1
|
Mugayi LC, Mukanganyama S. Antimycobacterial and Antifungal Activities of Leaf Extracts From Trichilia emetica. SCIENTIFICA 2024; 2024:8784390. [PMID: 39885899 PMCID: PMC11779997 DOI: 10.1155/sci5/8784390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 06/27/2024] [Accepted: 11/19/2024] [Indexed: 02/01/2025]
Abstract
The global problem of infectious and deadly diseases caused by microbes such as candida and mycobacteria presents major scientific and medical challenges. Antimicrobial drug resistance is a rapidly growing problem with potentially devastating consequences. Various pathogens can cause skin infections, such as bacteria, fungi, and parasites. Antimicrobial resistance has caused the urgency to seek alternative treatment options from available natural resources. Plant-derived medicinal compounds can provide novel alternative treatment avenues against pathogenic microbes. The objective of this study was to determine the antimycobacterial and antifungal activity of leaf extracts of Trichilia emetica against Mycobacteria smegmatis, Mycobacteria aurum, Candida tropicalis, and Candida albicans. The leaf extracts were prepared using hexane, ethyl acetate, acetone, dichloromethane (DCM), methanol, ethanol, water, DCM:methanol, and 70% ethanolic aqueous solution. The microbroth dilution was used to determine the minimum inhibitory concentration (MIC) of each extract against the four test organisms. The mode of action by which these extracts inhibit growth was also investigated. The effects of the extract on the cell wall of C. tropicalis were determined using the sorbitol assay. The effects of the extracts on the membrane integrity of the test organisms were determined using propidium iodide, which binds to nucleic acids, and the Bradford reagent, which reacts with proteins. The ethyl acetate and 70% ethanolic aqueous extracts were most potent against the organisms tested with MICs ranging from 125 to 1000 μg/mL. However, the two extracts did not inhibit the growth of C. tropicalis in the presence of sorbitol. The extracts caused the leakage of nucleic acids and proteins in C. tropicalis and M. smegmatis only and not in M. aurum. It is concluded that the leaf extracts of T. emetica have antimycobacterial or antifungal activities. The disruption of cell membranes resulting in protein and nucleic acid leakage could be the plant's possible mode of action.
Collapse
Affiliation(s)
- Lydia Chenesai Mugayi
- Department of Biotechnology and Biochemistry, University of Zimbabwe, Mount Pleasant, Harare, Zimbabwe
| | - Stanley Mukanganyama
- Department of Therapeutics, Natural Products Unit, Wilkins Hospital Block C, Cnr J. Tongogara and R. Tangwena, The African Institute of Biomedical Research and Technology (AiBST), Harare, Zimbabwe
| |
Collapse
|
2
|
Dash P, Kar B, Gochhi M, Ghosh G, Rai VK, Das C, Pradhan D, Rajwar TK, Halder J, Dubey D, Manoharadas S, Rath G. Antimicrobial properties of the edible pink oyster mushroom, Pleurotus eous: In-vivo and in-vitro studies. Microb Pathog 2024; 196:106915. [PMID: 39243990 DOI: 10.1016/j.micpath.2024.106915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/08/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
In recent times, there has been a notable surge in the investigation of new antibiotic substances derived from natural origins. Pleurotus eous is an edible mushroom that has various useful bioactive substances and therapeutic properties, including antimicrobial activity. The present study aims to evaluate the antimicrobial efficacy of the methanolic extract of P. eous (MEPE) through in vitro method. Notably, S. aureus demonstrated the highest susceptibility to MEPE, prompting further investigation into its antibacterial mechanisms via scanning electron microscopy (SEM), membrane integrity, and permeability assays. The in-vivo antibacterial effect of MEPE against S. aureus was also assessed, including analysis of bacterial burden in organs, hematological profiles, and cytokine profiles. Detailed phytochemical analyses of MEPE were conducted using GC-MS. Results revealed MEPE's significant (p < 0.05) efficacy against Gram-positive bacteria, particularly S. aureus (77.56 ± 0.4 μg/mL and 34 ± 6.9 μg/ml in turbidometric and viable cell count assays, respectively). Moreover, membrane permeability significantly increased in 60.32 % of S. aureus isolates following treatment with MEPE. Additionally, mice receiving MEPE exhibited decreased levels of TNF-α, IL-1β, and IL-6, suggesting its potential in combating S. aureus infection in animal models.
Collapse
Affiliation(s)
- Priyanka Dash
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Biswakanth Kar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Monalisa Gochhi
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Vineet Kumar Rai
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Chandan Das
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Tushar Kanti Rajwar
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Jitu Halder
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India
| | - Debasmita Dubey
- Medical Research Laboratory, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), K8, Kalinga Nagar, Bhubaneswar, 751003, Odisha, India
| | - Salim Manoharadas
- King Saud University, Department of Botany and Microbiology, College of Science 5, P.O. Box. 2454, Riyadh, 11451, Saudi Arabia
| | - Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, 751003, Odisha, India.
| |
Collapse
|
3
|
Zhang J, Li W, Tao Z, Zhou X, Chen X, Zhou J, Sun H, Fang Y, Liu Y. Endogenous glucose-driven cascade reaction of nano-drug delivery for boosting multidrug-resistant bacteria-infected diabetic wound healing. J Colloid Interface Sci 2024; 672:63-74. [PMID: 38830319 DOI: 10.1016/j.jcis.2024.05.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/16/2024] [Accepted: 05/27/2024] [Indexed: 06/05/2024]
Abstract
Multidrug-resistant (MDR) bacteria-infected wound healing remains greatly challenging, especially in diabetic patients. Herein, a novel nano-drug delivery based on endogenous glucose-driven cascade reaction is proposed for boosting MDR bacteria-infected diabetic wound healing with high efficacy by improving wound microenvironment and enhancing photodynamic antibacterial activity. The composite nanoagent is first self-assembled by integrating berberine (BBR) and epigallocatechin gallate (EGCG) from natural plant extracts, named as BENPs, which is successively coated with manganese dioxide nanoshells (MnO2 NSs) and glucose oxidase (GOX) to form the final BEMGNPs. The cascade reaction is triggered by glucose at the wound site of diabetes which is specifically catalyzed by GOX in the BEMGNPs to produce gluconic acid and hydrogen peroxide (H2O2). That is subsequently to decompose MnO2 NSs in the BEMGNPs to generate oxygen (O2). The BEMGNPs as photosensitizers effectively produce reactive oxygen species (ROS) to enhance the eradication of bacteria with the assistance of O2. Under the synergistic function of the cascaded reaction, the BEMGNPs present excellent antibacterial efficacy even for MDR bacteria. The in vivo experiments explicitly validate that the constructed nano-drug delivery can augment the MDR bacteria-infected diabetic wound healing with excellent biosafety. The as-proposed strategy provides an instructive way to combat ever-threatening MDR bacteria, which particularly is beneficial for diabetic patients.
Collapse
Affiliation(s)
- Jingjing Zhang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Weiran Li
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhanhui Tao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China
| | - Xiao Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xiying Chen
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jingya Zhou
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Hanyue Sun
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yuan Fang
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China; Dongguan University of Technology, School of Life and Health Technology, Dongguan, 523808, China.
| |
Collapse
|
4
|
Wang Y, Rui W, Li Y, Han Y, Zhan X, Cheng S, Song L, Yang H, Jiang T, Liu G, Shi C. Inhibition and Mechanism of Citral on Bacillus cereus Vegetative Cells, Spores, and Biofilms. Foodborne Pathog Dis 2024; 21:447-457. [PMID: 38985570 DOI: 10.1089/fpd.2023.0176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Bacillus cereus causes food poisoning by producing toxins that cause diarrhea and vomiting and, in severe cases, endocarditis, meningitis, and other diseases. It also tends to form biofilms and spores that lead to contamination of the food production environment. Citral is a potent natural antibacterial agent, but its antibacterial activity against B. cereus has not been extensively studied. In this study, we first determined the minimum inhibitory concentrations and minimum bactericidal concentrations, growth curves, killing effect in different media, membrane potential, intracellular adenosine triphosphate (ATP), reactive oxygen species levels, and morphology of vegetative cells, followed by germination rate, morphology, germination state of spores, and finally biofilm clearance effect. The results showed that the minimum inhibitory concentrations and minimum bactericidal concentrations of citral against bacteria ranged from 100 to 800 μg/mL. The lag phase of bacteria was effectively prolonged by citral, and the growth rate of bacteria was slowed down. Bacteria in Luria-Bertani broth were reduced to below the detection limit by citral at 800 μg/mL within 0.5 h. Bacteria in rice were reduced to 3 log CFU/g by citral at 4000 μg/mL within 0.5 h. After treatment with citral, intracellular ATP concentration was reduced, membrane potential was altered, intracellular reactive oxygen species concentration was increased, and normal cell morphology was altered. After treatment with citral at 400 μg/mL, spore germination rate was reduced to 16.71%, spore morphology was affected, and spore germination state was altered. It also had a good effect on biofilm removal. The present study showed that citral had good bacteriostatic activity against B. cereus vegetative cells and its spores and also had a good clearance effect on its biofilm. Citral has the potential to be used as a bacteriostatic substance for the control of B. cereus in food industry production.
Collapse
Affiliation(s)
- Yihong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Wushuang Rui
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yilin Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yan Han
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shuai Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Luyi Song
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hui Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tongyu Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Guorong Liu
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
Mammadova HG. Antibacterial activity of Macrosciadium alatum (M.Bieb.) plant extract. JOURNAL OF COMPLEMENTARY & INTEGRATIVE MEDICINE 2024; 0:jcim-2023-0306. [PMID: 38887086 DOI: 10.1515/jcim-2023-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/01/2024] [Indexed: 06/20/2024]
Abstract
OBJECTIVES The flora of Azerbaijan is represented by one species of the Macrosciadium genus: Macrosciadium alatum, belonging to the Apiaceae family. It is commonly found in the Greater and Lesser Caucasus regions of Azerbaijan, as part of subalpine meadow plant communities. M. alatum is characterized by its robust, thick, tuberous roots, long-petioled and several times pinnately divided leaves, numerous (30-50) white umbels, and oval-shaped fruits. The primary objective of this research is to determine the antimicrobial potential of the aqueous extract obtained from M. alatum against both Gram-negative and Gram-positive bacteria. The plant preparations utilized in in vitro experiments were in the form of maceration, infusion, and hydrodistillation as aqueous extracts. M. alatum extract exhibited maximum (measuring 22.3 ± 1.4 mm) inhibition zones against bacteria (Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, Bacillus cereus, and Salmonella enteritidis) strains. Following exposure to the M. alatum plant extract, a significant reduction in bacterial cell cytoplasmic pH was observed (p≤0.04). METHODS In order to investigate the antimicrobial effects of the plant extract, commonly accepted procedures were followed using well-known bacterial strains, including S. aureus, B. cereus, E. coli, S. enteritis and P. aeruginosa, which are principal causative agents of purulent-inflammatory processes. The 20 % aqueous extract was used. RESULTS The conducted experiment to determine the impact of the plant extract on microorganisms revealed that the extract significantly affects the bacterial cell membrane. Specifically, there is a decrease in pH, and hyperpolarization of the cell membrane occurs. The efficacy of the preservative effect is highly dependent on the environmental pH. 1. The 20 % aqueous extract from exhibited antimicrobial activity and effectively preventing the development of foodborne pathogens and putrefactive microorganisms. 2. A 20 % aqueous extract of M. alatum exhibits antimicrobial activity, effectively inhibiting the growth of foodborne pathogens and spoilage microorganisms. 3. Extract led to an increase in H+ concentration within bacterial cell cytoplasm, surpassing the OH- concentration. 4. M. alatum species has a significant inhibitory effect on the growth of microorganisms such as S. aureus, E. coli, P. aeruginosa, and S. enteritidis. CONCLUSIONS The results suggest that the extract from M. alatum possesses antimicrobial properties, making it a potential candidate for use as a natural food preservative. The observed hyperpolarization of the cell membrane and pH reduction further support its potential as an effective antibacterial agent.
