1
|
Zhao S, Li X, Yao X, Liu X, Pan C, Guo L, Bai J, Chen T, Yu H, Hu C. Detoxification of tetracycline and synthetic dyes by a newly characterized Lentinula edodes laccase, and safety assessment using proteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 276:116324. [PMID: 38636260 DOI: 10.1016/j.ecoenv.2024.116324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/20/2024]
Abstract
Fungal laccase has strong ability in detoxification of many environmental contaminants. A putative laccase gene, LeLac12, from Lentinula edodes was screened by secretome approach. LeLac12 was heterogeneously expressed and purified to characterize its enzymatic properties to evaluate its potential use in bioremediation. This study showed that the extracellular fungal laccase from L. edodes could effectively degrade tetracycline (TET) and the synthetic dye Acid Green 25 (AG). The growth inhibition of Escherichia coli and Bacillus subtilis by TET revealed that the antimicrobial activity was significantly reduced after treatment with the laccase-HBT system. 16 transformation products of TET were identified by UPLC-MS-TOF during the laccase-HBT oxidation process. Gas chromatography-mass spectrometry (GC-MS) analysis revealed that LeLac12 could completely mineralize ring-cleavage products. LeLac12 completely catalyzed 50 mg/L TET within 4 h by adding AG (200 mg/L), while the degradation of AG was above 96% even in the co-contamination system. Proteomic analysis revealed that central carbon metabolism, energy metabolism, and DNA replication/repair were affected by TET treatment and the latter system could contribute to the formation of multidrug-resistant strains. The results demonstrate that LeLac12 is an efficient and environmentally method for the removal of antibiotics and dyes in the complex polluted wastewater.
Collapse
Affiliation(s)
- Shuxue Zhao
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xiaohang Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Xingdong Yao
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Xuyang Liu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Chao Pan
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Lizhong Guo
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China
| | - Jie Bai
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Tiantian Chen
- College of Environmental Science and Engineering, Ocean University of China, Qingdao, Shandong Province 266100, China
| | - Hao Yu
- Shandong Provincial Key Laboratory of Applied Mycology, School of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| | - Chunhui Hu
- Instrumental Analysis Center of Qingdao Agricultural University, Qingdao, Shandong Province 266109, China.
| |
Collapse
|
2
|
Molinelli L, Drula E, Gaillard JC, Navarro D, Armengaud J, Berrin JG, Tron T, Tarrago L. Methionine oxidation of carbohydrate-active enzymes during white-rot wood decay. Appl Environ Microbiol 2024; 90:e0193123. [PMID: 38376171 PMCID: PMC10952391 DOI: 10.1128/aem.01931-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/24/2024] [Indexed: 02/21/2024] Open
Abstract
White-rot fungi employ secreted carbohydrate-active enzymes (CAZymes) along with reactive oxygen species (ROS), like hydrogen peroxide (H2O2), to degrade lignocellulose in wood. H2O2 serves as a co-substrate for key oxidoreductases during the initial decay phase. While the degradation of lignocellulose by CAZymes is well documented, the impact of ROS on the oxidation of the secreted proteins remains unclear, and the identity of the oxidized proteins is unknown. Methionine (Met) can be oxidized to Met sulfoxide (MetO) or Met sulfone (MetO2) with potential deleterious, antioxidant, or regulatory effects. Other residues, like proline (Pro), can undergo carbonylation. Using the white-rot Pycnoporus cinnabarinus grown on aspen wood, we analyzed the Met content of the secreted proteins and their susceptibility to oxidation combining H218O2 with deep shotgun proteomics. Strikingly, their overall Met content was significantly lower (1.4%) compared to intracellular proteins (2.1%), a feature conserved in fungi but not in metazoans or plants. We evidenced that a catalase, widespread in white-rot fungi, protects the secreted proteins from oxidation. Our redox proteomics approach allowed the identification of 49 oxidizable Met and 40 oxidizable Pro residues