1
|
Ostos I, Flórez-Pardo LM, Camargo C. A metagenomic approach to demystify the anaerobic digestion black box and achieve higher biogas yield: a review. Front Microbiol 2024; 15:1437098. [PMID: 39464396 PMCID: PMC11502389 DOI: 10.3389/fmicb.2024.1437098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/23/2024] [Indexed: 10/29/2024] Open
Abstract
The increasing reliance on fossil fuels and the growing accumulation of organic waste necessitates the exploration of sustainable energy alternatives. Anaerobic digestion (AD) presents one such solution by utilizing secondary biomass to produce biogas while reducing greenhouse gas emissions. Given the crucial role of microbial activity in anaerobic digestion, a deeper understanding of the microbial community is essential for optimizing biogas production. While metagenomics has emerged as a valuable tool for unravelling microbial composition and providing insights into the functional potential in biodigestion, it falls short of interpreting the functional and metabolic interactions, limiting a comprehensive understanding of individual roles in the community. This emphasizes the significance of expanding the scope of metagenomics through innovative tools that highlight the often-overlooked, yet crucial, role of microbiota in biomass digestion. These tools can more accurately elucidate microbial ecological fitness, shared metabolic pathways, and interspecies interactions. By addressing current limitations and integrating metagenomics with other omics approaches, more accurate predictive techniques can be developed, facilitating informed decision-making to optimize AD processes and enhance biogas yields, thereby contributing to a more sustainable future.
Collapse
Affiliation(s)
- Iván Ostos
- Grupo de Investigación en Ingeniería Electrónica, Industrial, Ambiental, Metrología GIEIAM, Universidad Santiago de Cali, Cali, Colombia
| | - Luz Marina Flórez-Pardo
- Grupo de Investigación en Modelado, Análisis y Simulación de Procesos Ambientales e Industriales PAI+, Universidad Autónoma de Occidente, Cali, Colombia
| | - Carolina Camargo
- Centro de Investigación de la Caña de Azúcar, CENICAÑA, Cali, Colombia
| |
Collapse
|
2
|
Li Z, Huang T, Wu W, Xu X, Wu B, Zhuang J, Yang J, Shi H, Zhang Y, Wang B. Carbon slow-release and enhanced nitrogen removal performance of plant residue-based composite filler and ecological mechanisms in constructed wetland application. BIORESOURCE TECHNOLOGY 2024; 402:130795. [PMID: 38705213 DOI: 10.1016/j.biortech.2024.130795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
Stable carbon release and coupled microbial efficacy of external carbon source solid fillers are the keys to enhanced nitrogen removal in constructed wetlands. The constructed wetland plant residue Acorus calamus was cross-linked with poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) to create composite solid carbon source fillers (Ac-BDPs). The study demonstrated the slow release of carbon sources from Ac-BDPs with 35.27 mg/g under an average release rate of 0.88 mg/(g·d). Excellent denitrification was also observed in constructed wetlands with Ac-BDPs. Moreover, the average removal rate of nitrate nitrogen (NO3--N) was increased by 1.94 and 3.85 times of the blank groups under initial NO3--N inputs of 5 and 15 mg/L, respectively. Furthermore, the relatively high abundances of nap, narG, nirKS, norB, qnorZ and nosZ guaranteed efficient denitrification performance in constructed wetlands with Ac-BDPs. The study introduced a reliable technique for biological nitrogen removal by using composite carbon source fillers in constructed wetlands.
Collapse
Affiliation(s)
- Zhaoyang Li
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Tianyin Huang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Wei Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China.
| | - Bingdang Wu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Jinlong Zhuang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Jingjing Yang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; Key Laboratory of Suzhou Sponge City Technology, Suzhou 215009, China
| | - Haochen Shi
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yang Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
3
|
Biogas Production and Microbial Communities of Mesophilic and Thermophilic Anaerobic Co-Digestion of Animal Manures and Food Wastes in Costa Rica. ENERGIES 2022. [DOI: 10.3390/en15093252] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Biomass generated from agricultural operations in Costa Rica represents an untapped renewable resource for bioenergy generation. This study investigated the effects of two temperatures and three mixture ratios of manures and food wastes on biogas production and microbial community structure. Increasing the amount of fruit and restaurant wastes in the feed mixture significantly enhanced the productivity of the systems (16% increase in the mesophilic systems and 41% in the thermophilic). The methane content of biogas was also favored at higher temperatures. Beta diversity analysis, based on high-throughput sequencing of 16S rRNA gene, showed that microbial communities of the thermophilic digestions were more similar to each other than the mesophilic digestions. Species richness of the thermophilic digestions was significantly greater than the corresponding mesophilic digestions (F = 40.08, p = 0.003). The mesophilic digesters were dominated by Firmicutes and Bacteroidetes while in thermophilic digesters, the phyla Firmicutes and Chloroflexi accounted for up to 90% of all sequences. Methanosarcina represented the key methanogen and was more abundant in thermophilic digestions. These results demonstrate that increasing digestion temperature and adding food wastes can alleviate the negative impact of low C:N ratios on anaerobic digestion.
