1
|
Barbosa A, Miranda S, Azevedo NF, Cerqueira L, Azevedo AS. Imaging biofilms using fluorescence in situ hybridization: seeing is believing. Front Cell Infect Microbiol 2023; 13:1195803. [PMID: 37284501 PMCID: PMC10239779 DOI: 10.3389/fcimb.2023.1195803] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/08/2023] [Indexed: 06/08/2023] Open
Abstract
Biofilms are complex structures with an intricate relationship between the resident microorganisms, the extracellular matrix, and the surrounding environment. Interest in biofilms is growing exponentially given its ubiquity in so diverse fields such as healthcare, environmental and industry. Molecular techniques (e.g., next-generation sequencing, RNA-seq) have been used to study biofilm properties. However, these techniques disrupt the spatial structure of biofilms; therefore, they do not allow to observe the location/position of biofilm components (e.g., cells, genes, metabolites), which is particularly relevant to explore and study the interactions and functions of microorganisms. Fluorescence in situ hybridization (FISH) has been arguably the most widely used method for an in situ analysis of spatial distribution of biofilms. In this review, an overview on different FISH variants already applied on biofilm studies (e.g., CLASI-FISH, BONCAT-FISH, HiPR-FISH, seq-FISH) will be explored. In combination with confocal laser scanning microscopy, these variants emerged as a powerful approach to visualize, quantify and locate microorganisms, genes, and metabolites inside biofilms. Finally, we discuss new possible research directions for the development of robust and accurate FISH-based approaches that will allow to dig deeper into the biofilm structure and function.
Collapse
Affiliation(s)
- Ana Barbosa
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Sónia Miranda
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| | - Nuno F. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Laura Cerqueira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - Andreia S. Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Porto, Portugal
- ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, Universidade do Porto, Porto, Portugal
| |
Collapse
|
2
|
Microbial Dynamics in Mixed-Culture Biofilms of Salmonella Typhimurium and Escherichia coli O157:H7 and Bacteria Surviving Sanitation of Conveyor Belts of Meat Processing Plants. Microorganisms 2023; 11:microorganisms11020421. [PMID: 36838386 PMCID: PMC9960345 DOI: 10.3390/microorganisms11020421] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Biofilm formation can lead to the persistence of Salmonella Typhimurium (ST) and E. coli O157:H7 (O157). This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by O157 (non-biofilm former; NF) and ST (strong biofilm former; BF). MPB were recovered from the contacting surfaces (CS), non-contacting surfaces (NCS), and roller surfaces (RS) of a beef plant conveyor belt after sanitation. O157 and ST were co-inoculated with MPB (CO), or after a delay of 48 h (IS), into biofilm reactors containing stainless steel coupons and incubated at 15 °C for up to 144 h. Coupons were withdrawn at various intervals and analyzed by conventional plating and 16S rRNA gene amplicon sequencing. The total bacterial counts in biofilms reached approximately 6.5 log CFU/cm2, regardless of MPB type or development mode. The mean counts for O157 and ST under equivalent conditions mostly did not differ (p > 0.05), except for the IS set at 50 h, where no O157 was recovered. O157 and ST were 1.6 ± 2.1% and 4.7 ± 5.0% (CO) and 1.1 ± 2.2% and 2.0 ± 2.8% (IS) of the final population. Pseudomonas dominated the MPB inocula and biofilms, regardless of MPB type or development mode. Whether or not a pathogen is deemed BF or NF in monoculture, its successful integration into complex multi-species biofilms ultimately depends on the presence of certain other residents within the biofilm.
Collapse
|
3
|
Schutte-Smith M, Erasmus E, Mogale R, Marogoa N, Jayiya A, Visser HG. Using visible light to activate antiviral and antimicrobial properties of TiO 2 nanoparticles in paints and coatings: focus on new developments for frequent-touch surfaces in hospitals. JOURNAL OF COATINGS TECHNOLOGY AND RESEARCH 2023; 20:789-817. [PMID: 36777289 PMCID: PMC9904533 DOI: 10.1007/s11998-022-00733-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/27/2022] [Accepted: 10/30/2022] [Indexed: 05/05/2023]
Abstract
The COVID-19 pandemic refocused scientists the world over to produce technologies that will be able to prevent the spread of such diseases in the future. One area that deservedly receives much attention is the disinfection of health facilities like hospitals, public areas like bathrooms and train stations, and cleaning areas in the food industry. Microorganisms and viruses can attach to and survive on surfaces for a long time in most cases, increasing the risk for infection. One of the most attractive disinfection methods is paints and coatings containing nanoparticles that act as photocatalysts. Of these, titanium dioxide is appealing due to its low cost and photoreactivity. However, on its own, it can only be activated under high-energy UV light due to the high band gap and fast recombination of photogenerated species. The ideal material or coating should be activated under artificial light conditions to impact indoor areas, especially considering wall paints or frequent-touch areas like door handles and elevator buttons. By introducing dopants to TiO2 NPs, the bandgap can be lowered to a state of visible-light photocatalysis occurring. Naturally, many researchers are exploring this property now. This review article highlights the most recent advancements and research on visible-light activation of TiO2-doped NPs in coatings and paints. The progress in fighting air pollution and personal protective equipment is also briefly discussed. Graphical Abstract Indoor visible-light photocatalytic activation of reactive oxygen species (ROS) over TiO2 nanoparticles in paint to kill bacteria and coat frequently touched surfaces in the medical and food industries.
Collapse
Affiliation(s)
- M. Schutte-Smith
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - E. Erasmus
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - R. Mogale
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - N. Marogoa
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - A. Jayiya
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| | - H. G. Visser
- Department of Chemistry, University of the Free State, P.O. Box 339, Bloemfontein, 9300 South Africa
| |
Collapse
|
4
|
Lim ES, Nam SJ, Koo OK, Kim JS. Protective role of Acinetobacter and Bacillus for Escherichia coli O157:H7 in biofilms against sodium hypochlorite and extracellular matrix-degrading enzymes. Food Microbiol 2023; 109:104125. [DOI: 10.1016/j.fm.2022.104125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/25/2022]
|
5
|
Toushik SH, Roy A, Alam M, Rahman UH, Nath NK, Nahar S, Matubber B, Uddin MJ, Roy PK. Pernicious Attitude of Microbial Biofilms in Agri-Farm Industries: Acquisitions and Challenges of Existing Antibiofilm Approaches. Microorganisms 2022; 10:microorganisms10122348. [PMID: 36557600 PMCID: PMC9781080 DOI: 10.3390/microorganisms10122348] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 11/22/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Biofilm is a complex matrix made up of extracellular polysaccharides, DNA, and proteins that protect bacteria against physical, chemical, and biological stresses and allow them to survive in harsh environments. Safe and healthy foods are mandatory for saving lives. However, foods can be contaminated by pathogenic microorganisms at any stage from farm to fork. The contaminated foods allow pathogenic microorganisms to form biofilms and convert the foods into stigmatized poison for consumers. Biofilm formation by pathogenic microorganisms in agri-farm industries is still poorly understood and intricate to control. In biofilms, pathogenic bacteria are dwelling in a complex manner and share their genetic and physicochemical properties making them resistant to common antimicrobial agents. Therefore, finding the appropriate antibiofilm approaches is necessary to inhibit and eradicate the mature biofilms from foods and food processing surfaces. Advanced studies have already established several emerging antibiofilm approaches including plant- and microbe-derived biological agents, and they proved their efficacy against a broad-spectrum of foodborne pathogens. This review investigates the pathogenic biofilm-associated problems in agri-farm industries, potential remedies, and finding the solution to overcome the current challenges of antibiofilm approaches.
Collapse
Affiliation(s)
- Sazzad Hossen Toushik
- Institute for Smart Farm, Department of Food Hygiene and Safety, Gyeongsang National University, Jinju 52828, Republic of Korea
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Anamika Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Mohaimanul Alam
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Umma Habiba Rahman
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Nikash Kanti Nath
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Biotechnology and Genetic Engineering, Mawlana Bhasani Science and Technology University, Tangail 1902, Bangladesh
| | - Shamsun Nahar
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Bidyut Matubber
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Department of Microbiology and Public Health, Khulna Agricultural University, Khulna 9100, Bangladesh
| | - Md Jamal Uddin
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
| | - Pantu Kumar Roy
- ABEx Bio-Research Center, Azampur, Dakkhinkhan, Dhaka 1230, Bangladesh
- Institute of Marine Industry, Department of Seafood Science and Technology, Gyeongsang National University, Tongyeong 53064, Republic of Korea
- Correspondence: ; Tel.: +82-10-4649-9816; Fax: +82-0504-449-9816
| |
Collapse
|
6
|
Cheng Y, Zhang S, Zhang C, Mi X, Zhang W, Wang L, Liu W, Jiang Y. Escherichia coli O157:H7 is challenged by the presence of Pseudomonas, but successfully co-existed in dual-species microbial communities. Food Microbiol 2022; 106:104034. [DOI: 10.1016/j.fm.2022.104034] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/10/2022] [Accepted: 03/27/2022] [Indexed: 12/18/2022]
|
7
|
Nan Y, Rodas-Gonzalez A, Stanford K, Nadon C, Yang X, McAllister T, Narváez-Bravo C. Formation and Transfer of Multi-Species Biofilms Containing E. coli O103:H2 on Food Contact Surfaces to Beef. Front Microbiol 2022; 13:863778. [PMID: 35711784 PMCID: PMC9196126 DOI: 10.3389/fmicb.2022.863778] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Interactions of Shiga toxin–producing E. coli (STEC; O103:H2) with lactic acid bacteria (LAB) or spoilage bacteria (SP) multispecies biofilms on polyurethane (TPU) and stainless-steel (SS) were assessed at 10 and 25°C under wet and dry conditions after 6, 30, and 60 days of storage. One LAB T1: Carnobacterium piscicola + Lactobacillus bulgaricus, and two SP T2: Comamonas koreensis + Raoultella terrigena; T3: Pseudomonas aeruginosa + C. koreensis were assessed for their ability to form multispecies biofilms with O103:H2. O103:H2 single-species biofilms served as a control positive (T4). Coupons were stored dry (20–50% relative humidity; RH) or moist (60–90% RH) for up to 60 days, at which point O103:H2 transfer to beef and survival was evaluated. At 25°C, T3 decreased beef contamination with O103:H2 by 2.54 log10 CFU/g (P < 0.001). Overall, at 25°C contamination of beef with O103:H2 decreased (P < 0.001) from 3.17 log10 CFU/g on Day 6 to 0.62 log10 CFU/g on Day 60. With 60 days dry biofilms on TPU, an antagonistic interaction was observed among O103:H2 and multispecies biofilm T1 and T3. E. coli O103:H2 was not recovered from T1 and T3 after 60 days but it was recovered (33%) from T2 and T4 dry biofilms. At 10°C, contamination of beef with O103:H2 decreased (P < 0.001) from 1.38 log10 CFU/g after 6 days to 0.47 log10 CFU/g after 60 days. At 10°C, recovery of O103:H2 from 60 days dry biofilms could only be detected after enrichment and was always higher for T2 than T4 biofilms. Regardless of temperature, the transfer of O103:H2 to beef from the biofilm on TPU was greater (P < 0.001) than SS. Moist biofilms also resulted in greater (P < 0.001) cell transfer to beef than dry biofilms at 10 and 25°C. Development of SP or LAB multispecies biofilms with O103:H2 can either increase or diminish the likelihood of beef contamination. Environmental conditions such as humidity, contact surface type, as well as biofilm aging all can influence the risk of beef being contaminated by STEC within multi-species biofilms attached to food contact surfaces.
