1
|
Kim YT, Lee K, Lee H, Son B, Song M, Lee SH, Kwon M, Kim DS, Noh TH, Lee S, Kim YJ, Lee MK, Lee KR. Development of a wastewater based infectious disease surveillance research system in South Korea. Sci Rep 2024; 14:24544. [PMID: 39427054 PMCID: PMC11490628 DOI: 10.1038/s41598-024-76614-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024] Open
Abstract
Wastewater-based epidemiology has been used in pathogen surveillance for microorganisms at the community level. This study was conducted to determine the occurrence and trends of infectious pathogens in sewage from Yongin city and the relationships between these pathogens and the incidence of infectious diseases in the community. From December 2022 to November 2023, we collected inflow water from six wastewater treatment plants in Yongin city twice a month. The analyzed microorganisms included 15 respiratory viruses, 7 pneumonia-causing bacteria, 19 acute diarrhea-causing pathogens, SARS-CoV-2, Zika virus, hepatitis A virus, poliovirus, Mpox, and measles. They were detected through real-time PCR and conventional PCR. The concentrations of 9 pathogens among them were additionally analyzed using quantitative real time PCR. The correlation was confirmed through statistical analysis with the rate of detection for pathogens reported by the Korea Disease Control and Prevention Agency. Influenza A virus, human adenovirus, and human rhinovirus were moderately correlated (rho values of 0.45 to 0.58). Campylobacter spp. and sapovirus were strong correlated (rho values of 0.62, 0.63). Enteropathogenic E. coli, human coronavirus, and norovirus GII were very strong correlated (rho values of 0.86 to 0.92). We were able to identify the prevalence of respiratory viral infections, pneumonia, and acute diarrhea-causing pathogens in the community through wastewater-based epidemiology data. This study will be helpful in establishing a system for future surveillance of infectious diseases present in sewage.
Collapse
Affiliation(s)
- Yun-Tae Kim
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea.
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea.
| | - Kyungwon Lee
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Hyukmin Lee
- Department of Laboratory Medicine, Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Bokyung Son
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Myeongwon Song
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seung-Hyun Lee
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Miran Kwon
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Dong-Soo Kim
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Tae-Hun Noh
- Department of R&D Innovation Center, Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Sanghoo Lee
- SCL Healthcare Inc. Gyeonggi-do, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Young-Jin Kim
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Mi-Kyeong Lee
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Kyoung-Ryul Lee
- Seoul Clinical Laboratories, Yongin-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
2
|
Sváb D, Somogyi Z, Tóth I, Marina J, Jose SV, Jeeba J, Safna A, Juhász J, Nagy P, Abdelnassir AMT, Ismail AA, Makrai L. Molecular Markers and Antimicrobial Resistance Patterns of Extraintestinal Pathogenic Escherichia coli from Camel Calves Including Colistin-Resistant and Hypermucoviscuous Strains. Trop Med Infect Dis 2024; 9:123. [PMID: 38922035 PMCID: PMC11209031 DOI: 10.3390/tropicalmed9060123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/06/2024] [Accepted: 04/24/2024] [Indexed: 06/27/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) strains are capable of causing various systemic infections in both humans and animals. In this study, we isolated and characterized 30 E. coli strains from the parenchymatic organs and brains of young (<3 months of age) camel calves which died in septicemia. Six of the strains showed hypermucoviscous phenotype. Based on minimum inhibitory concentration (MIC) values, seven of the strains were potentially multidrug resistant, with two additional showing colistin resistance. Four strains showed mixed pathotypes, as they carried characteristic virulence genes for intestinal pathotypes of E. coli: three strains carried cnf1, encoding cytotoxic necrotizing factor type 1, the key virulence gene of necrotoxigenic E. coli (NTEC), and one carried eae encoding intimin, the key virulence gene of enteropathogenic E. coli (EPEC). An investigation of the integration sites of pathogenicity islands (PAIs) and the presence of prophage-related sequences showed that the strains carry diverse arrays of mobile genetic elements, which may contribute to their antimicrobial resistance and virulence patterns. Our work is the first to describe ExPEC strains from camels, and points to their veterinary pathogenic as well as zoonotic potential in this important domestic animal.
Collapse
Affiliation(s)
- Domonkos Sváb
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary;
| | - Zoltán Somogyi
- Department of Pharmacology and Toxicology, University of Veterinary Medicine, H-1078 Budapest, Hungary;
| | - István Tóth
- HUN-REN Veterinary Medical Research Institute, H-1143 Budapest, Hungary;
| | - Joseph Marina
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Shantymol V. Jose
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - John Jeeba
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Anas Safna
- Central Veterinary Research Laboratory, Dubai P.O. Box 597, United Arab Emirates; (J.M.); (S.V.J.); (J.J.); (A.S.)
| | - Judit Juhász
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Péter Nagy
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Ahmed Mohamed Taha Abdelnassir
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | - Ahmed Abdelrhman Ismail
- Farm and Veterinary Department, Emirates Industry for Camel Milk and Products, Dubai P.O. Box 294236, United Arab Emirates; (J.J.); (P.N.); (A.M.T.A.); (A.A.I.)