within few secreted proteins, mostly CAZymes. Interestingly, many of them had several oxidized residues localized in hotspots. Some Met, including those in GH7 cellobiohydrolases, were oxidized up to 47%, with a substantial percentage of sulfone (13%). These Met are conserved in fungal homologs, suggesting important functional roles. Our findings reveal that white-rot fungi safeguard their secreted proteins by minimizing their Met content and by scavenging ROS and pinpoint redox-active residues in CAZymes.IMPORTANCEThe study of lignocellulose degradation by fungi is critical for understanding the ecological and industrial implications of wood decay. While carbohydrate-active enzymes (CAZymes) play a well-established role in lignocellulose degradation, the impact of hydrogen peroxide (H2O2) on secreted proteins remains unclear. This study aims at evaluating the effect of H2O2 on secreted proteins, focusing on the oxidation of methionine (Met). Using the model white-rot fungi Pycnoporus cinnabarinus grown on aspen wood, we showed that fungi protect their secreted proteins from oxidation by reducing their Met content and utilizing a secreted catalase to scavenge exogenous H2O2. The research identified key oxidizable Met within secreted CAZymes. Importantly, some Met, like those of GH7 cellobiohydrolases, undergone substantial oxidation levels suggesting important roles in lignocellulose degradation. These findings highlight the adaptive mechanisms employed by white-rot fungi to safeguard their secreted proteins during wood decay and emphasize the importance of these processes in lignocellulose breakdown.
Collapse
Affiliation(s)
- Lise Molinelli
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Elodie Drula
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
- Architecture et Fonction des Macromolécules Biologiques (AFMB), CNRS, Aix-Marseille Université, Marseille, France
| | - Jean-Charles Gaillard
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - David Navarro
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Jean Armengaud
- Département Médicaments et Technologies pour la Santé (DMTS), SPI, Université Paris-Saclay, CEA, INRAE, Bagnols-sur-Cèze, France
| | - Jean-Guy Berrin
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| | - Thierry Tron
- Centrale Marseille, CNRS, ISM2, Aix Marseille Université, Marseille, France
| | - Lionel Tarrago
- />Biodiversité et Biotechnologie Fongiques, INRAE, Aix Marseille Université, Marseille, France
| |
Collapse
|
3
|
Zhang W, Li Q, Wang J, Wang Z, Zhan H, Yu X, Zheng Y, Xiao T, Zhou LW. Biodegradation of Benzo[a]pyrene by a White-Rot Fungus Phlebia acerina: Surfactant-Enhanced Degradation and Possible Genes Involved. J Fungi (Basel) 2023; 9:978. [PMID: 37888234 PMCID: PMC10607704 DOI: 10.3390/jof9100978] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/28/2023] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are persistent environmental pollutants that pose a threat to human health. Among these PAHs, benzo[a]pyrene (BaP), a five-ring compound, exhibits high resistance to biodegradation. White-rot fungus Phlebia acerina S-LWZ20190614-6 has demonstrated higher BaP degradation capabilities compared with Phanerochaete chrysosporium and P. sordida YK-624, achieving a degradation rate of 57.7% after 32 days of incubation under a ligninolytic condition. To further enhance the biodegradation rate, three nonionic surfactants were used, and the addition of 1 or 2 g·L-1 of polyethylene glycol monododecyl ether (Brij 30) resulted in nearly complete BaP biodegradation by P. acerina S-LWZ20190614-6. Interestingly, Brij 30 did not significantly affect the activity of manganese peroxidase and lignin peroxidase, but it did decrease laccase activity. Furthermore, the impact of cytochrome P450 on BaP degradation by P. acerina S-LWZ20190614-6 was found to be relatively mild. Transcriptomic analysis provided insights into the degradation mechanism of BaP, revealing the involvement of genes related to energy production and the synthesis of active enzymes crucial for BaP degradation. The addition of Brij 30 significantly upregulated various transferase and binding protein genes in P. acerina S-LWZ20190614-6. Hence, the bioremediation potential of BaP by the white-rot fungus P. acerina S-LWZ20190614-6 holds promise and warrants further exploration.
