarlington Road, Geelong, VIC 3220, Australia.
| | | | | | | |
Collapse
|
43
|
Whitfield AE, Rotenberg D, Aritua V, Hogenhout SA. Analysis of expressed sequence tags from Maize mosaic rhabdovirus-infected gut tissues of Peregrinus maidis reveals the presence of key components of insect innate immunity. INSECT MOLECULAR BIOLOGY 2011; 20:225-242. [PMID: 21199018 DOI: 10.1111/j.1365-2583.2010.01060.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The corn planthopper, Peregrinus maidis, causes direct feeding damage to plants and transmits Maize mosaic rhabdovirus (MMV) in a persistent-propagative manner. MMV must cross several insect tissue layers for successful transmission to occur, and the gut serves as an important barrier for rhabdovirus transmission. In order to facilitate the identification of proteins that may interact with MMV either by facilitating acquisition or responding to virus infection, we generated and analysed the gut transcriptome of P. maidis. From two normalized cDNA libraries, we generated a P. maidis gut transcriptome composed of 20,771 expressed sequence tags (ESTs). Assembly of the sequences yielded 1860 contigs and 14,032 singletons, and biological roles were assigned to 5793 (36%). Comparison of P. maidis ESTs with other insect amino acid sequences revealed that P. maidis shares greatest sequence similarity with another hemipteran, the brown planthopper Nilaparvata lugens. We identified 202 P. maidis transcripts with putative homology to proteins associated with insect innate immunity, including those implicated in the Toll, Imd, JAK/STAT, Jnk and the small-interfering RNA-mediated pathways. Sequence comparisons between our P. maidis gut EST collection and the currently available National Center for Biotechnology Information EST database collection for Ni. lugens revealed that a pathogen recognition receptor in the Imd pathway, peptidoglycan recognition protein-long class (PGRP-LC), is present in these two members of the family Delphacidae; however, these recognition receptors are lacking in the model hemipteran Acyrthosiphon pisum. In addition, we identified sequences in the P. maidis gut transcriptome that share significant amino acid sequence similarities with the rhabdovirus receptor molecule, acetylcholine receptor (AChR), found in other hosts. This EST analysis sheds new light on immune response pathways in hemipteran guts that will be useful for further dissecting innate defence response pathways to rhabdovirus infection.
Collapse
Affiliation(s)
- A E Whitfield
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA.
| | | | | | | |
Collapse
|
44
|
Dowling DK, Meerupati T, Arnqvist G. Cytonuclear interactions and the economics of mating in seed beetles. Am Nat 2010; 176:131-40. [PMID: 20524843 DOI: 10.1086/653671] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Recent studies have uncovered an abundance of nonneutral cytoplasmic genetic variation within species, which suggests that we should no longer consider the cytoplasm an idle intermediary of evolutionary change. Nonneutrality of cytoplasmic genomes is particularly intriguing, given that these genomes are maternally transmitted. This means that the fate of any given cytoplasmic genetic mutation is directly tied to its performance when expressed in females. For this reason, it has been hypothesized that cytoplasmic genes will coevolve via a sexually antagonistic arms race with the biparentally transmitted nuclear genes with which they interact. We assess this prediction, examining the intergenomic contributions to the costs and benefits of mating in Callosobruchus maculatus females subjected to a mating treatment with three classes (kept virgin, mated once, or forced to cohabit with a male). We find no evidence that the economics of mating are determined by interactions between cytoplasmic genes expressed in females and nuclear genes expressed in males and, therefore, no support for a sexually antagonistic intergenomic arms race. The cost of mating to females was, however, shaped by an interaction between the cytoplasmic and nuclear genes expressed within females. Thus, cytonuclear interactions are embroiled in the economics of mating.
