1
|
Ocejo M, Oporto B, Lavín JL, Hurtado A. Monitoring within-farm transmission dynamics of antimicrobial-resistant Campylobacter in dairy cattle using broth microdilution and long-read whole genome sequencing. Sci Rep 2023; 13:12529. [PMID: 37532746 PMCID: PMC10397349 DOI: 10.1038/s41598-023-39588-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 07/27/2023] [Indexed: 08/04/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are important foodborne zoonotic pathogens and cause for concern due to the increasing trend in antimicrobial resistance. A long-run surveillance study was conducted in animals from different age groups in five dairy cattle farms to investigate the within-farm diversity and transmission dynamics of resistant Campylobacter throughout time. The resistance phenotype of the circulating isolates (170 C. jejuni and 37 C. coli) was determined by broth microdilution and a selection of 56 isolates were whole genome sequenced using the Oxford-Nanopore long-fragment sequencing technology resulting in completely resolved and circularized genomes (both chromosomes and plasmids). C. jejuni was isolated from all farms while C. coli was isolated from only two farms, but resistance rates were higher in C. coli than in C. jejuni and in calves than in adult animals. Some genotypes (e.g. ST-48, gyrA_T86I/tet(O)/blaOXA-61 in farm F1; ST-12000, aadE-Cc/tet(O)/blaOXA-489 in F4) persisted throughout the study while others were only sporadically detected. Acquisition of extracellular genes from other isolates and intracellular mutational events were identified as the processes that led to the emergence of the resistant genotypes that spread within the herds. Monitoring with Oxford Nanopore Technologies sequencing helped to decipher the complex molecular epidemiology underlying the within-farm dissemination of resistant Campylobacter.
Collapse
Affiliation(s)
- Medelin Ocejo
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Beatriz Oporto
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - José Luis Lavín
- Applied Mathematics Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain
| | - Ana Hurtado
- Animal Health Department, NEIKER - Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Bizkaia Science and Technology Park 812L, 48160, Derio, Bizkaia, Spain.
| |
Collapse
|
2
|
Hameed A, Ketley JM, Woodacre A, Machado LR, Marsden GL. Molecular and in silico typing of the lipooligosaccharide biosynthesis gene cluster in Campylobacter jejuni and Campylobacter coli. PLoS One 2022; 17:e0265585. [PMID: 35358234 PMCID: PMC8970381 DOI: 10.1371/journal.pone.0265585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/05/2022] [Indexed: 11/25/2022] Open
Abstract
The extensive genetic variation in the lipooligosaccharide (LOS) core biosynthesis gene cluster has led to the development of a classification system; with 8 classes (I-VIII) for Campylobacter coli (C. coli) LOS region and with 23 classes (A-W) or four groups (1–4) for Campylobacter jejuni (C. jejuni) LOS region. PCR based LOS locus type identification for C. jejuni clinical isolates from a UK hospital as well as in silico LOS locus analysis for C. jejuni and C. coli genome sequences from GenBank was carried out to determine the frequencies of various LOS genotypes in C. jejuni and C. coli. Analysis of LOS gene content in 60 clinical C. jejuni isolates and 703 C. jejuni genome sequences revealed that class B (Group 1) was the most abundant LOS class in C. jejuni. The hierarchy of C. jejuni LOS group prevalence (group 1 > group 2 > group 3 > group 4) as well as the hierarchy of the frequency of C. jejuni LOS classes present within the group 1 (B > C > A > R > M > V), group 2 (H/P > O > E > W), group 3 (F > K > S) and group 4 (G > L) was identified. In silico analysis of LOS gene content in 564 C. coli genome sequences showed class III as the most abundant LOS locus type in C. coli. In silico analysis of LOS gene content also identified three novel LOS types of C. jejuni and previously unknown LOS biosynthesis genes in C. coli LOS locus types I, II, III, V and VIII. This study provides C. jejuni and C. coli LOS loci class frequencies in a smaller collection of C. jejuni clinical isolates as well as within the larger, worldwide database of C. jejuni and C. coli.
Collapse
Affiliation(s)
- Amber Hameed
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Julian M. Ketley
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Alexandra Woodacre
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Lee R. Machado
- Centre for Physical Activity and Life Sciences, University of Northampton, Northampton, United Kingdom
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
- * E-mail:
| | | |
Collapse
|
3
|
Zang X, Huang P, Li J, Jiao X, Huang J. Genomic Relatedness, Antibiotic Resistance and Virulence Traits of Campylobacter jejuni HS19 Isolates From Cattle in China Indicate Pathogenic Potential. Front Microbiol 2021; 12:783750. [PMID: 34956150 PMCID: PMC8698899 DOI: 10.3389/fmicb.2021.783750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 11/08/2021] [Indexed: 11/30/2022] Open
Abstract
Although campylobacteriosis is a zoonotic foodborne illness, high-risk isolates from animal sources are rarely characterized, and the pathogenic potential of zoonotic strains remains an obstacle to effective intervention against human infection. HS19 has been acknowledged as a maker serotype represented by Campylobacter jejuni (C. jejuni) isolates from patients with post-infection Guillain-Barré syndrome (GBS), which is circulation in developed countries. However, a previous serotype epidemiological study of C. jejuni isolates in an animal population revealed that HS19 was also prevalent in isolates from cattle in China. In this study, to investigate the hazardous potential of zoonotic strains, 14 HS19 isolates from cattle were systematically characterized both by genotype and phenotype. The results showed that all of these cattle isolates belonged to the ST-22 complex, a high-risk lineage represented by 77.2% HS19 clinical isolates from patients worldwide in the PubMLST database, indicating that the ST-22 complex is the prominent clonal complex of HS19 isolates, as well as the possibility of clonal spread of HS19 isolates across different regions and hosts. Nevertheless, these cattle strains clustered closely with the HS19 isolates from patients, suggesting a remarkable phylogenetic relatedness and genomic similarity. Importantly, both tetracycline genes tet(O) and gyrA (T86I) reached a higher proportional representation among the cattle isolates than among the human clinical isolates. A worrying level of multidrug resistance (MDR) was observed in all the cattle isolates, and two MDR profiles of the cattle isolates also existed in human clinical isolates. Notably, although shared with the same serotype HS19 and sequence type ST-22, 35.7% of cattle isolates induced severe gastrointestinal pathology in the IL-10–/– C57BL/6 mice model, indicating that some bacteria could change due to host adaptation to induce a disease epidemic, thus the associated genetic elements deserve further investigation. In this study, HS19 isolates from cattle were first characterized by a systematic evaluation of bacterial genomics and in vitro virulence, which improved our understanding of the potential zoonotic hazard from food animal isolates with high-risk serotypes, and provided critical information for the development of targeted C. jejuni mitigation strategies.
Collapse
Affiliation(s)
- Xiaoqi Zang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Pingyu Huang
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
| | - Jie Li
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
| | - Xinan Jiao
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
| | - Jinlin Huang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture of China, Yangzhou, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, Ministry of Education of China, Yangzhou, China
- *Correspondence: Jinlin Huang,
| |
Collapse
|
4
|
Gomes CN, Campioni F, Vilela FP, Duque SS, Falcão JP. Campylobacter coli strains from Brazil can invade phagocytic and epithelial cells and induce IL-8 secretion. Braz J Microbiol 2021; 52:859-867. [PMID: 33590448 PMCID: PMC8105435 DOI: 10.1007/s42770-021-00450-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/06/2021] [Indexed: 11/27/2022] Open
Abstract
Campylobacter spp. have been a predominant cause of bacterial foodborne gastroenteritis worldwide, causing substantial costs to public healthcare systems. This study aimed to assess the invasion and pro-inflammatory cytokine production capacity of Campylobacter coli strains isolated in Brazil. A total of 50 C. coli isolated from different sources in Brazil were analyzed for their capacity of invasion in Caco-2 and U-937 cell lines. The production of pro-inflammatory cytokines was quantitatively measured in response to C. coli. All the strains studied showed invasion percentage ≥ 40% in polarized Caco-2 cells. In U-937 cells assay, 35 of 50 C. coli strains studied showed invasion percentage ≥ 50%. A significant increase in IL-8 production by infected U-937 cells was observed for 17.5% of the C. coli isolates. The high percentages of invasion in Caco-2 and U-937 cells observed for all studied strains, plus the increased production of IL-8 by U-937 cells against some strains, highlighted the pathogenic potential of the C. coli studied and bring extremely relevant data since it has never been reported for strains isolated in Brazil and there are a few data for C. coli in the literature.
Collapse
Affiliation(s)
- Carolina N Gomes
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Fábio Campioni
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Felipe P Vilela
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil
| | - Sheila S Duque
- Fundação Oswaldo Cruz-FIOCRUZ, Instituto Oswaldo Cruz-IOC, Pavilhão Rocha Lima, sala 516, Av. Brasil, 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | - Juliana P Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café, s/n, Campus Universitário USP, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
5
|
Sarhangi M, Bakhshi B, Peeraeyeh SN. High prevalence of Campylobacter jejuni CC21 and CC257 clonal complexes in children with gastroenteritis in Tehran, Iran. BMC Infect Dis 2021; 21:108. [PMID: 33485317 PMCID: PMC7824915 DOI: 10.1186/s12879-021-05778-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 01/07/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Campylobacter jejuni (C. jejuni) is a leading cause of acute gastroenteritis in human worldwide. The aim of study was to assess the distribution of sialylated lipooligosaccharide (LOS) classes and capsular genotypes in C. jejuni isolated from Iranian children with gastroenteritis. Furthermore, the level of dnaK gene expression in C. jejuni strains with selected capsular genotypes and LOS classes was intended. Moreover, a comprehensive study of C. jejuni MLST-genotypes and inclusive comparison with peer sequences worldwide was intended. METHODS Twenty clinical C. jejuni strains were isolated from fecal specimens of 280 children aged 0-5 years, suspected of bacterial gastroenteritis, which admitted to 3 children hospitals from May to October, 2018. Distribution of sialylated LOS classes and specific capsular genotypes were investigated in C. jejuni of clinical origin. The expression of dnaK in C. jejuni strains was measured by Real-Time-PCR. MLST-genotyping was performed to investigate the clonal relationship of clinical C. jejuni strains and comparison with inclusive sequences worldwide. RESULTS C. jejuni HS23/36c was the predominant genotype (45%), followed by HS2 (20%), and HS19 and HS4 (each 10%). A total of 80% of isolates were assigned to LOS class B and C. Higher expression level of dnaK gene was detected in strains with HS23/36c, HS2 and HS4 capsular genotypes and sialylated LOS classes B or C. MLST analysis showed that isolates were highly diverse and represented 6 different sequence types (STs) and 3 clonal complexes (CCs). CC21 and CC257 were the most dominant CCs (75%) among our C. jejuni strains. No new ST and no common ST with our neighbor countries was detected. CONCLUSIONS The C. jejuni isolates with LOS class B or C, and capsular genotypes of HS23/36, HS2, HS4 and HS19 were dominant in population under study. The CC21 and CC257 were the largest CCs among our isolates. In overall picture, CC21 and CC353 complexes were the most frequently and widely distributed clonal complexes worldwide, although members of CC353 were not detected in our isolates. This provides a universal picture of movement of dominant Campylobacter strains worldwide.