Collapse
Affiliation(s)
- Wenquan Zhang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiaoyu Li
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Jianqiao Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Ziyu Wang
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Hongjie Zhan
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
| | - Xiaolong Yu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Tangfu Xiao
- Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, School of Environmental Science and Engineering, Guangzhou University, Guangzhou 510006, China
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, Chengdu University of Technology, Chengdu 610059, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
4
|
Van Court RC, Rogers L, Robinson SC, Presley G. Wood Coloration and Decay Capabilities of Mycoparasite Scytalidium ganodermophthorum. J Fungi (Basel) 2023; 9:738. [PMID: 37504727 PMCID: PMC10381127 DOI: 10.3390/jof9070738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023] Open
Abstract
Scytalidium ganodermophthorum (telomorph: Xylogone ganodermopthora) Kang, Sigler, Lee & Yun is a destructive fungal pathogen that produces a yellow pigment that is used in sustainable product development. Similar pigmenting ascomycetes cause soft rot in woody substrates, however, the decay capabilities of S. ganodermophthorum have not been assessed or related to pigment production. A wood block decay test showed highly variable production of the expected bright yellow pigment and a secondary darker pigment when tested against multiple wood species and nutrient conditions. Microscopic examination showed cell wall erosion typical of type-2 soft rot in wood, although enzymatic analysis did not show detectible levels of endocellulase. Chitinase was detected in plate cultures but not wood cultures, indicating adaption of the fungus to a variety of environmental growth conditions. The high variability of pigmentation in wood cultures suggests that growth of S. ganodermophthorum on liquid media and use of extracted pigment is a superior method for obtaining consistent yellow coloration.
Collapse
Affiliation(s)
- Ray C Van Court
- Department of Wood Science, Oregon State University, Corvallis, OR 97331, USA
| | - Leon Rogers
- Department of Wood Science, Oregon State University, Corvallis, OR 97331, USA
| | - Seri C Robinson
- Department of Wood Science, Oregon State University, Corvallis, OR 97331, USA
| | - Gerald Presley
- Department of Wood Science, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Agger JW, Madsen MS, Martinsen LK, Martins PA, Barrett K, Meyer AS. New insights to diversity and enzyme-substrate interactions of fungal glucuronoyl esterases. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12575-4. [PMID: 37256329 DOI: 10.1007/s00253-023-12575-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 06/01/2023]
Abstract
Glucuronoyl esterases (GEs) (EC 3.1.1.117) catalyze the cleavage of ester-linked lignin-carbohydrate complexes that has high impact on the plant cell wall integrity. The GEs are among the very few known types of hydrolytic enzymes that act at the interface of lignin, or which may potentially interact with lignin itself. In this review, we provide the latest update of the current knowledge on GEs with a special focus on the fungal variants. In addition, we have established the phylogenetic relationship between all GEs and this reveals that the fungal enzymes largely fall into one major branch, together with only a minor subset of bacterial enzymes. About 22% of the fungal proteins carry an additional domain, which is almost exclusively a CBM1 binding domain. We address how GEs may interact with the lignin-side of their substrate by molecular docking experiments based on the known structure of the Cerrena unicolor GE (CuGE). The docking studies indicate that there are no direct interactions between the enzyme and the lignin polymer, that the lignin-moiety is facing away from the protein surface and that an elongated carbon-chain between the ester-linkage and the first phenyl of lignin is preferable. Much basic research on these enzymes has been done over the past 15 years, but the next big step forward for these enzymes is connected to application and how these enzymes can facilitate the use of lignocellulose as a renewable resource. KEY POINTS: Fungal GEs are closely related and are sometimes linked to a binding module Molecular docking suggests good accommodation of lignin-like substructures GEs could be among the first expressed enzymes during fungal growth on biomass.