Collapse
Affiliation(s)
- Yuchen Nan
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| | | | - Kim Stanford
- Department of Biological Sciences, University of Lethbridge, Lethbridge, AB, Canada
| | - Celine Nadon
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - Tim McAllister
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada.,Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Claudia Narváez-Bravo
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Li Q, Liu L, Guo A, Zhang X, Liu W, Ruan Y. Formation of Multispecies Biofilms and Their Resistance to Disinfectants in Food Processing Environments: A Review. J Food Prot 2021; 84:2071-2083. [PMID: 34324690 DOI: 10.4315/jfp-21-071] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT In food processing environments, various microorganisms can adhere and aggregate on the surface of equipment, resulting in the formation of multispecies biofilms. Complex interactions among microorganisms may affect the formation of multispecies biofilms and resistance to disinfectants, which are food safety and quality concerns. This article reviews the various interactions among microorganisms in multispecies biofilms, including competitive, cooperative, and neutral interactions. Then, the preliminary mechanisms underlying the formation of multispecies biofilms are discussed in relation to factors, such as quorum-sensing signal molecules, extracellular polymeric substances, and biofilm-regulated genes. Finally, the resistance mechanisms of common contaminating microorganisms to disinfectants in food processing environments are also summarized. This review is expected to facilitate a better understanding of interspecies interactions and provide some implications for the control of multispecies biofilms in food processing. HIGHLIGHTS
Collapse
Affiliation(s)
- Qun Li
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ling Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Ailing Guo
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China.,National Research and Development Center for Egg Processing, Wuhan, Hubei 430070, People's Republic of China
| | - Xinshuai Zhang
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Wukang Liu
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| | - Yao Ruan
- College of Food Science and Technology, Huazhong Agriculture University, Wuhan, Hubei 430070, People's Republic of China
| |
Collapse
|
9
|
Fang Y, Visvalingam J, Zhang P, Yang X. Biofilm formation by Non-O157 Shiga toxin-producing Escherichia coli in monocultures and co-cultures with meat processing surface bacteria. Food Microbiol 2021; 102:103902. [PMID: 34809934 DOI: 10.1016/j.fm.2021.103902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 08/10/2021] [Accepted: 09/10/2021] [Indexed: 11/04/2022]
Abstract
This study investigated the impact of meat processing surface bacteria (MPB) on biofilm formation by non-O157 Shiga toxin-producing Escherichia coli (STEC), and potential links between biofilm formation by STEC and biofilm-related genes in their genomes. Biofilm development by 50 MPB and 6 STEC strains in mono- and co-cultures was assessed by the crystal violet staining method, and their expression of curli and cellulose was determined using the Congo red agar method. Genes (n = 141) associated with biofilm formation in the STEC strains were profiled. Biofilm formation in general correlated with cellulose and curli expression in both mono- and co-cultures. Most MPB strains had antagonistic effects on the biofilm formation of the STEC strains. Of the genes investigated, 81% were common among the STEC strains and there seems to be a gene-redundancy in biofilm formation. The inability of the O26 strain to form biofilms could be due to mutations in the rpoS gene. Truncation in the mlrA gene in the O145 strain seems not affecting its biofilm formation alone or with MPB. The O45 strain, despite having the greatest number of biofilm-related genes, did not form measurable biofilms. Overall, biofilm formation of STEC was affected by curli-cellulose expression and companion strains.
Collapse
Affiliation(s)
- Yuan Fang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Jeyachchandran Visvalingam
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Peipei Zhang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada
| | - Xianqin Yang
- Agriculture and Agri-Food Canada Lacombe Research and Development Centre, 6000 C & E Trail, Lacombe, Alberta, T4L 1W1, Canada.
| |
Collapse
|
10
|
Park NH, Lee SJ, Lee EB, Birhanu BT, Park SC. Colistin Induces Resistance through Biofilm Formation, via Increased phoQ Expression, in Avian Pathogenic Escherichia coli. Pathogens 2021; 10:pathogens10111525. [PMID: 34832681 PMCID: PMC8620993 DOI: 10.3390/pathogens10111525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/16/2022] Open
Abstract
This study aimed to optimize the colistin-based antibacterial therapy to prevent antimicrobial resistance related to biofilm formation in avian pathogenic Escherichia coli (APEC) in chicken. Of all the bacterial isolates (n = 136), 69 were identified as APEC by polymerase chain reaction (PCR). Through a series of antibiotic susceptibility tests, susceptibility to colistin (<2 μg/mL) was confirmed in all isolates. Hence, a mutant selection window (MSW) was determined to obtain colistin-induced resistant bacteria. The minimum inhibitory concentration (MIC) of colistin against the colistin-induced resistant APEC strains ranged from 8 to 16 μg/mL. To identify the inhibitory activity of colistin against the resistant strains, the mutant prevention concentration (MPC) was investigated for 72 h, and the single and multi-dose colistin activities were determined through the time-kill curve against APEC strains. Bacterial regrowth occurred after 12 h at a double MIC50 concentration (1.00 μg/mL), and regrowth was not inhibited even during multiple exposures. However, upon exposure to 8 μg/mL—a concentration that was close to the MPC—the growth of APEC was inhibited, including in the resistant strains. Additionally, colistin-induced resistant strains showed a slower growth compared with the susceptible ones. Colistin-induced resistant APEC strains did not show colistin resistance gene (mcr-1). However, the expression of higher mgrB and phoQ levels was observed in the resistant strains. Furthermore, these strains showed increased formation of biofilm. Hence, the present study indicated that colistin could induce resistance through the increased formation of biofilm in APEC strains by enhancing the expression of phoQ.
Collapse
Affiliation(s)
- Na-Hye Park
- Laboratory Animal Center, Daegu Gyeongbuk Medical Innovation Foundation, Daegu 41061, Korea;
| | - Seung-Jin Lee
- Reproductive and Developmental Toxicology Research Group, Korea Institute of Toxicology, Daejeon 34114, Korea;
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu 41566, Korea;
- Cardiovascular Research Institute, Kyungpook National University, Daegu 41944, Korea
- Correspondence: (B.T.B.); (S.-C.P.); Tel.: +82-53-950-5964 (B.T.B. & S.-C.P.)
| |
Collapse
|
11
|
Bäumler W, Eckl D, Holzmann T, Schneider-Brachert W. Antimicrobial coatings for environmental surfaces in hospitals: a potential new pillar for prevention strategies in hygiene. Crit Rev Microbiol 2021; 48:531-564. [PMID: 34699296 DOI: 10.1080/1040841x.2021.1991271] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Recent reports provide evidence that contaminated healthcare environments represent major sources for the acquisition and transmission of pathogens. Antimicrobial coatings (AMC) may permanently and autonomously reduce the contamination of such environmental surfaces complementing standard hygiene procedures. This review provides an overview of the current status of AMC and the demands to enable a rational application of AMC in health care settings. Firstly, a suitable laboratory test norm is required that adequately quantifies the efficacy of AMC. In particular, the frequently used wet testing (e.g. ISO 22196) must be replaced by testing under realistic, dry surface conditions. Secondly, field studies should be mandatory to provide evidence for antimicrobial efficacy under real-life conditions. The antimicrobial efficacy should be correlated to the rate of nosocomial transmission at least. Thirdly, the respective AMC technology should not add additional bacterial resistance development induced by the biocidal agents and co- or cross-resistance with antibiotic substances. Lastly, the biocidal substances used in AMC should be safe for humans and the environment. These measures should help to achieve a broader acceptance for AMC in healthcare settings and beyond. Technologies like the photodynamic approach already fulfil most of these AMC requirements.
Collapse
Affiliation(s)
- Wolfgang Bäumler
- Department of Dermatology, University Hospital, Regensburg, Germany
| | - Daniel Eckl
- Department of Microbiology, University of Regensburg, Regensburg, Germany
| | - Thomas Holzmann
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| | - Wulf Schneider-Brachert
- Department of Infection Control and Infectious Diseases, University Hospital, Regensburg, Germany
| |
Collapse
|
12
|
Bacterial community analysis using 16S rRNA amplicon sequencing in the boning room of Australian beef export abattoirs. Int J Food Microbiol 2020; 332:108779. [PMID: 32673761 DOI: 10.1016/j.ijfoodmicro.2020.108779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 06/25/2020] [Accepted: 06/29/2020] [Indexed: 11/20/2022]
Abstract
Microbial contamination associated with beef slaughter and boning has been investigated using traditional culture dependent approaches. However, conventional counting methods have disadvantages of detecting only cultivable bacterial groups that may be a small subset of the true microbial population. This study investigated the microbiology in the boning room of an integrated (abattoir A) and a fragmented (abattoir B) Australian beef export abattoirs using culture independent 16S rRNA gene amplicon sequencing coupled with total viable count (TVC). Transmission of microbial populations during processing of carcases onto beef trim was monitored and compared between the two abattoirs. The results showed that the abattoirs produced beef trim with a mean TVC of 2.64-2.70 log10 CFU/cm2. Initial counts of microbes on the chilled carcases entering the boning room were <1.5 log10 CFU/cm2 and the environmental surfaces had ≤2.0 log10 CFU/cm2 throughout the boning room. Profiling of 16S gene sequences demonstrated that the contamination of boned products (beef trim) may be a result of contamination accumulating from environmental surfaces that are regularly in contact with beef trim. The 16S data also showed that the bacterial communities on the carcases and trim shared similar community composition with microbiota on environmental surfaces at varying proportions depending on the day of processing. Bacteroidales, Clostridiales, Enterobacteriales, Lactobacillales and Pseudomonadales were predominantly present in the bacterial communities in both abattoirs. However, the changes in relative abundance of these bacteria through the boning process varied between the abattoirs. The findings from this study suggested that the transfer of bacterial contaminants in the beef cattle boning room can be dynamic, and a 16 s rRNA gene sequencing-based approach can improve our understanding of the sources of contamination in the boning environment.