Collapse
Affiliation(s)
- Husniya Gara Mammadova
- Department of Biology, Faculty of Chemistry and Biology, 217749 Sumgait State University , Sumgait, Azerbaijan
| |
Collapse
|
6
|
Fei P, Xu J, Xie J, Huang J, Feng H, Chen X, Jiang P, Guo M, Chang Y. Rosa roxburghii Tratt Pomace Crude Extract Inactivates Cronobacter sakazakii Isolated from Powdered Infant Formula. Foodborne Pathog Dis 2024; 21:268-274. [PMID: 38265446 DOI: 10.1089/fpd.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024] Open
Abstract
Cronobacter sakazakii is an important foodborne pathogen in powder infant formula (PIF). The objective of this study was to evaluate the inactivation effect of Rosa roxburghii Tratt pomace crude extract (RRPCE) on C. sakazakii isolated from PIF and to reveal the mechanism of action. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were used to evaluate the inhibitory activity of RRPCE against C. sakazakii. The inhibitory mechanism was revealed from the perspective of effects of RRPCE on intracellular adenosine 5'-triphosphate (ATP), reactive oxygen species (ROS), membrane potential, protein and nucleic acid leakage, and cell morphology of C. sakazakii. The inactivation effects of RRPCE on C. sakazakii in biofilms on stainless steel, tinplate, glass, silica gel, polyethylene terephthalate, and polystyrene to evaluate its potential as a natural disinfectant. The results showed that the MIC and MBC of RRPCE against C. sakazakii were 7.5 and 15 mg/mL, respectively. After treatments with RRPCE, intracellular ATP content decreased significantly while intracellular ROS level increased significantly (p < 0.05). The cell membrane depolarization, large leakage of proteins and nucleic acids, and severely damaged cell morphology also occurred in C. sakazakii treated with RRPCE. In addition, a 20-minute treatment with 2 MIC (15 mg/mL) of RRPCE could inactivate all C. sakazakii (from 6.10 to 6.40 CFU/mL) in biofilms on all six contact surfaces. Our findings suggest that RRPCE is ideal for the inactivation of C. sakazakii and has the potential to be used as a natural disinfectant for the inactivation of PIF packaging materials and containers.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jing Xu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jinlan Xie
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Jicheng Huang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Peiyi Jiang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Mingliang Guo
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
7
|
Fei P, Sun Z, Liu X, Jiang P, Feng H, Chen X, Ma Y, Dong G, Fan C, Bai M, Li Y, Chang Y. Antibacterial Activity and Mechanism of Polygonatum sibiricum Extract Against Bacillus cereus and Its Application in Pasteurized Milk. Foodborne Pathog Dis 2024; 21:160-167. [PMID: 38079263 DOI: 10.1089/fpd.2023.0110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024] Open
Abstract
The purpose of this study was to reveal the antibacterial activity and mechanism of Polygonatum sibiricum extract (PSE) against Bacillus cereus and further analyze the application of PSE in pasteurized milk (PM). The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values and growth curve analysis were used to evaluate the antibacterial activity of PSE against B. cereus. The changes in contents of intracellular adenosine 5'-triphosphate (ATP) and reactive oxygen species (ROS), activities of β-galactosidase, adenosine triphosphatase (ATPase) and alkaline phosphatase (AKP), cell membrane potential, protein and nucleic acid leakage, and cell morphology were used to reveal the antibacterial mechanism. The effects of PSE on viable count and sensory evaluation of PM during storage were analyzed. The results showed that the MIC and MBC values of PSE against B. cereus were 2 and 4 mg/mL, respectively. Growth curve analysis showed that PSE with a concentration of 2 MIC could completely inhibit the growth of B. cereus. After treatments with PSE, the levels of intracellular ATP and ROS, and activities of β-galactosidase, ATPase and AKP of B. cereus were significantly reduced (p < 0.05). Cell membrane was depolarized, amounts of protein and nucleic acid leakage were significantly increased (p < 0.05), and cell morphology was destroyed. Furthermore, PSE significantly reduced the viable count of B. cereus in PM and improved the sensory quality of PM during storage (p < 0.05). Together, our findings suggested that PSE had the desired effect as a natural preservative applied in PM.
Collapse
Affiliation(s)
- Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
- Zhongyuan Food Laboratory, Luohe, China
| | - Zongyu Sun
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Xinyu Liu
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Peiyi Jiang
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Hongxia Feng
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xi Chen
- Institute of Integrated Agricultural Development Research, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Ma
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Gege Dong
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Chengwei Fan
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Mengyang Bai
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yadi Li
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| |
Collapse
|
8
|
Zhang Z, Ma J, Chen F, Chen Y, Pan K, Liu H. Mechanisms underlying the alleviated cadmium toxicity in marine diatoms adapted to ocean acidification. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132804. [PMID: 37890381 DOI: 10.1016/j.jhazmat.2023.132804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/29/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023]
Abstract
Anthropogenic activities have significantly increased the influx of carbon dioxide and metals into the marine environment. Combining ocean acidification (OA) and metal pollution may lead to unforeseen biological and ecological consequences. Several studies have shown that OA reduces cadmium (Cd) toxicity in marine diatoms. Although these studies have shed light on the physiological and transcriptomic responses of diatoms exposed to Cd, many aspects of the mechanisms underlying the reduced metal accumulation in diatoms remain unknown. This study aims to address this unresolved question by comparing Cd subcellular distribution, antioxidant enzyme activity, relative expression of metal transporters, surface potential, surface composition, and transmembrane potential in the diatom Phaeodactylum tricornutum grown under ambient and 1200 µatm pCO2 conditions. Our findings reveal that diatoms grown in acidified seawater exhibit higher surface potential and higher plasma membrane depolarization. These changes and the competing effects of increased H+ concentration result in a blunted response of P. tricornutum to the Cd challenge. Consequently, this study offers a new explanation for mitigating Cd toxicity by marine diatoms adapted to OA.
Collapse
Affiliation(s)
- Zhen Zhang
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Fengyuan Chen
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region
| | - Yingya Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Ke Pan
- SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China; Shenzhen Key Laboratory of Marine Microbiome Engineering Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region; Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Guo L, Han J, Wang Y, Chang Y, Qu W, Man C, Fei P, Jiang Y. Antibacterial action of slightly acidic electrolytic water against Cronobacter sakazakii and its application as a disinfectant on high-risk contact surfaces. Front Microbiol 2024; 15:1314362. [PMID: 38351917 PMCID: PMC10864107 DOI: 10.3389/fmicb.2024.1314362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Powdered infant formula (PIF) is prone to Cronobacter sakazakii (C. sakazakii) contamination, which can result in infections that endanger the lives of newborns and infants. Slightly acidic electrolytic water (SAEW) has shown antibacterial effects on a variety of foodborne pathogens and has a wide applicability in the food industry. Here, the antibacterial activity of SAEW against C. sakazakii and its use as a disinfectant on contact surfaces with high infection transmission risk were investigated. The inactivation of SAEW on C. sakazakii was positively correlated to the SAEW concentration and treatment time. The antibacterial effect of SAEW was achieved by decreasing the intracellular adenosine triphosphate (ATP), K+, protein, and DNA contents of C. sakazakii, reducing the intracellular pH (pHin) and destroying the cell morphology, which led to inactivation of C. sakazakii ultimately. To test the applicability of this study, the results showed that approximately 103 CFU/cm2 of C. sakazakii were successfully inactivated on stainless steel and rubber surfaces after a 30 mg/L SAEW treatment for 20 s. These results indicate the antibacterial mechanism and potential application of SAEW against C. sakazakii, as well as a new strategy for the prevention and control of C. sakazakii on stainless steel and rubber surfaces.
Collapse
Affiliation(s)
- Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
- Food Laboratory of Zhongyuan, Luohe, China
| | - Jing Han
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanyan Wang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yajing Chang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Wenxuan Qu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Peng Fei
- School of Zhang Zhongjing Health Care and Food, Nanyang Institute of Technology, Nanyang, China
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
10
|
Zubair M. Antimicrobial and Anti-Biofilm Activities of Coffea arabica L. Against the Clinical Strains Isolated From Diabetic Foot Ulcers. Cureus 2024; 16:e52539. [PMID: 38371116 PMCID: PMC10874490 DOI: 10.7759/cureus.52539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Diabetes-related complications such as diabetic foot infections foster resilient biofilms, complicating treatment. Innovative therapeutic solutions are urgently needed to address this challenge. In this research, coffee bean powder (green coffee been powder [GCBP], roasted coffee bean powder [RCBP], and spent coffee powder ground [SCPG]) was extracted and assessed for its ability to impede biofilm formation and associated functions in extended-spectrum beta-lactamase (ESBL) and methicillin-resistant Staphylococcus aureus (MRSA)-positive biofilm-forming strains of Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E. coli), and Staphylococcus aureus (S. aureus) obtained from foot ulcers. GCBP exhibited notable effectiveness in reducing biofilm formation, ranging from 17-76% in monocultures and 17-66% in mixed cultures. It significantly disrupted motility in P. aeruginosa and E. coli, a crucial factor influencing biofilm establishment. The critical biofilm-related functions for attachment and maintenance such as cell surface hydrophobicity and exopolysaccharide production were significantly inhibited at sub-MICs. Notably, GCBP elicited statistically significant reductions (29-59% in monocultures and 28-45% in mixed cultures) in pre-formed biofilms. The reduction in bacterial chitinase activity upon exposure to GCBP implies a potential mechanism for its ability to inhibit biofilm formation. This study emphasizes the potential of green coffee bean extract in tackling antibiotic-resistant bacterial biofilms associated with diabetic foot ulcers, suggesting innovative strategies for infection management through mechanistic understanding and optimized applications.