Collapse
Affiliation(s)
- Mahnaz Sarhangi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| | - Shahin Najar Peeraeyeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Jalal-Ale-Ahmad Ave, Tehran, 14117-13116 Iran
| |
Collapse
|
6
|
Mousavi S, Bereswill S, Heimesaat MM. Murine Models for the Investigation of Colonization Resistance and Innate Immune Responses in Campylobacter Jejuni Infections. Curr Top Microbiol Immunol 2021; 431:233-263. [PMID: 33620654 DOI: 10.1007/978-3-030-65481-8_9] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Human infections with the food-borne pathogen Campylobacter jejuni are progressively increasing worldwide and constitute a significant socioeconomic burden to mankind. Intestinal campylobacteriosis in humans is characterized by bloody diarrhea, fever, abdominal pain, and severe malaise. Some individuals develop chronic post-infectious sequelae including neurological and autoimmune diseases such as reactive arthritis and Guillain-Barré syndrome. Studies unraveling the molecular mechanisms underlying campylobacteriosis and post-infectious sequelae have been hampered by the scarcity of appropriate experimental in vivo models. Particularly, conventional laboratory mice are protected from C. jejuni infection due to the physiological colonization resistance exerted by the murine gut microbiota composition. Additionally, as compared to humans, mice are up to 10,000 times more resistant to C. jejuni lipooligosaccharide (LOS) constituting a major pathogenicity factor responsible for the immunopathological host responses during campylobacteriosis. In this chapter, we summarize the recent progress that has been made in overcoming these fundamental obstacles in Campylobacter research in mice. Modification of the murine host-specific gut microbiota composition and sensitization of the mice to C. jejuni LOS by deletion of genes encoding interleukin-10 or a single IL-1 receptor-related molecule as well as by dietary zinc depletion have yielded reliable murine infection models resembling key features of human campylobacteriosis. These substantial improvements pave the way for a better understanding of the molecular mechanisms underlying pathogen-host interactions. The ongoing validation and standardization of these novel murine infection models will provide the basis for the development of innovative treatment and prevention strategies to combat human campylobacteriosis and collateral damages of C. jejuni infections.
Collapse
Affiliation(s)
- Soraya Mousavi
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Institute of Microbiology, Infectious Diseases and Immunology, Gastrointestinal Microbiology Research Group, Charité-University Medicine Berlin, Corporate Member of Free University Berlin, Humboldt-University of Berlin, Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
7
|
Samarth DP, Kwon YM. Horizontal genetic exchange of chromosomally encoded markers between Campylobacter jejuni cells. PLoS One 2020; 15:e0241058. [PMID: 33104745 PMCID: PMC7588059 DOI: 10.1371/journal.pone.0241058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/07/2020] [Indexed: 11/18/2022] Open
Abstract
Many epidemiological studies provide us with the evidence of horizontal gene transfer (HGT) contributing to the bacterial genomic diversity that benefits the bacterial populations with increased ability to adapt to the dynamic environments. Campylobacter jejuni, a major cause of acute enteritis in the U.S., often linked with severe post-infection neuropathies, has been reported to exhibit a non-clonal population structure and comparatively higher strain-level genetic variation. In this study, we provide evidence of the HGT of chromosomally encoded genetic markers between C. jejuni cells in the biphasic MH medium. We used two C. jejuni NCTC-11168 mutants harbouring distinct antibiotic-resistance genes [chloramphenicol (Cm) and kanamycin (Km)] present at two different neutral genomic loci. Cultures of both marker strains were mixed together and incubated for 5 hrs, then plated on MH agar plates supplemented with both antibiotics. The recombinant cells with double antibiotic markers were generated at the frequency of 0.02811 ± 0.0035% of the parental strains. PCR assays using locus-specific primers confirmed that transfer of the antibiotic-resistance genes was through homologous recombination. Also, the addition of chicken cecal content increased the recombination efficiency approximately up to 10-fold as compared to the biphasic MH medium (control) at P < 0.05. Furthermore, treating the co-culture with DNase I decreased the available DNA, which in turn significantly reduced recombination efficiency by 99.92% (P < 0.05). We used the cell-free supernatant of 16 hrs-culture of Wild-type C. jejuni as a template for PCR and found DNA sequences from six different genomic regions were easily amplified, indicating the presence of released chromosomal DNA in the culture supernatant. Our findings suggest that HGT in C. jejuni is facilitated in the chicken gut environment contributing to in vivo genomic diversity. Additionally, C. jejuni might have an active mechanism to release its chromosomal DNA into the extracellular environment, further expediting HGT in C. jejuni populations.
Collapse
Affiliation(s)
- Deepti Pranay Samarth
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- * E-mail:
| | - Young Min Kwon
- Department of Poultry Science, University of Arkansas, Fayetteville, AR, United States of America
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States of America
| |
Collapse
|
8
|
Hameed A, Woodacre A, Machado LR, Marsden GL. An Updated Classification System and Review of the Lipooligosaccharide Biosynthesis Gene Locus in Campylobacter jejuni. Front Microbiol 2020; 11:677. [PMID: 32508756 PMCID: PMC7248181 DOI: 10.3389/fmicb.2020.00677] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 03/24/2020] [Indexed: 01/21/2023] Open
Abstract
Lipooligosaccharide (LOS) is an integral component of the Campylobacter cell membrane with a structure of core oligosaccharides forming inner and outer core regions and a lipid A moiety. The gene content of the LOS core biosynthesis cluster exhibits extensive sequence variation, which leads to the production of variable cell surface LOS structures in Campylobacter. Some LOS outer core molecules in Campylobacter jejuni are molecular mimics of host structures (such as neuronal gangliosides) and are thought to trigger neuronal disorders (particularly Guillain–Barré syndrome and Miller Fisher syndrome) in humans. The extensive genetic variation in the LOS biosynthesis gene cluster, a majority of which occurs in the LOS outer core biosynthesis gene content present between lgtF and waaV, has led to the development of a classification system with 23 classes (A–W) and four groups (1–4) for the C. jejuni LOS region. This review presents an updated and simplified classification system for LOS typing alongside an overview of the frequency of C. jejuni LOS biosynthesis genotypes and structures in various C. jejuni populations.
Collapse
Affiliation(s)
- Amber Hameed
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Alexandra Woodacre
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | - Lee R Machado
- Division of Life Sciences, University of Northampton, Northampton, United Kingdom
| | | |
Collapse
|
9
|
Virulence Traits of Inpatient Campylobacter jejuni Isolates, and a Transcriptomic Approach to Identify Potential Genes Maintaining Intracellular Survival. Microorganisms 2020; 8:microorganisms8040531. [PMID: 32272707 PMCID: PMC7232156 DOI: 10.3390/microorganisms8040531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
There are still major gaps in our understanding of the bacterial factors that influence the outcomes of human Campylobacter jejuni infection. The aim of this study was to compare the virulence-associated features of 192 human C. jejuni strains isolated from hospitalized patients with diarrhoea (150/192, 78.1%), bloody diarrhoea (23/192, 11.9%), gastroenteritis (3/192, 1.6%), ulcerative colitis (3/192, 1.5%), and stomach ache (2/192, 1.0%). Traits were analysed with genotypic and phenotypic methods, including PCR and extracellular matrix protein (ECMP) binding, adhesion, and invasion capacities. Results were studied alongside patient symptoms, but no distinct links with them could be determined. Since the capacity of C. jejuni to invade host epithelial cells is one of its most enigmatic attributes, a high throughput transcriptomic analysis was performed in the third hour of internalization with a C. jejuni strain originally isolated from bloody diarrhoea. Characteristic groups of genes were significantly upregulated, outlining a survival strategy of internalized C. jejuni comprising genes related (1) to oxidative stress; (2) to a protective sheath formed by the capsule, LOS, N-, and O- glycosylation systems; (3) to dynamic metabolic activity supported by different translocases and the membrane-integrated component of the flagellar apparatus; and (4) to hitherto unknown genes.
Collapse
|
10
|
Mousavi S, Bereswill S, Heimesaat MM. Novel Clinical Campylobacter jejuni Infection Models Based on Sensitization of Mice to Lipooligosaccharide, a Major Bacterial Factor Triggering Innate Immune Responses in Human Campylobacteriosis. Microorganisms 2020; 8:E482. [PMID: 32231139 PMCID: PMC7232424 DOI: 10.3390/microorganisms8040482] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/25/2020] [Accepted: 03/26/2020] [Indexed: 12/12/2022] Open
Abstract
: Human Campylobacter jejuni infections inducing campylobacteriosis including post-infectious sequelae such as Guillain-Barré syndrome and reactive arthritis are rising worldwide and progress into a global burden of high socioeconomic impact. Intestinal immunopathology underlying campylobacteriosis is a classical response of the innate immune system characterized by the accumulation of neutrophils and macrophages which cause tissue destruction, barrier defects and malabsorption leading to bloody diarrhea. Clinical studies revealed that enteritis and post-infectious morbidities of human C. jejuni infections are strongly dependent on the structure of pathogenic lipooligosaccharides (LOS) triggering the innate immune system via Toll-like-receptor (TLR)-4 signaling. Compared to humans, mice display an approximately 10,000 times weaker TLR-4 response and a pronounced colonization resistance (CR) against C. jejuni maintained by the murine gut microbiota. In consequence, investigations of campylobacteriosis have been hampered by the lack of experimental animal models. We here summarize recent progress made in the development of murine C. jejuni infection models that are based on the abolishment of CR by modulating the murine gut microbiota and by sensitization of mice to LOS. These advances support the major role of LOS driven innate immunity in pathogenesis of campylobacteriosis including post-infectious autoimmune diseases and promote the preclinical evaluation of novel pharmaceutical strategies for prophylaxis and treatment.
Collapse
|
11
|
Guirado P, Paytubi S, Miró E, Iglesias-Torrens Y, Navarro F, Cerdà-Cuéllar M, Stephan-Otto Attolini C, Balsalobre C, Madrid C. Differential Distribution of the wlaN and cgtB Genes, Associated with Guillain-Barré Syndrome, in Campylobacter jejuni Isolates from Humans, Broiler Chickens, and Wild Birds. Microorganisms 2020; 8:E325. [PMID: 32110976 PMCID: PMC7142995 DOI: 10.3390/microorganisms8030325] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022] Open
Abstract
Campylobacter jejuni causes campylobacteriosis, a bacterial gastroenteritis with high incidence worldwide. Moreover, C. jejuni infection can trigger the polyneuropathic disorder denominated Guillain-Barré syndrome (GBS). The C. jejuni strains that can elicit GBS carry either wlaN or cgtB, coding both genes for a β-1,3-galactosyltransferase enzyme that is required for the production of sialylated lipooligosaccharide (LOSSIAL). We described a differential prevalence of the genes wlaN and cgtB in C. jejuni isolates from three different ecological niches: humans, broiler chickens, and wild birds. The distribution of both genes, which is similar between broiler chicken and human isolates and distinct when compared to the wild bird isolates, suggests a host-dependent distribution. Moreover, the prevalence of the wlaN and cgtB genes seems to be restricted to some clonal complexes. Gene sequencing identified the presence of new variants of the G- homopolymeric tract within the wlaN gene. Furthermore, we detected two variants of a G rich region within the cgtB gene, suggesting that, similarly to wlaN, the G-tract in the cgtB gene mediates the phase variation control of cgtB expression. Caco-2 cell invasion assays indicate that there is no evident correlation between the production of LOSSIAL and the ability to invade eukaryotic cells.