| | | |
Collapse
|
3
|
Marutescu LG, Popa M, Gheorghe-Barbu I, Barbu IC, Rodríguez-Molina D, Berglund F, Blaak H, Flach CF, Kemper MA, Spießberger B, Wengenroth L, Larsson DGJ, Nowak D, Radon K, de Roda Husman AM, Wieser A, Schmitt H, Pircalabioru Gradisteanu G, Vrancianu CO, Chifiriuc MC. Wastewater treatment plants, an "escape gate" for ESCAPE pathogens. Front Microbiol 2023; 14:1193907. [PMID: 37293232 PMCID: PMC10244645 DOI: 10.3389/fmicb.2023.1193907] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Antibiotics are an essential tool of modern medicine, contributing to significantly decreasing mortality and morbidity rates from infectious diseases. However, persistent misuse of these drugs has accelerated the evolution of antibiotic resistance, negatively impacting clinical practice. The environment contributes to both the evolution and transmission of resistance. From all anthropically polluted aquatic environments, wastewater treatment plants (WWTPs) are probably the main reservoirs of resistant pathogens. They should be regarded as critical control points for preventing or reducing the release of antibiotics, antibiotic-resistant bacteria (ARB), and antibiotic-resistance genes (ARGs) into the natural environment. This review focuses on the fate of the pathogens Enterococcus faecium, Staphylococcus aureus, Clostridium difficile, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacteriaceae spp. (ESCAPE) in WWTPs. All ESCAPE pathogen species, including high-risk clones and resistance determinants to last-resort antibiotics such as carbapenems, colistin, and multi-drug resistance platforms, were detected in wastewater. The whole genome sequencing studies demonstrate the clonal relationships and dissemination of Gram-negative ESCAPE species into the wastewater via hospital effluents and the enrichment of virulence and resistance determinants of S. aureus and enterococci in WWTPs. Therefore, the efficiency of different wastewater treatment processes regarding the removal of clinically relevant ARB species and ARGs, as well as the influence of water quality factors on their performance, should be explored and monitored, along with the development of more effective treatments and appropriate indicators (ESCAPE bacteria and/or ARGs). This knowledge will allow the development of quality standards for point sources and effluents to consolidate the WWTP barrier role against the environmental and public health AR threats.
Collapse
Affiliation(s)
- Luminita Gabriela Marutescu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Marcela Popa
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Ilda Czobor Barbu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Daloha Rodríguez-Molina
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Institute for Medical Information Processing, Biometry, and Epidemiology – IBE, LMU Munich, Munich, Germany
- Pettenkofer School of Public Health, Munich, Germany
| | - Fanny Berglund
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Hetty Blaak
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Carl-Fredrik Flach
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Merel Aurora Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Beate Spießberger
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Laura Wengenroth
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - D. G. Joakim Larsson
- Department of Infectious Diseases, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Dennis Nowak
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
- Comprehensive Pneumology Center Munich (CPC-M), German Center for Lung Research (DZL), Munich, Germany
| | - Katja Radon
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Ana Maria de Roda Husman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Andreas Wieser
- German Centre for Infection Research (DZIF), Partner Site Munich, Munich, Germany
- Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Munich, Germany
- Department of Infectious Diseases and Tropical Medicine, LMU University Hospital Munich, Munich, Germany
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, Netherlands
| | - Gratiela Pircalabioru Gradisteanu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Romanian Academy of Sciences, Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Department of Microbiology and Immunology, Faculty of Biology, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- Earth, Environmental and Life Sciences Section, Research Institute of the University of Bucharest, University of Bucharest, Bucharest, Romania
- The Romanian Academy, Bucharest, Romania
| |
Collapse
|
4
|
Kilaru P, Hill D, Anderson K, Collins MB, Green H, Kmush BL, Larsen DA. Wastewater Surveillance for Infectious Disease: A Systematic Review. Am J Epidemiol 2022; 192:305-322. [PMID: 36227259 PMCID: PMC9620728 DOI: 10.1093/aje/kwac175] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 08/25/2022] [Accepted: 10/05/2022] [Indexed: 02/07/2023] Open
Abstract
Wastewater surveillance for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been shown to be a valuable source of information regarding SARS-CoV-2 transmission and coronavirus disease 2019 (COVID-19) cases. Although the method has been used for several decades to track other infectious diseases, there has not been a comprehensive review outlining all of the pathogens that have been surveilled through wastewater. Herein we identify the infectious diseases that have been previously studied via wastewater surveillance prior to the COVID-19 pandemic. Infectious diseases and pathogens were identified in 100 studies of wastewater surveillance across 38 countries, as were themes of how wastewater surveillance and other measures of disease transmission were linked. Twenty-five separate pathogen families were identified in the included studies, with the majority of studies examining pathogens from the family Picornaviridae, including polio and nonpolio enteroviruses. Most studies of wastewater surveillance did not link what was found in the wastewater to other measures of disease transmission. Among those studies that did, the value reported varied by study. Wastewater surveillance should be considered as a potential public health tool for many infectious diseases. Wastewater surveillance studies can be improved by incorporating other measures of disease transmission at the population-level including disease incidence and hospitalizations.
Collapse
Affiliation(s)
- Pruthvi Kilaru
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Des Moines University College of Osteopathic Medicine, Des Moines, Iowa, United States
| | - Dustin Hill
- Department of Public Health, Syracuse University, Syracuse, New York, United States,Graduate Program in Environmental Science, State University of New York College of Environmental Science and Forestry, Syracuse, New York, United States
| | - Kathryn Anderson
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, New York, United States
| | - Mary B Collins
- Department of Environmental Studies, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Hyatt Green
- Department of Environmental Biology, State University of New York College of Environmental Science, Syracuse, New York, United States
| | - Brittany L Kmush
- Department of Public Health, Syracuse University, Syracuse, New York, United States
| | - David A Larsen
- Correspondence to Dr. Dave Larsen, Department of Public Health, Syracuse University, 430C White Hall, Syracuse, NY 13244 ()
| |
Collapse
|
5
|
Occurrence and Reduction of Shiga Toxin-Producing Escherichia coli in Wastewaters in the Kathmandu Valley, Nepal. WATER 2022. [DOI: 10.3390/w14142224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Inadequately treated effluents discharged from wastewater treatment plants (WWTPs) severely affect the environment and the surrounding population. This study analyzed the presence of the Shiga toxin-producing Escherichia coli (STEC) genes, stx1, and stx2, and the E. coli gene, sfmD, in municipal WWTP A (n = 11) and B (n = 11) where the reductions were also evaluated; hospitals (n = 17), sewage treatment plants (STPs) (n = 4) and non-functional WWTPs (not-working WWTPs) (n = 5) in the Kathmandu Valley, Nepal. The sfmD gene was detected in 100% of the samples in WWTPs, hospitals, and not-working WWTPs and 50% of STP samples. The highest detection of stx1 and stx2 was shown in the WWTP influents, followed by WWTP effluents, not-working WWTP wastewater, hospital wastewater, and STP wastewater. Log10 reduction values of sfmD, stx1, and stx2 in WWTP A were 1.7 log10, 1.7 log10, 1.4 log10, whereas those in WWTP B were 0.5 log10, 0.6 log10, 0.5 log10, respectively, suggesting the ineffective treatment of STEC in the wastewater in the Kathmandu Valley. The high concentrations of the stx genes in the wastewaters suggest the increasing presence of aggressive STEC in the Kathmandu Valley, which should be a major public health concern.