Collapse
|
11
|
She P, Yang Y, Li L, Li Y, Liu S, Li Z, Zhou L, Wu Y. Repurposing of the antimalarial agent tafenoquine to combat MRSA. mSystems 2023; 8:e0102623. [PMID: 38047647 PMCID: PMC10734505 DOI: 10.1128/msystems.01026-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2023] [Indexed: 12/05/2023] Open
Abstract
IMPORTANCE This study represents the first investigation into the antimicrobial effect of TAF against S. aureus and its potential mechanisms. Our data highlighted the effects of TAF against MRSA planktonic cells, biofilms, and persister cells, which is conducive to broadening the application of TAF. Through mechanistic studies, we revealed that TAF targets bacterial cell membranes. In addition, the in vivo experiments in mice demonstrated the safety and antimicrobial efficacy of TAF, suggesting that TAF could be a potential antibacterial drug candidate for the treatment of infections caused by multiple drug-resistant S. aureus.
Collapse
Affiliation(s)
- Pengfei She
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yifan Yang
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linhui Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Yimin Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Shasha Liu
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zehao Li
- Department of Laboratory Medicine, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Linying Zhou
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| | - Yong Wu
- Department of Laboratory Medicine, The Affiliated Changsha Hospital of Xiangya School of Medicine (The First Hospital of Changsha), Central South University, Changsha, China
| |
Collapse
|
12
|
Sun MC, Li DD, Chen YX, Fan XJ, Gao Y, Ye H, Zhang T, Zhao C. Insights into the Mechanisms of Reuterin against Staphylococcus aureus Based on Membrane Damage and Untargeted Metabolomics. Foods 2023; 12:4208. [PMID: 38231661 DOI: 10.3390/foods12234208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/19/2024] Open
Abstract
Reuterin is a dynamic small-molecule complex produced through glycerol fermentation by Limosilactobacillus reuteri and has potential as a food biopreservative. Despite its broad-spectrum antimicrobial activity, the underlying mechanism of action of reuterin is still elusive. The present paper aimed to explore the antibacterial mechanism of reuterin and its effects on membrane damage and the intracellular metabolome of S. aureus. Our results showed that reuterin has a minimum inhibitory concentration of 18.25 mM against S. aureus, based on the 3-hydroxypropionaldehyde level. Key indicators such as extracellular electrical conductivity, membrane potential and permeability were significantly increased, while intracellular pH, ATP and DNA were markedly decreased, implying that reuterin causes a disruption to the structure of the cell membrane. The morphological damage to the cells was confirmed by scanning electron microscopy. Subsequent metabolomic analysis identified significant alterations in metabolites primarily involved in lipid, amino acid, carbohydrate metabolism and phosphotransferase system, which is crucial for cell membrane regulation and energy supply. Consequently, these findings indicated that the antibacterial mechanism of reuterin initially targets lipid and amino acid metabolism, leading to cell membrane damage, which subsequently results in energy metabolism disorder and, ultimately, cell death. This paper offers innovative perspectives on the antibacterial mechanism of reuterin, contributing to its potential application as a food preservative.
Collapse
Affiliation(s)
- Mao-Cheng Sun
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Dian-Dian Li
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu-Xin Chen
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Xiu-Juan Fan
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Yu Gao
- College of Food Science and Engineering, Changchun University, Changchun 130022, China
| | - Haiqing Ye
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| |
Collapse
|
13
|
Liang X, Tu C, Li Y, Sun J, Zhao R, Ran J, Jiao L, Huang J, Li J. Inhibitory mechanism of quercetin on Alicyclobacillus acidoterrestris. Front Microbiol 2023; 14:1286187. [PMID: 38033555 PMCID: PMC10684910 DOI: 10.3389/fmicb.2023.1286187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/12/2023] [Indexed: 12/02/2023] Open
Abstract
In this the antibacterial of quercetin against Alicyclobacillus acidoterrestris was evaluated by measuring the minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC). Subsequently, the effect of quercetin on A. acidoterrestris cell membrane was evaluated through scanning electron microscopy (SEM), surface hydrophobicity determination, diacetate fluorescein staining and propidium iodide (PI) staining. Additionally, the effects of quercetin on intracellular macromolecules and cell metabolism were explored by measuring the culture medium protein, bacterial protein and intracellular sodium and potassium adenosine triphosphate (ATP) enzyme activity. The results revealed that quercetin exhibited the MIC and MBC values of 100 ug/mL and 400 ug/mL, respectively, against A. acidoterrestris. The SEM results revealed that quercetin could induce irreversible damage to the cell membrane effectively. Moreover, quercetin could enhance the surface hydrophobicity of A. acidoterrestris. The results of flow cytometry and fluorescence microscopy analyses revealed that quercetin could promote cell damage by altering the cell membrane permeability of A. acidoterrestris, inducing the release of nucleic acid substances from the cells. Furthermore, the determination of protein content in the culture medium, bacterial protein content, and the Na(+)/K(+)-ATPase activity demonstrated that quercetin could reduce the intracellular protein content and impedes protein expression and ATPase synthesis effectively, leading to apoptosis.
Collapse
Affiliation(s)
- Xinhong Liang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Cunjian Tu
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Yongchao Li
- School of Life Sciences, Henan Institute of Science and Technology, Xinxiang, China
| | - Junliang Sun
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Ruixiang Zhao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junjian Ran
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Lingxia Jiao
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junchao Huang
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| | - Junrui Li
- School of Food Science, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
14
|
Li M, Li J, Li J, Zhang J, Zhao Y, Li W, Zhang Y, Hu J, Xie X, Zhang D, Li H, Zhao Q, Gao H, Liang C. Design, synthesis, and evaluation of novel pleuromutilin aryl acrylate derivatives as promising broad-spectrum antibiotics especially for combatting multi-drug resistant gram-negative bacteria. Eur J Med Chem 2023; 259:115653. [PMID: 37531743 DOI: 10.1016/j.ejmech.2023.115653] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/04/2023] [Accepted: 07/13/2023] [Indexed: 08/04/2023]
Abstract
The emergence of drug-resistant strains presents a grave challenge for traditional antibiotics, underscoring the exigency of exploring novel antibacterial drugs. To address this, the present study endeavors to design and synthesize a collection of pleuromutilin aromatic acrylate derivatives, guided by combination principles. The antibacterial activity and structure-activity relationship of these derivatives were evaluated, and most of the derivatives displayed moderate to excellent antibacterial activity against both Gram-positive bacteria and Gram-negative bacteria. Among these derivatives, 5g exhibited the strongest antibacterial activity, with MIC (minimum inhibitory concentration) values ranging from 1-32 μg/mL, and a MIC value against clinically isolated drug-resistant strains of 4-64 μg/mL. Additionally, 5g exhibited negligible cytotoxicity, superior anti-mycoplasma activity, and a greater propensity to perturb bacterial cell membranes. Notably, the administration of 5g resulted in an increased survival rate of MRSA (Methicillin-resistant Staphylococcus aureus)-infected mice, with an ED50 (median effective dose) value of 9.04 mg/kg. These results indicated the potential of 5g to be further developed as an antibacterial drug for the clinical treatment of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Min Li
- College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang, 830001, PR China.
| | - Jialin Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jingyi Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jie Zhang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Yuqing Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Wenying Li
- College of Pharmacy, Xinjiang Medical University, No.567 Shangde North Road, Urumqi, Xinjiang, 830001, PR China
| | - Yunfei Zhang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Jinrong Hu
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Xiaolin Xie
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Dezhu Zhang
- Shaanxi Panlong Pharmaceutical Group Co., Ltd., Xi'an, 710025, PR China
| | - Han Li
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China
| | - Qianqian Zhao
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| | - Hong Gao
- Shaanxi Pioneer Biotech Co., Ltd., Xi'an, 710021, PR China
| | - Chengyuan Liang
- School of Biological and Pharmaceutical Sciences, Shaanxi University of Science & Technology, Xi'an, 710021, PR China.
| |
Collapse
|
15
|
Chen P, Liu Y, Li C, Hua S, Sun C, Huang L. Antibacterial mechanism of vanillin against Escherichia coli O157: H7. Heliyon 2023; 9:e19280. [PMID: 37662745 PMCID: PMC10474422 DOI: 10.1016/j.heliyon.2023.e19280] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 09/05/2023] Open
Abstract
Vanillin, a plant-derived antimicrobial volatile substance, has potential microbial control applications in the food industry. However, the effect of vanillin on the food-borne pathogen Escherichia coli (E. coli) O157:H7 has not been well studied. This study aims to explore the antibacterial mechanism of vanillin against E. coli O157:H7. The minimum inhibitory concentration (MIC) and antibacterial effect of vanillin were determined by microdilution. Scanning electron microscopy (SEM) was used to observe the damage of vanillin to the cell membrane, while cell membrane potential and the leakage of nucleic acid protein were measured to explore the effect of vanillin on the membrane system. Confocal laser scanning and intracellular adenosine triphosphate (ATP) concentration determination were utilized to investigate the effects of vanillin on the energy, life, and death of E. coli. Finally, transcriptome sequencing was conducted to investigate the gene expression differences induced by vanillin treatment. The results showed that vanillin treatment effectively controlled E. coli O157:H7 with an MIC of 2 mg/mL. After treatment, damage to the membrane system, depolarization of the membrane, and leakage of nucleic acid and protein were observed. Meanwhile, vanillin treatment caused decreased ATP content and cell death. Transcriptome analysis showed that vanillin treatment significantly affected the expression of genes involved in cell membrane formation, tricarboxylic acid (TCA) cycling pathway, and oxidative phosphorylation pathway in E. coli O157:H7. In conclusion, membrane damage and energy metabolism disruption are important mechanisms of vanillin's inhibitory effect on E. coli O157:H7. This study provides new insights into the molecular reaction mechanism of vanillin against E. coli O157:H7, highlighting its potential as an antibacterial substance for preventing E. coli contamination in the food industry.