Collapse
Affiliation(s)
- Pedro Guirado
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Sonia Paytubi
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Elisenda Miró
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
| | - Yaidelis Iglesias-Torrens
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
- Departament de Genètica i Microbiologia. Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Ferran Navarro
- Hospital de la Santa Creu i Sant Pau and Institut d’Investigació Biomèdica Sant Pau (IIB Sant Pau), Sant Quintí 89, 08041 Barcelona, Spain; (E.M.); (Y.I.-T.)
- Departament de Genètica i Microbiologia. Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès (Barcelona), Spain
| | - Marta Cerdà-Cuéllar
- IRTA, Centre de Recerca en Sanitat Animal (CReSA-IRTA-UAB). Campus de la Universitat Autònoma de Barcelona, Bellaterra, 08193 Barcelona, Spain;
| | - Camille Stephan-Otto Attolini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain;
| | - Carlos Balsalobre
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| | - Cristina Madrid
- Departament de Genètica, Microbiologia i Estadística, Facultat de Biología, Universitat de Barcelona. Avda. Diagonal 643, 08028 Barcelona, Spain; (P.G.); (S.P.); (C.B.)
| |
Collapse
|
12
|
Awad A, Elkenany R, Sadat A, Ragab W, Elhadidy M. Multilocus Sequence Typing (MLST) of Campylobacter jejuni Isolated From Broiler Meat in Egypt. Pak J Biol Sci 2019; 22:574-579. [PMID: 31930855 DOI: 10.3923/pjbs.2019.574.579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
BACKGROUND AND OBJECTIVES Infection with Campylobacter jejuni is one of the most common causes of bacterial gastroenteritis. Infections are mostly acquired due to consumption of raw or undercooked poultry. The aim of this pilot study is to determine the prevalence and the sequence types (STs) distribution of C. jejuni isolated from broiler meat in Egypt. MATERIALS AND METHODS A total of 190 broiler meat samples were collected from retail chicken shops located at Mansoura, Egypt and examined bacteriologically for the presence of Campylobacter spp. The biochemically identified Campylobacter isolates were confirmed by Multiplex PCR (m-PCR). In addition, multilocus sequencing typing (MLST) was used for genotyping of C. jejuni isolates. RESULTS Thirty two Campylobacter isolates divided into C. coli (25 isolates) and C. jejuni (7 isolates) were recovered. Multiplex PCR results found to be 100% in line with biochemical identification. Out of 7 C. jejuni isolates genotyped by MLST, 4 isolates were assigned to ST21, 2 isolates were assigned to ST48 and one isolate was assigned to ST464. CONCLUSION This study provides valuable information concerning the prevalence of thermophilic Campylobacter spp. and sequence types distribution of C. jejuni recovered from broiler meat for the first time in Egypt. The identified sequence types from this study were frequently reported in human illnesses. Thus, the present results highlight the importance of the retail broiler meat as a significant source for human Campylobacter infection.
Collapse
|
13
|
Duarte A, Botteldoorn N, Miller W, Coucke W, Martiny D, Hallin M, Seliwiorstow T, De Zutter L, Uyttendaele M, Vandenberg O, Dierick K. Relation between broiler and humanCampylobacter jejunistrains isolated in Belgium from 2011 to 2013. J Appl Microbiol 2018; 126:277-287. [DOI: 10.1111/jam.14132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 09/05/2018] [Accepted: 09/06/2018] [Indexed: 12/31/2022]
Affiliation(s)
- A. Duarte
- Laboratory of Food Microbiology and Food Preservation; Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Gent Belgium
- National Reference Laboratory for Campylobacter; Sciensano; Scientific Service Foodborne Pathogens; Brussels Belgium
| | - N. Botteldoorn
- National Reference Laboratory for Campylobacter; Sciensano; Scientific Service Foodborne Pathogens; Brussels Belgium
| | - W.G. Miller
- USDA, ARS, WRRC, Produce Safety and Microbiology; Albany CA USA
| | - W. Coucke
- Section Quality of Laboratories; Sciensano; Brussels Belgium
| | - D. Martiny
- National Reference Center for Campylobacter; Saint Pierre University Hospital; Brussels Belgium
- Department of Microbiology; LHUB-ULB; Pôle Hospitalier Universitaire de Bruxelles; Brussels Belgium
| | - M. Hallin
- National Reference Center for Campylobacter; Saint Pierre University Hospital; Brussels Belgium
- Department of Molecular Diagnosis; LHUB-ULB; Pôle Hospitalier Universitaire de Bruxelles; Brussels Belgium
| | - T. Seliwiorstow
- Laboratory of Food Microbiology and Food Preservation; Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Gent Belgium
- Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - L. De Zutter
- Department of Veterinary Public Health and Food Safety; Faculty of Veterinary Medicine; Ghent University; Merelbeke Belgium
| | - M. Uyttendaele
- Laboratory of Food Microbiology and Food Preservation; Department of Food Safety and Food Quality; Faculty of Bioscience Engineering; Ghent University; Gent Belgium
| | - O. Vandenberg
- National Reference Center for Campylobacter; Saint Pierre University Hospital; Brussels Belgium
- Department of Microbiology; LHUB-ULB; Pôle Hospitalier Universitaire de Bruxelles; Brussels Belgium
- Center for Environmental Health and Occupational Health; School of Public Health; Université Libre de Bruxelles; Brussels Belgium
| | - K. Dierick
- National Reference Laboratory for Campylobacter; Sciensano; Scientific Service Foodborne Pathogens; Brussels Belgium
| |
Collapse
|
14
|
Farfán M, Lártiga N, Benavides MB, Alegría-Morán R, Sáenz L, Salcedo C, Lapierre L. Capacity to adhere to and invade human epithelial cells, as related to the presence of virulence genes in, motility of, and biofilm formation of Campylobacter jejuni strains isolated from chicken and cattle. Can J Microbiol 2018; 65:126-134. [PMID: 30339767 DOI: 10.1139/cjm-2018-0503] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Campylobacter jejuni is a zoonotic pathogen transmitted through the "farm to fork" route. Outbreaks are generally associated with the consumption of chicken meat; however, dairy cows, birds, wild and domestic food animals, and pets are other important sources. Currently, there are not enough data comparing the virulence of strains isolated from these reservoirs. In this study, we compared C. jejuni strains isolated from broiler chickens and dairy cattle by determining their ability to adhere to and invade in vitro human colonic epithelial cells in the T84 cell line with their motility, formation of biofilms, and presence of eight virulence genes. A Wilcoxon Rank Sum test was performed to establish the relationship between presence of the studied genes and cellular invasion and adhesion, as well as differences between the animal species of origin of the isolate. A Spearman correlation was performed to assess the relationship between invasion and motility, along with invasion and biofilm generation. The virB11 gene was positively associated with the adherence capacity of the strains (mean difference = 0.21, p = 0.006), and strains isolated from chickens showed a significant difference for adherence compared with strains isolated from cattle (p = 0.0001). Our results indicate that strains of C. jejuni have a difference in their adherence capacity depending on the animal reservoir from which they came, with chicken isolates displaying higher virulence than dairy cattle isolates.
Collapse
Affiliation(s)
- Mauricio Farfán
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile
| | - Natalia Lártiga
- a Faculty of Medicine, University of Chile, Antonio Varas 360, Providencia, Santiago, Chile.,b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - María Belén Benavides
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Raúl Alegría-Morán
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Leonardo Sáenz
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Cristal Salcedo
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| | - Lisette Lapierre
- b Faculty of Veterinary and Animal Sciences, University of Chile, Santa Rosa 11735, La Pintana, Santiago, Chile
| |
Collapse
|
15
|
Hansson I, Sandberg M, Habib I, Lowman R, Engvall EO. Knowledge gaps in control of Campylobacter for prevention of campylobacteriosis. Transbound Emerg Dis 2018; 65 Suppl 1:30-48. [PMID: 29663680 DOI: 10.1111/tbed.12870] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Indexed: 01/08/2023]
Abstract
Campylobacteriosis is an important, worldwide public health problem with numerous socio-economic impacts. Since 2015, approximately 230,000 cases have been reported annually in Europe. In the United States, Australia and New Zealand, campylobacteriosis is the most commonly reported disease. Poultry and poultry products are considered important sources of human infections. Poultry meat can become contaminated with Campylobacter during slaughter if live chickens are intestinal carriers. Campylobacter spp. can be transferred from animals to humans through consumption and handling of contaminated food products, with fresh chicken meat being the most commonly implicated food type. Regarding food-borne disease, the most important Campylobacter species are Campylobacter jejuni and Campylobacter coli. In humans, clinical signs of campylobacteriosis include diarrhoea, abdominal pain, fever, headache, nausea and vomiting. Most cases of campylobacteriosis are sporadic and self-limiting, but there are post-infection complications, for example, Guillain-Barrés syndrome. This review summarizes an analysis undertaken by the DISCONTOOLS group of experts on campylobacteriosis. Gaps were identified in: (i) knowledge of true number of infected humans; (ii) mechanisms of pathogenicity to induce infection in humans; (iii) training to prevent transfer of Campylobacter from raw to ready-to-eat food; (iv) development of effective vaccines; (v) understanding transmission routes to broiler flocks; (vi) knowledge of bacteriocins, bacteriophages and antimicrobial peptides as preventive therapies; (vii) ration formulation as an effective preventive measure at a farm level; (viii) development of kits for rapid detection and quantification of Campylobacter in animals and food products; and (ix) development of more effective antimicrobials for treatment of humans infected with Campylobacter. Some of these gaps are relevant worldwide, whereas others are more related to problems encountered with Campylobacter in industrialized countries.
Collapse
Affiliation(s)
- I Hansson
- Department of Biomedical Sciences, Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - M Sandberg
- Food Safety, Veterinary Issues & Risk Analysis Danish Agriculture & Food Council, Copenhagen, Denmark
| | - I Habib
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
| | - R Lowman
- Independent Veterinary Public Health Research Specialist, Ottawa, ON, Canada
| | - E O Engvall
- Department of Biomedical Sciences, Veterinary Public Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Elhadidy M, Arguello H, Álvarez-Ordóñez A, Miller WG, Duarte A, Martiny D, Hallin M, Vandenberg O, Dierick K, Botteldoorn N. Orthogonal typing methods identify genetic diversity among Belgian Campylobacter jejuni strains isolated over a decade from poultry and cases of sporadic human illness. Int J Food Microbiol 2018; 275:66-75. [PMID: 29649751 DOI: 10.1016/j.ijfoodmicro.2018.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 02/08/2018] [Accepted: 04/02/2018] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a zoonotic pathogen commonly associated with human gastroenteritis. Retail poultry meat is a major food-related transmission source of C. jejuni to humans. The present study investigated the genetic diversity, clonal relationship, and strain risk-analysis of 403 representative C. jejuni isolates from chicken broilers (n = 204) and sporadic cases of human diarrhea (n = 199) over a decade (2006-2015) in Belgium, using multilocus sequence typing (MLST), PCR binary typing (P-BIT), and identification of lipooligosaccharide (LOS) biosynthesis locus classes. A total of 123 distinct sequence types (STs), clustered in 28 clonal complexes (CCs) were assigned, including ten novel sequence types that were not previously documented in the international database. Sequence types ST-48, ST-21, ST-50, ST-45, ST-464, ST-2274, ST-572, ST-19, ST-257 and ST-42 were the most prevalent. Clonal complex 21 was the main clonal complex in isolates from humans and chickens. Among observed STs, a total of 35 STs that represent 72.2% (291/403) of the isolates were identified in both chicken and human isolates confirming considerable epidemiological relatedness; these 35 STs also clustered together in the most prevalent CCs. A majority of the isolates harbored sialylated LOS loci associated with potential neuropathic outcomes in humans. Although the concordance between MLST and P-BIT, determined by the adjusted Rand and Wallace coefficients, showed low congruence between both typing methods. The discriminatory power of P-BIT and MLST was similar, with Simpson's diversity indexes of 0.978 and 0.975, respectively. Furthermore, P-BIT could provide additional epidemiological information that would provide further insights regarding the potential association to human health from each strain. In addition, certain clones could be linked to specific clinical symptoms. Indeed, LOS class E was associated with less severe infections. Moreover, ST-572 was significantly associated with clinical infections occurring after travelling abroad. Ultimately, the data generated from this study will help to better understand the molecular epidemiology of C. jejuni infection.