Collapse
|
13
|
Caraballo Guzmán A, González Hurtado MI, Cuesta-Astroz Y, Torres G. Metagenomic characterization of bacterial biofilm in four food processing plants in Colombia. Braz J Microbiol 2020; 51:1259-1267. [PMID: 32221908 PMCID: PMC7455661 DOI: 10.1007/s42770-020-00260-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 03/09/2020] [Indexed: 12/26/2022] Open
Abstract
Bacteria inside biofilms are more persistent and resistant to stress conditions found in the production environment of food processing plants, thus representing a constant risk for product safety and quality. Therefore, the aim of this study was to characterize, using 16S rRNA sequencing, the bacterial communities from biofilms found in four food processing plants (P1, P2, P3, and P4). In total, 50 samples from these four processing plants were taken after cleaning and disinfection processes. Four phyla: Proteobacteria, Firmicutes, Actinobacteria, and Bacteroides represented over 94% of the operational taxonomic units found across these four plants. A total of 102 families and 189 genera were identified. Two genera, Pseudomonas spp. and Acinetobacter spp., were the most frequently found (93.47%) across the four plants. In P1, Pseudomonas spp. and Lactobacillus spp. were the dominant genera, whereas Lactobacillus spp. and Streptococcus spp. were identified in P2. On the other hand, biofilms found in P3 and P4 mainly consisted of Pseudomonas spp. and Acinetobacter spp. Our results indicate that different bacterial genera of interest to the food industry due to their ability to form biofilm and affect food quality can coexist inside biofilms, and as such, persist in production environments, representing a constant risk for manufactured foods. In addition, the core microbiota identified across processing plants evaluated was probably influenced by type of food produced and cleaning and disinfection processes performed in each one of these.
Collapse
Affiliation(s)
- Arley Caraballo Guzmán
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| | | | - Yesid Cuesta-Astroz
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| | - Giovanny Torres
- Colombian Institute of Tropical Medicine, CES University, Carrera 43A # 52 Sur 99, Sabaneta, Colombia
| |
Collapse
|
14
|
Przekwas J, Wiktorczyk N, Budzyńska A, Wałecka-Zacharska E, Gospodarek-Komkowska E. Ascorbic Acid Changes Growth of Food-Borne Pathogens in the Early Stage of Biofilm Formation. Microorganisms 2020; 8:E553. [PMID: 32290491 PMCID: PMC7232495 DOI: 10.3390/microorganisms8040553] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 12/22/2022] Open
Abstract
Since bacterial biofilm may contribute to the secondary contamination of food during the manufacturing/processing stage there is a need for new methods allowing its effective eradication. Application of food additives such as vitamin C already used in food industry as antioxidant food industry antioxidants may be a promising solution. The aim of this research was evaluation of the impact of vitamin C (ascorbic acid), in a range of concentrations 2.50 µg mL-1-25.0 mg mL-1, on biofilms of Staphylococcus aureus, Escherichia coli, and Listeria monocytogenes strains isolated from food. The efficacy of ascorbic acid was assessed based on the reduction of optical density (λ = 595 nm). The greatest elimination of the biofilm was achieved at the concentration of vitamin C of 25.0 mg mL-1. The effect of the vitamin C on biofilm, however, was strain dependent. The concentration of 25.0 mg mL-1 reduced 93.4%, 74.9%, and 40.5% of E. coli, L. monocytogenes, and S. aureus number, respectively. For E. coli and S. aureus lower concentrations were ineffective. In turn, for L. monocytogenes the biofilm inhibition was observed even at the concentration of 0.25 mg mL-1. The addition of vitamin C may be helpful in the elimination of bacterial biofilms. Nonetheless, some concentrations can induce growth of the pathogens, posing risk for the consumers' health.
Collapse
Affiliation(s)
- Jana Przekwas
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Natalia Wiktorczyk
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Anna Budzyńska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| | - Ewa Wałecka-Zacharska
- Department of Food Hygiene and Consumer Health, Wrocław University of Environmental and Life Sciences, 31 C.K. Norwida St., 50-375 Wrocław, Poland
| | - Eugenia Gospodarek-Komkowska
- Department of Microbiology, Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum, 9 Maria Skłodowska-Curie Street, 85-094 Bydgoszcz, Poland
| |
Collapse
|
15
|
Nesse LL, Osland AM, Mo SS, Sekse C, Slettemeås JS, Bruvoll AEE, Urdahl AM, Vestby LK. Biofilm forming properties of quinolone resistant Escherichia coli from the broiler production chain and their dynamics in mixed biofilms. BMC Microbiol 2020; 20:46. [PMID: 32131730 PMCID: PMC7055085 DOI: 10.1186/s12866-020-01730-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/20/2020] [Indexed: 01/06/2023] Open
Abstract
Background Quinolone resistant Escherichia coli (QREC) have been found in samples from Norwegian broiler chicken, despite quinolones not being administered to poultry in Norway. Biofilm production may be one factor contributing to the observed persistence in the broiler production chain. In the present study, 158 QREC strains from chicken caecal and retail meat samples were screened for biofilm production in microtiter plates, biofilm morphotype on Congo Red (CR) agar plates and phylotype by multiplex PCR. Furthermore, the dynamics in mixed biofilms with strains of different morphotypes were studied on glass slides and on CR agar plates. Results All strains but one produced biofilm in microtiter plates and/or on CR agar plates at room temperature. There were no differences between strains from chicken caecum and chicken retail meat in the mean amount of biofilm produced in microtiter plates. Furthermore, no differences in biofilm production were observed between phylotypes. However, significant differences in biofilm production were found between biofilm morphotypes. The morphotype RDAR (red dry and rough, which has both curli and cellulose in the matrix, was displayed by 70% of the strains. Mean biofilm production by these strains were significantly higher than by strains with the morphotypes PDAR (pink dry and rough) with only cellulose or BDAR (brown dry and rough) with only curli. Interestingly, the two latter morphotypes produced biofilms with the morphotype RDAR when grown together. None of the strains achieved significantly higher numbers of colony forming units (cfu) in mixed biofilms than in single strain biofilms on glass slides. Conclusions The results indicate that QREC can form biofilm reservoirs on both inert and organic surfaces in production environments, as well as on meat. This may contribute to persistence and dissemination of the strains. Strains with both curli and cellulose in the biofilm matrix were significantly better biofilm formers than strains lacking one of these components. However, strains with only one of the components could compensate for this by producing mixed biofilms with strains having the other component, and thereby most likely enhance their probabilities of persistence in the production environment.
Collapse
Affiliation(s)
- Live L Nesse
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway.
| | - Ane Mohr Osland
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Solveig S Mo
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | - Camilla Sekse
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| | | | | | | | - Lene K Vestby
- Norwegian Veterinary Institute, P.O. Box 750 Sentrum, N-0106, Oslo, Norway
| |
Collapse
|
16
|
Alonso VPP, Harada AMM, Kabuki DY. Competitive and/or Cooperative Interactions of Listeria monocytogenes With Bacillus cereus in Dual-Species Biofilm Formation. Front Microbiol 2020; 11:177. [PMID: 32184763 PMCID: PMC7058548 DOI: 10.3389/fmicb.2020.00177] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/24/2020] [Indexed: 12/12/2022] Open
Abstract
Microorganisms in dairy industries can form monospecies, dual-species, or multispecies biofilms, showing cooperative or competitive behaviors, which might contribute to the reduction of efficiency of cleaning and sanitization processes and eventually turn into a potential source of contamination. This study proposes to evaluate the behavior of Listeria monocytogenes in monospecies biofilms, cocultured with Bacillus cereus. The isolates were of dairy origin, and the selection occurred after studies of competition among species. The biofilm formations on AISI 304 stainless steel at 25°C in a stationary culture were analyzed to observe the cooperative or competitive interactions among species, as well as the effect of pre-adhered cells. Biofilm formation assays were performed in four experiments: Experiment 1: in the presence of strains of antagonistic substance producer B. cereus (+); Experiment 2: extract of the antagonistic substance of B. cereus; Experiment 3: pre-adhered cells of B. cereus; and Experiment 4: pre-adhered cells of L. monocytogenes. Subsequently, cooperative behavior was observed by scanning electron microscopy. The L. monocytogenes monospecies biofilm counts of greater than 5 log colony-forming units (CFU)/cm2 were also observed in dual-species biofilms in the presence of B. cereus (non-producers of antagonist substance), showing cooperative behavior between species. However, in the presence of antagonistic substance produced by B. cereus, the counts were lower, 1.39 and 1.70 log CFU/cm2 (p > 0.05), indicating that the antagonistic substance contributes to competitive interactions. These data are relevant for the development of new studies to control L. monocytogenes in the dairy industry.
Collapse
Affiliation(s)
| | | | - Dirce Yorika Kabuki
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Campinas, Brazil
| |
Collapse
|
17
|
Kang S, Ravensdale J, Coorey R, Dykes GA, Barlow R. A Comparison of 16S rRNA Profiles Through Slaughter in Australian Export Beef Abattoirs. Front Microbiol 2019; 10:2747. [PMID: 31849891 PMCID: PMC6895009 DOI: 10.3389/fmicb.2019.02747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 01/29/2023] Open
Abstract
Microbial contamination of beef cattle carcases and subsequent cross-contamination during processing is inevitable and virtually impossible to prevent. The understanding of microbial contamination in the beef industry is currently limited to hypotheses based on traditional microbiological tools. Additionally, the complex structural and functional responses of beef cattle microbial communities to the fragmentation in the supply chain remain unknown. This study used 16S rRNA gene sequencing in combination with traditional microbiology to monitor and compare changes in the microbiota throughout slaughter in an integrated (abattoir A) and a fragmented (abattoir B) beef abattoir in Australia. Briefly, the primary difference between an integrated and a fragmented abattoir is that fragmented abattoirs receive cattle from multiple sources, whereas integrated abattoirs typically receive cattle that has been produced using the same production system and from a limited number of sources. The composition in the bacterial communities varied between the abattoirs, though the presence of the most predominant bacterial species within the microbiota at each abattoir was similar. Lactobacillales (2.4-56.2%) and Pseudomonadales (2.4-59.4%) most notably dominated hides, carcases, and the environment in abattoir B. In abattoir A, Bacteroidales (3.9-43.8%), Lactobacillales (0.0-61.9%), and Pseudomonadales (0.5-72.1%) fluctuated but generally shared the dominance over the rest. Combined results of total viable count (TVC) and 16S rRNA gene profiling indicated that an upward hide pulling system adopted by abattoir B may lead to increased transmission of hide contaminants to post-hide pull carcases. Abattoir B had 3.2 log10CFU/cm2 reduction from hide to carcase, where abattoir A had 4.5 log10CFU/cm2 reduction. The findings from this study indicated that common beef-associated microbiota exist in varying composition in Australian abattoirs, and 16S rRNA amplicon sequencing is a powerful tool to understand in-depth movement of microbial contaminants.