Collapse
|
6
|
Bao ZK, Mi YH, Xiong XY, Wang XH. Sulforaphane Ameliorates the Intestinal Injury in Necrotizing Enterocolitis by Regulating the PI3K/Akt/GSK-3 β Signaling Pathway. Can J Gastroenterol Hepatol 2022; 2022:6529842. [PMID: 35600210 PMCID: PMC9117068 DOI: 10.1155/2022/6529842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/01/2022] [Indexed: 11/17/2022] Open
Abstract
Objective Necrotizing enterocolitis (NEC) is a serious neonatal disease; this study aims to investigate the role of sulforaphane (SFN) in NEC-induced intestinal injury. Methods An animal model of NEC was established in newborn mice and intragastrically administrated with SFN; then, the general status and survival of the mice were observed. H&E staining was used to observe the pathological changes of intestinal tissues. ELISA, immunohistochemical staining, and flow cytometry assays were used to detect the levels of inflammatory factors, including TNF-α, IL-6, and IL-17, the expression of Bax, Bcl-2, TLR4, and NF-κB, and the percentages of the Th17 and Treg cells, respectively. GSK-3β expression levels were measured by immunofluorescence. IEC-6 and FHC cells were induced with LPS to mimic NEC in vitro and coincubated with SFN; then, the inflammatory factor levels and cell apoptosis rate were detected. Finally, Western blot was used to assess the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Results SFN improved the survival rate of NEC mice during modeling, alleviated the severity of the intestinal injury, and reduced the proportion of Th17/Treg cells. SFN could inhibit TLR4 and NF-κB levels, decrease the release of inflammatory factors TNF-α and IL-6, suppress Bax expression, increase Bcl-2 expression, and inhibit apoptosis both in in vitro and in vivo models of NEC. Meanwhile, SFN regulated the expression of PI3K/Akt/GSK-3β pathway-related proteins in vitro and in vivo. Conclusion SFN relieved the inflammatory response and apoptosis by regulating the PI3K/Akt/GSK-3β signaling pathway, thereby alleviating NEC in model mice and cells.
Collapse
Affiliation(s)
- Zhong-Kun Bao
- Department of Radiology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yan-Hong Mi
- Department of Radiology, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, Zhejiang Province, China
| | - Xiao-Yu Xiong
- Department of Neonatology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Xin-Hong Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Characterization of enterohemorrhagic Escherichia coli from diarrhoeic patients with particular reference to production of Shiga-like toxin. Microb Pathog 2022; 166:105538. [DOI: 10.1016/j.micpath.2022.105538] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
8
|
Luo L, Wang H, Payne MJ, Liang C, Bai L, Zheng H, Zhang Z, Zhang L, Zhang X, Yan G, Zou N, Chen X, Wan Z, Xiong Y, Lan R, Li Q. Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb Genom 2021; 7. [PMID: 34882085 PMCID: PMC8767325 DOI: 10.1099/mgen.0.000710] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia albertii is a recently recognized species in the genus Escherichia that causes diarrhoea. The population structure, genetic diversity and genomic features have not been fully examined. Here, 169 E. albertii isolates from different sources and regions in China were sequenced and combined with 312 publicly available genomes (from additional 14 countries) for genomic analyses. The E. albertii population was divided into two clades and eight lineages, with lineage 3 (L3), L5 and L8 more common in China. Clinical isolates were observed in all clades/lineages. Virulence genes were found to be distributed differently among lineages: subtypes of the intimin encoding gene eae and the cytolethal distending toxin gene cdtB were lineage associated, and the second type three secretion system (ETT2) island was truncated in L3 and L6. Seven new eae subtypes and one new cdtB subtype (cdtB-VI) were identified. Alarmingly, 85.9 % of the Chinese E. albertii isolates were predicted to be multidrug-resistant (MDR) with 35.9 % harbouring genes capable of conferring resistance to 10 to 14 different drug classes. The majority of the MDR isolates were of poultry source from China and belonged to four sequence types (STs) [ST4638, ST4479, ST4633 and ST4488]. Thirty-four plasmids with some carrying MDR and virulence genes, and 130 prophages were identified from 17 complete E. albertii genomes. The 130 intact prophages were clustered into five groups, with group five prophages harbouring more virulence genes. We further identified three E. albertii specific genes as markers for the identification of this species. Our findings provided fundamental insights into the population structure, virulence variation and drug resistance of E. albertii.