Collapse
Affiliation(s)
- Mohamed Elhadidy
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt; University of Science and Technology, Zewail City of Science and Technology, Giza, Egypt.
| | - Hector Arguello
- Genomic and Animal Biotechnology, Department of Genetics, Veterinary Faculty, Universidad de Córdoba, 14047, Córdoba, Spain
| | - Avelino Álvarez-Ordóñez
- Department of Food Hygiene and Technology and Institute of Food Science and Technology, University of León, Spain
| | - William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Alexandra Duarte
- Laboratory of Food Microbiology and Food Preservation, Department of Food Safety and Food Quality, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium; National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Delphine Martiny
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Marie Hallin
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Department of Molecular Diagnosis, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium
| | - Olivier Vandenberg
- National Reference Center for Campylobacter, Saint Pierre University Hospital, Brussels, Belgium; Department of Microbiology, LHUB-ULB, Pôle Hospitalier Universitaire de Bruxelles, Brussels, Belgium; Center for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles, Brussels, Belgium
| | - Katelijne Dierick
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| | - Nadine Botteldoorn
- National Reference Laboratory for Campylobacter, Scientific Institute of Public Health (WIV-ISP), Scientific Service: Foodborne Pathogens, Juliette Wytsman Street 14, 1050 Brussels, Belgium
| |
Collapse
|
17
|
A representative overview of the genetic diversity and lipooligosaccharide sialylation in Campylobacter jejuni along the broiler production chain in France and its comparison with human isolates. Int J Food Microbiol 2018; 274:20-30. [PMID: 29579648 DOI: 10.1016/j.ijfoodmicro.2018.03.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 02/02/2023]
Abstract
Campylobacter jejuni is the most common cause of bacterial gastroenteritis worldwide and is associated with post-infectious neuropathies. Moreover, the chicken reservoir is described as the main source of human infection and C. jejuni sialylated lipooligosaccharides seem to play an important role in the pathogenesis of neuropathies. In this study, MultiLocus Sequence Typing (MLST) and Comparative Genomic Fingerprinting using 40 assay genes (CGF40) were used to describe C. jejuni populations within clinical isolates and a representative collection of isolates from French poultry production. In addition, the sialylation of C. jejuni LOS was assessed. Here, we report high levels of genetic diversity among both chicken and human disease C. jejuni populations. The predominance of the ST-21, ST-45, and ST-464 complexes in chicken isolates and of the ST-21, ST-206, and ST-48 complexes in the clinical isolates was observed as were correlations between some MLST and CGF40 genotypes. Furthermore, some C. jejuni genotypes were frequently isolated among clinical cases as well as all along the broiler production chain, suggesting a potentially high implication of chicken in human campylobacteriosis in France. Finally, the LOS classes A, B and C were predominant within clinical C. jejuni isolates supporting the hypothesis of a benefit in infectivity for C. jejuni isolates showing sialylated LOS.
Collapse
|
18
|
Nilsson A, Johansson C, Skarp A, Kaden R, Engstrand L, Rautelin H. Genomic and phenotypic characteristics of Swedish C. jejuni water isolates. PLoS One 2017; 12:e0189222. [PMID: 29216271 PMCID: PMC5720728 DOI: 10.1371/journal.pone.0189222] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 11/21/2017] [Indexed: 01/06/2023] Open
Abstract
Campylobacter jejuni is the most common cause of bacterial gastroenteritis. Major reservoirs are warm-blooded animals, poultry in particular, but Campylobacter can also be transmitted via water. In this paper, we have taken a closer look at the biology and potential virulence of C. jejuni water isolates. Seven C. jejuni isolates from incoming surface water at water plants in Sweden were characterized with whole genome sequencing and phenotypical testing. Multi locus sequence typing analysis revealed that these isolates belonged to groups known to include both common (ST48CC) and uncommon (ST1275CC, ST683, ST793 and ST8853) human pathogens. Further genomic characterization revealed that these isolates had potential for arsenic resistance (due to presence of arsB gene in all isolates), an anaerobic dimethyl sulfoxide oxidoreductase (in three isolates) and lacked the MarR-type transcriptional regulator gene rrpB (in all but one isolate) earlier shown to be involved in better survival under oxidative and aerobic stress. As putative virulence factors were concerned, there were differences between the water isolates in the presence of genes coding for cytolethal distending toxin (cdtABC), Type VI secretion system and sialylated LOS, as well as in biofilm formation. However, all isolates were motile and could adhere to and invade the human HT-29 colon cancer cell line in vitro and induce IL-8 secretion suggesting potential to infect humans. This is, to the best of our knowledge, the first study where C. jejuni water isolates have been characterized using whole genome sequencing and phenotypical assays. We found differences and shared traits among the isolates but also potential to infect humans.
Collapse
Affiliation(s)
- Anna Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Johansson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Astrid Skarp
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - René Kaden
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| | - Lars Engstrand
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, and Science for Life Laboratory, Stockholm, Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Yahara K, Méric G, Taylor AJ, de Vries SPW, Murray S, Pascoe B, Mageiros L, Torralbo A, Vidal A, Ridley A, Komukai S, Wimalarathna H, Cody AJ, Colles FM, McCarthy N, Harris D, Bray JE, Jolley KA, Maiden MCJ, Bentley SD, Parkhill J, Bayliss CD, Grant A, Maskell D, Didelot X, Kelly DJ, Sheppard SK. Genome-wide association of functional traits linked with Campylobacter jejuni survival from farm to fork. Environ Microbiol 2017; 19:361-380. [PMID: 27883255 DOI: 10.1111/1462-2920.13628] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 01/07/2023]
Abstract
Campylobacter jejuni is a major cause of bacterial gastroenteritis worldwide, primarily associated with the consumption of contaminated poultry. C. jejuni lineages vary in host range and prevalence in human infection, suggesting differences in survival throughout the poultry processing chain. From 7343 MLST-characterised isolates, we sequenced 600 C. jejuni and C. coli isolates from various stages of poultry processing and clinical cases. A genome-wide association study (GWAS) in C. jejuni ST-21 and ST-45 complexes identified genetic elements over-represented in clinical isolates that increased in frequency throughout the poultry processing chain. Disease-associated SNPs were distinct in these complexes, sometimes organised in haplotype blocks. The function of genes containing associated elements was investigated, demonstrating roles for cj1377c in formate metabolism, nuoK in aerobic survival and oxidative respiration, and cj1368-70 in nucleotide salvage. This work demonstrates the utility of GWAS for investigating transmission in natural zoonotic pathogen populations and provides evidence that major C. jejuni lineages have distinct genotypes associated with survival, within the host specific niche, from farm to fork.
Collapse
Affiliation(s)
- Koji Yahara
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Aidan J Taylor
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Stefan P W de Vries
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Susan Murray
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,MRC CLIMB Consortium, Oxford Bath, UK
| | - Leonardos Mageiros
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Alicia Torralbo
- Swansea University Medical School, Institute of Life Science, Swansea University, Swansea, UK
| | - Ana Vidal
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Anne Ridley
- Animal and Plant Health Agency (APHA), Addlestone, UK
| | - Sho Komukai
- Department of Bacteriology II, National Institute of Infectious Diseases, Tokyo, Japan
| | | | - Alison J Cody
- Department of Zoology, Oxford University, Oxford, UK
| | | | - Noel McCarthy
- Department of Zoology, Oxford University, Oxford, UK.,NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | - David Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - James E Bray
- Department of Zoology, Oxford University, Oxford, UK
| | | | - Martin C J Maiden
- Department of Zoology, Oxford University, Oxford, UK.,NIHR Health Protections Research Unit in Gastrointestinal Infections, University of Oxford, Oxford, UK
| | - Stephen D Bentley
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | | | - Andrew Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Duncan Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley, Cambridge, UK
| | - Xavier Didelot
- Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - David J Kelly
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK.,MRC CLIMB Consortium, Oxford Bath, UK.,Department of Zoology, Oxford University, Oxford, UK
| |
Collapse
|
20
|
Ellström P, Hansson I, Nilsson A, Rautelin H, Olsson Engvall E. Lipooligosaccharide locus classes and putative virulence genes among chicken and human Campylobacter jejuni isolates. BMC Microbiol 2016; 16:116. [PMID: 27871232 PMCID: PMC5118878 DOI: 10.1186/s12866-016-0740-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 06/10/2016] [Indexed: 12/13/2022] Open
Abstract
Background Campylobacter cause morbidity and considerable economic loss due to hospitalization and post infectious sequelae such as reactive arthritis, Guillain Barré- and Miller Fischer syndromes. Such sequelae have been linked to C. jejuni harboring sialic acid structures in their lipooligosaccharide (LOS) layer of the cell wall. Poultry is an important source of human Campylobacter infections but little is known about the prevalence of sialylated C. jejuni isolates and the extent of transmission of such isolates to humans. Results Genotypes of C. jejuni isolates from enteritis patients were compared with those of broiler chicken with pulsed-field gel electrophoresis (PFGE), to study the patterns of LOS biosynthesis genes and other virulence associated genes and to what extent these occur among Campylobacter genotypes found both in humans and chickens. Chicken and human isolates generally had similar distributions of the putative virulence genes and LOS locus classes studied. However, there were significant differences regarding LOS locus class of PFGE types that were overlapping between chicken and human isolates and those that were distinct to each source. Conclusions The study highlights the prevalence of virulence associated genes among Campylobacter isolates from humans and chickens and suggests possible patterns of transmission between the two species.