Collapse
Affiliation(s)
- Peiyao Chen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Yinxin Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cheng Li
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shuhao Hua
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Cui Sun
- Laboratory of Fruit Quality Biology/The State Agriculture Ministry Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Zijingang Campus, Hangzhou 310058, PR China
| | - Lingxia Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, PR China
- Key Laboratory of Silkworm and Bee Resource Utilization and Innovation Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
16
|
Boukhibar H, Laouani A, Touzout SN, Alenazy R, Alqasmi M, Bokhari Y, Saguem K, Ben-Attia M, El-Bok S, Merghni A. Chemical Composition of Ailanthus altissima (Mill.) Swingle Methanolic Leaf Extracts and Assessment of Their Antibacterial Activity through Oxidative Stress Induction. Antibiotics (Basel) 2023; 12:1253. [PMID: 37627673 PMCID: PMC10451179 DOI: 10.3390/antibiotics12081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 07/26/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The present study was conducted to investigate the chemical composition of Ailanthus altissima (Mill.) Swingle methanolic leaf extracts from geographically distinct regions and to assess their antimicrobial properties along with their ability to induce oxidative stress. The HPLC-DAD analysis revealed the presence of phenolic acids and flavonoids including chlorogenic acid, gallic acid, synapic acid, p-coumaric acid, apigenin, hyperoside, isoamnétine-3-O-beta-D-glucotrioside, quercetin, and isoquercetin in various amounts depending on the origin of tested extracts. The assessment of antibacterial activity showed the effectiveness of the A. altissima extracts particularly against Gram-positive bacteria, with inhibition zone diameters reaching 14 ± 1 mm and minimum inhibitory concentrations ranging from 4 to 72.2 mg/mL. These bioactive substances also exhibited strong antibiofilm activity with an eradication percentage reaching 67.07%. Furthermore, they increased ROS production to levels two to five times higher than the control group, altered the membrane integrity and caused lipid peroxidation with MDA production exceeding 2.5 µmol/mg protein in the Gram-positive and Gram-negative strains. A decrease in the levels of the antioxidant enzymes SOD and CAT was also observed, indicating an impairment of the bacterial response to the oxidative stress caused by the tested extracts. These findings highlight the antibacterial properties of A. altissima leaf extracts depending on their origins and promote their exploitation and application in the agro-food and pharmaceutical sectors.
Collapse
Affiliation(s)
- Halima Boukhibar
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Aicha Laouani
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Soraya Naila Touzout
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Rawaf Alenazy
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Mohammed Alqasmi
- Department of Medical Laboratory, College of Applied Medical Sciences-Shaqra, Shaqra University, Shaqra 11961, Saudi Arabia;
| | - Yaseen Bokhari
- College of Pharmacy, Alfaisal University, Riyadh 12714, Saudi Arabia;
| | - khaled Saguem
- Laboratory of Metabolic Biophysics and Applied Pharmacology (LR12/ES02), Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia; (A.L.)
- USCR Analytical Platform UHPLC-MS &Research in Medicine and Biology, Faculty of Medicine of Sousse, University of Sousse, Sousse 4002, Tunisia
| | - Mossadok Ben-Attia
- Environment Biomonitoring Laboratory (LR01/ES14), Faculty of Sciences of Bizerte, University of Carthage, Zarzouna 7021, Tunisia;
| | - Safia El-Bok
- Laboratory of Biodiversity, Biotechnologies and Climate Change (LR11/ES09), Faculty of Sciences of Tunis, University of Tunis El-Manar, Tunis 2092, Tunisia; (H.B.); (S.N.T.); (S.E.-B.)
| | - Abderrahmen Merghni
- Laboratory of Antimicrobial Resistance LR99/ES09, Faculty of Medicine of Tunis, University of Tunis El Manar, Tunis 1006, Tunisia
| |
Collapse
|
17
|
Liao S, Tian L, Qi Q, Hu L, Wang M, Gao C, Cui H, Gai Z, Gong G. Transcriptome Analysis of Protocatechualdehyde against Listeria monocytogenes and Its Effect on Chicken Quality Characteristics. Foods 2023; 12:2625. [PMID: 37444363 DOI: 10.3390/foods12132625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/29/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The development of natural antimicrobial agents offers new strategies for food preservation due to the health hazards associated with the spoilage of meat products caused by microbial contamination. In this paper, the inhibitory mechanism of protocatechualdehyde (PCA) on Listeria monocytogenes was described, and its effect on the preservation of cooked chicken breast was evaluated. The results showed that the minimal inhibitory concentration (MIC) of PCA on L. monocytogenes was 0.625 mg/mL. Secondly, PCA destroyed the integrity of the L. monocytogenes cell membrane, which was manifested as a decrease in membrane hyperpolarization, intracellular ATP level, and intracellular pH value. Field emission gun scanning electron microscopy (FEG-SEM) observed a cell membrane rupture. Transcriptome analysis showed that PCA may inhibit cell growth by affecting amino acid, nucleotide metabolism, energy metabolism, and the cell membrane of L. monocytogenes. Additionally, it was discovered that PCA enhanced the color and texture of cooked chicken breast meat while decreasing the level of thiobarbituric acid active substance (TBARS). In conclusion, PCA as a natural antibacterial agent has a certain reference value in extending the shelf life of cooked chicken breast.
Collapse
Affiliation(s)
- Sichen Liao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lu Tian
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Qi Qi
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lemei Hu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Minmin Wang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chang Gao
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Haoyue Cui
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Zhongchao Gai
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Guoli Gong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
18
|
Sawant S, Baldwin TC, Metryka O, Rahman A. Evaluation of the Effect of Plectranthus amboinicus L. Leaf Extracts on the Bacterial Antioxidant System and Cell Membrane Integrity of Pseudomonas aeruginosa PA01 and Staphylococcus aureus NCTC8325. Pathogens 2023; 12:853. [PMID: 37375543 DOI: 10.3390/pathogens12060853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/08/2023] [Accepted: 06/19/2023] [Indexed: 06/29/2023] Open
Abstract
Plectranthus amboinicus (Indian borage) has been extensively studied for its medicinal properties, which can be exploited to develop new antimicrobial therapeutics. The current study investigated the effect of Plectranthus amboinicus leaf extracts on the catalase activity, reactive oxygen species, lipid peroxidation, cytoplasmic membrane permeability, and efflux pump activity in S. aureus NCTC8325 and P. aeruginosa PA01. As the enzyme catalase protects bacteria against oxidative stress, disruption of its activity creates an imbalance in reactive oxygen species (ROS) levels, which subsequently oxidizes lipid chains, leading to lipid peroxidation. In addition, bacterial cell membranes are a potential target for new antibacterial agents, as efflux pump systems play a crucial role in antimicrobial resistance. Upon exposure of the microorganisms to Indian borage leaf extracts, the observed catalase activity decreased by 60% and 20% in P. aeruginosa and S. aureus, respectively. The generation of ROS can cause oxidation reactions to occur within the polyunsaturated fatty acids of the lipid membranes and induce lipid peroxidation. To investigate these phenomena, the increase in ROS activity in P. aeruginosa and S. aureus was studied using H2DCFDA, which is oxidized to 2',7'-dichlorofluorescein (DCF) by ROS. Furthermore, the concentration of lipid peroxidation product (malondialdehyde) was assessed using the Thiobarbituric acid assay and was shown to increase by 42.4% and 42.5% in P. aeruginosa and S. aureus, respectively. The effect of the extracts on the cell membrane permeability was monitored using diSC3-5 dye and it was observed that the cell membrane permeability of P. aeruginosa increased by 58% and of S. aureus by 83%. The effect on efflux pump activity was investigated using Rhodamine-6-uptake assay, which displayed a decrease in efflux activity of 25.5% in P. aeruginosa and 24.2% in S. aureus after treatment with the extracts. This combination of different methods to study various bacterial virulence factors provides a more robust, mechanistic understanding of the effect of P. amboinicus extracts on P. aeruginosa and S. aureus. This study thus represents the first report of the assessment of the effect of Indian borage leaf extracts on bacterial antioxidant systems and bacterial cell membranes, and can facilitate the future development of bacterial resistance modifying agents derived from P. amboinicus.
Collapse
Affiliation(s)
- Sheeba Sawant
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Timothy C Baldwin
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
| | - Oliwia Metryka
- Doctoral School, University of Silesia, Bankowa 14, 40-032 Katowice, Poland
| | - Ayesha Rahman
- Faculty of Science and Engineering, University of Wolverhampton, Wulfruna St., Wolverhampton WV1 1LY, UK
- School of Healthcare, College of Life Sciences, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
19
|
Jiao C, Gong S, Shi M, Guo L, Jiang Y, Man C. Depletion of reactive oxygen species induced by beetroot (Beta vulgaris) extract leads to apoptosis-like death in Cronobacter sakazakii. J Dairy Sci 2023; 106:3827-3837. [PMID: 37105876 DOI: 10.3168/jds.2022-22425] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 11/22/2022] [Indexed: 04/29/2023]
Abstract
This research aimed to disclose the antibacterial activity of beetroot extract (Beta vulgaris) against Cronobacter sakazakii and its possible mechanisms. We evaluated its antibacterial activity by measuring the minimum inhibitory concentration (MIC) and time-kill kinetics. We also evaluated the intracellular ATP levels, bacterial apoptosis-like death (ALD), and reactive oxygen species (ROS) levels to reveal the possible antibacterial mechanisms. Our results showed that the MIC of beetroot extract against C. sakazakii was 25 mg/mL and C. sakazakii (approximately 8 log cfu/mL) was completely inhibited after treatment with 2 MIC of beetroot extract for 3 h. Beetroot extract reduced intracellular ATP levels and facilitated characteristics of ALD in C. sakazakii, such as membrane depolarization, increased intracellular Ca2+ levels, phosphatidylserine externalization, caspase-like protein activation, and DNA fragmentation. Additionally, and different from most bacterial ALD caused by the accumulation of ROS, beetroot extract reduced the intracellular ROS levels in C. sakazakii. Our experimental data provide a rationale for further research of bacterial ALD and demonstrate that beetroot extract can inhibit C. sakazakii in food processing environments.
Collapse
Affiliation(s)
- Chaoqin Jiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Shaoying Gong
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Mingwei Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| | - Ling Guo
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Yujun Jiang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China.
| | - Chaoxin Man
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
20
|
Iftikhar K, Siddique F, Ameer K, Arshad M, Kharal S, Mohamed Ahmed IA, Yasmin Z, Aziz N. Phytochemical profiling, antimicrobial, and antioxidant activities of hydroethanolic extracts of prickly pear ( Opuntia ficus indica) fruit and pulp. Food Sci Nutr 2023; 11:1916-1930. [PMID: 37051353 PMCID: PMC10084978 DOI: 10.1002/fsn3.3226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/28/2022] [Accepted: 12/31/2022] [Indexed: 01/24/2023] Open
Abstract
Phenolic compounds in prickly pear [Opuntia ficus indica (L.) Mill.] are known to contribute to the antioxidant and antimicrobial activities of the prickly pear. The present study aimed to evaluate the antioxidants and in vitro antimicrobial potential in the hydroethanolic extracts of different parts (fruit, cladode, and pulp) of prickly pear. Different polyphenolic compounds were analyzed by using high-performance liquid chromatography. The results indicated that cladode possessed a higher quantity of phenolics compared with that observed in fruit and pulp. The most important phenolic compound in high quantity was gallic acid (66.19 μg/g) in cladode. The 100% aqueous extract of cladode exhibited the highest antioxidant (92%) and antimicrobial activities against Salmonella typhi (3.40 mg/ml), Helicobacter pylori (1.37 mg/ml), Escherichia coli (1.41 mg/ml), and Staphylococcus aureus (1.41 mg/ml). Principal component analysis (PCA) indicated that antioxidant activity and minimum inhibitory concentration (MIC) responses had a significant negative correlation with each other. Overall, the current results provided basic data for choosing prickly pear cladode with high antioxidant capacity for the development and consumption of antioxidant-based alternative medicines and value addition of formulated foods.