Collapse
|
4
|
Zhang Q, Li R, Guo B, Zhang L, Liu Y. Thermophilic co-digestion of blackwater and organic kitchen waste: Impacts of granular activated carbon and different mixing ratios. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:453-461. [PMID: 34265699 DOI: 10.1016/j.wasman.2021.06.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/29/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
Biogas (methane) as a source of renewable energy, was produced in the anaerobic co-digestion of blackwater (BW, municipal toilet wastewater) and organic kitchen waste (KW). The impact on methane production of various BW to KW mixing ratios, with and without the addition of granular activated carbon (GAC), were studied under thermophilic (55 °C) temperatures. GAC is reported to enhance methane production in such digestions through direct interspecies electron transfer. The results showed that the co-digestion of BW and KW under the 1:2 VS ratio significantly improved the biomethane potential (BMP). In the absence of GAC, an optimal BW:KW ratio was found to be 1:2, achieving a BMP of 0.76 g CH4-COD/g feed-COD. With GAC addition, the BMP increased to 0.81 g CH4-COD/g feed-COD, the lag phase in the digestion was significantly reduced, and the methane production rate increased. Microbial communities in the BW-KW anaerobic digestion were analyzed with and without the addition of GAC. Methanothermobacter and Methanosarcina were predominant archaea in BW-KW digests, with and without GAC amendment, while a third methanogen, Methanomassiliicoccus, was enriched with the addition of GAC to the digest. Further, through SEM image, the enrichment of pili-like stucture was observed in GAC surface.
Collapse
Affiliation(s)
- Qianyi Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ran Li
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Petroleum Engineering, Xi'an Shiyou University, Xi'an 710065, Shaanxi Province, China
| | - Bing Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Lei Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada.
| |
Collapse
|
5
|
Gomes MM, Sakamoto IK, Silva Rabelo CAB, Silva EL, Varesche MBA. Statistical optimization of methane production from brewery spent grain: Interaction effects of temperature and substrate concentration. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 288:112363. [PMID: 33756388 DOI: 10.1016/j.jenvman.2021.112363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 02/16/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the effects of thermal pretreatment of brewery spent grain (BSG) (by autoclave 121 °C, 1.45 atm for 30 min) on methane production (CH4). Operation temperature (31-59 °C) and substrate concentration (8.3-19.7 g BSG.L-1) factors were investigated by Response Surface Methodology (RSM) and Central Composite Design (CCD). Values ranging from 81.1 ± 2.0 to 290.1 ± 3.5 mL CH4.g-1 TVS were obtained according to operation temperature and substrate concentration variation. The most adverse condition for methanogenesis (81.1 ± 2.0 mL CH4.g-1 TVS) was at 59 °C and 14 g BSG.L-1, in which there was increase in the organic matter concentration from 173.6 ± 4.94 to 3036 ± 7.78 mg.L-1) result of a higher final concentration of volatile fatty acids (VFA, 2662.7 mg.L-1). On the other hand, the optimum condition predicted by the statistical model was at 35 °C and 18 g BSG.L-1 (289.1 mL CH4.g-1 TVS), which showed decrease in the organic matter concentration of 78.6% and a lower final concentration of VFA (533.2 mg.L-1). Hydrogenospora and Methanosaeta were identified in this optimum CH4 production condition, where acetoclastic methanogenic pathway prevailed. The CH4 production enhancement was concomitant to acetic acid concentration decrease (from 578.9 to 135.7 mg.L-1).
Collapse
Affiliation(s)
- Marina Mauro Gomes
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Camila Abreu B Silva Rabelo
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos, São Carlos, SP CEP, 13565-905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Campus II, São Carlos, SP CEP, 13563-120, Brazil.
| |
Collapse
|
6
|
Bandini F, Misci C, Taskin E, Cocconcelli PS, Puglisi E. Biopolymers modulate microbial communities in municipal organic waste digestion. FEMS Microbiol Ecol 2021; 96:5902845. [PMID: 32897356 DOI: 10.1093/femsec/fiaa183] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/04/2020] [Indexed: 11/15/2022] Open
Abstract
The development of biopolymers has raised issues about their recalcitrance in the environment. Their disposal is mainly carried out with the organic fraction of municipal solid waste (OFMSW) through thermophilic anaerobic digestion and aerobic composting, bioprocesses aimed at turning organic matter into biogas and compost. However, the effects of biopolymers on OFMSW treatment, on the final compost and on the microbial communities involved are partly unexplored. In this study, the OFMSW treatment was reproduced on a laboratory-scale respecting real plant conditions and testing the impacts of mixing polylactic acid (PLA) and starch-based bioplastic (SBB) separately. The dynamics of bacterial, archaeal and fungal communities during the process was screened by high-throughput sequencing (HTS) of phylogenetic amplicons. Starch-based bioplastic showed a minor and heterogeneous microbial diversity between the anaerobic and aerobic phases. Contrariwise, PLA treatment resulted in wider and more diverse bacterial and fungal communities for the compost and the aerobic biofilm. Since the biodiversity in compost may play a crucial role in its stability and safety, the modulation of environmental microbial communities induced by higher concentrations of PLA in OFMSW treatment can pose relevant issues.