Collapse
Affiliation(s)
- Patrik Ellström
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, SE-75185, Uppsala, Sweden. .,Department of Medical Biochemistry and Microbiology, Zoonosis Science Center, Uppsala University, BMC A9:3, Husargatan 3, SE-75123, Uppsala, Sweden.
| | - Ingrid Hansson
- Department of Microbiology, EU Reference Laboratory for Campylobacter, National Veterinary Institute, SE-75189, Uppsala, Sweden
| | - Anna Nilsson
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, SE-75185, Uppsala, Sweden
| | - Hilpi Rautelin
- Department of Medical Sciences, Clinical Microbiology, Uppsala University, SE-75185, Uppsala, Sweden.,Department of Bacteriology and Immunology, University of Helsinki, P.O. Box 21, FIN-00014, Helsinki, Finland
| | - Eva Olsson Engvall
- Department of Microbiology, EU Reference Laboratory for Campylobacter, National Veterinary Institute, SE-75189, Uppsala, Sweden
| |
Collapse
|
21
|
Llarena AK, Zhang J, Vehkala M, Välimäki N, Hakkinen M, Hänninen ML, Roasto M, Mäesaar M, Taboada E, Barker D, Garofolo G, Cammà C, Di Giannatale E, Corander J, Rossi M. Monomorphic genotypes within a generalist lineage of Campylobacter jejuni show signs of global dispersion. Microb Genom 2016; 2:e000088. [PMID: 28348829 PMCID: PMC5359405 DOI: 10.1099/mgen.0.000088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 09/12/2016] [Indexed: 01/05/2023] Open
Abstract
The decreased costs of genome sequencing have increased the capability to apply whole-genome sequencing to epidemiological surveillance of zoonotic Campylobacter jejuni. However, knowledge of the genetic diversity of this bacteria is vital for inferring relatedness between epidemiologically linked isolates and a necessary prerequisite for correct application of this methodology. To address this issue in C. jejuni we investigated the spatial and temporal signals in the genomes of a major clonal complex and generalist lineage, ST-45 CC, by analysing the population structure and genealogy as well as applying genome-wide association analysis of 340 isolates from across Europe collected over a wide time range. The occurrence and strength of the geographical signal varied between sublineages and followed the clonal frame when present, while no evidence of a temporal signal was found. Certain sublineages of ST-45 formed discrete and genetically isolated clades containing isolates with extremely similar genomes regardless of time and location of sampling. Based on a separate data set, these monomorphic genotypes represent successful C. jejuni clones, possibly spread around the globe by rapid animal (migrating birds), food or human movement. In addition, we observed an incongruence between the genealogy of the strains and multilocus sequence typing (MLST), challenging the existing clonal complex definition and the use of whole-genome gene-by-gene hierarchical nomenclature schemes for C. jejuni.
Collapse
Affiliation(s)
- Ann-Katrin Llarena
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Ji Zhang
- Institute of Veterinary, Animal & Biomedical Sciences, College of Sciences, Massey University, Palmerstone North, New Zealand
| | - Minna Vehkala
- Department of Mathematics and Statistics, Faculty of Science, University of Helsinki, Helsinki, Finland
| | - Niko Välimäki
- Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Helsinki, Finland
| | - Marjaana Hakkinen
- Food and Feed Microbiology Research Unit, Research and Laboratory Department, Finnish Food Safety Authority Evira, Helsinki, Finland
| | - Marja-Liisa Hänninen
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Mati Roasto
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
| | - Mihkel Mäesaar
- Department of Food Hygiene, Institute of Veterinary Medicine and Animal Sciences, Estonian University of Life Sciences, Tartu, Estonia
- Veterinary and Food Laboratory, VFL, Tartu, Estonia
| | - Eduardo Taboada
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Dillon Barker
- National Microbiology Laboratory, Public Health Agency of Canada, c/o Animal Diseases Research Institute, Lethbridge, Canada
| | - Giuliano Garofolo
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Cesare Cammà
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Elisabetta Di Giannatale
- National Reference Laboratory for Campylobacter, Istituto Zooprofilattico Sperimentale dell'Abruzzo e del Molise ‘G. Caporale’, Teramo, Italy
| | - Jukka Corander
- Institute of Basic Medical Sciences, Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Mirko Rossi
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| |
Collapse
|
22
|
Discriminative power of Campylobacter phenotypic and genotypic typing methods. J Microbiol Methods 2016; 125:33-9. [PMID: 26996762 DOI: 10.1016/j.mimet.2016.03.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 03/07/2016] [Accepted: 03/07/2016] [Indexed: 01/31/2023]
Abstract
The aim of this study was to compare different typing methods, individually and combined, for use in the monitoring of Campylobacter in food. Campylobacter jejuni (n=94) and Campylobacter coli (n=52) isolated from different broiler meat carcasses were characterized using multilocus sequence typing (MLST), flagellin gene A restriction fragment length polymorphism typing (flaA-RFLP), antimicrobial resistance profiling (AMRp), the presence/absence of 5 putative virulence genes; and, exclusively for C. jejuni, the determination of lipooligosaccharide (LOS) class. Discriminatory power was calculated by the Simpson's index of diversity (SID) and the congruence was measured by the adjusted Rand index and adjusted Wallace coefficient. MLST was individually the most discriminative typing method for both C. jejuni (SID=0.981) and C. coli (SID=0.957). The most discriminative combination with a SID of 0.992 for both C. jejuni and C. coli was obtained by combining MLST with flaA-RFLP. The combination of MLST with flaA-RFLP is an easy and feasible typing method for short-term monitoring of Campylobacter in broiler meat carcass.
Collapse
|
23
|
Molecular Characterization, Antimicrobial Resistance and Caco-2 Cell Invasion Potential of Campylobacter jejuni/coli from Young Children with Diarrhea. Pediatr Infect Dis J 2016; 35:330-4. [PMID: 26627197 DOI: 10.1097/inf.0000000000001016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Campylobacter is a major cause of bacterial gastroenteritis worldwide. Young children represent a particular age group affected by Campylobacter infection because of their limited diets and weak immune systems. METHODS In this study, a total of 110 Campylobacter (80 Campylobacter jejuni and 30 Campylobacter coli) isolated from children younger than 5 years of age with diarrhea in Shanghai, China in 2011 were examined for their genetic relationship and antimicrobial susceptibility. The presence of virulence genes and its association with invasion potential in Caco-2 cell were also determined. RESULTS Multilocus sequence typing revealed 62 sequence types (STs) under 14 clonal complexes from C. jejuni and 15 STs under 2 clonal complexes from C. coli. High resistance rates among the 110 isolates were observed to nalidixic acid (88.2%), ciprofloxacin (87.3%) and tetracycline (87.3%), followed by ampicillin (30.9%), gentamicin (28.2%), clindamycin (21.8%), erythromycin (21.8%) and chloramphenicol (8.2%). Compared with that of C. jejuni (32.5%), a larger proportion of C. coli (83.3%) were resistant to multiple antimicrobials, including 16 isolates of ST-828 complex resistant to 6 antimicrobials: ciprofloxacin, clindamycin, erythromycin, gentamicin, nalidixic acid and tetracycline. Furthermore, 57 Campylobacter isolates were selected based on their distinct STs and the presence of virulence genes to determine their abilities to adhere to and invade Caco-2 cells. The level of invasion varied widely among isolates and had relatively weak correlation with the genotype data. CONCLUSION Our findings provided baseline data on Campylobacter among young children. Active surveillance of Campylobacter is needed to better understand the epidemiology and antimicrobial resistance trends of this significant pathogen to help control and protect young children from such infections.
Collapse
|
24
|
Oh E, McMullen L, Jeon B. High Prevalence of Hyper-Aerotolerant Campylobacter jejuni in Retail Poultry with Potential Implication in Human Infection. Front Microbiol 2015; 6:1263. [PMID: 26617597 PMCID: PMC4641907 DOI: 10.3389/fmicb.2015.01263] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Accepted: 10/30/2015] [Indexed: 12/04/2022] Open
Abstract
Campylobacter jejuni is a leading cause of foodborne illnesses around the world. Since C. jejuni is microaerophilic and sensitive to oxygen, aerotolerance is important in the transmission of C. jejuni to humans via foods under aerobic conditions. In this study, 70 C. jejuni strains were isolated from retail raw chicken meats and were subject to multilocus sequence typing (MLST) analysis. In the aerotolerance testing by aerobic shaking at 200 rpm, 50 (71.4%) isolates survived after 12 h (i.e., aerotolerant), whereas 20 (28.6%) isolates did not (i.e., aerosensitive). Interestingly, further aerobic cultivation showed that 25 (35.7%) isolates still survived even after 24 h of vigorous aerobic shaking (i.e., hyper-aerotolerant). Compared to aerosensitive strains, the hyper-aerotolerant strains exhibited increased resistance to oxidative stress, both peroxide and superoxide. A mutation of ahpC in hyper-aerotolerant strains significantly impaired aerotolerance, indicating oxidative stress defense plays an important role in hyper-aerotolerance. The aerotolerant and hyper-aerotolerant strains were primarily classified into MLST clonal complexes (CCs)-21 and -45, which are known to be the major CCs implicated in human gastroenteritis. Compared to the aerosensitive strains, CC-21 was more dominant than CC-45 in aerotolerant and hyper-aerotolerant strains. The findings in this study revealed that hyper-aerotolerant C. jejuni is highly prevalent in raw chicken meats. The enhanced aerotolerance in C. jejuni would impact human infection by increasing possibilities of the foodborne transmission of C. jejuni under aerobic conditions.
Collapse
Affiliation(s)
- Euna Oh
- School of Public Health, University of Alberta Edmonton, AB, Canada
| | - Lynn McMullen
- Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Byeonghwa Jeon
- School of Public Health, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
25
|
Guyard-Nicodème M, Rivoal K, Houard E, Rose V, Quesne S, Mourand G, Rouxel S, Kempf I, Guillier L, Gauchard F, Chemaly M. Prevalence and characterization of Campylobacter jejuni from chicken meat sold in French retail outlets. Int J Food Microbiol 2015; 203:8-14. [DOI: 10.1016/j.ijfoodmicro.2015.02.013] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/10/2015] [Accepted: 02/11/2015] [Indexed: 12/25/2022]
|
26
|
Comparison of epidemiologically linked Campylobacter jejuni isolated from human and poultry sources. Epidemiol Infect 2015; 143:3498-509. [PMID: 25936829 DOI: 10.1017/s0950268815000886] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Campylobacter jejuni is responsible for most foodborne bacterial infections worldwide including Australia. The aim of this study was to investigate a combination of typing methods in the characterization of C. jejuni isolated from clinical diarrhoeal samples (n = 20) and chicken meat (n = 26) in order to identify the source of infection and rank isolates based on their relative risk to humans. Sequencing of the flaA short variable region demonstrated that 86% of clinical isolates had genotypes that were also found in chicken meat. A polymerase chain reaction binary typing system identified 27 different codes based on the presence or absence of genes that have been reported to be associated with various aspects of C. jejuni pathogenicity, indicating that not all isolates may be of equal risk to human health. The lipooligosaccharide (LOS) of the C. jejuni isolates was classified into six classes (A, B, C, E, F, H) with 10·4% remaining unclassified. The majority (72·7%) of clinical isolates possessed sialylated LOS classes. Sialylated LOS classes were also detected in chicken isolates (80·7%). Antimicrobial tests indicated a low level of resistance, with no phenotypic resistance found to most antibiotics tested. A combination of typing approaches was useful to assign isolates to a source of infection and assess their risk to humans.
Collapse
|
27
|
Bolton DJ. Campylobacter virulence and survival factors. Food Microbiol 2014; 48:99-108. [PMID: 25790997 DOI: 10.1016/j.fm.2014.11.017] [Citation(s) in RCA: 208] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 11/26/2014] [Accepted: 11/30/2014] [Indexed: 10/24/2022]
Abstract
Despite over 30 years of research, campylobacteriosis is the most prevalent foodborne bacterial infection in many countries including in the European Union and the United States of America. However, relatively little is known about the virulence factors in Campylobacter or how an apparently fragile organism can survive in the food chain, often with enhanced pathogenicity. This review collates information on the virulence and survival determinants including motility, chemotaxis, adhesion, invasion, multidrug resistance, bile resistance and stress response factors. It discusses their function in transition through the food processing environment and human infection. In doing so it provides a fundamental understanding of Campylobacter, critical for improved diagnosis, surveillance and control.