Collapse
Affiliation(s)
- Jane Wittrup Agger
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark.
| | - Michael Schmidt Madsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Line Korte Martinsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Pedro Alves Martins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Kristian Barrett
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| | - Anne S Meyer
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 224, 2800, Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Zerva A, Siaperas R, Taxeidis G, Kyriakidi M, Vouyiouka S, Zervakis GI, Topakas E. Investigation of Abortiporus biennis lignocellulolytic toolbox, and the role of laccases in polystyrene degradation. CHEMOSPHERE 2023; 312:137338. [PMID: 36423718 DOI: 10.1016/j.chemosphere.2022.137338] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
White-rot basidiomycetes are the only microorganisms able to produce both hydrolytic (cellulases and hemicellulases) and oxidative (ligninolytic) enzymes for degrading all lignocellulose constituents. Their enzymatic machinery makes them ideal for the discovery of novel enzymes with desirable properties. In the present work, Abortiporus biennis, a white-rot fungus, was studied in regard to its lignocellulolytic potential. Secretomics and biochemical analyses were employed to study the strain's enzymatic arsenal, after growth in corn stover cultures and xylose-based defined media. The results revealed the presence of all the necessary enzymatic activities for complete breakdown of biomass, while the prominent role of oxidative enzymes in the lignocellulolytic strategy of the strain became evident. Two novel laccases, AbiLac1 and AbiLac2, were isolated from the culture supernatant with ion-exchange chromatography. Characterization of purified laccases revealed their ability to oxidize a wide variety of phenolic and non-phenolic substrates. AbiLac1 was found to oxidize polystyrene powder, showing high depolymerization potential, based on radical chain scission mechanism as evidenced by molecular weight decrease. The results of the present study demonstrate the biotechnological potential of the unexplored enzymatic machinery of white-rot basidiomycetes, including the design of improved lignocellulolytic cocktails, as well as the degradation and/or valorization of plastic waste materials.
Collapse
Affiliation(s)
- Anastasia Zerva
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Romanos Siaperas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - George Taxeidis
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Maria Kyriakidi
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Stamatina Vouyiouka
- Laboratory of Polymer Technology, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece
| | - Georgios I Zervakis
- Agricultural University of Athens, Laboratory of General and Agricultural Microbiology, Iera Odos 75, 11855, Athens, Greece
| | - Evangelos Topakas
- Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, 5 Iroon Polytechniou Str., Zografou Campus, Athens, 15772, Greece.
| |
Collapse
|
7
|
Guo X, An Y, Liu F, Lu F, Wang B. Lytic polysaccharide monooxygenase - A new driving force for lignocellulosic biomass degradation. BIORESOURCE TECHNOLOGY 2022; 362:127803. [PMID: 35995343 DOI: 10.1016/j.biortech.2022.127803] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 06/15/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) can catalyze polysaccharides by oxidative cleavage of glycosidic bonds and have catalytic activity for cellulose, hemicellulose, chitin, starch and pectin, thus playing an important role in the biomass conversion of lignocellulose. The catalytic substrates of LPMOs are different and the specific catalytic mechanism has not been fully elucidated. Although there have been many studies related to LPMOs, few have actually been put into industrial biomass conversion, which poses a challenge for their expression, regulation and application. In this review, the origin, substrate specificity, structural features, and the relationship between structure and function of LPMOs are described. Additionally, the catalytic mechanism and electron donor of LPMOs and their heterologous expression and regulation are discussed. Finally, the synergistic degradation of biomass by LPMOs with other polysaccharide hydrolases is reviewed, and their current problems and future research directions are pointed out.
Collapse
Affiliation(s)
- Xiao Guo
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China; Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Yajing An
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300450, PR China
| | - Bo Wang
- College of Chemical and Biological Engineering, Shandong University of Science and Technology, Qingdao 266590, PR China.