Collapse
Affiliation(s)
- Sanga Kang
- School of Public Health, Curtin University, Bentley, WA, Australia.,Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| | | | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, WA, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, WA, Australia
| | - Robert Barlow
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Brisbane, QLD, Australia
| |
Collapse
|
18
|
D'Souza AW, Potter RF, Wallace M, Shupe A, Patel S, Sun X, Gul D, Kwon JH, Andleeb S, Burnham CAD, Dantas G. Spatiotemporal dynamics of multidrug resistant bacteria on intensive care unit surfaces. Nat Commun 2019; 10:4569. [PMID: 31594927 PMCID: PMC6783542 DOI: 10.1038/s41467-019-12563-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
Bacterial pathogens that infect patients also contaminate hospital surfaces. These contaminants impact hospital infection control and epidemiology, prompting quantitative examination of their transmission dynamics. Here we investigate spatiotemporal and phylogenetic relationships of multidrug resistant (MDR) bacteria on intensive care unit surfaces from two hospitals in the United States (US) and Pakistan collected over one year. MDR bacteria isolated from 3.3% and 86.7% of US and Pakistani surfaces, respectively, include common nosocomial pathogens, rare opportunistic pathogens, and novel taxa. Common nosocomial isolates are dominated by single lineages of different clones, are phenotypically MDR, and have high resistance gene burdens. Many resistance genes (e.g., blaNDM, blaOXA carbapenamases), are shared by multiple species and flanked by mobilization elements. We identify Acinetobacter baumannii and Enterococcus faecium co-association on multiple surfaces, and demonstrate these species establish synergistic biofilms in vitro. Our results highlight substantial MDR pathogen burdens in hospital built-environments, provide evidence for spatiotemporal-dependent transmission, and demonstrate potential mechanisms for multi-species surface persistence.
Collapse
Affiliation(s)
- Alaric W D'Souza
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Robert F Potter
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Meghan Wallace
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angela Shupe
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sanket Patel
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xiaoqing Sun
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Danish Gul
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan
| | - Jennie H Kwon
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Saadia Andleeb
- Atta ur Rahman School of Applied Biosciences, National University of Sciences and Technology Islamabad, Islamabad, Pakistan.
| | - Carey-Ann D Burnham
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Departments of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
| |
Collapse
|
19
|
Wickramasinghe NN, Ravensdale JT, Coorey R, Dykes GA, Scott Chandry P. In situ characterisation of biofilms formed by psychrotrophic meat spoilage pseudomonads. BIOFOULING 2019; 35:840-855. [PMID: 31558055 DOI: 10.1080/08927014.2019.1669021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Psychrotrophic Pseudomonas species form biofilms on meat during refrigerated and temperature abuse conditions. Biofilm growth leads to slime formation on meat which is a key organoleptic degradation characteristic. Limited research has been undertaken characterising biofilms grown on meat during chilled aerobic storage. In this work, biofilms formed by two key meat spoilage organisms, Pseudomonas fragi and Pseudomonas lundensis were studied in situ using five strains from each species. Biofilm structures were studied using confocal microscope images, cellular arrangement, cell counts and biomass quantifications. This work demonstrated that highly dense, compact biofilms are a characteristic of P. fragi strains. P. lundensis formed biofilms with loosely arranged cells. The cells in P. fragi biofilm appear to be vertically oriented whereas this characteristic was absent in P. lundensis biofilms formed under identical conditions. Despite the continued access to nutrients, biofilms formed on meat by proteolytic Pseudomonas species dispersed after a population maximum was reached.
Collapse
Affiliation(s)
- Nirmani N Wickramasinghe
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
- Agriculture and Food, CSIRO, Werribee, Victoria, Australia
| | - Joshua T Ravensdale
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | - Ranil Coorey
- School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Gary A Dykes
- School of Public Health, Curtin University, Bentley, Western Australia, Australia
| | | |
Collapse
|
20
|
Yuan L, Hansen MF, Røder HL, Wang N, Burmølle M, He G. Mixed-species biofilms in the food industry: Current knowledge and novel control strategies. Crit Rev Food Sci Nutr 2019; 60:2277-2293. [PMID: 31257907 DOI: 10.1080/10408398.2019.1632790] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Attachment of microorganisms to food contact surfaces and the subsequent formation of biofilms may cause equipment damage, food spoilage and even diseases. Mixed-species biofilms are ubiquitous in the food industry and they generally exhibit higher resistance to disinfectants and antimicrobials compared to single-species biofilms. The physiology and metabolic activity of microorganisms in mixed-species biofilms are however rather complicated to study, and despite targeted research efforts, the potential role of mixed-species biofilms in food industry is still rather unexplored. In this review, we summarize recent studies in the context of bacterial social interactions in mixed-species biofilms, resistance to disinfectants, detection methods, and potential novel strategies to control the formation of mixed-species biofilms for enhanced food safety and food quality.
Collapse
Affiliation(s)
- Lei Yuan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China.,Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Mads Frederik Hansen
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Lyng Røder
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Ni Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| | - Mette Burmølle
- Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Guoqing He
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
21
|
Maes S, Heyndrickx M, Vackier T, Steenackers H, Verplaetse A, Reu KDE. Identification and Spoilage Potential of the Remaining Dominant Microbiota on Food Contact Surfaces after Cleaning and Disinfection in Different Food Industries. J Food Prot 2019; 82:262-275. [PMID: 30682263 DOI: 10.4315/0362-028x.jfp-18-226] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
After cleaning and disinfection (C&D), surface contamination can still be present in the production environment of food companies. Microbiological contamination on cleaned surfaces can be transferred to the manufactured food and consequently lead to foodborne illness and early food spoilage. However, knowledge about the microbiological composition of residual contamination after C&D and the effect of this contamination on food spoilage is lacking in various food sectors. In this study, we identified the remaining dominant microbiota on food contact surfaces after C&D in seven food companies and assessed the spoilage potential of the microbiota under laboratory conditions. The dominant microbiota on surfaces contaminated at ≥102 CFU/100 cm2 after C&D was identified based on 16S rRNA sequences. The ability of these microorganisms to hydrolyze proteins, lipids, and phospholipids, ferment glucose and lactose, produce hydrogen sulfide, and degrade starch and gelatin also was evaluated. Genera that were most abundant among the dominant microbiota on food contact surfaces after C&D were Pseudomonas, Microbacterium, Stenotrophomonas, Staphylococcus, and Streptococcus. Pseudomonas spp. were identified in five of the participating food companies, and 86.8% of the isolates evaluated had spoilage potential in the laboratory tests. Microbacterium and Stenotrophomonas spp. were identified in five and six of the food companies, respectively, and all tested isolates had spoilage potential. This information will be useful for food companies in their quest to characterize surface contamination after C&D, to identify causes of microbiological food contamination and spoilage, and to determine the need for more thorough C&D.
Collapse
Affiliation(s)
- Sharon Maes
- 1 Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| | - Marc Heyndrickx
- 1 Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium.,2 Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium
| | - Thijs Vackier
- 3 Laboratory of Enzyme, Fermentation and Brewery Technology, Cluster for Bioengineering Technology, Department of Microbial and Molecular Systems, Faculty of Engineering Technology, University of Leuven, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Hans Steenackers
- 4 Centre of Microbial and Plant Genetics, Department of Microbial and Molecular Systems, Faculty of Bioscience Engineering, University of Leuven, Kasteelpark Arenberg 20 Box 2460, 3001 Leuven, Belgium
| | - Alex Verplaetse
- 3 Laboratory of Enzyme, Fermentation and Brewery Technology, Cluster for Bioengineering Technology, Department of Microbial and Molecular Systems, Faculty of Engineering Technology, University of Leuven, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium
| | - Koen DE Reu
- 1 Flanders Research Institute for Agriculture, Fisheries and Food, Technology and Food Science Unit, Brusselsesteenweg 370, 9090 Melle, Belgium
| |
Collapse
|
22
|
Abstract
Biofilms are surface-attached microbial communities with distinct properties, which have a tremendous impact on public health and food safety. In the meat industry, biofilms remain a serious concern because many foodborne pathogens can form biofilms in areas at meat plants that are difficult to sanitize properly, and biofilm cells are more tolerant to sanitization than their planktonic counterparts. Furthermore, nearly all biofilms in commercial environments consist of multiple species of microorganisms, and the complex interactions within the community significantly influence the architecture, activity, and sanitizer tolerance of the biofilm society. This review focuses on the effect of microbial coexistence on mixed biofilm formation with foodborne pathogens of major concern in the fresh meat industry and their resultant sanitizer tolerance. The factors that would affect biofilm cell transfer from contact surfaces to meat products, one of the most common transmission routes that could lead to product contamination, are discussed as well. Available results from recent studies relevant to the meat industry, implying the potential role of bacterial persistence and biofilm formation in meat contamination, are reviewed in response to the pressing need to understand the mechanisms that cause "high event period" contamination at commercial meat processing plants. A better understanding of these events would help the industry to enhance strategies to prevent contamination and improve meat safety.