Collapse
Affiliation(s)
- Declan J Bolton
- Food Safety Department, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
28
|
Islam Z, van Belkum A, Wagenaar JA, Cody AJ, de Boer AG, Sarker SK, Jacobs BC, Talukder KA, Endtz HP. Comparative population structure analysis of Campylobacter jejuni from human and poultry origin in Bangladesh. Eur J Clin Microbiol Infect Dis 2014; 33:2173-81. [PMID: 24962195 DOI: 10.1007/s10096-014-2184-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 06/09/2014] [Indexed: 12/01/2022]
Abstract
Campylobacter jejuni is the most important cause of antecedent infections leading to Guillain-Barré syndrome (GBS) and Miller Fisher syndrome (MFS). The objective of the present study was to define the genetic diversity, population structure, and potential role of poultry in the transmission of Campylobacter to humans in Bangladesh. We determined the population structure of C. jejuni isolated from poultry (n = 66) and patients with enteritis (n = 39) or GBS (n = 10). Lipooligosaccharide (LOS) typing showed that 50/66 (76 %) C. jejuni strains isolated from poultry could be assigned to one of five LOS locus classes (A-E). The distribution of neuropathy-associated LOS locus classes A, B, and C were 30/50 (60 %) among the typable strains isolated from poultry. The LOS locus classes A, B, and C were significantly associated with GBS and enteritis-related C. jejuni strains more than for the poultry strains [(31/38 (82 %) vs. 30/50 (60 %), p < 0.05]. Multilocus sequence typing (MLST) defined 15 sequence types (STs) and six clonal complexes (CCs) among poultry isolates, including one ST-3740 not previously documented. The most commonly identified type, ST-5 (13/66), in chicken was seen only once among human isolates (1/49) (p < 0.001). Amplified fragment length polymorphism (AFLP) revealed three major clusters (A, B, and C) among C. jejuni isolated from humans and poultry. There seems to be a lack of overlap between the major human and chicken clones, which suggests that there may be additional sources for campylobacteriosis other than poultry in Bangladesh.
Collapse
Affiliation(s)
- Z Islam
- Emerging Diseases and Immunobiology Research Group, Centre for Food and Waterborne Diseases (CFWD), International Centre for Diarrheal Diseases Research (ICDDR,B), GPO Box 128, Dhaka, 1000, Bangladesh,
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
CampylobacterSpecies. Food Microbiol 2014. [DOI: 10.1128/9781555818463.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Louwen R, Hays JP. Is there an unrecognised role for Campylobacter infections in (chronic) inflammatory diseases? World J Clin Infect Dis 2013; 3:58-69. [DOI: 10.5495/wjcid.v3.i4.58] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2013] [Revised: 10/30/2013] [Accepted: 11/16/2013] [Indexed: 02/06/2023] Open
Abstract
Campylobacter species are one of the major causes of global bacterial-related diarrheal disease worldwide. The disease is most frequently associated with the ingestion of contaminated meat, raw milk, pets, contaminated water, and the organism may be frequently cultured from the faeces of chicken and other domesticated farm animals. Of the 17 established Campylobacter species, the most important pathogens for humans are Campylobacter jejuni (C. jejuni), Campylobacter coli (C. coli) and Campylobacter fetus (C. fetus), which are all associated with diarrheal disease. Further, C. jejuni and C. coli are also associated with the neuroparalytic diseases Guillain-Barré syndrome and Miller Fischer syndrome, respectively, whereas C. fetus is linked with psoriatic arthritis. The discovery of both “molecular mimicry” and translocation-related virulence in the pathogenesis of C. jejuni-induced disease, indicates that Campylobacter-related gastrointestinal infections may not only generate localized, acute intestinal infection in the human host, but may also be involved in the establishment of chronic inflammatory diseases. Indeed, pathogenicity studies on several Campylobacter species now suggest that molecular mimicry and translocation-related virulence is not only related to C. jejuni, but may play a role in human disease caused by other Campylobacter spp. In this review, the authors provide a review based on the current literature describing the potential links between Campylobacter spp. and (chronic) inflammatory diseases, and provide their opinions on the likely role of Campylobacter in such diseases.
Collapse
|
31
|
Capuano F, Mancusi A, Capparelli R, Esposito S, Proroga YT. Characterization of Drug Resistance and Virulotypes ofSalmonellaStrains Isolated from Food and Humans. Foodborne Pathog Dis 2013; 10:963-8. [DOI: 10.1089/fpd.2013.1511] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Federico Capuano
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
- Centro Pilota Tipizzazione Salmonelle (CePiTSa), c/o Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, Portici, Italy
| | - Andrea Mancusi
- Centro Interdipartimentale di Ricerche per la Gestione delle Risorse Idrobiologiche e per l'Acquacoltura (CRIAcq), Portici, Italy
| | | | - Salvatore Esposito
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
| | - Yolande T.R. Proroga
- Istituto Zooprofilattico Sperimentale del Mezzogiorno, Dipartimento di Ispezione degli Alimenti, Portici, Italy
- Centro Pilota Tipizzazione Salmonelle (CePiTSa), c/o Istituto Zooprofilattico Sperimentale del Mezzogiorno Via Salute, Portici, Italy
| |
Collapse
|
32
|
Ellström P, Feodoroff B, Hänninen ML, Rautelin H. Lipooligosaccharide locus class of Campylobacter jejuni: sialylation is not needed for invasive infection. Clin Microbiol Infect 2013; 20:524-9. [PMID: 24102802 PMCID: PMC4235400 DOI: 10.1111/1469-0691.12382] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Revised: 08/30/2013] [Accepted: 08/30/2013] [Indexed: 11/30/2022]
Abstract
Campylobacter jejuni is a highly diverse enteropathogen that is commonly detected worldwide. It can sometimes cause bacteraemia, but the bacterial characteristics facilitating bloodstream infection are not known. A total of 73 C. jejuni isolates, consecutively collected from blood-borne infections during a 10-year period all over Finland and for which detailed clinical information of the patients were available, were included. We screened the isolates by PCR for the lipooligosaccharide (LOS) locus class and for the presence of the putative virulence genes ceuE, ciaB, fucP, and virB11. The isolates were also tested for γ-glutamyl transpeptidase production. The results were analysed with respect to the clinical characteristics of the patients, and the multilocus sequence types (MLSTs) and serum resistance of the isolates. LOS locus classes A, B, and C, which carry genes for sialylation of LOS, were detected in only 23% of the isolates. These isolates were not more resistant to human serum than those with the genes of non-sialylated LOS locus classes, but were significantly more prevalent among patients with underlying diseases (p 0.02). The fucose permease gene fucP was quite uncommon, but was associated with the isolates with the potential to sialylate LOS (p <0.0001). LOS locus classes and some of the putative virulence factors were associated with MLST clonal complexes. Although some of the bacterial characteristics studied here have been suggested to be important for the invasiveness of C. jejuni, they did not explain why the clinical isolates in the present study were able to cause bacteraemia.
Collapse
Affiliation(s)
- P Ellström
- Department of Medical Sciences, Clinical Bacteriology, Uppsala University, Uppsala, Sweden
| | | | | | | |
Collapse
|
33
|
Guyard-Nicodème M, Tresse O, Houard E, Jugiau F, Courtillon C, El Manaa K, Laisney MJ, Chemaly M. Characterization of Campylobacter spp. transferred from naturally contaminated chicken legs to cooked chicken slices via a cutting board. Int J Food Microbiol 2013; 164:7-14. [PMID: 23587707 DOI: 10.1016/j.ijfoodmicro.2013.03.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 02/05/2013] [Accepted: 03/09/2013] [Indexed: 10/27/2022]
Abstract
Campylobacter represents the leading cause of gastroenteritis in Europe. Campylobacteriosis is mainly due to C. jejuni and C. coli. Poultry meat is the main source of contamination, and cross-contaminations in the consumer's kitchen appear to be the important route for exposure. The aim of this study was to examine the transfer of Campylobacter from naturally contaminated raw poultry products to a cooked chicken product via the cutting board and to determine the characteristics of the involved isolates. This study showed that transfer occurred in nearly 30% of the assays and that both the C. jejuni and C. coli species were able to transfer. Transfer seems to be linked to specific isolates: some were able to transfer during separate trials while others were not. No correlation was found between transfer and adhesion to inert surfaces, but more than 90% of the isolates presented moderate or high adhesion ability. All tested isolates had the ability to adhere and invade Caco-2 cells, but presented high variability between isolates. Our results highlighted the occurrence of Campylobacter cross-contamination via the cutting board in the kitchen. Moreover, they provided new interesting data to be considered in risk assessment studies.
Collapse
Affiliation(s)
- Muriel Guyard-Nicodème
- Anses, Ploufragan/Plouzané Laboratory, Hygiene and Quality of Poultry and Pork Products Unit, BP 53, Ploufragan, F-22440, France
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Ellström P, Feodoroff B, Hänninen ML, Rautelin H. Characterization of clinical Campylobacter jejuni isolates with special emphasis on lipooligosaccharide locus class, putative virulence factors and host response. Int J Med Microbiol 2013; 303:134-9. [PMID: 23528202 DOI: 10.1016/j.ijmm.2013.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 01/15/2013] [Accepted: 01/27/2013] [Indexed: 10/27/2022] Open
Abstract
Recent studies have indicated a role of the lipooligosaccharide (LOS) of Campylobacter jejuni in the severe neurological Guillain Barré syndrome, as well as in development of more severe symptoms of acute enteritis. We evaluated the role of the LOS locus class in C. jejuni infection among 163 enteritis patients. The prevalence of LOS locus classes differed according to the origin of the isolates. Furthermore, LOS locus classes A and B were significantly associated with susceptibility or resistance to ciprofloxacin and doxycycline. However, our results do not corroborate earlier findings that isolates with potential to sialylate LOS might be associated with more severe symptoms of enteritis. Instead, in an infection model, such isolates gave weaker epithelial IL-8 responses than nonsialylated isolates. Absence of the iron transport protein encoded by the gene ceuE as well as the putative fucose permease gene cj0486 was associated with increased in vitro IL-8 secretion.
Collapse
Affiliation(s)
- Patrik Ellström
- Department of Medical Sciences, Clinical Bacteriology, University of Uppsala, S-75185 Uppsala, Sweden.
| | | | | | | |
Collapse
|
35
|
Lipooligosaccharide locus classes are associated with certain Campylobacter jejuni multilocus sequence types. Eur J Clin Microbiol Infect Dis 2013; 31:2203-9. [PMID: 22298242 DOI: 10.1007/s10096-012-1556-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/11/2012] [Indexed: 10/14/2022]
Abstract
The lipooligosaccharide (LOS) locus class was determined using polymerase chain reaction (PCR) in 335 Finnish Campylobacter jejuni strains isolated from humans, poultry and bovines with known multilocus sequence types. The results revealed an association between clonal complexes/sequence types (STs) and LOS locus classes. Based on these results, we further predicted the LOS locus classes distribution among the STs of 209 additional C. jejuni strains from Finnish human domestically acquired infections. Non-sialylated LOS locus classes were associated with STs that comprised ≈55% of patient strains. Sialylated LOS locus classes A and B were associated with STs infrequently isolated, whereas class C was correlated with the ST-21 complex, found in ≈14% of human strains. A combination of the LOS locus class and multilocus sequence type may provide new information on the epidemiology and association of C. jejuni strains with certain disease outcomes.