Collapse
Affiliation(s)
- Lijuan Luo
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Michael J Payne
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Chelsea Liang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Li Bai
- Division I of Risk Assessment, National Health Commission Key Laboratory of Food Safety Risk Assessment, Food Safety Research Unit (2019RU014) of Chinese Academy of Medical Science, China National Center for Food Safety Risk Assessment, Beijing, PR China
| | - Han Zheng
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Zhengdong Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ling Zhang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xiaomei Zhang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Guodong Yan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Nianli Zou
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Xi Chen
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Ziting Wan
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| | - Yanwen Xiong
- State Key Laboratory of Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Ruiting Lan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Qun Li
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan, PR China
| |
Collapse
|
9
|
Wu J, Wang Z, Lin Y, Zhang L, Chen J, Li P, Liu W, Wang Y, Yao C, Yang K. Technical framework for wastewater-based epidemiology of SARS-CoV-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148271. [PMID: 34130001 PMCID: PMC8195746 DOI: 10.1016/j.scitotenv.2021.148271] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/29/2021] [Accepted: 05/30/2021] [Indexed: 05/02/2023]
Abstract
Wastewater-based epidemiology (WBE) is expected to become a powerful tool to monitor the dissemination of SARS-CoV-2 at the community level, which has attracted the attention of scholars all over the world. However, there is not yet a standard protocol to guide its implementation. In this paper, we proposed a comprehensive technical and theoretical framework of relative quantification via qPCR for determining the virus abundance in wastewater and estimating the infection ratio in corresponding communities, which is expected to achieve horizontal and vertical comparability of the data using a human-specific biomarker as the internal reference. Critical factors affecting the virus detectability and the estimation of infection ratio include virus concentration methods, lag-period, per capita virus shedding amount, sewage generation rate, temperature-related decay kinetics of virus/biomarker in wastewater, and hydraulic retention time (HRT), etc. Theoretical simulation shows that the main factors affecting the detectability of virus in sewage are per capita virus shedding amount and sewage generation rate. While the decay of SARS-CoV-2 RNA in sewage is a relatively slow process, which may have limited impact on its detection. Under the ideal condition of high per capita virus shedding amount and low sewage generation rate, it is expected to detect a single infected person within 400,000 people.
Collapse
Affiliation(s)
- Jinyong Wu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Zizheng Wang
- West China School of Stomatology, Sichuan University, Chengdu 610041, China
| | - Yufei Lin
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Lihua Zhang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yabo Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Changhong Yao
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Kun Yang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
10
|
Li B, Di DYW, Saingam P, Jeon MK, Yan T. Fine-Scale Temporal Dynamics of SARS-CoV-2 RNA Abundance in Wastewater during A COVID-19 Lockdown. WATER RESEARCH 2021; 197:117093. [PMID: 33826985 PMCID: PMC8006545 DOI: 10.1016/j.watres.2021.117093] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 05/19/2023]
Abstract
Wastewater is a pooled sampling instrument that may provide rapid and even early disease signals in the surveillance of COVID-19 disease at the community level, yet the fine-scale temporal dynamics of SARS-CoV-2 RNA in wastewater remains poorly understood. This study tracked the daily dynamics of SARS-CoV-2 RNA in the wastewater from two wastewater treatment plants (WWTPs) in Honolulu during a rapidly expanding COVID-19 outbreak and a responding four-week lockdown that resulted in a rapid decrease of daily clinical COVID-19 new cases. The wastewater SARS-CoV-2 RNA concentration from both WWTPs, as measured by three quantification assays (N1, N2, and E), exhibited both significant inter-day fluctuations (101.2-105.1 gene copies or GC/L in wastewater liquid fractions, or 101.4-106.2 GC/g in solid fractions) and an overall downward trend over the lockdown period. Strong and significant correlation was observed in measured SARS-CoV-2 RNA concentrations between the solid and liquid wastewater fractions, with the solid fraction containing majority (82.5%-92.5%) of the SARS-CoV-2 RNA mass and the solid-liquid SARS-CoV-2 RNA concentration ratios ranging from 103.6 to 104.3 mL/g. The measured wastewater SARS-CoV-2 RNA concentration was normalized by three endogenous fecal RNA viruses (F+ RNA coliphages Group II and III, and pepper mild mottle virus) to account for variations that may occur during the multi-step wastewater processing and molecular quantification, and the normalized abundance also exhibited similar daily fluctuations and overall downward trend over the sampling period.
Collapse
Affiliation(s)
- Bo Li
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Doris Yoong Wen Di
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Prakit Saingam
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Min Ki Jeon
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Tao Yan
- Department of Civil and Environmental Engineering, University of Hawaii at Manoa, Honolulu, HI 96822.
| |
Collapse
|
11
|
Abstract
Diarrheal disease is still a major public health concern, as it is still considered an important cause of death in children under five years of age. A few decades ago, the detection of enteropathogenic E. coli was made by detecting the O, H, and K antigens, mostly by agglutination. The recent protocols recommend the molecular methods for diagnosing EPEC, as they can distinguish between typical and atypical EPEC by identifying the presence/absence of specific virulence factors. EPEC are defined as diarrheagenic strains of E. coli that can produce attaching and effacing lesions on the intestinal epithelium while being incapable of producing Shiga toxins and heat-labile or heat-stable enterotoxins. The ability of these strains to produce attaching and effacing lesions enable them to cause localized lesions by attaching tightly to the surface of the intestinal epithelial cells, disrupting the surfaces of the cells, thus leading to the effacement of the microvilli. EPEC are classified on typical and atypical isolates, based on the presence or absence of E. coli adherence factor plasmids. All the EPEC strains are eae positive; typical EPEC strains are eae+, bfpA+, while atypical strains are eae+, bfpA−. No vaccines are currently available to prevent EPEC infections.