Collapse
Affiliation(s)
- Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, 3800 Victoria, Australia.
| | | | | |
Collapse
|
45
|
Rotenberg D, Whitfield AE. Analysis of expressed sequence tags for Frankliniella occidentalis, the western flower thrips. INSECT MOLECULAR BIOLOGY 2010; 19:537-551. [PMID: 20522119 DOI: 10.1111/j.1365-2583.2010.01012.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Thrips are members of the insect order Thysanoptera and Frankliniella occidentalis (the western flower thrips) is the most economically important pest within this order. F. occidentalis is both a direct pest of crops and an efficient vector of plant viruses, including Tomato spotted wilt virus (TSWV). Despite the world-wide importance of thrips in agriculture, there is little knowledge of the F. occidentalis genome or gene functions at this time. A normalized cDNA library was constructed from first instar thrips and 13 839 expressed sequence tags (ESTs) were obtained. Our EST data assembled into 894 contigs and 11 806 singletons (12 700 nonredundant sequences). We found that 31% of these sequences had significant similarity (E< or = 10(-10)) to protein sequences in the National Center for Biotechnology Information nonredundant (nr) protein database, and 25% were functionally annotated using Blast 2GO. We identified 74 sequences with putative homology to proteins associated with insect innate immunity. Sixteen sequences had significant similarity to proteins associated with small RNA-mediated gene silencing pathways (RNA interference; RNAi), including the antiviral pathway (short interfering RNA-mediated pathway). Our EST collection provides new sequence resources for characterizing gene functions in F. occidentalis and other thrips species with regards to vital biological processes, studying the mechanism of interactions with the viruses harboured and transmitted by the vector, and identifying new insect gene-centred targets for plant disease and insect control.
Collapse
Affiliation(s)
- D Rotenberg
- Kansas State University, Department of Plant Pathology, Manhattan, KS 66506, USA.
| | | |
Collapse
|
46
|
Wang JH, Valanne S, Rämet M. Drosophila as a model for antiviral immunity. World J Biol Chem 2010; 1:151-9. [PMID: 21541000 PMCID: PMC3083956 DOI: 10.4331/wjbc.v1.i5.151] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 05/04/2010] [Accepted: 05/17/2010] [Indexed: 02/05/2023] Open
Abstract
The fruit fly Drosophila melanogaster has been successfully used to study numerous biological processes including immune response. Flies are naturally infected with more than twenty RNA viruses making it a valid model organism to study host-pathogen interactions during viral infections. The Drosophila antiviral immunity includes RNA interference, activation of the JAK/STAT and other signaling cascades and other mechanisms such as autophagy and interactions with other microorganisms. Here we review Drosophila as an immunological research model as well as recent advances in the field of Drosophila antiviral immunity.
Collapse
Affiliation(s)
- Jing-Huan Wang
- Jing-Huan Wang, Susanna Valanne, Mika Rämet, Institute of Medical Technology, University of Tampere, 33520 Tampere, Finland
| | | | | |
Collapse
|
47
|
Ganesan S, Aggarwal K, Paquette N, Silverman N. NF-κB/Rel proteins and the humoral immune responses of Drosophila melanogaster. Curr Top Microbiol Immunol 2010; 349:25-60. [PMID: 20852987 DOI: 10.1007/82_2010_107] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nuclear Factor-κB (NF-κB)/Rel transcription factors form an integral part of innate immune defenses and are conserved throughout the animal kingdom. Studying the function, mechanism of activation and regulation of these factors is crucial for understanding host responses to microbial infections. The fruit fly Drosophila melanogaster has proved to be a valuable model system to study these evolutionarily conserved NF-κB mediated immune responses. Drosophila combats pathogens through humoral and cellular immune responses. These humoral responses are well characterized and are marked by the robust production of a battery of anti-microbial peptides. Two NF-κB signaling pathways, the Toll and the IMD pathways, are responsible for the induction of these antimicrobial peptides. Signal transduction in these pathways is strikingly similar to that in mammalian TLR pathways. In this chapter, we discuss in detail the molecular mechanisms of microbial recognition, signal transduction and NF-κB regulation, in both the Toll and the IMD pathways. Similarities and differences relative to their mammalian counterparts are discussed, and recent advances in our understanding of the intricate regulatory networks in these NF-κB signaling pathways are also highlighted.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Division of Infectious Diseases, Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605, USA
| | | | | | | |
Collapse
|
48
|
Evans JD, Spivak M. Socialized medicine: individual and communal disease barriers in honey bees. J Invertebr Pathol 2009; 103 Suppl 1:S62-72. [PMID: 19909975 DOI: 10.1016/j.jip.2009.06.019] [Citation(s) in RCA: 225] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Accepted: 06/30/2009] [Indexed: 11/16/2022]
Abstract
Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.