Collapse
|
36
|
Asakura H, Brüggemann H, Sheppard SK, Ekawa T, Meyer TF, Yamamoto S, Igimi S. Molecular evidence for the thriving of Campylobacter jejuni ST-4526 in Japan. PLoS One 2012; 7:e48394. [PMID: 23144873 PMCID: PMC3492356 DOI: 10.1371/journal.pone.0048394] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/01/2012] [Indexed: 12/19/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human gastroenteritis worldwide. This study aimed at a better understanding of the genetic diversity of this pathogen disseminated in Japan. We performed multilocus sequence typing (MLST) of Campylobacter jejuni isolated from different sources (100 human, 61 poultry, and 51 cattle isolates) in Japan between 2005 and 2006. This approach identified 62 sequence types (STs) and 19 clonal complexes (CCs), including 11 novel STs. These 62 STs were phylogenetically divided into 6 clusters, partially exhibiting host association. We identified a novel ST (ST-4526) that has never been reported in other countries; a phylogenetic analysis showed that ST-4526 and related STs showed distant lineage from the founder ST, ST-21 within CC-21. Comparative genome analysis was performed to investigate which properties could be responsible for the successful dissemination of ST-4526 in Japan. Results revealed that three representative ST-4526 isolates contained a putative island comprising the region from Cj0737 to Cj0744, which differed between the ST-4526 isolates and the reference strain NCTC11168 (ST-43/CC-21). Amino acid sequence alignment analyses showed that two of three ST-4526 isolates expressed 693aa- filamentous hemagglutination domain protein (FHA), while most of other C. jejuni strains whose genome were sequenced exhibited its truncation. Correspondingly, host cell binding of FHA-positive C. jejuni was greater than that of FHA-truncated strains, and exogenous administration of rFHA protein reduced cell adhesion of FHA-positive bacteria. Biochemical assays showed that this putative protein exhibited a dose-dependent binding affinity to heparan sulfate, indicating its adhesin activity. Moreover, ST-4526 showed increased antibiotic-resistance (nalidixic acid and fluoroquinolones) and a reduced ability for DNA uptake. Taken together, our data suggested that these combined features contributed to the clonal thriving of ST-4526 in Japan.
Collapse
MESH Headings
- Adhesins, Bacterial/chemistry
- Adhesins, Bacterial/metabolism
- Animals
- Bacterial Adhesion
- Base Sequence
- Biological Evolution
- Campylobacter jejuni/classification
- Campylobacter jejuni/genetics
- Campylobacter jejuni/growth & development
- Campylobacter jejuni/isolation & purification
- Cattle
- DNA, Bacterial/metabolism
- Databases, Genetic
- Drug Resistance, Microbial/genetics
- Electrophoresis, Gel, Pulsed-Field
- Genetic Linkage
- Genetic Loci
- Genetic Variation
- Genome, Bacterial/genetics
- Humans
- Japan
- Lipopolysaccharides/metabolism
- Multilocus Sequence Typing/methods
- N-Acetylneuraminic Acid/metabolism
- Phylogeography
- Poultry/microbiology
- Recombination, Genetic/genetics
- Transformation, Genetic
Collapse
Affiliation(s)
- Hiroshi Asakura
- Division of Biomedical Food Research, National Institute of Health Sciences, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
37
|
A novel link between Campylobacter jejuni bacteriophage defence, virulence and Guillain–Barré syndrome. Eur J Clin Microbiol Infect Dis 2012; 32:207-26. [DOI: 10.1007/s10096-012-1733-4] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 08/13/2012] [Indexed: 11/27/2022]
|
38
|
Zautner AE, Ohk C, Tareen AM, Lugert R, Gross U. Epidemiological association of Campylobacter jejuni groups with pathogenicity-associated genetic markers. BMC Microbiol 2012; 12:171. [PMID: 22873291 PMCID: PMC3487957 DOI: 10.1186/1471-2180-12-171] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 08/02/2012] [Indexed: 11/10/2022] Open
Abstract
Background Campylobacter jejuni, the most leading cause for bacterial gastroenteritis worldwide, shows a high genetic diversity among its isolates. Recently, we demonstrated the existence of six C. jejuni-groups by combining MLST with six genetic markers. These groups were further characterized by the detection of cj1321-cj1326, fucP, cj0178, cj0755/cfrA, ceuE, pldA, cstII, and cstIII in order (I.) to show further associations between these different genetic markers and MLST CCs. Moreover, different studies were able to associate several of these markers: a sialylated lipoologosaccharide (cstII/III+), the gamma-glytamyl-transpeptidase (ggt+), and the absence of a certain allele of the enterochelin-uptake-binding-protein (ceuE11168-) with severe campylobacteriosis, bloody diarrhea and unpleasant outcome. Additionally more than half of human Campylobacter-isolates were assigned to a non-livestock clade associated with the absence of cj1321-cj1326. These isolates were considered as mere colonizers. From the combination of marker genes, the ratio of human isolates in a specific group, and clinical data (II.) it should be demonstrated to which of the previous defined groups these Campylobacter-subpopulations, associated with higher virulence, correspond. Results Besides the marker gene pldA, all new estimated genetic markers show significant differences in their distribution among the various MLST-based groups. Especially the genes for cj1321-cj1326, fucP, cj0178, cj0755/cfrA are widely associated with each other and split the study population into two major and seven intermediate groups substantiating the previous group-definition, whereas cstII and cstIII indicate at least three groups following an independent distribution pattern. Conclusions Based on these data a group of C. jejuni-isolates characterized by the presence of ansB, dmsA, ggt, and the absence of cj1365c, cj1585c, cj1321-cj1326, fucP, cj0178, cj0755/cfrA, and cstII/III was associated with a higher prevalence in human campylobacteriosis, bloody diarrhea as well as hospitalization and bears obviously a higher virulence for humans. In contrast to that better livestock-adapted groups characterized by the ability to utilize L-fucose and the presence of all of the five identified putative C. jejuni iron-uptake systems as well as cj1321-cj1326, cj1365c, cj1585c, and cstII and/or cstIII (sialylated lipoologosaccharide) is more prevalent in animal hosts and was secondary associated with less severe campylobacteriosis.
Collapse
Affiliation(s)
- Andreas E Zautner
- Universitätsmedizin Göttingen, Abteilung für Medizinische Mikrobiologie, Germany.
| | | | | | | | | |
Collapse
|
39
|
Campylobacter jejuni translocation across intestinal epithelial cells is facilitated by ganglioside-like lipooligosaccharide structures. Infect Immun 2012; 80:3307-18. [PMID: 22778098 DOI: 10.1128/iai.06270-11] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Translocation across intestinal epithelial cells is an established pathogenic feature of the zoonotic bacterial species Campylobacter jejuni. The number of C. jejuni virulence factors known to be involved in translocation is limited. In the present study, we investigated whether sialylation of C. jejuni lipooligosaccharide (LOS) structures, generating human nerve ganglioside mimics, is important for intestinal epithelial translocation. We here show that C. jejuni isolates expressing ganglioside-like LOS bound in larger numbers to the Caco-2 intestinal epithelial cells than C. jejuni isolates lacking such structures. Next, we found that ganglioside-like LOS facilitated endocytosis of bacteria into Caco-2 cells, as visualized by quantitative microscopy using the early and late endosomal markers early endosome-associated protein 1 (EEA1), Rab5, and lysosome-associated membrane protein 1 (LAMP-1). This increased endocytosis was associated with larger numbers of surviving and translocating bacteria. Next, we found that two different intestinal epithelial cell lines (Caco-2 and T84) responded with an elevated secretion of the T-cell attractant CXCL10 to infection by ganglioside-like LOS-expressing C. jejuni isolates. We conclude that C. jejuni translocation across Caco-2 cells is facilitated by ganglioside-like LOS, which is of clinical relevance since C. jejuni ganglioside-like LOS-expressing isolates are linked with severe gastroenteritis and bloody stools in C. jejuni-infected patients.
Collapse
|
40
|
Association of Campylobacter jejuni metabolic traits with multilocus sequence types. Appl Environ Microbiol 2012; 78:5550-4. [PMID: 22660710 DOI: 10.1128/aem.01023-12] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
In this study, we describe the association of three Campylobacter jejuni metabolism-related traits, γ-glutamyl-transpeptidase (GGT), fucose permease (fucP), and secreted L-asparaginase [ansB(s)], with multilocus sequence types (STs). A total of 710 C. jejuni isolates with known STs were selected and originated from humans, poultry, bovines, and the environment. Among these isolates, we found 31.1% to produce GGT and 49.3% and 30.3% to be positive for ansB(s) and fucP, respectively. The combination of GGT production, the presence of ansB(s), and the absence of fucP was associated with ST-22, ST-586, and the ST-45 and ST-283 clonal complexes (CCs), which were the main STs and CCs found among the human and chicken isolates. The ST-21 CC was associated with the presence of fucP and was the major CC among the bovine isolates. Although the ST-61 CC was the second major CC among the bovine isolates, these isolates did not have any of the markers studied, making the role of fucP in bovine gut colonization questionable. The ST-45 CC was subdivided into three groups that were attributed solely to ST-45. One group showed a marker combination described previously, another group was found to be positive for ansB(s) only, and the third group did not have any of the markers studied. These results suggest that the host association of these markers seems to be indirect and may arise as a consequence of host-ST and -CC associations. Thus, a representative collection of STs should be tested to draw sensible conclusions in similar studies.
Collapse
|
41
|
Louwen R, van Baarlen P, van Vliet AHM, van Belkum A, Hays JP, Endtz HP. Campylobacter bacteremia: a rare and under-reported event? Eur J Microbiol Immunol (Bp) 2012; 2:76-87. [PMID: 24611124 DOI: 10.1556/eujmi.2.2012.1.11] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/18/2012] [Indexed: 12/12/2022] Open
Abstract
Bacteria belonging to the species Campylobacter are the most common cause of bacterial diarrhoea in humans. The clinical phenotype associated with Campylobacter infections ranges from asymptomatic conditions to severe colitis and bacteremia. In susceptible patients, Campylobacter infections are associated with significant morbidity and mortality, with both host factors and bacterial factors being involved in the pathogenesis of bacteremia. In the host, age, gender and immune-compromising conditions may predispose for Campylobacter infections, whilst the most important bacterial determinants mentioned in the literature are cytotoxin production and flagellar motility. The role of sialylated lipo-oligosaccharide (LOS) and serum resistance in bacteremia is inconclusive at this time, and the clinical significance of Campylobacter bacteremia is not yet fully understood. More emphasis on the detection of Campylobacter species from blood cultures in susceptible patients at risk for Campylobacter infections will increase our understanding of the pathogenesis and the relevance of Campylobacter bacteremia.
Collapse
|
42
|
Hermans D, Pasmans F, Heyndrickx M, Van Immerseel F, Martel A, Van Deun K, Haesebrouck F. A tolerogenic mucosal immune response leads to persistent Campylobacter jejuni colonization in the chicken gut. Crit Rev Microbiol 2011; 38:17-29. [PMID: 21995731 DOI: 10.3109/1040841x.2011.615298] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Campylobacter enteritis is the most reported zoonotic disease in many developed countries where it imposes a serious health burden. Campylobacter transmission to humans occurs primarily through the chicken vector. Chicks are regarded as a natural host for Campylobacter species and are colonized with C. jejuni in particular. But despite carrying a very high bacterial load in their gastrointestinal tract, these birds, in contrast to humans, do not develop pathological signs. It seems that in chickens C. jejuni principally harbors in the cecal mucosal crypts, where an inefficient inflammatory response fails to clear the bacterium from the gut. Recent intensive research resulted in an increased insight into the cross talk between C. jejuni and its avian host. This review discusses the chicken intestinal mucosal immune response upon C. jejuni entrance, leading to tolerance and persistent cecal colonization. It might in addition provide a solid base for further research regarding this topic aiming to fully understand the host-bacterium dynamics of C. jejuni in chicks and to develop effective control measures to clear this zoonotic pathogen from poultry lines.