Collapse
Affiliation(s)
- Rong Wang
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, P.O. Box 166, State Spur 18D, Clay Center, Nebraska 68933, USA
| |
Collapse
|
23
|
Lajhar SA, Brownlie J, Barlow R. Characterization of biofilm-forming capacity and resistance to sanitizers of a range of E. coli O26 pathotypes from clinical cases and cattle in Australia. BMC Microbiol 2018; 18:41. [PMID: 29739319 PMCID: PMC5941759 DOI: 10.1186/s12866-018-1182-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 04/22/2018] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The formation of biofilms and subsequent encasement of bacterial cells in a complex matrix can enhance resistance to antimicrobials and sterilizing agents making these organisms difficult to eradicate and control. The aim of this study was to evaluate and compare the capacity of 40 E. coli O26 isolates of enterohemorrhagic E. coli (EHEC, n = 27), potential EHEC (pEHEC, n = 3), atypical enteropathogenic E. coli (aEPEC, n = 8) and non-toxigenic E. coli (NTEC, n = 2) from human and cattle sources to form biofilms on different surfaces, and determine whether extracellular matrix (ECM) components (cellulose, curli), motility, prophage insertion in mlrA and cell surface hydrophobicity could influence biofilm formation. Finally, the influence of biofilm formation on the sensitivity of isolates to quaternary ammonium compounds (QACs; Profoam, Kwiksan 22) and peracetic acid-based sanitizer (Topactive Des.) for 2 min on polystyrene plate were also evaluated. RESULTS Biofilm production on one surface may not indicate biofilm formation on a different surface. Biofilm was formed by different pathotypes on polystyrene (70%), stainless steel (87.5%) and glass slides (95%), however only 50% demonstrated pellicle formation. EHEC isolates were significantly more likely to form a pellicle at the air-liquid interface and biofilms on polystyrene surface at 48 h than aEPEC. Strains that don't produce ECM (curli or cellulose), harbor a prophage insertion in mlrA, and are non-motile have lower biofilm forming capacities than those isolates possessing combinations of these attributes. Hydrophobicity had no impact on biofilm formation. After 2 min exposure, none of the disinfectants tested were able to completely inactivate all cells within a biofilm regardless of pathotypes and the amount of biofilm formed. CONCLUSION Pathotypes of E. coli O26 showed varying capacities to form biofilms, however, most EHEC strains had the capacity to form biofilm on all surfaces and at the air-liquid interface under the conditions used in this study. Biofilms provided a protective effect to E. coli O26 strains against the three sanitizers, previously shown to successfully control the growth of their planktonic counterparts. Whether the characteristics of biofilm forming and non-biofilm forming strains observed in this study reflect their attributes within the food and meat-processing environments is unknown. Further studies that represent the food and meat-processing environments are required.
Collapse
Affiliation(s)
- Salma A Lajhar
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia. .,Present address: CSIRO Agriculture and Food, 39 Kessels Rd, Coopers Plains, Brisbane, QLD, 4108, Australia.
| | - Jeremy Brownlie
- School of Environment and Science, Griffith University, Brisbane, QLD, Australia
| | - Robert Barlow
- Present address: CSIRO Agriculture and Food, 39 Kessels Rd, Coopers Plains, Brisbane, QLD, 4108, Australia
| |
Collapse
|
24
|
Gomes LC, Deschamps J, Briandet R, Mergulhão FJ. Impact of modified diamond-like carbon coatings on the spatial organization and disinfection of mixed-biofilms composed of Escherichia coli and Pantoea agglomerans industrial isolates. Int J Food Microbiol 2018; 277:74-82. [PMID: 29689455 DOI: 10.1016/j.ijfoodmicro.2018.04.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/28/2018] [Accepted: 04/11/2018] [Indexed: 12/23/2022]
Abstract
This work investigated the effects of diamond-like carbon (DLC) coatings on the architecture and biocide reactivity of dual-species biofilms mimicking food processing contaminants. Biofilms were grown using industrial isolates of Escherichia coli and Pantoea agglomerans on bare stainless steel (SST) and on two DLC surface coatings (a-C:H:Si:O designated by SICON® and a-C:H:Si designated by SICAN) in order to evaluate their antifouling activities. Quantification and spatial organization in single- and dual-species biofilms were examined by confocal laser scanning microscopy (CLSM) using a strain specific labelling procedure. Those assays revealed that the E. coli isolate exhibited a higher adhesion to the modified surfaces and a decreased susceptibility to disinfectant in presence of P. agglomerans than alone in axenic culture. While SICON® reduced the short-term growth of E. coli in axenic conditions, both DLC surfaces increased the E. coli colonization in presence of P. agglomerans. However, both modified surfaces triggered a significantly higher log reduction of E. coli cells within mixed-species biofilms, thus the use of SICON® and SICAN surfaces may be a good approach to facilitate the disinfection process in critical areas of food processing plants. This study presents a new illustration of the importance of interspecies interactions in surface-associated community functions, and of the need to evaluate the effectiveness of hygienic strategies with relevant multi-species consortia.
Collapse
Affiliation(s)
- L C Gomes
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| | - J Deschamps
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - R Briandet
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - F J Mergulhão
- LEPABE - Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Asakura H, Kawase J, Ikeda T, Honda M, Sasaki Y, Uema M, Kabeya H, Sugiyama H, Igimi S, Takai S. Microbiological Quality Assessment of Game Meats at Retail in Japan. J Food Prot 2017; 80:2119-2126. [PMID: 29166176 DOI: 10.4315/0362-028x.jfp-17-137] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this study, we examined the prevalence of Shiga toxin-producing Escherichia coli and Salmonella spp. and the distribution of indicator bacteria in 248 samples of game meats (120 venison and 128 wild boar) retailed between November 2015 and March 2016 in Japan. No Salmonella spp. were detected in any of the samples, whereas Shiga toxin-producing Escherichia coli serotype OUT:H25 (stx2d+, eae-) was isolated from one deer meat sample, suggesting a possible source for human infection. Plate count assays indicated greater prevalence of coliforms and E. coli in wild boar meat than in venison, whereas their prevalence in processing facilities showed greater variation than in animal species. The 16S rRNA ion semiconductor sequencing analysis of 24 representative samples revealed that the abundances of Acinetobacter and Arthrobacter spp. significantly correlated with the prevalence of E. coli, and quantitative PCR analyses in combination with selective plate count assay verified these correlations. To our knowledge, this is the first report to characterize the diversity of microorganisms of game meats at retail in Japan, together with identification of dominant microbiota. Our data suggest the necessity of bottom-up hygienic assessment in areas of slaughtering and processing facilities to improve microbiological safety.
Collapse
Affiliation(s)
- Hiroshi Asakura
- 1 Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Jun Kawase
- 2 Shimane Prefectural Meat Inspection Centre, Asayama-cho senzan 1677-2, Ota, Shimane 699-2212, Japan
| | - Tetsuya Ikeda
- 3 Department of Infectious Diseases, Hokkaido Institute of Public Health, Kita19 Nishi 12, Kita-ku Sapporo, Hokkaido 060-0819, Japan
| | - Mioko Honda
- 4 Department of Animal Nursing Science, Yamazaki Gakuen University, Minami-Osawa 4-7-2, Hachioji 192-0364, Japan
| | - Yoshimasa Sasaki
- 1 Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Masashi Uema
- 1 Division of Biomedical Food Research, National Institute of Health Sciences, Kamiyoga 1-18-1, Setagaya-ku, Tokyo 158-8501, Japan
| | - Hidenori Kabeya
- 5 Department of Veterinary Public Health, Nihon University, Kameino 1866, Fujisawa, Kanagawa 252-0880, Japan
| | - Hiromu Sugiyama
- 6 Department of Parasitology, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Shizunobu Igimi
- 7 Department of Microbiology, Tokyo University of Agriculture, Sakuragaoka 1-1, Setagaya-ku, Tokyo 156-8502, Japan; and
| | - Shinji Takai
- 8 Department of Animal Hygiene, Kitasato University, Higashi 23-35-1, Towada, Aomori 034-8628, Japan
| |
Collapse
|
26
|
Gomes L, Piard JC, Briandet R, Mergulhão F. Pseudomonas grimontii biofilm protects food contact surfaces from Escherichia coli colonization. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.03.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
27
|
Visvalingam J, Ells TC, Yang X. Impact of persistent and nonpersistent generic Escherichia coli and Salmonella sp. recovered from a beef packing plant on biofilm formation by E. coli O157. J Appl Microbiol 2017; 123:1512-1521. [PMID: 28944561 DOI: 10.1111/jam.13591] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 09/09/2017] [Accepted: 09/20/2017] [Indexed: 01/12/2023]
Abstract
AIMS To examine the influence of meat plant Escherichia coli and Salmonella sp. isolates on E. coli O157 biofilm formation. METHODS AND RESULTS Biofilm formation was quantified by crystal violet staining (A570 nm ) and viable cell numbers for up to 6 days at 15°C. All five persistent E. coli genotypes formed strong biofilms when cultured alone or co-cultured with E. coli O157, with A570 nm values reaching ≥4·8 at day 4, while only two of five nonpersistent genotypes formed such biofilms. For E. coli O157:H7 co-culture biofilms with E. coli genotypes 136 and 533, its numbers were ≥1·5 and ≥1 log CFU per peg lower than those observed for its mono-culture biofilm at days 2 and 4, respectively. The number of E. coli O157:NM in similar co-culture biofilms was 1 log CFU per peg lower than in its mono-culture biofilm at day 4 and 6, respectively. Salmonella sp. lowered the number of E. coli O157:NM by 0·5 log unit, once, at day 6. CONCLUSION Generic E. coli may outcompete E. coli O157 strains while establishing biofilms. SIGNIFICANCE AND IMPACT OF THE STUDY Findings advance knowledge regarding inter-strain competition for a similar ecological niche and may aid development of biocontrol strategies for E. coli O157 in food processing environments.