Collapse
Affiliation(s)
- Jay D Evans
- USDA-ARS Bee Research Lab, BARC-East Bldg. 476, Beltsville, MD 20705, USA.
| | | |
Collapse
|
49
|
Costa A, Jan E, Sarnow P, Schneider D. The Imd pathway is involved in antiviral immune responses in Drosophila. PLoS One 2009; 4:e7436. [PMID: 19829691 PMCID: PMC2758544 DOI: 10.1371/journal.pone.0007436] [Citation(s) in RCA: 180] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2009] [Accepted: 08/13/2009] [Indexed: 12/15/2022] Open
Abstract
Cricket Paralysis virus (CrPV) is a member of the Dicistroviridae family of RNA viruses, which infect a broad range of insect hosts, including the fruit fly Drosophila melanogaster. Drosophila has emerged as an effective system for studying innate immunity because of its powerful genetic techniques and the high degree of gene and pathway conservation. Intra-abdominal injection of CrPV into adult flies causes a lethal infection that provides a robust assay for the identification of mutants with altered sensitivity to viral infection. To gain insight into the interactions between viruses and the innate immune system, we injected wild type flies with CrPV and observed that antimicrobial peptides (AMPs) were not induced and hemocytes were depleted in the course of infection. To investigate the contribution of conserved immune signaling pathways to antiviral innate immune responses, CrPV was injected into isogenic mutants of the Immune Deficiency (Imd) pathway, which resembles the mammalian Tumor Necrosis Factor Receptor (TNFR) pathway. Loss-of-function mutations in several Imd pathway genes displayed increased sensitivity to CrPV infection and higher CrPV loads. Our data show that antiviral innate immune responses in flies infected with CrPV depend upon hemocytes and signaling through the Imd pathway.
Collapse
Affiliation(s)
- Alexandre Costa
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Eric Jan
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - Peter Sarnow
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
| | - David Schneider
- Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
50
|
Zhang Z, Palli SR. Identification of a cis-regulatory element required for 20-hydroxyecdysone enhancement of antimicrobial peptide gene expression in Drosophila melanogaster. INSECT MOLECULAR BIOLOGY 2009; 18:595-605. [PMID: 19754738 DOI: 10.1111/j.1365-2583.2009.00901.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The antimicrobial peptide diptericin plays an important role in defence against microorganisms. Drosophila melanogaster diptericin mRNA levels showed an increase during the late final instar larval stage when the ecdysteroid titres increase to initiate metamorphosis. Deletion analysis in Drosophila melanogaster mbn2 (mbn2) cells identified a cis-regulatory element (AAGAAAGATCCCCTG) necessary for 20-hydroxyecdysone enhancement of peptidoglycan-induced expression of diptericin in the 3 kb diptericin promoter. Proteins extracted from mbn2 cells treated with peptidoglycan plus 20-hydroxyecdysone specifically bound to this element. 20-hydroxyecdysone also enhanced peptidoglycan-induced expression of four other antimicrobial peptide (AMP) genes--drosomycin, attacin-A, metchnikowin and cecropin A1. Moreover, in silico promoter analysis using the meme program showed that an eight-nucleotide region of the identified cis-regulatory element is present in the promoters of these four AMP genes. These studies suggest that 20-hydroxyecdysone regulates the expression of AMP genes through a conserved cis-regulatory element.
Collapse
Affiliation(s)
- Z Zhang
- Department of Entomology, College of Agriculture, University of Kentucky, Lexington, KY, USA
| | | |
Collapse
|