Collapse
Affiliation(s)
- Francesca Bandini
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Chiara Misci
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Eren Taskin
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Pier Sandro Cocconcelli
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Edoardo Puglisi
- Dipartimento di Scienze e Tecnologie Alimentari per la sostenibilità della filiera agro-alimentare (DISTAS), Facoltà di Scienze Agrarie Alimentari ed Ambientali, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
7
|
Peng X, Wilken SE, Lankiewicz TS, Gilmore SP, Brown JL, Henske JK, Swift CL, Salamov A, Barry K, Grigoriev IV, Theodorou MK, Valentine DL, O’Malley MA. Genomic and functional analyses of fungal and bacterial consortia that enable lignocellulose breakdown in goat gut microbiomes. Nat Microbiol 2021; 6:499-511. [PMID: 33526884 PMCID: PMC8007473 DOI: 10.1038/s41564-020-00861-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023]
Abstract
The herbivore digestive tract is home to a complex community of anaerobic microbes that work together to break down lignocellulose. These microbiota are an untapped resource of strains, pathways and enzymes that could be applied to convert plant waste into sugar substrates for green biotechnology. We carried out more than 400 parallel enrichment experiments from goat faeces to determine how substrate and antibiotic selection influence membership, activity, stability and chemical productivity of herbivore gut communities. We assembled 719 high-quality metagenome-assembled genomes (MAGs) that are unique at the species level. More than 90% of these MAGs are from previously unidentified herbivore gut microorganisms. Microbial consortia dominated by anaerobic fungi outperformed bacterially dominated consortia in terms of both methane production and extent of cellulose degradation, which indicates that fungi have an important role in methane release. Metabolic pathway reconstructions from MAGs of 737 bacteria, archaea and fungi suggest that cross-domain partnerships between fungi and methanogens enabled production of acetate, formate and methane, whereas bacterially dominated consortia mainly produced short-chain fatty acids, including propionate and butyrate. Analyses of carbohydrate-active enzyme domains present in each anaerobic consortium suggest that anaerobic bacteria and fungi employ mostly complementary hydrolytic strategies. The division of labour among herbivore anaerobes to degrade plant biomass could be harnessed for industrial bioprocessing.
Collapse
Affiliation(s)
- Xuefeng Peng
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.133342.40000 0004 1936 9676Marine Science Institute, University of California, Santa Barbara, CA USA
| | - St. Elmo Wilken
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Thomas S. Lankiewicz
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Sean P. Gilmore
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Jennifer L. Brown
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - John K. Henske
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Candice L. Swift
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA
| | - Asaf Salamov
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Kerrie Barry
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Igor V. Grigoriev
- grid.184769.50000 0001 2231 4551Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Michael K. Theodorou
- grid.417899.a0000 0001 2167 3798Department of Animal Production, Welfare and Veterinary Sciences, Harper Adams University, Newport, UK
| | - David L. Valentine
- grid.133342.40000 0004 1936 9676Department of Earth Science, University of California, Santa Barbara, CA USA
| | - Michelle A. O’Malley
- grid.133342.40000 0004 1936 9676Department of Chemical Engineering, University of California, Santa Barbara, CA USA ,grid.184769.50000 0001 2231 4551Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| |
Collapse
|
8
|
Shi Z, Han C, Zhang X, Tian L, Wang L. Novel Synergistic Mechanism for Lignocellulose Degradation by a Thermophilic Filamentous Fungus and a Thermophilic Actinobacterium Based on Functional Proteomics. Front Microbiol 2020; 11:539438. [PMID: 33042052 PMCID: PMC7518101 DOI: 10.3389/fmicb.2020.539438] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 08/24/2020] [Indexed: 11/13/2022] Open
Abstract
Effective artificial microbial consortia containing microorganisms with desired biological functions have the potential to optimize the lignocellulose-based bioindustry. Thermobifida fusca was a dominant actinobacterium in high-temperature corn stalk composts, but it was unable to grow alone in corn stalk solid medium. Interestingly, T. fusca showed good growth and secreted enzymes when cocultured with Thermomyces lanuginosus. T. lanuginosus grew firstly during the initial stage, whereas T. fusca dominated the system subsequently during cocultivation. The secretome indicated that T. lanuginosus mainly degraded xylan by expressing a GH11 xylanase (g4601.t1, GenBank AAB94633.1; with relative secretion of 4.95 ± 0.65%). T. fusca was induced by xylan mainly to secrete a xylanase from GH11 family (W8GGR4, GenBank AHK22788.1; with relative secretion of 8.71 ± 3.83%) which could rapidly degrade xylan to xylo-oligosaccharide (XOS) and xylose within 2 min, while high concentrations (>0.5%, w/v) of XOS or xylose suppressed the growth of T. fusca; which may be the reason why T. fusca unable to grow alone in corn stalk solid medium. However, T. lanuginosus could utilize the XOS and xylose produced by xylanases secreted by T. fusca. During the synergistic degradation of lignocellulose by T. lanuginosus and T. fusca, xylan was rapidly consumed by T. lanuginosus, the residual cellulose could specifically induced T. fusca to express a GH10 xylanase with a CBM2 domain (Q47KR6, GenBank AAZ56956.1; with relative secretion of 5.03 ± 1.33%) and 6 cellulases (2 exocellulases and 4 endocellulases). Moreover, T. lanuginosus increased the secretion of cellulases from T. fusca by 19-25%. The order of T. lanuginosus and T. fusca was consistent with the multilayered structures of lignocellulose and could be regulated by different concentrations of XOS and xylose. The novel synergism of T. lanuginosus and T. fusca gave a new sight for revealing more synergetic relationships in natural environments and exploring efficient microbial inoculants and enzyme cocktails for lignocellulose degradation.