Collapse
Affiliation(s)
- David Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium.
| | | | | | | | | | | | | |
Collapse
|
43
|
Hermans D, Van Deun K, Martel A, Van Immerseel F, Messens W, Heyndrickx M, Haesebrouck F, Pasmans F. Colonization factors of Campylobacter jejuni in the chicken gut. Vet Res 2011; 42:82. [PMID: 21714866 PMCID: PMC3156733 DOI: 10.1186/1297-9716-42-82] [Citation(s) in RCA: 153] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 06/29/2011] [Indexed: 11/10/2022] Open
Abstract
Campylobacter contaminated broiler chicken meat is an important source of foodborne gastroenteritis and poses a serious health burden in industrialized countries. Broiler chickens are commonly regarded as a natural host for this zoonotic pathogen and infected birds carry a very high C. jejuni load in their gastrointestinal tract, especially the ceca. This eventually results in contaminated carcasses during processing. Current intervention methods fail to reduce the colonization of broiler chicks by C. jejuni due to an incomplete understanding on the interaction between C. jejuni and its avian host. Clearly, C. jejuni developed several survival and colonization mechanisms which are responsible for its highly adapted nature to the chicken host. But how these mechanisms interact with one another, leading to persistent, high-level cecal colonization remains largely obscure. A plethora of mutagenesis studies in the past few years resulted in the identification of several of the genes and proteins of C. jejuni involved in different aspects of the cellular response of this bacterium in the chicken gut. In this review, a thorough, up-to-date overview will be given of the survival mechanisms and colonization factors of C. jejuni identified to date. These factors may contribute to our understanding on how C. jejuni survival and colonization in chicks is mediated, as well as provide potential targets for effective subunit vaccine development.
Collapse
Affiliation(s)
- David Hermans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Kim Van Deun
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - An Martel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Filip Van Immerseel
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Winy Messens
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
- Current address: Biological Hazards (BIOHAZ) Unit, European Food Safety Authority (EFSA), Largo N. Palli 5/A, I-43121 Parma, Italy
| | - Marc Heyndrickx
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
- Institute for Agricultural and Fisheries Research, Technology and Food Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Freddy Haesebrouck
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Frank Pasmans
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| |
Collapse
|
44
|
Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl Environ Microbiol 2011; 77:2359-65. [PMID: 21278270 DOI: 10.1128/aem.02403-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
In this study, multilocus sequence typing (MLST) was combined with the genetic detection of six genetic markers, ansB, dmsA, ggt, cj1585c, cjj81176-1367/71 (cj1365c), and the two-gene marker tlp7 (cj0951c plus cj0952c), to assess if their presence correlated with different C. jejuni clonal groups. Using a collection of 266 C. jejuni isolates from (in decreasing order of sample size) humans, chickens, cattle, and turkeys, it was further investigated whether the resulting genotypes correlated with the isolation source. We found combinations of the six marker genes to be mutually exclusive, and their patterns of presence or absence correlated to some degree with animal source. Together with MLST results, the obtained genotypes could be segregated into six groups. An association was identified for ansB, dmsA, and ggt with the MLST-clonal complexes (MLST-CC) 22, 42, 45, and 283, which formed the most prominent group, in which chickens were the most prevalent animal source. Two other groups, characterized by the presence of cj1585c, cjj81176-1367/71, and the two-gene marker tlp7, associated with either MLST-CC 21 or 61, were overrepresented in isolates of bovine origin. Mutually exclusive marker gene combinations were observed for ansB, dmsA, and ggt, typically found in CC 45 and the related CC 22, 42, and 283, whereas the other three marker genes were found mostly in CC 21, 48, and 206. The presence of the two-gene marker tlp7, which is typical for MLST 21 and 53 as well as for MLST-CC 61, strongly correlates with a bovine host; this is interpreted as an example of host adaptation. In cases of C. jejuni outbreaks, these genetic markers could be helpful for more effective source tracking.
Collapse
|
45
|
Senior NJ, Bagnall MC, Champion OL, Reynolds SE, La Ragione RM, Woodward MJ, Salguero FJ, Titball RW. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol 2011; 60:661-669. [PMID: 21233296 DOI: 10.1099/jmm.0.026658-0] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Larvae of Galleria mellonella (Greater Wax Moth) have been shown to be susceptible to Campylobacter jejuni infection and our study characterizes this infection model. Following infection with C. jejuni human isolates, bacteria were visible in the haemocoel and gut of challenged larvae, and there was extensive damage to the gut. Bacteria were found in the extracellular and cell-associated fraction in the haemocoel, and it was shown that C. jejuni can survive in insect cells. Finally, we have used the model to screen a further 67 C. jejuni isolates belonging to different MLST types. Isolates belonging to ST257 were the most virulent in the Galleria model, whereas those belonging to ST21 were the least virulent.
Collapse
Affiliation(s)
- Nicola J Senior
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Mary C Bagnall
- Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | - Olivia L Champion
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| | - Stuart E Reynolds
- Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Roberto M La Ragione
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK.,Veterinary Laboratories Agency, Woodham Lane, Addlestone, UK
| | | | | | - Richard W Titball
- School of BioSciences, College of Life and Environmental Sciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, UK
| |
Collapse
|
46
|
Association of Campylobacter jejuni Cj0859c gene (fspA) variants with different C. jejuni multilocus sequence types. Appl Environ Microbiol 2010; 76:6942-3. [PMID: 20729319 DOI: 10.1128/aem.01605-10] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Cj0859c variants fspA1 and fspA2 from 669 human, poultry, and bovine Campylobacter jejuni strains were associated with certain hosts and multilocus sequence typing (MLST) types. Among the human and poultry strains, fspA1 was significantly (P < 0.001) more common than fspA2. FspA2 amino acid sequences were the most diverse and were often truncated.
Collapse
|
47
|
Habib I, Uyttendaele M, De Zutter L. Survival of poultry-derived Campylobacter jejuni of multilocus sequence type clonal complexes 21 and 45 under freeze, chill, oxidative, acid and heat stresses. Food Microbiol 2010; 27:829-34. [PMID: 20630326 DOI: 10.1016/j.fm.2010.04.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 04/13/2010] [Accepted: 04/20/2010] [Indexed: 11/15/2022]
Abstract
The application of multilocus sequence typing (MLST) for studying Campylobacter jejuni diversity reveals that MLST clonal complex (CC) 21 and CC-45 occupies significant proportion in the diverse population of C. jejuni. These two complexes are ecologically abundant and represent an interesting subpopulation for studying C. jejuni survival under different stress conditions. In the present study we characterize and compare 19 C. jejuni strains assigned to CC-21 and CC-45, isolated from chicken meat, based on laboratory stress models maintained in Muller-Hinton broth. Model conditions were mimicking freeze, chill, oxidative, acid and heat stresses. Results show that survival patterns varied between the strains. C. jejuni strains of CC-21 survived significantly better than C. jejuni strains of CC-45 under heat (P value = 0.022) and chill (P value = 0.001) stress models. On the other hand, C. jejuni strains of CC-45 showed significantly better survival compared to C. jejuni strains of CC-21 in response to oxidative (P value = 0.003) and freeze (P value = 0.021) stress models. C. jejuni strains assigned to the founder ST-45 showed significantly better survival (P value = 0.017) under heat stress model compared to their ancestral sequence types. However, an association between survival fitness and the diversification of a clonal group cannot be demonstrated directly from the obtained results. In conclusion, findings of the present study show that genotypic variations of C. jejuni might play a role in enabling certain lineages to be selected when encountering adverse and stressful environments. In future stress response studies, it is recommended to consider the effect of genotypic diversity among C. jejuni strains as that might bias the experimental findings.
Collapse
Affiliation(s)
- Ihab Habib
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, B-9820 Merelbeke, Belgium.
| | | | | |
Collapse
|
48
|
Analysis of the baseline survey on the prevalence of Campylobacter in broiler batches and of Campylobacter and Salmonella on broiler carcasses in the EU, 2008 ‐ Part A: Campylobacter and Salmonella prevalence estimates. EFSA J 2010. [DOI: 10.2903/j.efsa.2010.1503] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
49
|
Abstract
Both Helicobacter pylori and Campylobacter jejuni are highly prevalent Gram-negative microaerophilic bacteria which are gastrointestinal pathogens of humans; H. pylori colonizes the gastroduodenal compartment and C. jejuni the intestinal mucosa. Although H. pylori causes chronic gastric infection leading to gastritis, peptic ulcers and eventually gastric cancer while C. jejuni causes acute infection inducing diarrhoeal disease, the endotoxin molecules of both bacterial species contrastingly contribute to their pathogenesis and the autoimmune sequelae each induces. Compared with enterobacterial endotoxin, that of H. pylori has significantly lower endotoxic and immuno-activities, the molecular basis for which is the underphosphorylation and underacylation of the lipid A component that interacts with immune receptors. This induction of low immunological responsiveness by endotoxin may aid the prolongation of H. pylori infection and therefore infection chronicity. On the other hand, this contrasts with acute infection-causing C. jejuni where overt inflammation contributes to pathology and diarrhoea production, and whose endotoxin is immunologically and endotoxically active. Futhermore, both H. pylori and C. jejuni exhibit molecular mimicry in the saccharide components of their endotoxins which can induce autoreactive antibodies; H. pylori expresses mimicry of Lewis and some ABO blood group antigens, C. jejuni mimicry of gangliosides. The former has been implicated in influencing the development of inflammation and gastric atrophy (a precursor of gastic cancer), the latter is central to the development of the neurological disorder Guillain-Barré syndrome. Both diseases raise important questions concerning infection-induced autoimmunity awaiting to be addressed.
Collapse
Affiliation(s)
- Anthony P Moran
- Laboratory of Molecular Biochemistry, Microbiology, School of Natural Sciences, National University of Ireland, Galway, Ireland.
| |
Collapse
|
50
|
Binary genomotyping using lipooligosaccharide biosynthesis genes distinguishes between Campylobacter jejuni isolates within poultry-associated multilocus sequence types. Epidemiol Infect 2009; 138:992-1003. [PMID: 19883521 DOI: 10.1017/s0950268809991075] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Campylobacter jejuni is a leading cause of human bacterial gastroenteritis throughout the industrialized world. We investigated whether or not differences in gene complement at the lipooligosaccharide (LOS) biosynthesis locus can identify epidemiologically useful binary genomotypes in 87 C. jejuni isolates from poultry-associated multilocus sequence types (STs) collected during the course of a sentinel surveillance study. Using a PCR-based approach, we correlated assignment of both isolate LOS locus class and binary genomotype with ST. We found that isolates within STs 45, 190, 354 and 474 displayed mosaicism in gene complement at the intra-ST level. For example, based upon their binary genomotypes, we assigned individual ST-45 isolates from human clinical cases as probably originating from either a poultry or wild-bird source. However, intra-ST mosaicism in gene complement was observed alongside broader patterns of congruence in LOS locus class and gene complement that distinguished between isolates from different STs.
Collapse
|