| |
Collapse
|
8
|
Biotransformation of bisphenol F by white-rot fungus Phanerochaete sordida YK-624 under non-ligninolytic condition. Appl Microbiol Biotechnol 2022; 106:6277-6287. [DOI: 10.1007/s00253-022-12133-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/02/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022]
|
9
|
CRISPR/Cas9 using a transient transformation system in Ceriporiopsis subvermispora. Appl Microbiol Biotechnol 2022; 106:5575-5585. [PMID: 35902408 DOI: 10.1007/s00253-022-12095-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/15/2022] [Accepted: 07/20/2022] [Indexed: 11/02/2022]
Abstract
Ceriporiopsis subvermispora is a white-rot fungus with great potential for industrial and biotechnological applications, such as the pretreatment of lignocellulose in biorefineries, as it decomposes the lignin in the plant cell wall without causing severe cellulose degradation. A genetic transformation system was recently developed; however, gene-targeting experiments to disrupt or modify the gene(s) of interest remain challenging, and this is a bottleneck for further molecular genetic studies and breeding of C. subvermispora. Herein, we report efficient clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9)-assisted gene mutagenesis in this fungus. Two plasmids expressing Cas9 together with a different pyrG-targeting single-guide RNA were separately introduced into the monokaryotic C. subvermispora strain FP-90031-Sp/1, which frequently generated strains that exhibited resistance to 5-fluoroorotic acid and uridine/uracil auxotrophy. Southern blot analyses and genomic polymerase chain reaction followed by DNA sequencing of some mutants revealed that they were pyrG mutants. We also observed that hygromycin resistance of the pyrG mutants was frequently lost after repeated subcultivations, indicating that a maker-free genome editing occurred successfully. It is also suggested that a gene mutation(s) can be introduced via a transient expression of Cas9 and a single-guide RNA; this feature, together with high-frequency gene targeting using the CRISPR/Cas9 system, would be helpful for studies on lignocellulose-degrading systems in C. subvermispora. KEY POINTS: • Efficient plasmid-based CRISPR/Cas9 was established in C. subvermispora. • The mutations can be introduced via a transient expression of Cas9 and sgRNA. • A maker-free CRISPR/Cas9 is established in this fungus.
Collapse
|
10
|
Marinovíc M, Di Falco M, Aguilar Pontes MV, Gorzsás A, Tsang A, de Vries RP, Mäkelä MR, Hildén K. Comparative Analysis of Enzyme Production Patterns of Lignocellulose Degradation of Two White Rot Fungi: Obba rivulosa and Gelatoporia subvermispora. Biomolecules 2022; 12:biom12081017. [PMID: 35892327 PMCID: PMC9330253 DOI: 10.3390/biom12081017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/08/2022] [Accepted: 07/20/2022] [Indexed: 02/01/2023] Open
Abstract
The unique ability of basidiomycete white rot fungi to degrade all components of plant cell walls makes them indispensable organisms in the global carbon cycle. In this study, we analyzed the proteomes of two closely related white rot fungi, Obba rivulosa and Gelatoporia subvermispora, during eight-week cultivation on solid spruce wood. Plant cell wall degrading carbohydrate-active enzymes (CAZymes) represented approximately 5% of the total proteins in both species. A core set of orthologous plant cell wall degrading CAZymes was shared between these species on spruce suggesting a conserved plant biomass degradation approach in this clade of basidiomycete fungi. However, differences in time-dependent production of plant cell wall degrading enzymes may be due to differences among initial growth rates of these species on solid spruce wood. The obtained results provide insight into specific enzymes and enzyme sets that are produced during the degradation of solid spruce wood in these fungi. These findings expand the knowledge on enzyme production in nature-mimicking conditions and may contribute to the exploitation of white rot fungi and their enzymes for biotechnological applications.
Collapse
Affiliation(s)
- Mila Marinovíc
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Marcos Di Falco
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Maria Victoria Aguilar Pontes
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - András Gorzsás
- Department of Chemistry, Umeå University, 901 87 Umeå, Sweden;
| | - Adrian Tsang
- Centre for Structural and Functional Genomics, Concordia University, Montréal, QC H4B 1R6, Canada; (M.D.F.); (A.T.)
| | - Ronald P. de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; (M.V.A.P.); (R.P.d.V.)
| | - Miia R. Mäkelä
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
| | - Kristiina Hildén
- Department of Microbiology, Faculty of Agriculture and Forestry, University of Helsinki, 00790 Helsinki, Finland; (M.M.); (M.R.M.)