Collapse
Affiliation(s)
- Zelu Shi
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Chao Han
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Xiujun Zhang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Li Tian
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| | - Lushan Wang
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, Qingdao, China
| |
Collapse
|
9
|
Greene LK, Williams CV, Junge RE, Mahefarisoa KL, Rajaonarivelo T, Rakotondrainibe H, O'Connell TM, Drea CM. A role for gut microbiota in host niche differentiation. THE ISME JOURNAL 2020; 14:1675-1687. [PMID: 32238913 PMCID: PMC7305313 DOI: 10.1038/s41396-020-0640-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
If gut microbes influence host behavioral ecology in the short term, over evolutionary time, they could drive host niche differentiation. We explored this possibility by comparing the gut microbiota of Madagascar's folivorous lemurs from Indriidae and Lepilemuridae. Occurring sympatrically in the eastern rainforest, our four, target species have different dietary specializations, including frugo-folivory (sifakas), young-leaf folivory (indri and woolly lemurs), and mature-leaf folivory (sportive lemurs). We collected fecal samples, from 2013 to 2017, and used amplicon sequencing, metagenomic sequencing, and nuclear magnetic resonance spectroscopy, respectively, to integrate analyses of gut microbiome structure and function with analysis of the colonic metabolome. The lemurs harbored species-specific microbiomes, metagenomes, and metabolomes that were tuned to their dietary specializations: Frugo-folivores had greater microbial and metagenomic diversity, and harbored generalist taxa. Mature-leaf folivores had greater individual microbiome variation, and taxa and metabolites putatively involved in cellulolysis. The consortia even differed between related, young-leaf specialists, with indri prioritizing metabolism of fiber and plant secondary compounds, and woolly lemurs prioritizing amino-acid cycling. Specialized gut microbiota and associated gastrointestinal morphologies enable folivores to variably tolerate resource fluctuation and support nutrient extraction from challenging resources (e.g., by metabolizing plant secondary compounds or recalcitrant fibers), perhaps ultimately facilitating host species' diversity and specialized feeding ecologies.
Collapse
Affiliation(s)
- Lydia K Greene
- University Program in Ecology, Duke University, Durham, NC, 27708, USA.
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA.
- Primate Microbiome Project, Minneapolis, MN, USA.
| | - Cathy V Williams
- Duke Lemur Center, Durham, NC, 27705, USA
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
| | - Randall E Junge
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Columbus Zoo and Aquarium, 9990 Riverside Drive, Columbus, OH, 43065, USA
| | - Karine L Mahefarisoa
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vet Care Clinic Madagascar, IVC II Ambatomitsangana, 101, Antananarivo, Madagascar
| | - Tsiky Rajaonarivelo
- Ambatovy Minerals, S.A., Antananarivo, Madagascar
- Vetclinic, Ampandrianomby, Antananarivo, Madagascar
| | | | - Thomas M O'Connell
- Department of Otolaryngology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Christine M Drea
- University Program in Ecology, Duke University, Durham, NC, 27708, USA
- Department of Evolutionary Anthropology, Duke University, Durham, NC, 27708, USA
- Department of Biology, Duke University, Durham, NC, 27708, USA
| |
Collapse
|
10
|
Mei R, Nobu MK, Liu WT. Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:173-184. [PMID: 31965729 DOI: 10.1111/1758-2229.12821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Degradation of amino acids is an important process in methanogenic environments. Early studies in the 1980s focused on isolated clostridia species to study the degradation behaviours. However, it is now well-recognized that isolated species may not represent those with important roles in situ. This study conducted a continuous enrichment experiment with focus on the comparison of the microbial communities after short-term enrichment (SE) and long-term enrichment (LE). Individual amino acids were used as the substrate, and two different anaerobic digester sludge were used as the inoculum. Based on 16S rRNA and 16S rRNA gene, a clear community shift was observed during a time course of 18 months. The SE communities were dominated by microbial populations such as an uncultured Bacteroidales that was different from known fermenters. In the LE communities, known amino acids fermenters were consistently observed with high abundance, including Peptoclostridium acidaminophilum, Acidaminobacter hydrogenoformans and Propionivibrio pelophilus. The community structures could be classified into four types depending on the diversity of fermenters and syntrophs. A culturability index was developed to compare the SE and LE community and revealed that long-term enrichment tended to select microbial populations closely related to species that has been cultivated whereas larger fractions of the inoculum and SE communities remained uncultured.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Masaru K Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
11
|
Wang L, Hossen EH, Aziz TN, Ducoste JJ, de Los Reyes FL. Increased loading stress leads to convergence of microbial communities and high methane yields in adapted anaerobic co-digesters. WATER RESEARCH 2020; 169:115155. [PMID: 31671296 DOI: 10.1016/j.watres.2019.115155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/29/2019] [Accepted: 10/02/2019] [Indexed: 06/10/2023]
Abstract
Enhancing biogas production, while avoiding inhibition of methanogenesis during co-digestion of grease interceptor waste (GIW), can help water resource recovery facilities reduce their carbon footprint. Here we used pre-adapted and non-adapted digesters to link microbial community structure to digester function. Before disturbance, the pre-adapted and non-adapted digesters showed similar methane production and microbial community diversity but dissimilar community composition. When exposed to an identical disturbance, the pre-adapted digester achieved better performance, while the non-adapted digester was inhibited. When re-exposed to disturbance after recovery, communities and performance of both digesters converged, regardless of the temporal variations. Co-digestion of up to 75% GIW added on a volatile solids (VS) basis was achieved, increasing methane yield by 336% from 0.180 to 0.785 l-methane/g-VS-added, the highest methane yield reported to date for lipid-rich waste. Progressive perturbation substantially enriched fatty acid-degrading Syntrophomonas from less than 1% to 24.6% of total 16S rRNA gene sequences, acetoclastic Methanosaeta from 2.3% to 11.9%, and hydrogenotrophic Methanospirillum from less than 1% to 6.6% in the pre-adapted digester. Specific hydrolytic and fermentative populations also increased. These ecological insights demonstrated how progressive perturbation can be strategically used to influence methanogenic microbiomes and improve co-digestion of GIW.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Elvin H Hossen
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Tarek N Aziz
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Joel J Ducoste
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Francis L de Los Reyes
- Department of Civil, Construction and Environmental Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| |
Collapse
|
12
|
Li K, Yun J, Zhang H, Yu Z. Full-scale anaerobic reactor samples would be more suitable than lab-scale anaerobic reactor and natural samples to inoculate the wheat straw batch anaerobic digesters. BIORESOURCE TECHNOLOGY 2019; 293:122040. [PMID: 31454734 DOI: 10.1016/j.biortech.2019.122040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/15/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the effects of the inocula from natural wetland, lab-scale and full-scale anaerobic reactors on wheat straw anaerobic digestion. Three replicate batch reactors were constructed for each inoculum to investigate the reactor performances and microbial communities. Reactors seeded with full-scale reactor samples were started up most rapidly, achieved the highest methane production, and were recognized as the higher efficient reactors. The dominance of acetoclastic methanogens, including Methanosaeta and Methanoscrina, was crucial for the higher efficient reactors, whereas hydrogenotrophic methanogens were dominant in other reactors. Genus Treponema, which could enhance the cellulose degradation and conduct homoacetogenesis, was first reported to be dominant in the bacterial communities of high efficient reactors. Inoculum sources and process conditions were suggested to be the deterministic factors in shaping the microbial communities in the higher efficient reactors. These findings contribute to the startup of new anaerobic reactors.