Collapse
Affiliation(s)
- J Visvalingam
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| | - T C Ells
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, Kentville, NS, Canada
| | - X Yang
- Agriculture and Agri-Food Canada, Lacombe Research and Development Centre, Lacombe, AB, Canada
| |
Collapse
|
28
|
Møretrø T, Langsrud S. Residential Bacteria on Surfaces in the Food Industry and Their Implications for Food Safety and Quality. Compr Rev Food Sci Food Saf 2017; 16:1022-1041. [DOI: 10.1111/1541-4337.12283] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/03/2017] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Affiliation(s)
- Trond Møretrø
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Inst. of Food; Fishery and Aquaculture Research; N-1430 Ås Norway
| |
Collapse
|
29
|
Gong C, Jiang X. Application of bacteriophages to reduce Salmonella attachment and biofilms on hard surfaces. Poult Sci 2017; 96:1838-1848. [DOI: 10.3382/ps/pew463] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/06/2016] [Indexed: 11/20/2022] Open
|
30
|
Abstract
A microbiological investigation on Salmonella contamination was conducted in two U.S. rendering plants to investigate the potential cross-contamination of Salmonella in the rendering processing environment. Sampling locations were predetermined at the areas where Salmonella contamination may potentially occur, including raw materials receiving, crax (rendered materials before grinding process) grinding, and finished meal loading-out areas. Salmonella was either enumerated directly on xylose lysine Tergitol 4 agar plates or enriched in Rappaport-Vassiliadis and tetrathionate broths. The presumptive Salmonella isolates were confirmed using CHROMagar plating and latex agglutination testing and then characterized using pulsed-field gel electrophoresis, serotyping, and biofilm-forming determination. Among 108 samples analyzed, 79 (73%) samples were Salmonella positive after enrichment. Selected Salmonella isolates (n = 65) were assigned to 31 unique pulsed-field gel electrophoresis patterns, with 16 Salmonella serotypes, including Typhimurium and Mbandaka, identified as predominant serotypes and 10 Salmonella strains determined as strong biofilm formers. Our results indicated that the raw materials receiving area was the primary source of Salmonella and that the surfaces surrounding crax grinding and finished meal loading-out areas harbor Salmonella in biofilms that may recontaminate the finished meals. The same Salmonella serotypes found in both raw materials receiving and the finished meal loading-out areas suggested a potential of cross-contamination between different areas in the rendering processing environment.
Collapse
Affiliation(s)
- Chao Gong
- Department of Biological Sciences, Clemson University, Clemson, South Carolina 29634, USA
| | - Xiuping Jiang
- Department of Food, Nutrition, and Packaging Sciences, Clemson University, Clemson, South Carolina 29634, USA
| |
Collapse
|
31
|
Liu NT, Bauchan GR, Francoeur CB, Shelton DR, Lo YM, Nou X. Ralstonia insidiosa serves as bridges in biofilm formation by foodborne pathogens Listeria monocytogenes, Salmonella enterica, and Enterohemorrhagic Escherichia coli. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.01.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Molecular analysis of dominant species in Listeria monocytogenes-positive biofilms in the drains of food processing facilities. Appl Microbiol Biotechnol 2015; 100:3165-75. [PMID: 26658820 DOI: 10.1007/s00253-015-7203-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022]
Abstract
Listeria monocytogenes exhibits symbiotic codependence with the dominant commensal bacteria, which may help it avoid being removed or inactivated by disinfectants in local environments. In this study, we investigated L. monocytogenes-positive biofilms at food production facilities, and the dominant bacterial species of the biofilms were identified to determine the properties of the microbiological background. For this purpose, the ISO 11290 method was used for the detection and isolation of L. monocytogenes, and the species were further identified based on 16S rRNA and hly genes. 16S rRNA gene-based cloning, terminal restriction fragment length polymorphism, and denaturing gradient gel electrophoresis were combined to evaluate the dominant bacteria of the drain biofilms. Out of 100 drain samples, 8 were naturally contaminated with L. monocytogenes. Three molecular methods consistently showed that Pseudomonas psychrophila, Pseudomonas sp., and Klebsiella oxytoca were dominant species in 3Q, 5Q, and 6Q samples; Aeromonas hydrophila and Klebsiella sp. were significantly dominant in 1-2, 1-3, and 3-2 samples; A. hydrophila and K. oxytoca were dominant in the 2-3 sample; and A. hydrophila and Pseudomonas sp. were prominent in the 3-3 sample. Different biofilms from the same plant shared common bands, suggesting that similar bacteria can be found and can be dominant in different biofilms. This study provides a better understanding of the dominant compositions in these bacterial communities. Further studies to determine the mechanism of co-culture with L. monocytogenes will be of critical importance in predicting effective disinfection strategies.
Collapse
|
33
|
Hyldgaard M, Meyer RL, Peng M, Hibberd AA, Fischer J, Sigmundsson A, Mygind T. Binary combination of epsilon-poly-l-lysine and isoeugenol affect progression of spoilage microbiota in fresh turkey meat, and delay onset of spoilage in Pseudomonas putida challenged meat. Int J Food Microbiol 2015; 215:131-42. [DOI: 10.1016/j.ijfoodmicro.2015.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Revised: 09/07/2015] [Accepted: 09/21/2015] [Indexed: 12/22/2022]
|
34
|
Biofilm formation and genetic diversity of Salmonella isolates recovered from clinical, food, poultry and environmental sources. INFECTION GENETICS AND EVOLUTION 2015; 36:424-433. [DOI: 10.1016/j.meegid.2015.08.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/25/2015] [Accepted: 08/06/2015] [Indexed: 10/23/2022]
|
35
|
A novel antimicrobial peptide, scolopendin, from Scolopendra subspinipes mutilans and its microbicidal mechanism. Biochimie 2015; 118:176-84. [DOI: 10.1016/j.biochi.2015.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 08/31/2015] [Indexed: 12/11/2022]
|
36
|
Giaouris E, Heir E, Desvaux M, Hébraud M, Møretrø T, Langsrud S, Doulgeraki A, Nychas GJ, Kačániová M, Czaczyk K, Ölmez H, Simões M. Intra- and inter-species interactions within biofilms of important foodborne bacterial pathogens. Front Microbiol 2015; 6:841. [PMID: 26347727 PMCID: PMC4542319 DOI: 10.3389/fmicb.2015.00841] [Citation(s) in RCA: 193] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2015] [Accepted: 07/31/2015] [Indexed: 12/15/2022] Open
Abstract
A community-based sessile life style is the normal mode of growth and survival for many bacterial species. Under such conditions, cell-to-cell interactions are inevitable and ultimately lead to the establishment of dense, complex and highly structured biofilm populations encapsulated in a self-produced extracellular matrix and capable of coordinated and collective behavior. Remarkably, in food processing environments, a variety of different bacteria may attach to surfaces, survive, grow, and form biofilms. Salmonella enterica, Listeria monocytogenes, Escherichia coli, and Staphylococcus aureus are important bacterial pathogens commonly implicated in outbreaks of foodborne diseases, while all are known to be able to create biofilms on both abiotic and biotic surfaces. Particularly challenging is the attempt to understand the complexity of inter-bacterial interactions that can be encountered in such unwanted consortia, such as competitive and cooperative ones, together with their impact on the final outcome of these communities (e.g., maturation, physiology, antimicrobial resistance, virulence, dispersal). In this review, up-to-date data on both the intra- and inter-species interactions encountered in biofilms of these pathogens are presented. A better understanding of these interactions, both at molecular and biophysical levels, could lead to novel intervention strategies for controlling pathogenic biofilm formation in food processing environments and thus improve food safety.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, Myrina, Lemnos Island, Greece
| | - Even Heir
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Michel Hébraud
- INRA, UR454 Microbiologie, Centre Auvergne-Rhône-Alpes, Saint-Genès-Champanelle, France
| | - Trond Møretrø
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Solveig Langsrud
- Nofima, Norwegian Institute of Food, Fisheries and Aquaculture Research, Ås, Norway
| | - Agapi Doulgeraki
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - George-John Nychas
- Laboratory of Microbiology and Biotechnology of Foods, Department of Food Science and Human Nutrition, Faculty of Foods, Biotechnology and Development, Agricultural University of Athens, Athens, Greece
| | - Miroslava Kačániová
- Department of Microbiology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Nitra, Slovakia
| | - Katarzyna Czaczyk
- Department of Biotechnology and Food Microbiology, Poznan University of Life Sciences, Poznań, Poland
| | - Hülya Ölmez
- TÜBİTAK Marmara Research Center, Food Institute, Gebze, Kocaeli, Turkey
| | - Manuel Simões
- Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal
| |
Collapse
|
37
|
Inactivation and potential reactivation of pathogenic Escherichia coli O157:H7 in bovine milk exposed to three monochromatic ultraviolet UVC lights. Food Microbiol 2015; 49:74-81. [DOI: 10.1016/j.fm.2015.01.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 01/06/2015] [Accepted: 01/31/2015] [Indexed: 02/07/2023]
|
38
|
Bridier A, Hammes F, Canette A, Bouchez T, Briandet R. Fluorescence-based tools for single-cell approaches in food microbiology. Int J Food Microbiol 2015; 213:2-16. [PMID: 26163933 DOI: 10.1016/j.ijfoodmicro.2015.07.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/26/2015] [Accepted: 07/03/2015] [Indexed: 12/31/2022]
Abstract
The better understanding of the functioning of microbial communities is a challenging and crucial issue in the field of food microbiology, as it constitutes a prerequisite to the optimization of positive and technological microbial population functioning, as well as for the better control of pathogen contamination of food. Heterogeneity appears now as an intrinsic and multi-origin feature of microbial populations and is a major determinant of their beneficial or detrimental functional properties. The understanding of the molecular and cellular mechanisms behind the behavior of bacteria in microbial communities requires therefore observations at the single-cell level in order to overcome "averaging" effects inherent to traditional global approaches. Recent advances in the development of fluorescence-based approaches dedicated to single-cell analysis provide the opportunity to study microbial communities with an unprecedented level of resolution and to obtain detailed insights on the cell structure, metabolism activity, multicellular behavior and bacterial interactions in complex communities. These methods are now increasingly applied in the field of food microbiology in different areas ranging from research laboratories to industry. In this perspective, we reviewed the main fluorescence-based tools used for single-cell approaches and their concrete applications with specific focus on food microbiology.
Collapse
Affiliation(s)
| | - F Hammes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A Canette
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | | | - R Briandet
- INRA, UMR1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Jouy-en-Josas, France.
| |
Collapse
|
39
|
Møretrø T, Sharifzadeh S, Langsrud S, Heir E, Rickard AH. Coaggregation between Rhodococcus and Acinetobacter strains isolated from the food industry. Can J Microbiol 2015; 61:503-12. [DOI: 10.1139/cjm-2015-0210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this study, coaggregation interactions between Rhodococcus and Acinetobacter strains isolated from food-processing surfaces were characterized. Rhodococcus sp. strain MF3727 formed intrageneric coaggregates with Rhodococcus sp. strain MF3803 and intergeneric coaggregates with 2 strains of Acinetobacter calcoaceticus (MF3293, MF3627). Stronger coaggregation between A. calcoaceticus MF3727 and Rhodococcus sp. MF3293 was observed after growth in batch culture at 30 °C than at 20 °C, after growth in tryptic soy broth than in liquid R2A medium, and between cells in exponential and early stationary phases than cells in late stationary phase. The coaggregation ability of Rhodococcus sp. MF3727 was maintained even after heat and Proteinase K treatment, suggesting its ability to coaggregate was protein independent whereas the coaggregation determinants of the other strains involved proteinaceous cell-surface-associated polymers. Coaggregation was stable at pH 5–9. The mechanisms of coaggregation among Acinetobacter and Rhodococcus strains bare similarity to those displayed by coaggregating bacteria of oral and freshwater origin, with respect to binding between proteinaceous and nonproteinaceous determinants and the effect of environmental factors on coaggregation. Coaggregation may contribute to biofilm formation on industrial food surfaces, protecting bacteria against cleaning and disinfection.