- Correspondence:
| |
Collapse
|
11
|
Abstract
Plant-derived biomass is the most abundant biogenic carbon source on Earth. Despite this, only a small clade of organisms known as white-rot fungi (WRF) can efficiently break down both the polysaccharide and lignin components of plant cell walls. This unique ability imparts a key role for WRF in global carbon cycling and highlights their potential utilization in diverse biotechnological applications. To date, research on WRF has primarily focused on their extracellular ‘digestive enzymes’ whereas knowledge of their intracellular metabolism remains underexplored. Systems biology is a powerful approach to elucidate biological processes in numerous organisms, including WRF. Thus, here we review systems biology methods applied to WRF to date, highlight observations related to their intracellular metabolism, and conduct comparative extracellular proteomic analyses to establish further correlations between WRF species, enzymes, and cultivation conditions. Lastly, we discuss biotechnological opportunities of WRF as well as challenges and future research directions.
Collapse
|
12
|
Hemati A, Nazari M, Asgari Lajayer B, Smith DL, Astatkie T. Lignocellulosics in plant cell wall and their potential biological degradation. Folia Microbiol (Praha) 2022; 67:671-681. [PMID: 35508797 DOI: 10.1007/s12223-022-00974-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 04/23/2022] [Indexed: 11/29/2022]
Abstract
Lignocellulosic materials are composed of three main structural polymers: hemicellulose, cellulose, and lignin. Cellulose is a long chain molecule of glucose requiring a small number of enzymes for degradation due to its simple structure while lignin is a complex polymer of phenylpropane making its biochemical decomposition difficult. Under anaerobic conditions, lignocellulose breakdown is much easier and more rapid than aerobic conditions. Various studies have been carried out to estimate the rate of degradation of lignocellulosic materials. Microorganisms play a key role in the degradation of lignocellulosic materials because they produce a variety of hydrolytic enzymes including cellulase, proteases, xylanases, lipases, laccase, and phosphatases during the degradation of lignocellulosic materials. Based on the body of literature, microorganismal activity can provide useful information about the process of organic matter decomposition.
Collapse
Affiliation(s)
- Arash Hemati
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Mahtab Nazari
- Department of Plant Sciences, Macdonald Campus/McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Behnam Asgari Lajayer
- Department of Soil Science, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Donald L Smith
- Department of Plant Sciences, Macdonald Campus/McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Tess Astatkie
- Faculty of Agriculture, Dalhousie University, Truro, NS, B2N 5E3, Canada.
| |
Collapse
|
13
|
Vasco-Correa J, Capouya R, Shah A, Mitchell TK. Sequential fungal pretreatment of unsterilized Miscanthus: changes in composition, cellulose digestibility and microbial communities. Appl Microbiol Biotechnol 2022; 106:2263-2279. [PMID: 35171342 DOI: 10.1007/s00253-022-11833-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
A sequential fungal pretreatment of Miscanthus × giganteus was conducted by mixing unsterilized Miscanthus with material previously colonized with the white-rot fungus Ceriporiopsis subvermispora. For three generations, each generation started with inoculation by mixing unsterilized fresh Miscanthus with end material from the previous generation and ended after 28 days of incubation at 28 °C. After the first generation, the cellulose digestibility of the material doubled, compared to that of the unsterilized Miscanthus, but the second and third generations showed no enhancements in cellulose digestibility. Furthermore, high degradation of Miscanthus structural carbohydrates occurred during the first generation. A microbial community study showed that, even though the fungal community of the material previously colonized by C. subvermispora was composed mainly of this fungus (> 99%), by the first generation its relative abundance was down to only 9%, and other microbes had prevailed. Additionally, changes in the bacterial community occurred that might be associated with unwanted cellulose degradation in the system. This reiterates the necessity of feedstock microbial load reduction for the stability and reproducibility of fungal pretreatment of lignocellulosic biomass. KEY POINTS: • Sequential fungal pretreatment of unsterilized Miscanthus was unsuccessful. • Feedstock changes with white-rot fungi favored the growth of other microorganisms. • Feedstock microbial reduction is necessary for pretreatment with C. subvermispora.