Collapse
Affiliation(s)
- Ke Li
- Water Affairs Research Institute, North China University of Water Resources and Electric Power, 36 Beihuan Road, Zhengzhou 450045, China; College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Juanli Yun
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, No.1 West Beichen Road, Beijing 100101, China
| | - Hongxun Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, 19 A Yuquan Road, Beijing 100049, China.
| |
Collapse
|
13
|
Khalid NA, Rajandas H, Parimannan S, Croft LJ, Loke S, Chong CS, Bruce NC, Yahya A. Insights into microbial community structure and diversity in oil palm waste compost. 3 Biotech 2019; 9:364. [PMID: 31588388 DOI: 10.1007/s13205-019-1892-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 08/31/2019] [Indexed: 11/26/2022] Open
Abstract
Empty fruit bunch (EFB) and palm oil mill effluent (POME) are the major wastes generated by the oil palm industry in Malaysia. The practice of EFB and POME digester sludge co-composting has shown positive results, both in mitigating otherwise environmentally damaging waste streams and producing a useful product (compost) from these streams. In this study, the bacterial ecosystems of 12-week-old EFB-POME co-compost and POME biogas sludge from Felda Maokil, Johor were analysed using 16S metagenome sequencing. Over ten phyla were detected, with Chloroflexi being the predominant phylum, representing approximately 53% of compost and 23% of the POME microbiome reads. The main bacterial lineage found in the compost and POME was Anaerolinaceae (Chloroflexi) with 30% and 18% of the total gene fragments, respectively. The significant differences between compost and POME communities were abundances of Syntrophobacter, Sulfuricurvum and Coprococcus. No methanogens were identified due to the bias in general 16S primers to eubacteria. The preponderance of anaerobic species in the compost and high abundance of secondary metabolite fermenting bacteria is due to an extended composting time, with anaerobic collapse of the pile due to the tropical heat. Predictive functional profiles of the metagenomes using 16S rRNA marker genes suggest that the presence of enzymes involved in degradation of polysaccharides such as glucoamylase, endoglucanase and arabinofuranosidase, all of which were strongly active in POME. Eubacterial species associated with cellulytic methanogenesis were present in both samples.
Collapse
Affiliation(s)
- Nurshafika Abd Khalid
- 1Biorefinery Technology Laboratory, Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Heera Rajandas
- 2Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, 08100 Bedong, Kedah Malaysia
| | - Sivachandran Parimannan
- 2Centre of Excellence for Omics-Driven Computational Biodiscovery (COMBio), Faculty of Applied Sciences, AIMST University, 08100 Bedong, Kedah Malaysia
| | - Laurence J Croft
- 3Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, Victoria 3220 Australia
| | - Stella Loke
- 4School of Life and Environmental Sciences, Deakin University, Burwood Campus, Building M, 221 Burwood Hwy, Burwood, Victoria 3125 Australia
| | - Chun Shiong Chong
- 1Biorefinery Technology Laboratory, Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| | - Neil C Bruce
- 5Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD UK
| | - Adibah Yahya
- 1Biorefinery Technology Laboratory, Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
| |
Collapse
|
14
|
Higher Temperatures Do Not Always Achieve Better Antibiotic Resistance Gene Removal in Anaerobic Digestion of Swine Manure. Appl Environ Microbiol 2019; 85:AEM.02878-18. [PMID: 30683745 DOI: 10.1128/aem.02878-18] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022] Open
Abstract
This study employed high-throughput quantitative PCR and 16S rRNA sequencing to evaluate the effect of temperature and residual antibiotics on the dynamics of antibiotic resistance genes (ARGs) and microbial communities during anaerobic digestion of swine manure. The abundances of total ARGs and 16S rRNA genes significantly decreased in all of four treatments (25°C, 37°C, and 37°C with 50 mg of wet weight antibiotics of body weight, and 55°C). The abundances of most ARG types were significantly correlated with those of the 16S rRNA gene and transposase gene (P < 0.01). However, the abundances of total ARGs at 55°C were much higher than those of other treatments. Meanwhile, the microbial communities at 55°C, where the Streptococcus pathogen remained at a relatively high abundance and cellulose degraders and hydrogen producers, such as Ethanoligenens and Coprococcus bacteria, increased, were markedly different from those of other treatments. Redundancy analysis indicates that temperature, pH, and the genus Streptococcus had the highest explanation for ARG variation among experimental factors, chemical properties, and representative genera, respectively. Network analysis further showed that the genus Streptococcus contributed greatly to the higher ARG abundance at 55°C. The moderate antibiotic residue only caused a slight and transitory inhibition for microbially diverse populations and promotion for ARG abundance, probably due to the degradation of antibiotics and microbial adaptability. Our results clarify the cooperativity of gene transfer-related items on ARG variation and intensively prove that higher temperature cannot always achieve better ARG removal in anaerobic digestion unless pathogens and gene