Collapse
|
12
|
Municipal Wastewater Surveillance Revealed a High Community Disease Burden of a Rarely Reported and Possibly Subclinical Salmonella enterica Serovar Derby Strain. Appl Environ Microbiol 2020; 86:AEM.00814-20. [PMID: 32591375 DOI: 10.1128/aem.00814-20] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 06/09/2020] [Indexed: 01/26/2023] Open
Abstract
Clinical surveillance of enteric pathogens like Salmonella is integral to track outbreaks and endemic disease trends. However, clinic-centered disease monitoring biases toward detection of severe cases and underestimates the incidence of self-limiting gastroenteritis and asymptomatic strains. Monitoring pathogen loads and diversity in municipal wastewater (MW) can provide insight into asymptomatic or subclinical infections which are not reflected in clinical cases. Subclinical infection patterns may explain the unusual observation from a year-long sampling campaign in Hawaii: Salmonella enterica serovar Derby was the most abundant pulsotype in MW but was detected infrequently in clinics over the sampling period. Using whole-genome sequencing data of Salmonella isolates from MW and public databases, we demonstrate that the Derby serovar has lower virulence potential than other clinical serovars, particularly based on its reduced profile of genes linked with immune evasion and symptom production, suggesting its potential as a subclinical salmonellosis agent. Furthermore, MW had high abundance of a rare Derby sequence type (ST), ST-72 (rather than the more common ST-40). ST-72 isolates had higher frequencies of fimbrial adherence genes than ST-40 isolates; these are key virulence factors involved in colonization and persistence of infections. However, ST-72 isolates lack the Derby-specific Salmonella pathogenicity island 23 (SPI-23), which invokes host immune responses. In combination, ST-72's genetic features may lead to appreciable infection rates without obvious symptom production, allowing for subclinical persistence in the community. This study demonstrated wastewater's capability to provide community infectious disease information-such as background infection rates of subclinical enteric illness-which is otherwise inaccessible through clinical approaches.IMPORTANCE Wastewater-based epidemiology (WBE) has been conventionally used to analyze community health via the detection of chemicals, such as legal and illicit drugs; however, municipal wastewater contains microbiological determinants of health and disease as well, including enteric pathogens. Here, we demonstrate that WBE can be used to examine subclinical community salmonellosis patterns. Derby was the most abundant Salmonella serovar detected in Hawaii wastewater over a year-long sampling study, with few corresponding clinical cases. Comparative genomics analyses indicate that the normally rare strain of S Derby found in wastewater has a unique combination of genes which allow it to persist as a subclinical infection without producing symptoms of severe gastroenteritis. This study shows that WBE can be used to explore trends in community infectious disease patterns which may not be reflected in clinical monitoring, shedding light on overall enteric disease burden and rates of asymptomatic cases.
Collapse
|
13
|
Yanagimoto K, Yamagami T, Uematsu K, Haramoto E. Characterization of Salmonella Isolates from Wastewater Treatment Plant Influents to Estimate Unreported Cases and Infection Sources of Salmonellosis. Pathogens 2020; 9:pathogens9010052. [PMID: 31936747 PMCID: PMC7168602 DOI: 10.3390/pathogens9010052] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/07/2020] [Accepted: 01/07/2020] [Indexed: 01/06/2023] Open
Abstract
Salmonella enterica is a major cause of gastroenteritis usually caused by animal-based contaminated foods. Since the current passive surveillance is not sufficient to detect all infections and infection sources, we determined the prevalence of Salmonella isolated from sewage influent of wastewater treatment plants (WWTPs) and compared the characteristics of human and food isolates to identify the infection sources. Sewage influent samples were collected monthly from two WWTPs located in the Yamanashi Prefecture, Japan, for three years. Serotypes, antimicrobial resistances, isolation periods, isolated areas, and pulsed-field gel electrophoresis patterns of six isolates belonging to five serotypes were consistent with those of the isolates from patients. Real-time PCR for Salmonella indicated that sewage influents reflect cases of patients infected with Salmonella, including unreported cases. Serovars Schwarzengrund and Anatum were predominant in sewage, but not in humans, and their characteristics were closely related or identical to those isolated from poultry heart and liver, respectively. These results suggest that sewage influent contains Salmonella isolates from humans and that some originated from unreported human cases infected by poultry-associated products. Therefore, it is necessary to take countermeasures against Salmonella infection based on the unreported cases, which would be disclosed by analysis of sewage influent.
Collapse
Affiliation(s)
- Keita Yanagimoto
- Department of Microbiology, Yamanashi Institute of Public Health and Environment, 1-7-31 Fujimi, Kofu, Yamanashi 400-0027, Japan; (K.Y.); (T.Y.); (K.U.)
- Environmental and Social System Science Course, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takaya Yamagami
- Department of Microbiology, Yamanashi Institute of Public Health and Environment, 1-7-31 Fujimi, Kofu, Yamanashi 400-0027, Japan; (K.Y.); (T.Y.); (K.U.)
| | - Kosei Uematsu
- Department of Microbiology, Yamanashi Institute of Public Health and Environment, 1-7-31 Fujimi, Kofu, Yamanashi 400-0027, Japan; (K.Y.); (T.Y.); (K.U.)
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
- Correspondence: ; Tel.: +81-55-220-8725
| |
Collapse
|
14
|
Paulshus E, Thorell K, Guzman-Otazo J, Joffre E, Colque P, Kühn I, Möllby R, Sørum H, Sjöling Å. Repeated Isolation of Extended-Spectrum-β-Lactamase-Positive Escherichia coli Sequence Types 648 and 131 from Community Wastewater Indicates that Sewage Systems Are Important Sources of Emerging Clones of Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2019; 63:e00823-19. [PMID: 31235629 PMCID: PMC6709473 DOI: 10.1128/aac.00823-19] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022] Open
Abstract
Antibiotic resistance in bacteria is an emerging problem globally. Resistant bacteria are found in human and animal microbiota, as well as in the environment. Wastewater receives bacteria from all these sources and thus can provide a measurement of abundance and diversity of antibiotic-resistant bacteria circulating in communities. In this study, water samples were collected from a wastewater pump station in a Norwegian suburban community over a period of 15 months. A total of 45 daily samples were cultured and analyzed for the presence of Escherichia coli Eighty E. coli-like colonies were collected from each daily sample and then phenotyped and analyzed for antibiotic resistance using the PhenePlate-AREB system. During the sampling period, two unique E. coli phenotypes with resistance to cefotaxime and cefpodoxime indicating carriage of extended-spectrum β-lactamases (ESBL) were observed repeatedly. Whole-genome sequencing of 15 representative isolates from the two phenotypes identified these as two distinct clones belonging to the two globally spread E. coli multilocus sequence types (STs) ST131 and ST648 and carrying blaCTX-M-15 The number of ESBL-positive E. coli strains in the community wastewater pump station was 314 of 3,123 (10%) analyzed E. coli strains. Of the ESBL-positive isolates, 37% belonged to ST648, and 7% belonged to ST131. Repeated findings of CTX-M-15-positive ST648 and ST131 over time indicate that these STs are resident in the analyzed wastewater systems and/or circulate abundantly in the community.