Collapse
Affiliation(s)
- Khansa Iftikhar
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Farzana Siddique
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Kashif Ameer
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Muhammad Arshad
- Department of ZoologyUniversity of SargodhaSargodhaPunjabPakistan
| | - Sadia Kharal
- Institute of Food Science and Nutrition, University of SargodhaSargodhaPakistan
| | - Isam A. Mohamed Ahmed
- Department of Food Science and Technology, Faculty of AgricultureUniversity of KhartoumShambatSudan
- Department of Food Science and NutritionCollege of Food and Agricultural Sciences, King Saud UniversityRiyadhSaudi Arabia
| | - Zarina Yasmin
- Post Harvest Research CentreAyub Agricultural Research InstituteFaisalabadPakistan
| | - Nida Aziz
- Department of ZoologyUniversity of PunjabLahorePakistan
| |
Collapse
|
21
|
Wang K, Wang H, Wu Y, Yi C, Lv Y, Luo H, Yang T. The antibacterial mechanism of compound preservatives combined with low voltage electric fields on the preservation of steamed mussels (Mytilus edulis) stored at ice-temperature. Front Nutr 2023; 10:1126456. [PMID: 37006930 PMCID: PMC10063890 DOI: 10.3389/fnut.2023.1126456] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/01/2023] [Indexed: 03/19/2023] Open
Abstract
Mussels are a kind of economically valuable ocean bivalve shellfish. It has a short harvest period and is susceptible to contamination during storage and processing. Having proper preservation methods is critical to prevent quality deterioration. However, the effect of low voltage variable frequency electric field and compound preservative on the freshness of steamed mussels in ice-temperature storage are still unknown. We utilized the method of coefficient variation weighting to calculate the overall scores of steamed mussels stored under different preservation conditions. The protein physicochemical properties of samples, the growth curves of two dominant spoilage bacteria; Bacillus subtilis and Pseudomonas in the mussels as well as the Structural changes of the cell membranes were mensurated. The results show that compared with the preservative group and the low voltage variable frequency electric field group, the compound preservatives combined with the electric field group had the highest overall score and thus the best preservation effect. Compared with the blank group, the total sulfhydryl content and myogenic fibrin content of the combined group decreased at the slowest rate, 19.46%, and 44.92%, respectively. The hydrophobicity of the protein surface increased by only 5.67%, with the best water retention, indicating that the samples of the combined group had the least protein deterioration in the combined group. The inhibition mechanism of the combined group inhibited the growth of two dominant spoilage bacteria: Bacillus subtilis and Pseudomonas, in the mussels, destroying the integrity of the cell membrane structure and changing the cell morphology. Overall, we found that the combination of the composite preservatives and the low voltage variable frequency electric field can maintain the best quality of steamed mussels during ice-temperature storage and slow down the rate of protein deterioration during storage. This study proposed a new method of mussel preservation, which provides a new idea for the application of low voltage variable frequency electric field and compound preservative in the preservation of aquatic products.
Collapse
Affiliation(s)
- Kunmei Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Han Wang
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yue Wu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Chong Yi
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Yanxia Lv
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
| | - Hongyu Luo
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood, Collaborative Innovation Center of Seafood Deep Processing, College of Food and Pharmacy, Zhejiang Ocean University, Zhoushan, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| | - Tao Yang
- Yantai Marine Economic Research Institute, Yantai, China
- *Correspondence: Hongyu Luo, ; Tao Yang,
| |
Collapse
|
22
|
Deciphering the antibacterial mechanism of monocaprin against methicillin-resistant Staphylococcus aureus by integrated transcriptomic and metabolomic analyses and its application in pork preservation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157:H7. Food Microbiol 2023; 109:104119. [DOI: 10.1016/j.fm.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
|
24
|
Ryu DK, Adhikari M, Choi DH, Jun KJ, Kim DH, Kim CR, Kang MK, Park DH. Copper-Based Compounds against Erwinia amylovora: Response Parameter Analysis and Suppression of Fire Blight in Apple. THE PLANT PATHOLOGY JOURNAL 2023; 39:52-61. [PMID: 36760049 PMCID: PMC9929174 DOI: 10.5423/ppj.oa.07.2022.0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 09/28/2022] [Accepted: 11/23/2022] [Indexed: 06/18/2023]
Abstract
Fire blight, caused by Erwinia amylovora, is one of the major bacterial disease of apple and pear, causing enormous economic losses worldwide. Several control measures against E. amylovora have been reported till date, however, none of them have proved to be effective significantly against the pathogen. In this study, mechanisms of the copper-based control agents (CBCAs): copper oxychloride (COCHL), copper oxide (COX), copper hydroxide (CHY), copper sulfate basic (CSB), and tribasic copper sulfate (TCS) and their disease severity reduction efficacy against E. amylovora were analyzed. Bis-1,3-dibutylbarbituric acid trimethine oxonol, carboxyl fluorescein diacetate succinimidyl ester, and 5-cyano-2,3-ditolyl tetrazolium chloride staining were used to check the damage of membrane potential, cytoplasmic pHin, and respiration of CBCAs-treated E. amylovora, respectively. High disturbance in the membrane potential of E. amylovora was found under COX and COCHL treatments. Similarly, higher significant changes in the inner cytoplasmic pHin were observed under COX, COCHL, and TCS treatment. CHY and COCHL-treated E. amylovora showed a significant reduction in respiration. In vitro bioassay results revealed that CHY, CSB, and TCS at 2,000 ppm reduced the severity of fire blight both in pre- and post-treatment of CBCAs in immature apple fruits and seedlings. Overall, the most effective CBCAs against E. amylovora could be CHY at 2,000 ppm as its showed inhibition mechanisms and disease severity reduction.
Collapse
Affiliation(s)
- Duck Kyu Ryu
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Mahesh Adhikari
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| | - Dong Hyuk Choi
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
| | - Kyung Jin Jun
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Do Hyoung Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Chae Ryeong Kim
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Min Kyu Kang
- Crop Protection R&D Center, Farmhannong Ltd., Nonsan 33010,
Korea
| | - Duck Hwan Park
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon 24341,
Korea
- Applied Biology Program, Division of Bioresource Sciences, Kangwon National University, Chuncheon 24341,
Korea
| |
Collapse
|
25
|
Wu M, Dong Q, Song X, Xu L, Xia X, Aslam MZ, Ma Y, Qin X, Wang X, Liu Y, Xu B, Liu H, Cai H, Hirata T, Li Z. Effective combination of nisin and sesamol against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
26
|
Antibacterial activity of guava, moringa, camphor bush and pelargonium extracts against bacterial wilt ( Ralstonia pseudosolanacearum sp. nov.) of potato. Saudi J Biol Sci 2022; 29:103438. [PMID: 36147778 PMCID: PMC9485197 DOI: 10.1016/j.sjbs.2022.103438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 08/07/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022] Open
Abstract
Bacterial wilt (Ralstonia pseudosolanacearum sp. nov.) is a major disease devastating global potato production. Proposed management options are mostly expensive and ineffective. This has necessitated efforts to develop cheaper and eco-friendly management options such as use of botanicals. Antibacterial activity of ethanol and acetone plant extracts from guava (Psidium guajava), drumstick (Moringa oleifera), camphor bush (Tarchonanthus camphoratus) and pelargonium (Pelargonium zonale) against R. pseudosolanacearum sp. nov. was evaluated in-vitro at a concentration of 100 mg/mL of 1 % Dimethlysulfoxide (DMSO) using disk diffusion technique. The R. pseudosolanacearum sp. nov was isolated from infected haulms collected from potato growing field at the University of Nairobi. The most effective extracts were subjected to further screening at different concentrations to determine their minimum inhibitory concentrations (MICs). All the four plant extracts showed varied antibacterial efficacy. P. zonale leaves extract was the most effective with growth inhibition zone of 18.73 mm and 18.60 mm for ethanol and acetone solvents respectively. The average of growth inhibition zones for each plant extract was not significantly different at p ≤ 0.05 among extraction solvents. The minimum inhibitory concentration (MIC) results showed that antibacterial activity of P. zonale and P. guajava leaf started at 6.25 mg/mL with growth inhibition zones of 7.67 and 8.0 mm for ethanol and acetone solvents respectively. P. zonale and P. guajava leaf extracts exhibited significantly higher antibacterial activity at p ≤ 0.05 compared to other extracts. Thus, further research should be conducted to assess their antibacterial potency against R. pseudosolanacearum sp. nov. both in-vivo and under field condition.
Collapse
|
27
|
Bandian L, Moghaddam M, Bahreini M, Vatankhah E. Antibacterial characteristics and mechanisms of some herbal extracts and ϵ-polylysine against two spoilage bacterial. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
28
|
Kasanah N, Ulfah M, Rowley DC. Natural products as antivibrio agents: insight into the chemistry and biological activity. RSC Adv 2022; 12:34531-34547. [PMID: 36545587 PMCID: PMC9713624 DOI: 10.1039/d2ra05076e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Vibriosis causes serious problems and economic loss in aquaculture and human health. Investigating natural products as antivibrio agents has gained more attention to combat vibriosis. The present review highlights the chemical diversity of antivibrio isolated from bacteria, fungi, plants, and marine organisms. Based on the study covering the literature from 1985-2021, the chemical diversity ranges from alkaloids, terpenoids, polyketides, sterols, and peptides. The mechanisms of action are included inhibiting growth, interfering with biofilm formation, and disrupting of quorum sensing. Relevant summaries focusing on the source organisms and the associated bioactivity of different chemical classes are also provided. Further research on in vivo studies, toxicity, and clinical is required for the application in aquaculture and human health.
Collapse
Affiliation(s)
- Noer Kasanah
- Department of Fisheries, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - Maria Ulfah
- Integrated Lab. Agrocomplex, Faculty of Agriculture, Universitas Gadjah MadaIndonesia
| | - David C. Rowley
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode IslandUSA
| |
Collapse
|
29
|
Wang M, Zhan X, Ma X, Wang R, Guo D, Zhang Y, Yu J, Chang Y, Lü X, Shi C. Antibacterial Activity of Thymoquinone Against Shigella flexneri and Its Effect on Biofilm Formation. Foodborne Pathog Dis 2022; 19:767-778. [PMID: 36367548 DOI: 10.1089/fpd.2022.0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Thymoquinone (TQ) has been demonstrated to have anti-cancer, anti-inflammatory, antioxidant, and anti-diabetic activities. Shigella flexneri is the main pathogen causing shigellosis in developing countries. In this study, the antibacterial activity of TQ against S. flexneri and its possible antibacterial mechanism were studied. In addition, the inhibitory effect of TQ on the formation of S. flexneri biofilm was also investigated. The results showed that both the minimum inhibitory concentration and the minimum bactericidal concentration of TQ against S. flexneri ATCC 12022 were 0.2 mg/mL. After treatment with TQ at 0.4 mg/mL in Luria-Bertani broth for 3 h, or treatment with 0.2 mg/mL TQ in phosphate-buffered saline for 60 min, the number of S. flexneri (initial number is 6.5 log colony-forming units/mL) dropped below the detection limit. TQ also displayed good antibacterial activity in contaminated lettuce juice. TQ caused an increase in intracellular reactive oxygen species level, a decrease in intracellular adenosine triphosphate (ATP) concentration, a change in the intracellular protein, damage to cell membrane integrity and changes in cell morphology. In addition, TQ showed the ability to inhibit the formation of S. flexneri biofilm; treatment resulted in a decrease in the amount of biofilm and extracellular polysaccharides, and the destruction of biofilm structure. These findings indicated that TQ had strong antimicrobial and antibiofilm activities and a potential to be applied in the fruit and vegetable processing industry or other food industries to control S. flexneri.