transfer elements are more efficiently inhibited.IMPORTANCE Antibiotic resistance genes (ARGs) are frequently detected with high abundance in manure-applied soils. Anaerobic digestion is one of widely used processes for animal waste treatment. Thus, it is critical to understand the potential of anaerobic digestion to attenuate ARGs. Although some previous studies recommended thermophilic digestion for ARG removal, they did not get sufficient evidence to support this view. The antibiotics applied to animals are mostly excreted through feces and urine because of incomplete metabolism. It is indispensable to know whether residual antibiotics in manure will hinder ARG attenuation in anaerobic digesters. The significance of our research is in comprehensively understanding the evolution and mechanism of ARGs in anaerobic digestion of swine manure affected by temperature and residual antibiotics, which will allow the development of an ARG elimination strategy before their release into the environment.
Collapse
|
15
|
Rare Taxa Exhibit Disproportionate Cell-Level Metabolic Activity in Enriched Anaerobic Digestion Microbial Communities. mSystems 2019; 4:mSystems00208-18. [PMID: 30687779 PMCID: PMC6343076 DOI: 10.1128/msystems.00208-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 01/02/2019] [Indexed: 01/31/2023] Open
Abstract
Microbial communities are composed of populations with vastly different abundances and levels of metabolic and replicative activity, ranging from actively metabolizing and dividing to dormant or nonviable. The 16S rRNA/rDNA ratio is an emerging tool for evaluating cell-level metabolic activity independent of abundance. In this study, we used five long-term enriched model anaerobic digestion (AD) communities to investigate community composition, diversity, structure, and in particular activity based on the rRNA/rDNA ratio. We cross-validated the 16S amplicon-based results using two alternative operational taxonomic unit (OTU) formation methods (conventional 97% sequence similarity and 100% sequence similar zero-radius OTUs by UNOISE3) and compared these to metagenome-derived population genomes and metatranscriptomes. Significant positive correlations were observed between microbial total activity and abundance with both the amplicon- and omic-based methods. All three methods revealed disproportionately high transcription/abundance ratios for some rare taxa but lower ratios for most abundant taxa for all the communities, which was further corroborated by the high replication rate (iRep) of most low-abundance population genomes. IMPORTANCE Variation in microbial activity levels is increasingly being recognized as both an important dimension in community function and a complicating factor in sequencing-based survey methods. This study extends previous reports that rare taxa may contribute disproportionately to community activity in some natural environments, showing that this may also hold in artificially maintained model communities with well-described inputs, outputs, and biochemical functions. These results demonstrate that assessment of activity levels using the rRNA/rDNA ratio is robust across taxonomic unit formation methods and is independently corroborated by omics methods. The results also provide insight into the comparative advantages and disadvantages of different taxonomic unit formation methods in amplicon sequencing studies, showing that UNOISE3 provides comparable microbial diversity, structure, and activity information as the 97% sequence similarity method but potentially loses some phylogenetic diversity and creates more "phantom taxa" (which are present in the RNA pool but not the corresponding DNA pool).
Collapse
|
16
|
Sierocinski P, Bayer F, Yvon-Durocher G, Burdon M, Großkopf T, Alston M, Swarbreck D, Hobbs PJ, Soyer OS, Buckling A. Biodiversity-function relationships in methanogenic communities. Mol Ecol 2018; 27:4641-4651. [PMID: 30307662 PMCID: PMC6282539 DOI: 10.1111/mec.14895] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 01/21/2023]
Abstract
Methanogenic communities play a crucial role in carbon cycling and biotechnology (anaerobic digestion), but our understanding of how their diversity, or composition in general, determines the rate of methane production is very limited. Studies to date have been correlational because of the difficulty in cultivating their constituent species in pure culture. Here, we investigate the causal link between methanogenesis and diversity in laboratory anaerobic digesters by experimentally manipulating the diversity of cultures by dilution and subsequent equilibration of biomass. This process necessarily leads to the loss of the rarer species from communities. We find a positive relationship between methane production and the number of taxa, with little evidence of functional saturation, suggesting that rare species play an important role in methane‐producing communities. No correlations were found between the initial composition and methane production across natural communities, but a positive relationship between species richness and methane production emerged following ecological selection imposed by the laboratory conditions. Our data suggest methanogenic communities show little functional redundancy, and hence, any loss of diversity—both natural and resulting from changes in propagation conditions during anaerobic digestion—is likely to reduce methane production.