Collapse
Affiliation(s)
- Trond Møretrø
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
| | - Shahab Sharifzadeh
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
- Norwegian University of Life Sciences, Aas, Norway
| | - Solveig Langsrud
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
| | - Even Heir
- Nofima, The Norwegian Institute of Food, Fishery and Aquaculture Research, P.O. Box 210, N-1431 Aas, Norway
| | - Alexander H. Rickard
- The University of Michigan, School of Public Health, Department of Epidemiology, Ann Arbor, Michigan, USA
| |
Collapse
|
40
|
Hu H, Johani K, Gosbell IB, Jacombs ASW, Almatroudi A, Whiteley GS, Deva AK, Jensen S, Vickery K. Intensive care unit environmental surfaces are contaminated by multidrug-resistant bacteria in biofilms: combined results of conventional culture, pyrosequencing, scanning electron microscopy, and confocal laser microscopy. J Hosp Infect 2015; 91:35-44. [PMID: 26187533 DOI: 10.1016/j.jhin.2015.05.016] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/26/2015] [Indexed: 11/26/2022]
Abstract
BACKGROUND Hospital-associated infections cause considerable morbidity and mortality, and are expensive to treat. Organisms causing these infections can be sourced from the inanimate environment around a patient. Could the difficulty in eradicating these organisms from the environment be because they reside in dry surface biofilms? AIM The intensive care unit (ICU) of a tertiary referral hospital was decommissioned and the opportunity to destructively sample clinical surfaces was taken in order to investigate whether multidrug-resistant organisms (MDROs) had survived the decommissioning process and whether they were present in biofilms. METHODS The ICU had two 'terminal cleans' with 500 ppm free chlorine solution; items from bedding, surrounds, and furnishings were then sampled with cutting implements. Sections were sonicated in tryptone soya broth and inoculated on to chromogenic plates to demonstrate MDROs, which were confirmed with the Vitek2 system. Genomic DNA was extracted directly from ICU samples, and subjected to polymerase chain reaction (PCR) for femA to detect Staphylococcus aureus and the microbiome by bacterial tag-encoded FLX amplicon pyrosequencing. Confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM) were performed on environmental samples. FINDINGS Multidrug-resistant bacteria were cultured from 52% (23/44) of samples cultured. S. aureus PCR was positive in 50%. Biofilm was demonstrated in 93% (41/44) of samples by CLSM and/or SEM. Pyrosequencing demonstrated that the biofilms were polymicrobial and contained species that had multidrug-resistant strains. CONCLUSION Dry surface biofilms containing MDROs are found on ICU surfaces despite terminal cleaning with chlorine solution. How these arise and how they might be removed requires further study.
Collapse
Affiliation(s)
- H Hu
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - K Johani
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia; Division of Microbiology, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - I B Gosbell
- Antibiotic Resistance and Mobile Elements Group (ARMEG), Microbiology and Infectious Diseases Unit, School of Medicine, University of Western Sydney, New South Wales, Australia; Department of Microbiology and Infectious Diseases, Sydney South-West Pathology Service - Liverpool, New South Wales, Australia
| | - A S W Jacombs
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - A Almatroudi
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia; Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Qassim, Saudi Arabia
| | - G S Whiteley
- Whiteley Corporation, Tomago, Newcastle, NSW, Australia
| | - A K Deva
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia
| | - S Jensen
- Antibiotic Resistance and Mobile Elements Group (ARMEG), Microbiology and Infectious Diseases Unit, School of Medicine, University of Western Sydney, New South Wales, Australia
| | - K Vickery
- Surgical Infection Research Group, Faculty of Medicine and Health Sciences, Macquarie University, New South Wales, Australia.
| |
Collapse
|
41
|
Cherif-Antar A, Moussa–Boudjemâa B, Didouh N, Medjahdi K, Mayo B, Flórez AB. Diversity and biofilm-forming capability of bacteria recovered from stainless steel pipes of a milk-processing dairy plant. ACTA ACUST UNITED AC 2015. [DOI: 10.1007/s13594-015-0235-4] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Liu NT, Nou X, Bauchan GR, Murphy C, Lefcourt AM, Shelton DR, Lo YM. Effects of environmental parameters on the dual-species biofilms formed by Escherichia coli O157:H7 and Ralstonia insidiosa, a strong biofilm producer isolated from a fresh-cut produce processing plant. J Food Prot 2015; 78:121-7. [PMID: 25581186 DOI: 10.4315/0362-028x.jfp-14-302] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Biofilm-forming bacteria resident to food processing facilities are a food safety concern due to the potential of biofilms to harbor foodborne bacterial pathogens. When cultured together, Ralstonia insidiosa, a strong biofilm former frequently isolated from produce processing environments, has been shown to promote the incorporation of Escherichia coli O157:H7 into dual-species biofilms. In this study, interactions between E. coli O157:H7 and R. insidiosa were examined under different incubating conditions. Under static culture conditions, the incorporation of E. coli O157:H7 into biofilms with R. insidiosa was not significantly affected by either low incubating temperature (10°C) or by limited nutrient availability. Greater enhancement of E. coli O157:H7 incorporation in dual-species biofilms was observed by using a continuous culture system with limited nutrient availability. Under the continuous culture conditions used in this study, E coli O157:H7 cells showed a strong tendency of colocalizing with R. insidiosa on a glass surface at the early stage of biofilm formation. As the biofilms matured, E coli O157:H7 cells were mostly found at the bottom layer of the dual-species biofilms, suggesting an effective protection by R. insidiosa in the mature biofilms.
Collapse
Affiliation(s)
- Nancy T Liu
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA; Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA.
| | - Gary R Bauchan
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Charles Murphy
- Electron and Confocal Microscopy Unit, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Alan M Lefcourt
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Daniel R Shelton
- Environmental Microbial and Food Safety Laboratory, Beltsville Agricultural Research Center, U.S. Department of Agriculture, Agricultural Research Service, Beltsville, Maryland 20705, USA
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, Maryland 20740, USA
| |
Collapse
|
43
|
Lee H, Hwang JS, Lee J, Kim JI, Lee DG. Scolopendin 2, a cationic antimicrobial peptide from centipede, and its membrane-active mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1848:634-42. [PMID: 25462167 DOI: 10.1016/j.bbamem.2014.11.016] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/04/2014] [Accepted: 11/17/2014] [Indexed: 11/29/2022]
Abstract
Scolopendin 2 is a 16-mer peptide (AGLQFPVGRIGRLLRK) derived from the centipede Scolopendra subspinipes mutilans. We observed that this peptide exhibited antimicrobial activity in a salt-dependent manner against various fungal and bacterial pathogens and showed no hemolytic effect in the range of 1.6 μM to 100 μM. Circular dichroism analysis showed that the peptide has an α-helical properties. Furthermore, we determined the mechanism(s) of action using flow cytometry and by investigating the release of intracellular potassium. The results showed that the peptide permeabilized the membranes of Escherichia coli O157 and Candida albicans, resulting in loss of intracellular potassium ions. Additionally, bis-(1,3-dibutylbarbituric acid) trimethine oxonol and 3,3'-dipropylthiacarbocyanine iodide assays showed that the peptide caused membrane depolarization. Using giant unilamellar vesicles encapsulating calcein and large unilamellar vesicles containing fluorescein isothiocyanate-dextran, which were similar in composition to typical E. coli O157 and C. albicans membranes, we demonstrated that scolopendin 2 disrupts membranes, resulting in a pore size between 4.8 nm and 5.0 nm. Thus, we have demonstrated that a cationic antimicrobial peptide, scolopendin 2, exerts its broad-spectrum antimicrobial effects by forming pores in the cell membrane.
Collapse
Affiliation(s)
- Heejeong Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, Republic of Korea
| | - Jae-Sam Hwang
- Department of Agricultural Biology, National Academy of Agricultural Science, RDA, Jeonju, Republic of Korea
| | - Jaeho Lee
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Jae Il Kim
- School of Life Sciences, Gwangju Institute of Science and Technology, Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | - Dong Gun Lee
- School of Life Sciences, BK 21 Plus KNU Creative BioResearch Group, College of Natural Sciences, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 702-701, Republic of Korea.
| |
Collapse
|
44
|
Brown HL, Reuter M, Salt LJ, Cross KL, Betts RP, van Vliet AHM. Chicken juice enhances surface attachment and biofilm formation of Campylobacter jejuni. Appl Environ Microbiol 2014; 80:7053-60. [PMID: 25192991 PMCID: PMC4249011 DOI: 10.1128/aem.02614-14] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 09/01/2014] [Indexed: 11/20/2022] Open
Abstract
The bacterial pathogen Campylobacter jejuni is primarily transmitted via the consumption of contaminated foodstuffs, especially poultry meat. In food processing environments, C. jejuni is required to survive a multitude of stresses and requires the use of specific survival mechanisms, such as biofilms. An initial step in biofilm formation is bacterial attachment to a surface. Here, we investigated the effects of a chicken meat exudate (chicken juice) on C. jejuni surface attachment and biofilm formation. Supplementation of brucella broth with ≥5% chicken juice resulted in increased biofilm formation on glass, polystyrene, and stainless steel surfaces with four C. jejuni isolates and one C. coli isolate in both microaerobic and aerobic conditions. When incubated with chicken juice, C. jejuni was both able to grow and form biofilms in static cultures in aerobic conditions. Electron microscopy showed that C. jejuni cells were associated with chicken juice particulates attached to the abiotic surface rather than the surface itself. This suggests that chicken juice contributes to C. jejuni biofilm formation by covering and conditioning the abiotic surface and is a source of nutrients. Chicken juice was able to complement the reduction in biofilm formation of an aflagellated mutant of C. jejuni, indicating that chicken juice may support food chain transmission of isolates with lowered motility. We provide here a useful model for studying the interaction of C. jejuni biofilms in food chain-relevant conditions and also show a possible mechanism for C. jejuni cell attachment and biofilm initiation on abiotic surfaces within the food chain.