Collapse
Affiliation(s)
- Muxue Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiangjun Zhan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xiao Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Du Guo
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Yingying Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jiangtao Yu
- Yangling Hesheng Irradiation Technologies Co., Ltd., Yangling, China
| | - Yunhe Chang
- Food and Pharmaceutical Engineering Institute, Guiyang University, Guiyang, China
| | - Xin Lü
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
30
|
Wang K, Zhang X, Shao X, Wei Y, Xu F, Wang H. Flavonoids from Sedum aizoon L. inhibit Botrytis cinerea by negatively affecting cell membrane lipid metabolism. Appl Microbiol Biotechnol 2022; 106:7139-7151. [PMID: 36201036 DOI: 10.1007/s00253-022-12196-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/26/2022]
Abstract
Botrytis cinerea is a highly destructive and widespread phytopathogen in fruits. The widespread use of chemical antifungal agents on fruits has aided in disease control while their long-term use has resulted in the emergence of resistant fungal strains. Flavonoids have a specific antifungal effect. The inhibitory effect and underlying mechanism of flavonoids from Sedum aizoon L. (FSAL) on B. cinerea were determined in this study. The results showed that the minimum inhibitory concentration of FSAL against B. cinerea was 1.500 mg/mL. FSAL treatment caused leakage of macromolecules such as nucleic acids, led to accumulation of malondialdehyde and relative oxygen species, and disrupted the ultrastructure of B. cinerea. The transcriptome results indicated that compared with the control group, there were 782 and 1330 genes identified as being substantially upregulated and downregulated, respectively, in the FSAL-treated group. The identified genes and metabolites were mostly involved in redox processes and glycerolipid and amino acid metabolism pathways. FSAL offer a promising choice for food prevention and safety. KEY POINTS: • FSAL negatively affects the glycerolipid metabolism of B. cinerea • FSAL minimum inhibitory concentration against B. cinerea was 1.500 mg/mL • FSAL could be utilized as a new prevention strategy for gray mold in fruits.
Collapse
Affiliation(s)
- Kaiyue Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xin Zhang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Xingfeng Shao
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Yingying Wei
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China
| | - Feng Xu
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
| | - Hongfei Wang
- Zhejiang-Malaysia Joint Research Laboratory for Agricultural Product Processing and Nutrition, College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo, China.
| |
Collapse
|
31
|
Wang L, Liu L, Liu Y, Wang F, Zhou X. Antimicrobial performance of novel glutathione-conjugated silver nanoclusters (GSH@AgNCs) against Escherichia coli and Staphylococcus aureus by membrane-damage and biofilm-inhibition mechanisms. Food Res Int 2022; 160:111680. [DOI: 10.1016/j.foodres.2022.111680] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 07/06/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022]
|
32
|
Madrigal-Santillán E, Portillo-Reyes J, Madrigal-Bujaidar E, Sánchez-Gutiérrez M, Izquierdo-Vega JA, Izquierdo-Vega J, Delgado-Olivares L, Vargas-Mendoza N, Álvarez-González I, Morales-González Á, Morales-González JA. Opuntia spp. in Human Health: A Comprehensive Summary on Its Pharmacological, Therapeutic and Preventive Properties. Part 2. PLANTS 2022; 11:plants11182333. [PMID: 36145735 PMCID: PMC9505094 DOI: 10.3390/plants11182333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022]
Abstract
Plants of the genus Opuntia spp are widely distributed in Africa, Asia, Australia and America. Specifically, Mexico has the largest number of wild species; mainly O. streptacantha, O. hyptiacantha, O. albicarpa, O. megacantha and O. ficus-indica. The latter being the most cultivated and domesticated species. Its main bioactive compounds include pigments (carotenoids, betalains and betacyanins), vitamins, flavonoids (isorhamnetin, kaempferol, quercetin) and phenolic compounds. Together, they favor the different plant parts and are considered phytochemically important and associated with control, progression and prevention of some chronic and infectious diseases. Part 1 collected information on its preventive actions against atherosclerotic cardiovascular diseases, diabetes and obesity, hepatoprotection, effects on human infertility and chemopreventive capacity. Now, this second review (Part 2), compiles the data from published research (in vitro, in vivo, and clinical studies) on its neuroprotective, anti-inflammatory, antiulcerative, antimicrobial, antiviral potential and in the treatment of skin wounds. The aim of both reviews is to provide scientific evidences of its beneficial properties and to encourage health professionals and researchers to expand studies on the pharmacological and therapeutic effects of Opuntia spp.
Collapse
Affiliation(s)
- Eduardo Madrigal-Santillán
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| | - Jacqueline Portillo-Reyes
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Eduardo Madrigal-Bujaidar
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Manuel Sánchez-Gutiérrez
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Jeannett A. Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Julieta Izquierdo-Vega
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Luis Delgado-Olivares
- Instituto de Ciencias de la Salud, Universidad Autónoma del Estado de Hidalgo, Ex-Hacienda de la Concepción, Tilcuautla, Pachuca de Soto 42080, Mexico
| | - Nancy Vargas-Mendoza
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
| | - Isela Álvarez-González
- Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - Ángel Morales-González
- Escuela Superior de Cómputo, Instituto Politécnico Nacional, “Unidad Profesional A. López Mateos”, Ciudad de México 07738, Mexico
| | - José A. Morales-González
- Escuela Superior de Medicina, Instituto Politécnico Nacional, “Unidad Casco de Santo Tomas”, Ciudad de México 11340, Mexico
- Correspondence: (E.M.-S.); (J.A.M.-G.); Tel.: +52-55-5729-6300 (ext. 62753) (E.M.-S.)
| |
Collapse
|
33
|
Bai X, Li X, Liu X, Xing Z, Su R, Wang Y, Xia X, Shi C. Antibacterial Effect of Eugenol on Shigella flexneri and Its Mechanism. Foods 2022; 11:foods11172565. [PMID: 36076751 PMCID: PMC9455010 DOI: 10.3390/foods11172565] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
Shigella flexneri (Sh. flexneri), which can be found in food and the environment, is a widespread food-borne pathogen that causes human diarrhea termed “shigellosis”. In this study, eugenol, a natural active substance, was investigated for its antibacterial activity against Sh. flexneri. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of eugenol against Sh. flexneri ATCC 12022 was 0.5 and 0.8 mg/mL. The growth curves and inhibitory effect in LB broth, PBS, vegetable juice, and minced pork showed that eugenol had a good activity against Sh. flexneri. Research findings indicated the superoxide dismutase activity of Sh. flexneri was inhibited after eugenol treatment, resulting in concentrations of intracellular reactive oxygen species and an increase in malondialdehyde. The flow cytometry analysis and field emission scanning electron microscopy results revealed obvious damage to cell membrane integrity and changes in the morphology of Sh. flexneri. In addition, the intracellular ATP concentration leaked from 0.5 μM to below 0.05 μM and the membrane potential showed a concentration-dependent depolarization after eugenol treatment. In summary, eugenol exerted strong antibacterial activity and has the potential to control Sh. flexneri in the food industry.
Collapse
Affiliation(s)
- Xiangyang Bai
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xuejiao Li
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xue Liu
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Zeyu Xing
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Ruiying Su
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
| | - Xiaodong Xia
- School of Food Science and Technology, National Engineering Research Center of Seafood, Dalian Polytechnic University, Dalian 116304, China
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Xianyang 712100, China
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
34
|
Tian L, Liao S, Guo W, Wang X, Wu M, Xue Z, Yang S, Fu J, Liu Z, Gong G. Evaluation of the membrane damage mechanism of chlorogenic acid against
Bacillus cereus
and
Micrococcus luteus
a simulation study on antibacterial growth in food. J Food Saf 2022. [DOI: 10.1111/jfs.13006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lu Tian
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Sichen Liao
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Wenyao Guo
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Xuyang Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Mi Wu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Zhifei Xue
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Siqi Yang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Jiapeng Fu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Zhiqiang Liu
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Guoli Gong
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| |
Collapse
|
35
|
Zhan X, Tan Y, Lv Y, Fang J, Zhou Y, Gao X, Zhu H, Shi C. The Antimicrobial and Antibiofilm Activity of Oregano Essential Oil against Enterococcus faecalis and Its Application in Chicken Breast. Foods 2022; 11:2296. [PMID: 35954060 PMCID: PMC9368637 DOI: 10.3390/foods11152296] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023] Open
Abstract
Oregano essential oil (OEO) possesses anti-inflammatory, antioxidant, and cancer-suppressive properties. Enterococcus faecalis is a foodborne opportunistic pathogen that can be found in nature and the food processing industry. The goal of this investigation was to explore the antimicrobial action and mechanism of OEO against E. faecalis, inactivation action of OEO on E. faecalis in mature biofilms, and its application in chicken breast. The minimum inhibitory concentration (MIC) of OEO against E. faecalis strains (ATCC 29212 and nine isolates) ranged from 0.25 to 0.50 μL/mL. OEO therapy reduced intracellular adenosine triphosphate (ATP) levels, caused cell membrane hyperpolarization, increased the intracellular reactive oxygen species (ROS), and elevated extracellular malondialdehyde (MDA) concentrations. Furthermore, OEO treatment diminished cell membrane integrity and caused morphological alterations in the cells. In biofilms on stainless-steel, OEO showed effective inactivation activity against E. faecalis. OEO reduced the number of viable cells, cell viability and exopolysaccharides in the biofilm, as well as destroying its structure. Application of OEO on chicken breast results in a considerable reduction in E. faecalis counts and pH values, in comparison to control samples. These findings suggest that OEO could be utilized as a natural antibacterial preservative and could effectively control E. faecalis in food manufacturing.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (X.Z.); (Y.T.); (Y.L.); (J.F.); (Y.Z.); (X.G.); (H.Z.)
| |
Collapse
|
36
|
Li L, Zhou P, Wang Y, Pan Y, Chen M, Tian Y, Zhou H, Yang B, Meng H, Zheng J. Antimicrobial activity of cyanidin-3-O-glucoside-lauric acid ester against Staphylococcus aureus and Escherichia coli. Food Chem 2022; 383:132410. [PMID: 35182879 DOI: 10.1016/j.foodchem.2022.132410] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 01/16/2022] [Accepted: 02/07/2022] [Indexed: 11/18/2022]
Abstract
Enzymatic acylation of anthocyanin with fatty acid improves its lipophilic solubility and application potential. Nevertheless, evaluation of functional properties of product is premise for application. This study investigated the antimicrobial potential and the underlying mechanisms of an acylated anthocyanin, namely, cyanidin-3-O-glucoside-lauric acid ester (C3G-LA), to provide guidelines for its application. C3G-LA exhibited outstanding antibacterial activity against Staphylococcus aureus [minimum inhibitory concentration (MIC) = 0.3125 mg/mL] and modest activity against Escherichia coli (MIC = 5 mg/mL). Moreover, C3G-LA manifested bactericide ability against S. aureus at 0.625 mg/mL. Decreases in membrane integrity (by 96% and 92% at MIC in S. aureus and E. coli, respectively), intracellular ATP concentration (by 96% and 92%) and intracellular pH (by 11% and 9%) and changes in cellular morphology altogether indicated the dysfunction of cell membrane under C3G-LA treatment. These findings demonstrated that C3G-LA could be adopted as an alternative food preservative against foodborne pathogens.