Collapse
Affiliation(s)
| | - Florian Bayer
- ESI and CEC, Biosciences, University of Exeter, Penryn, UK
| | | | - Melia Burdon
- ESI and CEC, Biosciences, University of Exeter, Penryn, UK
| | - Tobias Großkopf
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Mark Alston
- Earlham Institute, Norwich Research Park, Norwich, UK
| | | | | | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Angus Buckling
- ESI and CEC, Biosciences, University of Exeter, Penryn, UK
| |
Collapse
|
17
|
Zhao J, Westerholm M, Qiao W, Yin D, Bi S, Jiang M, Dong R. Impact of temperature and substrate concentration on degradation rates of acetate, propionate and hydrogen and their links to microbial community structure. BIORESOURCE TECHNOLOGY 2018; 256:44-52. [PMID: 29428613 DOI: 10.1016/j.biortech.2018.01.150] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/29/2018] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
The present study investigates the conversion of acetate, propionate and hydrogen consumption linked to the microbial community structure and related to temperature and substrate concentration. Biogas reactors were continuously fed with coffee powder (20 g-COD/L) or acetate (20, 40, and 60 g-COD/L) and operated for 193 days at 37 °C or 55 °C conditions. Starting HRT was 23 days which was then reduced to 7 days. The kinetics of acetate and propionate degradation and hydrogen consumption rates were measured in batch assays. At HRT 7 days, the degradation rate of propionate was higher in thermophilic batches, while acetate degradation rate was higher at mesophilic conditions. The gaseous hydrogen consumption in acetate reactors increased proportionally with temperature and substrate concentration, while the dissolved hydrogen was not affected. The relative high abundance of hydrogentrophic methanogens indicated that the methanogenesis was directed towards the syntrophic acetate oxidation pathway at high acetate concentration and high temperature.
Collapse
Affiliation(s)
- Jing Zhao
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Maria Westerholm
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Uppsala BioCenter, Box 7025, SE-750 07 Uppsala, Sweden
| | - Wei Qiao
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China.
| | - Dongmin Yin
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Shaojie Bi
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Mengmeng Jiang
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| | - Renjie Dong
- College of Engineering, China Agricultural University, Beijing 100083, China; State R&D Center for Efficient Production and Comprehensive Utilization of Biobased Gaseous Fuels, Energy Authority, National Development, and Reform Committee (BGFuels), Beijing 100083, China
| |
Collapse
|
18
|
Carlos C, Fan H, Currie CR. Substrate Shift Reveals Roles for Members of Bacterial Consortia in Degradation of Plant Cell Wall Polymers. Front Microbiol 2018; 9:364. [PMID: 29545786 PMCID: PMC5839234 DOI: 10.3389/fmicb.2018.00364] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 02/15/2018] [Indexed: 01/05/2023] Open
Abstract
Deconstructing the intricate matrix of cellulose, hemicellulose, and lignin poses a major challenge in biofuel production. In diverse environments in nature, some microbial communities, are able to overcome plant biomass recalcitrance. Identifying key degraders of each component of plant cell wall can help improve biological degradation of plant feedstock. Here, we sequenced the metagenome of lignocellulose-adapted microbial consortia sub-cultured on xylan and alkali lignin media. We observed a drastic shift on community composition after sub-culturing, independently of the original consortia. Proteobacteria relative abundance increased after growth in alkali lignin medium, while Bacteroidetes abundance increased after growth in xylan medium. At the genus level, Pseudomonas was more abundant in the communities growing on alkali lignin, Sphingobacterium in the communities growing on xylan and Cellulomonas abundance was the highest in the original microbial consortia. We also observed functional convergence of microbial communities after incubation in alkali lignin, due to an enrichment of genes involved in benzoate degradation and catechol ortho-cleavage pathways. Our results represent an important step toward the elucidation of key members of microbial communities on lignocellulose degradation and may aide the design of novel lignocellulolytic microbial consortia that are able to efficiently degrade plant cell wall polymers.
Collapse
Affiliation(s)
- Camila Carlos
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,U.S. Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| | - Huan Fan
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States
| | - Cameron R Currie
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, United States.,U.S. Department of Energy, Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
19
|
Pan Y, Chen J, Zhou H, Tam NFY. Changes in microbial community during removal of BDE-153 in four types of aquatic sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:644-652. [PMID: 28934686 DOI: 10.1016/j.scitotenv.2017.09.130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/13/2017] [Accepted: 09/13/2017] [Indexed: 06/07/2023]
Abstract
Indigenous microorganisms in sediments could degrade polybrominated diphenyl ethers (PBDEs), but how the microbial communities respond to PBDEs was seldom reported. The effect of BDE-153, a common congener in aquatic environments, on the microbial communities in four types of aquatic sediments was evaluated during the 150days' incubation under an anaerobic condition. The intrinsic potential to remove BDE-153 varied significantly among four sediment types, and the removal rates of mangrove, mudflat, marine and freshwater sediments were 0.013, 0.013, 0.011, and 0.009day-1, respectively. The observed microbial species, Simpson, Shannon, and Chao1 indices in all sediments were rather stable and were not changed significantly by BDE-153 amendment. However, BDE-153 amendment altered the microbial community compositions in three saline sediments at the end of the incubation period. Distance-based multivariate multiple regression analysis revealed that salinity, total organic carbon (TOC) and BDE-52, the major debromination product of BDE-153, were the three main factors explaining the variations in microbial community compositions in BDE-treated sediments; whereas salinity, TOC and pH were the main contributing factors in control sediments without BDE-153. The daughter congeners generated during anaerobic debromination process need more attention, especially their effect on the microbial communities in aquatic sediments.