Collapse
Affiliation(s)
- Erik Paulshus
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Kaisa Thorell
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
- Department of Infectious Diseases, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jessica Guzman-Otazo
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Enrique Joffre
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Patricia Colque
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Inger Kühn
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Roland Möllby
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| | - Henning Sørum
- Department of Food Safety and Infection Biology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Oslo, Norway
| | - Åsa Sjöling
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Solna, Sweden
| |
Collapse
|
15
|
Yan T, O'Brien P, Shelton JM, Whelen AC, Pagaling E. Municipal Wastewater as a Microbial Surveillance Platform for Enteric Diseases: A Case Study for Salmonella and Salmonellosis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:4869-4877. [PMID: 29630348 DOI: 10.1021/acs.est.8b00163] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Municipal wastewater (MW) contains a conglomeration of human enteric microbiota from a community and, hence, represents a potential surveillance tool for gastrointestinal infectious disease burden at the community level. To evaluate this, the concentration of Salmonella in MW samples from Honolulu, Hawaii, was monitored over a 54-week period, which showed positive and significant linear and rank correlation with clinical salmonellosis case numbers over the same period. Salmonella isolates were obtained from the MW samples and then compared with clinical isolates obtained by the Hawaii Department of Health State Laboratories over the same period. The MW isolate collection contained 34 serotypes, and the clinical isolate collection contained 47 serotypes, 21 of which were shared between the two isolate collections, including nine of the 12 most commonly detected clinical serotypes. Most notably, nine Salmonella strains, including one outbreak-associated Paratyphi B strain and eight other clinically rare strains, were shared and concurrently detected between the MW and the clinical isolate collections, indicating the feasibility of using enteric pathogens in the MW as a timely indication of community enteric disease activity.
Collapse
Affiliation(s)
- T Yan
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - P O'Brien
- State Laboratories Division , Hawaii Department of Health , Honolulu , Hawaii 96782 , United States
| | - J M Shelton
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - A C Whelen
- State Laboratories Division , Hawaii Department of Health , Honolulu , Hawaii 96782 , United States
- Department of Microbiology , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| | - E Pagaling
- Department of Civil and Environmental Engineering , the University of Hawaii at Manoa , Honolulu , Hawaii 96822 , United States
| |
Collapse
|
16
|
Bibbal D, Um MM, Diallo AA, Kérourédan M, Dupouy V, Toutain PL, Bousquet-Mélou A, Oswald E, Brugère H. Mixing of Shiga toxin-producing and enteropathogenic Escherichia coli in a wastewater treatment plant receiving city and slaughterhouse wastewater. Int J Hyg Environ Health 2017; 221:355-363. [PMID: 29307571 DOI: 10.1016/j.ijheh.2017.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 12/22/2017] [Accepted: 12/22/2017] [Indexed: 11/28/2022]
Abstract
Wastewater of human and animal may contain Shiga toxin-producing (STEC) and enteropathogenic (EPEC) Escherichia coli. We evaluated the prevalence of such strains in a wastewater treatment plant (WWTP) receiving both city and slaughterhouse wastewater. PCR screenings were performed on 12,248 E. coli isolates. The prevalence of STEC in city wastewater, slaughterhouse wastewater and treated effluent was 0.22%, 0.07% and 0.22%, respectively. The prevalence of EPEC at the same sampling sites was 0.63%, 0.90% and 0.55%. No significant difference was observed between the sampling points. Treatment had no impact on these prevalences. Enterohemorrhagic E. coli (EHEC) O157:H7 and O111:H8 were isolated from the treated effluent rejected into the river. The characteristics of STEC and EPEC differed according to their origin. City wastewater contained STEC with various stx subtypes associated with serious human disease, whereas slaughterhouse wastewater contained exclusively STEC with stx2e subtype. All the EPEC strains were classified as atypical and were screened for the ε, γ1 and β1 subtypes, known to be associated with the EHEC mainly involved in human infections in France. In city wastewater, eae subtypes remained largely unidentified; whereas eae-β1 was the most frequent subtype in slaughterhouse wastewater. Moreover, the EPEC isolated from slaughterhouse wastewater were positive for other EHEC-associated virulence markers, including top five serotypes, the ehxA gene, putative adherence genes and OI-122 associated genes. The possibility that city wastewater could contain a pool of stx genes associated with human disease and that slaughterhouse wastewater could contain a pool of EPEC sharing similar virulence genes with EHEC, was highlighted. Mixing of such strains in WWTP could lead to the emergence of EHEC by horizontal gene transfer.
Collapse
Affiliation(s)
- Delphine Bibbal
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France.