Collapse
Affiliation(s)
- Lili Li
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ping Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; InnoStar Bio-Tech Nantong Site, Nantong 226133, Jiangsu, China
| | - Yidi Wang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Ying Pan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Ye Tian
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China
| | - Baoru Yang
- Food Chemistry and Food Development Unit, Department of Life Technologies, University of Turku, Turku FI-20014, Finland
| | - Hecheng Meng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, Guangdong, China
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou 510632, Guangdong, China; Zhongshan Hongli Health Food Industry Research Institute Co., Ltd, Zhongshan 528400, Guangdong, China.
| |
Collapse
|
37
|
Evaluation of gallic acid on membrane damage of Yersinia enterocolitica and its application as a food preservative in pork. Int J Food Microbiol 2022; 374:109720. [DOI: 10.1016/j.ijfoodmicro.2022.109720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 11/22/2022]
|
38
|
Kang S, Li X, Xing Z, Liu X, Bai X, Yang Y, Guo D, Xia X, Zhang C, Shi C. Antibacterial effect of citral on yersinia enterocolitica and its mechanism. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108775] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
39
|
The combined bactericidal effect of nisin and thymoquinone against Listeria monocytogenes in Tryptone Soy Broth and sterilized milk. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108771] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Rawangkan A, Siriphap A, Yosboonruang A, Kiddee A, Pook-In G, Saokaew S, Sutheinkul O, Duangjai A. Potential Antimicrobial Properties of Coffee Beans and Coffee By-Products Against Drug-Resistant Vibrio cholerae. Front Nutr 2022; 9:865684. [PMID: 35548583 PMCID: PMC9083461 DOI: 10.3389/fnut.2022.865684] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Vibrio cholerae is the causative organism of the cholera epidemic, and it remains a serious global health problem, particularly the multidrug-resistant strain, despite the development of several generic drugs and vaccines over time. Natural products have long been exploited for the treatment of various diseases, and this study aimed to evaluate the in vitro antibacterial activity of coffee beans and coffee by-products against V. cholerae antimicrobial resistant strains. A total of 9 aqueous extracts were investigated, including light coffee (LC), medium coffee (MC), dark coffee (DC), dried green coffee (DGC), dried red coffee (DRC), fresh red coffee (FRC), Arabica leaf (AL), Robusta leaf (RL), and coffee pulp (CP). The influential coffee phytochemicals, i.e., chlorogenic acid (CGA), caffeic acid (CA), and caffeine, were determined using HPLC. The antibacterial properties were tested by agar well-diffusion techniques, and the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were further determined against 20 V. cholerae isolates. The results revealed that all tested strains were sensitive to coffee extracts, with MIC and MBC values in the range of 3.125-25.0 mg/mL and 12.5-50.0 mg/mL, respectively. With a MIC of 6.25 mg/mL, DGC, DRC, and CP appeared to be the most effective compounds against 65, 60, and 55% of clinical strains, respectively. The checkerboard assay revealed that the combination of coffee extract and tetracycline was greater than either treatment alone, with the fractional inhibitory concentration index (FICI) ranging from 0.005 to 0.258. It is important to note that CP had the lowest FICI (0.005) when combined with tetracycline at 60 ng/mL, which is the most effective dose against V. cholerae six-drug resistance strains (azithromycin, colistin, nalidixic acid, sulfamethoxazole, tetracycline, and trimethoprim), with a MIC of 47.5 μg/mL (MIC alone = 12.5 mg/mL). Time killing kinetics analysis suggested that CA might be the most effective treatment for drug-resistant V. cholerae as it reduced bacterial growth by 3 log10 CFU/mL at a concentration of 8 mg/mL within 1 h, via disrupting membrane permeability, as confirmed by scanning electron microscopy (SEM). This is the first report showing that coffee beans and coffee by-product extracts are an alternative for multidrug-resistant V. cholerae treatment.
Collapse
Affiliation(s)
- Anchalee Rawangkan
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| | | | | | - Anong Kiddee
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Grissana Pook-In
- School of Medical Sciences, University of Phayao, Phayao, Thailand
| | - Surasak Saokaew
- Division of Social and Administrative Pharmacy, Department of Pharmaceutical Care, School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence on Clinical Outcomes Research and IntegratioN (UNICORN), School of Pharmaceutical Sciences, University of Phayao, Phayao, Thailand
| | | | - Acharaporn Duangjai
- School of Medical Sciences, University of Phayao, Phayao, Thailand
- Unit of Excellence in Research and Product Development of Coffee, Division of Physiology, School of Medical Sciences, University of Phayao, Phayao, Thailand
| |
Collapse
|
41
|
Antimicrobial Activity of the Green Tea Polyphenol (−)-Epigallocatechin-3-Gallate (EGCG) against Clinical Isolates of Multidrug-Resistant Vibrio cholerae. Antibiotics (Basel) 2022; 11:antibiotics11040518. [PMID: 35453268 PMCID: PMC9028445 DOI: 10.3390/antibiotics11040518] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 03/28/2022] [Accepted: 04/12/2022] [Indexed: 02/04/2023] Open
Abstract
The spread of multidrug-resistant (MDR) Vibrio cholerae necessitates the development of novel prevention and treatment strategies. This study aims to evaluate the in vitro antibacterial activity of green tea polyphenol (−)-epigallocatechin-3-gallate (EGCG) against MDR V. cholerae. First, MIC and MBC values were evaluated by broth microdilution techniques against 45 V. cholerae strains. The checkerboard assay was then used to determine the synergistic effect of EGCG and tetracycline. The pharmaceutical mode of action of EGCG was clarified by time-killing kinetics and membrane disruption assay. Our results revealed that all of the 45 clinical isolates were susceptible to EGCG, with MIC and MBC values in the range of 62.5–250 µg/mL and 125–500 µg/mL, respectively. Furthermore, the combination of EGCG and tetracycline was greater than either treatment alone, with a fractional inhibitory concentration index (FICI) of 0.009 and 0.018 in the O1 and O139 representative serotypes, respectively. Time-killing kinetics analysis suggested that EGCG had bactericidal activity for MDR V. cholerae after exposure to at least 62.5 µg/mL EGCG within 1 h. The mode of action of EGCG might be associated with membrane disrupting permeability, as confirmed by scanning electron microscopy. This is the first indication that EGCG is a viable anti-MDR V. cholerae treatment.
Collapse
|
42
|
Xing M, Yao J, Guo Y, Xin R, Yu Y, Shi E, Hao M, Fei P, Kang H, Chen J. Antibacterial Effect of Chrysanthemum Buds' Crude Extract Against Salmonella Typhimurium and Potential Application in Cooked Chicken. Foodborne Pathog Dis 2022; 19:297-303. [PMID: 35363059 DOI: 10.1089/fpd.2021.0104] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The objective of this study was to clarify the antibacterial activity and mechanism of Chrysanthemum buds' crude extract (CBCE) against Salmonella Typhimurium, and explore the potential application in cooked chicken. The zone of inhibition (ZI), minimum inhibitory concentration (MIC), and minimum bactericidal concentration (MBC) were used to assess the in vitro antibacterial activity of CBCE against Salmonella Typhimurium. The antibacterial mechanism was elucidated by revealing the changes in intracellular adenosine 5'-triphosphate (ATP) concentration, membrane potential, content of biomacromolecule, and cell morphology. Furthermore, the effect of CBCE on the counts of Salmonella Typhimurium and color of cooked chicken during storage was studied. The results showed that the ZI, MIC, and MBC of CBCE against Salmonella Typhimurium were 12.9 ± 0.53-13.6 ± 0.14 mm, 40, and 80 mg/mL, respectively. In the process of inhibiting Salmonella Typhimurium by CBCE, the reduction of intracellular ATP concentration, cell membrane depolarization, leakage of protein and nucleic acid, and destruction of cell morphology were observed. Moreover, after treatments with CBCE, the growth of Salmonella Typhimurium in cooked chicken was significantly inhibited (p < 0.05) compared with the control group. No significant differences (p > 0.05) in lightness (L*), redness (a*), and yellowness (b*) values of cooked chicken were found between untreated and treated samples, as well as the color of cooked chicken treated with CBCE did not change significantly (p > 0.05) during the six days of storage. Overall, our findings suggested that CBCE exhibited the antibacterial effect against Salmonella Typhimurium, and had the potential to be used as a natural food preservative for the control of Salmonella Typhimurium in chicken products.
Collapse
Affiliation(s)
- Min Xing
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Jiyun Yao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Yiming Guo
- School of Public Health, University of Washington, Seattle, Washington, USA
| | - Ru Xin
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, China
| | - Yaping Yu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Encong Shi
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mengdi Hao
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Peng Fei
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Huaibin Kang
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| | - Junliang Chen
- College of Food and Bioengineering, Henan University of Science and Technology, Luoyang, China
| |
Collapse
|
43
|
Anti-hepatitis C virus drug simeprevir: a promising antimicrobial agent against MRSA. Appl Microbiol Biotechnol 2022; 106:2689-2702. [PMID: 35338386 DOI: 10.1007/s00253-022-11878-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/27/2022] [Accepted: 03/06/2022] [Indexed: 11/02/2022]
Abstract
Staphylococcus aureus is a major human pathogen, and the appearance of methicillin-resistant S. aureus (MRSA) renders S. aureus infections more challenging to treat. Therefore, new antimicrobial drugs are urgently needed to combat MRSA infections. Drug repurposing is an effective and feasible strategy. Here, we reported that the clinically approved anti-hepatitis C virus drug simeprevir had strong antibacterial activity against MRSA, with a minimum inhibitory concentration of 2-8 µg/mL. Simeprevir did not easily induce in vitro resistance. In addition, simeprevir significantly prevented S. aureus biofilm formation. Furthermore, simeprevir displayed limited toxicity in in vitro and in vivo assays. Moreover, simeprevir showed synergistic antimicrobial effects against both type and clinical strains of S. aureus. Simeprevir combined with gentamicin effectively reduced the bacterial burden in an MRSA-infected subcutaneous abscess mouse model. Results from a series of experiments, including membrane permeability assay, membrane potential assay, intracellular ATP level assay, and electron microscope observation, demonstrated that the action of simeprevir may be by disrupting bacterial cell membranes. Collectively, these results demonstrated the potential of simeprevir as an antimicrobial agent for the treatment of MRSA infections. KEY POINTS: • Simeprevir showed strong antibacterial activity against MRSA. • The antibacterial mechanism of simeprevir was mediated by membrane disruption and intracellular ATP depletion. • In vitro and in vivo synergistic antimicrobial efficacy between simeprevir and gentamicin was found.