Collapse
Affiliation(s)
- Ying Pan
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Juan Chen
- Key Laboratory of Integrated Regulation and Resource Department on Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road, Nanjing 210098, China
| | - Haichao Zhou
- State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Futian-CityU Mangrove R&D Centre, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; College of Life Sciences and Oceanography, Shenzhen University, Nanhai Avenue, 518060, China
| | - Nora F Y Tam
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; State Key Laboratory in Marine Pollution, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China.
| |
Collapse
|
20
|
Jia Y, Ng SK, Lu H, Cai M, Lee PKH. Genome-centric metatranscriptomes and ecological roles of the active microbial populations during cellulosic biomass anaerobic digestion. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:117. [PMID: 29713376 PMCID: PMC5911951 DOI: 10.1186/s13068-018-1121-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Accepted: 04/16/2018] [Indexed: 05/13/2023]
Abstract
BACKGROUND Although anaerobic digestion for biogas production is used worldwide in treatment processes to recover energy from carbon-rich waste such as cellulosic biomass, the activities and interactions among the microbial populations that perform anaerobic digestion deserve further investigations, especially at the population genome level. To understand the cellulosic biomass-degrading potentials in two full-scale digesters, this study examined five methanogenic enrichment cultures derived from the digesters that anaerobically digested cellulose or xylan for more than 2 years under 35 or 55 °C conditions. RESULTS Metagenomics and metatranscriptomics were used to capture the active microbial populations in each enrichment culture and reconstruct their meta-metabolic network and ecological roles. 107 population genomes were reconstructed from the five enrichment cultures using a differential coverage binning approach, of which only a subset was highly transcribed in the metatranscriptomes. Phylogenetic and functional convergence of communities by enrichment condition and phase of fermentation was observed for the highly transcribed populations in the metatranscriptomes. In the 35 °C cultures grown on cellulose, Clostridium cellulolyticum-related and Ruminococcus-related bacteria were identified as major hydrolyzers and primary fermenters in the early growth phase, while Clostridium leptum-related bacteria were major secondary fermenters and potential fatty acid scavengers in the late growth phase. While the meta-metabolism and trophic roles of the cultures were similar, the bacterial populations performing each function were distinct between the enrichment conditions. CONCLUSIONS Overall, a population genome-centric view of the meta-metabolism and functional roles of key active players in anaerobic digestion of cellulosic biomass was obtained. This study represents a major step forward towards understanding the microbial functions and interactions at population genome level during the microbial conversion of lignocellulosic biomass to methane. The knowledge of this study can facilitate development of potential biomarkers and rational design of the microbiome in anaerobic digesters.
Collapse
Affiliation(s)
- Yangyang Jia
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siu-Kin Ng
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Hongyuan Lu
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Mingwei Cai
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Patrick K. H. Lee
- B5423-AC1, School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| |
Collapse
|
21
|
Bozan M, Akyol Ç, Ince O, Aydin S, Ince B. Application of next-generation sequencing methods for microbial monitoring of anaerobic digestion of lignocellulosic biomass. Appl Microbiol Biotechnol 2017; 101:6849-6864. [PMID: 28779289 DOI: 10.1007/s00253-017-8438-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/14/2017] [Accepted: 07/17/2017] [Indexed: 10/19/2022]
Abstract
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world's energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.
Collapse
Affiliation(s)
- Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34469, Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342, Istanbul, Turkey
| |
Collapse
|
22
|
Cai M, Wilkins D, Chen J, Ng SK, Lu H, Jia Y, Lee PKH. Metagenomic Reconstruction of Key Anaerobic Digestion Pathways in Municipal Sludge and Industrial Wastewater Biogas-Producing Systems. Front Microbiol 2016; 7:778. [PMID: 27252693 PMCID: PMC4879347 DOI: 10.3389/fmicb.2016.00778] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 05/09/2016] [Indexed: 01/06/2023] Open
Abstract
Anaerobic digestion (AD) is a microbial process widely used to treat organic wastes. While the microbes involved in digestion of municipal sludge are increasingly well characterized, the taxonomic and functional compositions of AD digesters treating industrial wastewater have been understudied. This study examined metagenomes from a biogas-producing digester treating municipal sludge in Shek Wu Hui (SWH), Hong Kong and an industrial wastewater digester in Guangzhou (GZ), China, and compared their taxonomic composition and reconstructed biochemical pathways. Genes encoding carbohydrate metabolism and protein metabolism functions were overrepresented in GZ, while genes encoding functions related to fatty acids, lipids and isoprenoids were overrepresented in SWH, reflecting the plants' feedstocks. Mapping of genera to functions in each community indicated that both digesters had a high level of functional redundancy, and a more even distribution of genera in GZ suggested that it was more functionally stable. While fermentation in both samples was dominated by Clostridia, SWH had an overrepresentation of Proteobacteria, including syntrophic acetogens, reflecting its more complex substrate. Considering the growing importance of biogas as an alternative fuel source, a detailed mechanistic understanding of AD is important and this report will be a basis for further study of industrial wastewater AD.
Collapse
Affiliation(s)
- Mingwei Cai
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - David Wilkins
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - Jiapeng Chen
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - Siu-Kin Ng
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - Hongyuan Lu
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - Yangyang Jia
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| | - Patrick K H Lee
- School of Energy and Environment, City University of Hong Kong Hong Kong, China
| |
Collapse
|