Collapse
Affiliation(s)
| | - Mark Reuter
- Institute of Food Research, Norwich, United Kingdom
| | | | | | - Roy P Betts
- Campden BRI, Chipping Campden, Gloucestershire, United Kingdom
| | | |
Collapse
|
45
|
Jahid IK, Ha SD. The Paradox of Mixed-Species Biofilms in the Context of Food Safety. Compr Rev Food Sci Food Saf 2014. [DOI: 10.1111/1541-4337.12087] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iqbal Kabir Jahid
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
- Dept. of Microbiology; Jessore Univ. of Science and Technology; Jessore-7408 Bangladesh
| | - Sang-Do Ha
- School of Food Science and Technology; Chung-Ang Univ; 72-1 Nae-Ri, Daedeok-Myun Anseong-Si Gyeonggi-do 456-756 South Korea
| |
Collapse
|
46
|
Vogeleer P, Tremblay YDN, Mafu AA, Jacques M, Harel J. Life on the outside: role of biofilms in environmental persistence of Shiga-toxin producing Escherichia coli. Front Microbiol 2014; 5:317. [PMID: 25071733 PMCID: PMC4076661 DOI: 10.3389/fmicb.2014.00317] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 06/10/2014] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a heterogeneous species that can be part of the normal flora of humans but also include strains of medical importance. Among pathogenic members, Shiga-toxin producing E. coli (STEC) are some of the more prominent pathogenic E. coli within the public sphere. STEC disease outbreaks are typically associated with contaminated beef, contaminated drinking water, and contaminated fresh produce. These water- and food-borne pathogens usually colonize cattle asymptomatically; cows will shed STEC in their feces and the subsequent fecal contamination of the environment and processing plants is a major concern for food and public safety. This is especially important because STEC can survive for prolonged periods of time outside its host in environments such as water, produce, and farm soil. Biofilms are hypothesized to be important for survival in the environment especially on produce, in rivers, and in processing plants. Several factors involved in biofilm formation such as curli, cellulose, poly-N-acetyl glucosamine, and colanic acid are involved in plant colonization and adherence to different surfaces often found in meat processing plants. In food processing plants, contamination of beef carcasses occurs at different stages of processing and this is often caused by the formation of STEC biofilms on the surface of several pieces of equipment associated with slaughtering and processing. Biofilms protect bacteria against several challenges, including biocides used in industrial processes. STEC biofilms are less sensitive than planktonic cells to several chemical sanitizers such as quaternary ammonium compounds, peroxyacetic acid, and chlorine compounds. Increased resistance to sanitizers by STEC growing in a biofilm is likely to be a source of contamination in the processing plant. This review focuses on the role of biofilm formation by STEC as a means of persistence outside their animal host and factors associated with biofilm formation.
Collapse
Affiliation(s)
- Philippe Vogeleer
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Yannick D N Tremblay
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Akier A Mafu
- Food Research and Development Centre, Agriculture and Agri-Food Canada St-Hyacinthe, QC, Canada
| | - Mario Jacques
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| | - Josée Harel
- Groupe de Recherche sur les Maladies Infectieuses du Porc, Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Centre de Recherche d'Infectiologie Porcine et Avicole, Université de Montréal St-Hyacinthe, QC, Canada
| |
Collapse
|
47
|
Bridier A, Sanchez-Vizuete P, Guilbaud M, Piard JC, Naïtali M, Briandet R. Biofilm-associated persistence of food-borne pathogens. Food Microbiol 2014; 45:167-78. [PMID: 25500382 DOI: 10.1016/j.fm.2014.04.015] [Citation(s) in RCA: 300] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 04/15/2014] [Accepted: 04/27/2014] [Indexed: 12/19/2022]
Abstract
Microbial life abounds on surfaces in both natural and industrial environments, one of which is the food industry. A solid substrate, water and some nutrients are sufficient to allow the construction of a microbial fortress, a so-called biofilm. Survival strategies developed by these surface-associated ecosystems are beginning to be deciphered in the context of rudimentary laboratory biofilms. Gelatinous organic matrices consisting of complex mixtures of self-produced biopolymers ensure the cohesion of these biological structures and contribute to their resistance and persistence. Moreover, far from being just simple three-dimensional assemblies of identical cells, biofilms are composed of heterogeneous sub-populations with distinctive behaviours that contribute to their global ecological success. In the clinical field, biofilm-associated infections (BAI) are known to trigger chronic infections that require dedicated therapies. A similar belief emerging in the food industry, where biofilm tolerance to environmental stresses, including cleaning and disinfection/sanitation, can result in the persistence of bacterial pathogens and the recurrent cross-contamination of food products. The present review focuses on the principal mechanisms involved in the formation of biofilms of food-borne pathogens, where biofilm behaviour is driven by its three-dimensional heterogeneity and by species interactions within these biostructures, and we look at some emergent control strategies.
Collapse
Affiliation(s)
| | - P Sanchez-Vizuete
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Guilbaud
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - J-C Piard
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - M Naïtali
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France
| | - R Briandet
- Inra, UMR 1319 Micalis, Jouy-en-Josas, France; AgroParisTech, UMR Micalis, Massy, France.
| |
Collapse
|
48
|
Cappitelli F, Polo A, Villa F. Biofilm Formation in Food Processing Environments is Still Poorly Understood and Controlled. FOOD ENGINEERING REVIEWS 2014. [DOI: 10.1007/s12393-014-9077-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
49
|
Liu NT, Nou X, Lefcourt AM, Shelton DR, Lo YM. Dual-species biofilm formation by Escherichia coli O157:H7 and environmental bacteria isolated from fresh-cut processing facilities. Int J Food Microbiol 2013; 171:15-20. [PMID: 24296258 DOI: 10.1016/j.ijfoodmicro.2013.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Revised: 11/06/2013] [Accepted: 11/08/2013] [Indexed: 11/28/2022]
Abstract
Biofilm formation is a mechanism adapted by many microorganisms that enhances the survival in stressful environments. In food processing facilities, foodborne bacterial pathogens, which many are poor biofilm formers, could potentially take advantage of this protective mechanism by interacting with other strong biofilm producers. The objective of this study was to determine the influence of bacteria native to fresh produce processing environments on the incorporation of Escherichia coli O157:H7 in biofilms. Bacteria strains representing 13 Gram-negative species isolated from two fresh produce processing facilities in a previous study were tested for forming dual-species biofilms with E. coli O157:H7. Strong biofilm producing strains of Burkholderia caryophylli and Ralstonia insidiosa exhibited 180% and 63% increase in biofilm biomass, and significant thickening of the biofilms (B. caryophylli not tested), when co-cultured with E. coli O157:H7. E. coli O157:H7 populations increased by approximately 1 log in dual-species biofilms formed with B. caryophylli or R. insidiosa. While only a subset of environmental isolates with strong biofilm formation abilities increased the presence of E. coli O157:H7 in biofilms, all tested E. coli O157:H7 exhibited higher incorporation in dual-species biofilms with R. insidiosa. These observations support the notion that E. coli O157:H7 and specific strong biofilm producing bacteria interact synergistically in biofilm formation, and suggest a route for increased survival potential of E. coli O157:H7 in fresh produce processing environments.
Collapse
Affiliation(s)
- Nancy T Liu
- Environmental Microbial and Food Safety Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, United States; Department of Nutrition and Food Science, University of Maryland, College Park, MD 20740, United States
| | - Xiangwu Nou
- Environmental Microbial and Food Safety Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, United States.
| | - Alan M Lefcourt
- Environmental Microbial and Food Safety Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, United States
| | - Daniel R Shelton
- Environmental Microbial and Food Safety Laboratory, USDA Agricultural Research Service, Beltsville, MD 20705, United States
| | - Y Martin Lo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20740, United States
| |
Collapse
|
50
|
Giaouris E, Chorianopoulos N, Doulgeraki A, Nychas GJ. Co-culture with Listeria monocytogenes within a dual-species biofilm community strongly increases resistance of Pseudomonas putida to benzalkonium chloride. PLoS One 2013; 8:e77276. [PMID: 24130873 PMCID: PMC3795059 DOI: 10.1371/journal.pone.0077276] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 09/01/2013] [Indexed: 02/07/2023] Open
Abstract
Biofilm formation is a phenomenon occurring almost wherever microorganisms and surfaces exist in close proximity. This study aimed to evaluate the possible influence of bacterial interactions on the ability of Listeria monocytogenes and Pseudomonas putida to develop a dual-species biofilm community on stainless steel (SS), as well as on the subsequent resistance of their sessile cells to benzalkonium chloride (BC) used in inadequate (sub-lethal) concentration (50 ppm). The possible progressive adaptability of mixed-culture biofilms to BC was also investigated. To accomplish these, 3 strains per species were left to develop mixed-culture biofilms on SS coupons, incubated in daily renewable growth medium for a total period of 10 days, under either mono- or dual-species conditions. Each day, biofilm cells were exposed to disinfection treatment. Results revealed that the simultaneous presence of L. monocytogenes strongly increased the resistance of P. putida biofilm cells to BC, while culture conditions (mono-/dual-species) did not seem to significantly influence the resistance of L. monocytogenes biofilm cells. BC mainly killed L. monocytogenes cells when this was applied against the dual-species sessile community during the whole incubation period, despite the fact that from the 2nd day this community was mainly composed (>90%) of P. putida cells. No obvious adaptation to BC was observed in either L. monocytogenes or P. putida biofilm cells. Pulsed field gel electrophoresis (PFGE) analysis showed that the different strains behaved differently with regard to biofilm formation and antimicrobial resistance. Such knowledge on the physiological behavior of mixed-culture biofilms could provide the information necessary to control their formation.
Collapse
Affiliation(s)
- Efstathios Giaouris
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Lemnos island, Greece
| | - Nikos Chorianopoulos
- Veterinary Research Institute of Athens, Greek Agricultural Organization “Demeter”, Aghia Paraskeui, Greece
| | - Agapi Doulgeraki
- Department of Food Science and Nutrition, University of the Aegean, Myrina, Lemnos island, Greece
- Department of Food Science and Human Nutrition, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens (AUA), Athens, Greece
| | - George-John Nychas
- Department of Food Science and Human Nutrition, Laboratory of Microbiology and Biotechnology of Foods, Agricultural University of Athens (AUA), Athens, Greece
| |
Collapse
|