Collapse
|
44
|
Prickly Pear (Opuntia spp.) as an Invasive Species and a Potential Fodder Resource for Ruminant Animals. SUSTAINABILITY 2022. [DOI: 10.3390/su14073719] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Worldwide, the invasiveness of Opuntia spp. and its impact on various ecosystem services has been recognised especially in semi-arid areas where rainfall is erratic. The semi-arid environments are the habitats of plants which have adapted to be able to grow in severe hot and dry regions. Opuntia spp. normally thrives in conditions of high temperatures, low rainfall, saline soils and it can also adapt and survive in severely degraded soils which have a limited nutrients supply. Its positive impact includes its recognised value as livestock fodder. Opuntia’s adaptability to harsh conditions, high dry matter yield, palatability and significant levels of energy, as well as its availability at a low cost during the dry season, decreases the use of expensive supplements and conventional diets in many areas. There is a need to understand the importance of this invasive Opuntia species when incorporated in animal diets. As a part of its control measures, the use of livestock in controlling the spread of Opuntia may assist in reducing its abundance and invasiveness while at the same time providing a consistent supply of forage during the dry season. Information on its nutritive value, incorporating the species in animal diets and the means to control it must be well understood to recognise the species’ contribution to an ecosystem.
Collapse
|
45
|
Wang H, Peng Z, Sun H. Antifungal activities and mechanisms of
trans
‐cinnamaldehyde and thymol against food‐spoilage yeast
Zygosaccharomyces rouxii. J Food Sci 2022; 87:1197-1210. [DOI: 10.1111/1750-3841.16075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/27/2021] [Accepted: 01/15/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Huxuan Wang
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Zhonghua Peng
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| | - Hongmin Sun
- School of Food and Biological Engineering Shaanxi University of Science and Technology Xi'an Shaanxi China
| |
Collapse
|
46
|
Ríos‐López AL, Heredia N, García S, Merino‐Mascorro JÁ, Solís‐Soto LY, Dávila‐Aviña JE. Effect of phenolic compounds and cold shock on survival and virulence of
Escherichia coli
pathotypes. J Food Saf 2022. [DOI: 10.1111/jfs.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ana L. Ríos‐López
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Norma Heredia
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Santos García
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - José Á. Merino‐Mascorro
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Luisa Y. Solís‐Soto
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| | - Jorge E. Dávila‐Aviña
- Departamento de Microbiología e Inmunología, Facultad de Ciencias Biológicas Universidad Autónoma de Nuevo León San Nicolás de los Garza Mexico
| |
Collapse
|
47
|
Cao W, Yue L, Zhang Y, Wang Z. Photodynamic chitosan functionalized MoS 2 nanocomposite with enhanced and broad-spectrum antibacterial activity. Carbohydr Polym 2022; 277:118808. [PMID: 34893226 DOI: 10.1016/j.carbpol.2021.118808] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 09/30/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
Bacterial infection accompanied by antibiotic resistance leads to the lack of effective antibacterial agents, which has become an imminent problem afflicting people. Therefore, development of highly effective and broad-spectrum disinfecting alternatives to tackle this challenge is of great necessity. In view of the different cell wall structures of bacteria, we designed photodynamic antibacterial system based on chlorin e6 (Ce6) loaded chitosan functionalized molybdenum sulfide (MoS2) nanocomposites (M-CS-Ce6). The nanocomposite can not only allow Ce6 to enter the cells of Gram-positive bacteria, but also destroy the cell wall permeability of Gram-negative bacteria and enhance the photo-antibacterial effect. 10 μg/mL of M-CS-Ce6 irradiated by 660 nm laser for 5 min, completely killed the target pathogens, exhibiting significantly enhanced photo-antibacterial performance against both Gram-positive and Gram-negative bacteria. Compared with other cationic photodynamic composites, M-CS-Ce6 had stronger and broad-spectrum photo-antibacterial effect. Taken together, M-CS-Ce6 could be a promising and safe broad-spectrum antibacterial agent.
Collapse
Affiliation(s)
- Wenbo Cao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China
| | - Lin Yue
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China.
| | - Yin Zhang
- Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China
| | - Zhouping Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China; Key Laboratory of Meat Processing of Sichuan, Chengdu University, Chengdu 610106, PR China; Collaborative Innovation Center of Food Safety and Quality Control, Jiangnan University, Wuxi 214122, PR China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, P. R. China.
| |
Collapse
|
48
|
Luo K, Zhao P, He Y, Kang S, Shen C, Wang S, Guo M, Wang L, Shi C. Antibacterial Effect of Oregano Essential Oil against Vibrio vulnificus and Its Mechanism. Foods 2022; 11:403. [PMID: 35159553 PMCID: PMC8834123 DOI: 10.3390/foods11030403] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
Oregano essential oil (OEO) is an effective natural antibacterial agent, but its antibacterial activity against Vibrio vulnificus has not been widely studied. The aim of this study was to investigate the inhibitory effect and germicidal activity of OEO on V. vulnificus and its possible inhibition mechanism. The minimum inhibitory concentrations (MICs) and minimum bactericidal concentrations (MBCs) of OEO against four V. vulnificus strains (ATCC 27562 and three isolates from seafoods) were from 0.06 to 0.15 μL/mL. Compared with untreated bacteria, OEO reduced the concentration of intracellular adenosine triphosphate (ATP), hyperpolarized the cell membrane, increased the level of reactive oxygen species (ROS), and increased the concentration of intracellular malondialdehyde (MDA), but there was no obvious DNA damage at the OEO test concentration. It was indicated that OEO inactivated V. vulnificus by generating ROS which caused lipid peroxidation of cell membranes, thereby reducing the permeability and integrity of cell membranes and causing morphological changes to cells, but there was no obvious damage to DNA. In addition, OEO could effectively kill V. vulnificus in oysters at 25 °C, and the number of bacteria decreased by 48.2% after 0.09% OEO treatment for 10 h. The good inhibitory effect and bactericidal activity of OEO showed in this study, and the economy and security of OEO make it possible to apply OEO to control V. vulnificus contamination in oysters and other seafoods.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, 20 Xinong Road, Yangling, Xianyang 712100, China; (K.L.); (P.Z.); (Y.H.); (S.K.); (C.S.); (S.W.); (M.G.); (L.W.)
| |
Collapse
|
49
|
Abass S, Parveen R, Irfan M, Jan B, Husain SA, Ahmad S. Synergy based extracts of medicinal plants: Future antimicrobials to combat multidrug resistance. Curr Pharm Biotechnol 2022; 23:1527-1540. [PMID: 35081888 DOI: 10.2174/1389201023666220126115656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/17/2021] [Accepted: 12/28/2021] [Indexed: 11/22/2022]
Abstract
The use of herbal medicines and supplements in the last thirty years has increased enormously. Herbal medication has demonstrated promising and effective potential against various diseases. Herbal and phytoconstituent medications are gaining popularity globally and many people are adopting herbal remedies to deal with different health issues. The indiscriminate use of antibiotics, due to the development of antimicrobial resistance, poses an unprecedented problem for human civilization. Bacterial infections are difficult to cure because of the propensity of microbes to acquire resistance to a wide range of antimicrobial drugs. New compounds are being explored and quantified for possible antibacterial activity with little or no side effects. Researchers are investigating the range of therapeutic plants mentioned in Unani, Ayurveda, and Siddha around the globe. Known and commonly acclaimed global databases such as PubMed, Research Gate, Science Direct, Google Scholar, were searched using different search strings such as Indian medicinal plants, multidrug resistance (MDR), thin layer chromatography (TLC), antimicrobials, and Synergism were used in diverse combinations to reclaim numerous citations associated with this area. Thus, the current review aims to shed a light on the information of medicinal plants as a potential foundation of herbal drugs and elucidate how synergism and TLC bioautography plays a crucial role in finding antimicrobial compounds.
Collapse
Affiliation(s)
- Sageer Abass
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Rabea Parveen
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Mohammad Irfan
- Department of Biotechnology, Jamia Millia Islamia, New Delhi 110025, India
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Bisma Jan
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Syed Akhtar Husain
- Department of Biosciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Sayeed Ahmad
- Bioactive Natural Product Laboratory, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| |
Collapse
|
50
|
Zhang Y, Wei J, Guo H, Niu C, Yuan Y, Yue T. Phenotypic and Transcriptomic Analyses Reveal the Cell Membrane Damage of Pseudomonas fragi Induced by Cinnamic Acid. Front Microbiol 2022; 12:796754. [PMID: 35058913 PMCID: PMC8764163 DOI: 10.3389/fmicb.2021.796754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/03/2021] [Indexed: 11/13/2022] Open
Abstract
Cinnamic acid (CA) is a safe and effective antimicrobial agent. The objective of this study was to reveal the antibacterial mechanism of CA against a food-derived Pseudomonas fragi 38-8, from the aspects of bacterial growth kinetics, cell membrane homeostasis, cell microstructure, and transcription. The minimum inhibitory concentration (MIC) of CA against P. fragi 38-8 was 0.25 mg/ml. CA retarded bacterial growth and induced a series of cell membrane changes. After CA treatment, cell membrane homeostasis was destroyed, which was evidenced by cell membrane depolarization, intracellular pH reduction, and intracellular ATPase activity decrease. Field emission scanning electron microscope (FESEM), transmission electron microscope (TEM), and confocal laser scanning fluorescence microscope (CLSM) realized the visualization of cell microstructure changes, showing cell death and morphological changes, such as cell rupture, shrinkage, and hollowness. RNA sequencing analysis further confirmed the effects of CA to the cell membrane, because of the significant enrichment of differentially expressed genes (DEGs) related to membrane. The results of the phenotype tests and RNA-seq both focused on cell membrane damage, which showed that CA exerted antibacterial effect mainly by acting on cell membrane.
Collapse
Affiliation(s)
- Yuxiang Zhang
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Jianping Wei
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Hong Guo
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Chen Niu
- College of Food Science and Technology, Northwest University, Xi'an, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Tianli Yue
- College of Food Science and Technology, Northwest University, Xi'an, China.,College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|