| | - Maryse Michèle Um
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| | - Alpha Amadou Diallo
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; ISRA/LNERV, Dakar-Hann, Senegal
| | | | - Véronique Dupouy
- Toxalim, Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| | | | | | - Eric Oswald
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France; CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Hubert Brugère
- IRSD, Université de Toulouse, INSERM, INRA, ENVT, UPS, Toulouse, France
| |
Collapse
|
17
|
Avşar C, Civek S, Aras ES. Phenotypic and genotypic characterization of foodborne bacteria isolated from Sinop Province, Turkey. FOOD BIOTECHNOL 2017. [DOI: 10.1080/08905436.2017.1331450] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
18
|
Petit F, Clermont O, Delannoy S, Servais P, Gourmelon M, Fach P, Oberlé K, Fournier M, Denamur E, Berthe T. Change in the Structure of Escherichia coli Population and the Pattern of Virulence Genes along a Rural Aquatic Continuum. Front Microbiol 2017; 8:609. [PMID: 28458656 PMCID: PMC5394106 DOI: 10.3389/fmicb.2017.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/24/2017] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to investigate the diversity of the Escherichia coli population, focusing on the occurrence of pathogenic E. coli, in surface water draining a rural catchment. Two sampling campaigns were carried out in similar hydrological conditions (wet period, low flow) along a river continuum, characterized by two opposite density gradients of animals (cattle and wild animals) and human populations. While the abundance of E. coli slightly increased along the river continuum, the abundance of both human and ruminant-associated Bacteroidales markers, as well as the number of E. coli multi-resistant to antibiotics, evidenced a fecal contamination originating from animals at upstream rural sites, and from humans at downstream urban sites. A strong spatial modification of the structure of the E. coli population was observed. At the upstream site close to a forest, a higher abundance of the B2 phylogroup and Escherichia clade strains were observed. At the pasture upstream site, a greater proportion of both E and B1 phylogroups was detected, therefore suggesting a fecal contamination of mainly bovine origin. Conversely, in downstream urban sites, A, D, and F phylogroups were more abundant. To assess the occurrence of intestinal pathogenic strains, virulence factors [afaD, stx1, stx2, eltB (LT), estA (ST), ipaH, bfpA, eae, aaiC and aatA] were screened among 651 E. coli isolates. Intestinal pathogenic strains STEC O174:H21 (stx2) and EHEC O26:H11 (eae, stx1) were isolated in water and sediments close to the pasture site. In contrast, in the downstream urban site aEPEC/EAEC and DAEC of human origin, as well as extra-intestinal pathogenic E. coli belonging to clonal group A of D phylogroup, were sampled. Even if the estimated input of STEC (Shiga toxin-producing E. coli) - released in water at the upstream pasture site - at the downstream site was low, we show that STEC could persist in sediment. These results show that, the run-off of small cattle farms contributed, as much as the wastewater effluent, in the dissemination of pathogenic E. coli in both water and sediments, even if the microbiological quality of the water was good or to average quality according to the French water index.
Collapse
Affiliation(s)
- Fabienne Petit
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France.,Sorbonne Universités, UPMC, CNRS, EPHE, UMR 7619 METISParis, France
| | - Olivier Clermont
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Sabine Delannoy
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Pierre Servais
- Ecologie des Systèmes Aquatiques, Université Libre de Bruxelles, Campus de la PlaineBruxelles, Belgium
| | - Michèle Gourmelon
- Institut Français de Recherche pour l'Exploitation de la Mer, RBE-SG2M-LSEMPlouzané, France
| | - Patrick Fach
- Université Paris-Est, Anses, Food Safety Laboratory, IdentyPath Platform, Maisons-AlfortFrance
| | - Kenny Oberlé
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| | | | - Erick Denamur
- INSERM UMR1137, IAME, Université Paris Diderot, Sorbonne Paris CitéParis, France
| | - Thierry Berthe
- Normandie Université, UniRouen, UniCaen, CNRS UMR M2CRouen, France
| |
Collapse
|
19
|
Bonetta S, Pignata C, Lorenzi E, De Ceglia M, Meucci L, Bonetta S, Gilli G, Carraro E. Detection of pathogenic Campylobacter, E. coli O157:H7 and Salmonella spp. in wastewater by PCR assay. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:15302-15309. [PMID: 27106076 DOI: 10.1007/s11356-016-6682-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
The aim of this study was the evaluation of the occurrence of pathogenic Campylobacter, Escherichia coli O157:H7, E. coli virulence genes and Salmonella spp. in different wastewater treatment plants (WWTPs) using a method based on an enrichment step and PCR. This method was sensitive enough to detect low levels (∼2 CFU100 ml(-1) of raw sewage) of all the investigated pathogens. In the WWTP samples, E. coli O157:H7 DNA and the eae gene were never found, but 33 % of influents and effluents exhibited amplicons corresponding to Shiga-like toxin I. Twenty-five percent of the influent and 8 % of the effluent exhibited the presence of Shiga-like toxin II. Campylobacter jejuni and C. coli DNA were identified in 50 and 25 % of the influents and in 8 and 25 % of the effluents, respectively. Salmonella spp. DNA was present in all the samples. Considering the results obtained, the method tested here offers a reliable and expeditious tool for evaluating the efficiency of the effluent treatment in order to mitigate contamination risk. Influent contamination by Salmonella spp. and Campylobacter spp. provides indirect information about their circulation; moreover, their presence in effluents underlines the role of WWTPs in the contamination of the receiving surface waters, which affects public health directly or indirectly.
Collapse
Affiliation(s)
- Si Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - C Pignata
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Lorenzi
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - M De Ceglia
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - L Meucci
- Società Metropolitana Acque Torino S.p.A., C.so XI Febbraio, 14, Torino, 10152, Italy
| | - Sa Bonetta
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - G Gilli
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy
| | - E Carraro
- Department of Public Health and Pediatrics, University of Torino, Via Santena 5 bis, 10126, Torino, Italy.
| |
Collapse
|
20
|
Molecular Profiling of Shiga Toxin-Producing Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments. Appl Environ Microbiol 2016; 82:3913-3927. [PMID: 27107119 DOI: 10.1128/aem.00271-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 04/17/2016] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Shiga toxin-producing Escherichia coli (STEC) and enteropathogenic E. coli (EPEC) strains may be responsible for food-borne infections in humans. Twenty-eight STEC and 75 EPEC strains previously isolated from French shellfish-harvesting areas and their watersheds and belonging to 68 distinguishable serotypes were characterized in this study. High-throughput real-time PCR was used to search for the presence of 75 E. coli virulence-associated gene targets, and genes encoding Shiga toxin (stx) and intimin (eae) were subtyped using PCR tests and DNA sequencing, respectively. The results showed a high level of diversity between strains, with 17 unique virulence gene profiles for STEC and 56 for EPEC. Seven STEC and 15 EPEC strains were found to display a large number or a particular combination of genetic markers of virulence and the presence of stx and/or eae variants, suggesting their potential pathogenicity for humans. Among these, an O26:H11 stx1a eae-β1 strain was associated with a large number of virulence-associated genes (n = 47), including genes carried on the locus of enterocyte effacement (LEE) or other pathogenicity islands, such as OI-122, OI-71, OI-43/48, OI-50, OI-57, and the high-pathogenicity island (HPI). One O91:H21 STEC strain containing 4 stx variants (stx1a, stx2a, stx2c, and stx2d) was found to possess genes associated with pathogenicity islands OI-122, OI-43/48, and OI-15. Among EPEC strains harboring a large number of virulence genes (n, 34 to 50), eight belonged to serotype O26:H11, O103:H2, O103:H25, O145:H28, O157:H7, or O153:H2. IMPORTANCE The species E. coli includes a wide variety of strains, some of which may be responsible for severe infections. This study, a molecular risk assessment study of E. coli strains isolated from the coastal environment, was conducted to evaluate the potential risk for shellfish consumers. This report describes the characterization of virulence gene profiles and stx/eae polymorphisms of E. coli isolates and clearly highlights the finding that the majority of strains isolated from coastal environment are potentially weakly pathogenic, while some are likely to be more pathogenic.
Collapse
|
21
|
Xu Y, Bai X, Zhao A, Zhang W, Ba P, Liu K, Jin Y, Wang H, Guo Q, Sun H, Xu J, Xiong Y. Genetic Diversity of Intimin Gene of Atypical Enteropathogenic Escherichia coli Isolated from Human, Animals and Raw Meats in China. PLoS One 2016; 11:e0152571. [PMID: 27031337 PMCID: PMC4816571 DOI: 10.1371/journal.pone.0152571] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 03/16/2016] [Indexed: 01/08/2023] Open
Abstract
Atypical enteropathogenic Escherichia coli (aEPEC) is considered to be an emerging enteropathogen that is more prevalent than typical EPEC in developing and developed countries. The major adherence factor, intimin, an outer membrane protein encoded by eae, plays a pivotal role in the pathogenesis of aEPEC. This study investigated the distribution and polymorphisms of intimin subtypes of 143 aEPEC strains from diarrheal patients, healthy carriers, animals, and raw meats in China. These aEPEC strains belonged to more than 71 different serotypes, which comprised 52 O serogroups and 24 H types. Sixty-eight different eae genotypes and 19 intimin subtypes were detected. Eighteen, eight, seven, and five intimin subtypes were identified from 86 diarrheal patients, 14 healthy carriers, 19 animals, and 24 raw meats strains, respectively. Intimin β1 was the most prevalent subtype in strains from diarrheal patients (34.88%) and animals (47.37%). There was a statistically significant difference in the distribution of eae-β1 between diarrheal patients and healthy carriers (P = 0.004). Intimin-θ was more predominant among raw meat strains (50%) than among diarrheal patients strains (12.79%, P = 0.0003), healthy carrier strains (7.14%, P = 0.007), or animal strains (15.79%, P = 0.020). The two predominant subtypes (eae-β1 and eae-θ) had considerable polymorphisms with no significant differences among the four sources. PFGE analysis revealed 119 distinct patterns and the strains were clustered into 11 groups with similarity indices ranging from 63% to 100%. These results suggest that in China, aEPEC strains from different sources are highly heterogeneous. Animals and raw meats are important sources of genetically diverse intimin-harboring aEPEC, which might serve as important transmission vehicles of these bacteria.
Collapse
Affiliation(s)
- Yanmei Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiangning Bai
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Ailan Zhao
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wang Zhang
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Pengbin Ba
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kai Liu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yujuan Jin
- Longgang Center for Disease Control and Prevention, Shenzhen, Guangdong Province, China
| | - Hong Wang
- Zigong Center for Disease Control and Prevention, Zigong, Sichuan Province, China
| | - Qiusheng Guo
- Suixian Center for Disease Control and Prevention, Shangqiu, Henan Province, China
| | - Hui Sun
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianguo Xu
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanwen Xiong
- State Key Laboratory for Infectious Disease Prevention and Control, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- * E-mail:
| |
Collapse
|
22
|
Huang Y, Shan XF, Deng H, Huang YJ, Mu XP, Huang AL, Long QX. Epidemiology, Antimicrobial Resistance and β-lactamase Genotypic Features of Enteropathogenic Escherichia coli Isolated from Children with Diarrhea in Southern China. Jpn J Infect Dis 2015; 68:239-43. [PMID: 25672408 DOI: 10.7883/yoken.jjid.2014.120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The main objective of this study was to investigate the epidemiology, drug resistance and β-lactamase genotype distribution of enteropathogenic Escherichia coli (EPEC) isolated from pediatric patients with diarrhea in southern China. The prevalence of EPEC in children with diarrhea was 3.53%. The commonest serotypes were O55:K59 and O126:K71, and the typical EPEC were more prevalent than atypical EPEC (51 vs 7). Isolates from this region were most commonly found to be resistant to ampicillin and cotrimoxazole, followed by chloramphenicol, ceftriaxone, and ceftazidime. More than 96% of the strains were susceptible to cefoperazone/sulbactam and imipenem. The most common β-lactamase genotypes identified in 58 strains were blaCTX-M-1 (60.3%), blaTEM (56.9%), blaCTX-M-9 (27.6%), and blaSHV (15.5%). Among 58 isolates, 22 strains were found to harbor one β-lactamase gene, and the proportions of resistance to ampicillin, cotrimoxazole, chloramphenicol, ceftriaxone, and ceftazidime, were 81.8%, 63.6%, 40.9%, 18.2%, and 9.1%, respectively. A further 30 strains carrying multiple β-lactamase genes had increased resistance to the above antimicrobial agents (100%, 83.3%, 70.0%, 60.0%, and 30.0%, respectively). In contrast, antibiotic resistance in the last 6 strains without a detectable β-lactamase gene was substantially reduced. Drug resistance may be associated with the β-lactamase gene number, with a greater the number of β-lactamase genes resulting in higher antibiotic resistance.
Collapse
Affiliation(s)
- Yong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University
| | | | | | | | | | | | | |
Collapse
|