Collapse
Affiliation(s)
- Juliana Vasco-Correa
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA. .,Department of Agricultural and Biological Engineering, Penn State University, University Park, PA, 16802, USA.
| | - Rachel Capouya
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| | - Ajay Shah
- Department of Food, Agricultural and Biological Engineering, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH, 44691, USA
| | - Thomas K Mitchell
- Department of Plant Pathology, The Ohio State University, Columbus, OH, 43210, USA
| |
Collapse
|
14
|
Long L, Sun L, Ding D, Chen K, Lin Q, Ding S. Two C1-oxidizing lytic polysaccharide monooxygenases from Ceriporiopsis subvermispora enhance the saccharification of wheat straw by a commercial cellulase cocktail. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Rani Singhania R, Dixit P, Kumar Patel A, Shekher Giri B, Kuo CH, Chen CW, Di Dong C. Role and significance of lytic polysaccharide monooxygenases (LPMOs) in lignocellulose deconstruction. BIORESOURCE TECHNOLOGY 2021; 335:125261. [PMID: 34000697 DOI: 10.1016/j.biortech.2021.125261] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 05/27/2023]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) emerged a decade ago and have been described as biomass deconstruction boosters as they play an extremely important role in unravelling the enzymatic biomass hydrolysis scheme. These are oxidative enzymes requiring partners to donate electrons during catalytic action on cellulose backbone. Commercial cellulase preparations are mostly from the robust fungal sources, hence LPMOs from fungi (AA9) have been discussed. Characterisation of LPMOs suffers due to multiple complications which has been discussed and challenges in detection of LPMOs in secretomes has also been highlighted. This review focuses on the significance of LPMOs on biomass hydrolysis due to which it has become a key component of cellulolytic cocktail available commercially for biomass deconstruction and its routine analysis challenge has also been discussed. It has also outlined a few key points that help in expressing catalytic active recombinant AA9 LPMOs.
Collapse
Affiliation(s)
- Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pooja Dixit
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Balendu Shekher Giri
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati 781039 India
| | - Chia-Hung Kuo
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
16
|
Abstract
Lignin is a biopolymer found in plant cell walls that accounts for 30% of the organic carbon in the biosphere. White-rot fungi (WRF) are considered the most efficient organisms at degrading lignin in nature. While lignin depolymerization by WRF has been extensively studied, the possibility that WRF are able to utilize lignin as a carbon source is still a matter of controversy. Here, we employ 13C-isotope labeling, systems biology approaches, and in vitro enzyme assays to demonstrate that two WRF, Trametes versicolor and Gelatoporia subvermispora, funnel carbon from lignin-derived aromatic compounds into central carbon metabolism via intracellular catabolic pathways. These results provide insights into global carbon cycling in soil ecosystems and furthermore establish a foundation for employing WRF in simultaneous lignin depolymerization and bioconversion to bioproducts-a key step toward enabling a sustainable bioeconomy.
Collapse
|
17
|
Sethupathy S, Morales GM, Li Y, Wang Y, Jiang J, Sun J, Zhu D. Harnessing microbial wealth for lignocellulose biomass valorization through secretomics: a review. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:154. [PMID: 34225772 PMCID: PMC8256616 DOI: 10.1186/s13068-021-02006-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The recalcitrance of lignocellulosic biomass is a major constraint to its high-value use at industrial scale. In nature, microbes play a crucial role in biomass degradation, nutrient recycling and ecosystem functioning. Therefore, the use of microbes is an attractive way to transform biomass to produce clean energy and high-value compounds. The microbial degradation of lignocelluloses is a complex process which is dependent upon multiple secreted enzymes and their synergistic activities. The availability of the cutting edge proteomics and highly sensitive mass spectrometry tools make possible for researchers to probe the secretome of microbes and microbial consortia grown on different lignocelluloses for the identification of hydrolytic enzymes of industrial interest and their substrate-dependent expression. This review summarizes the role of secretomics in identifying enzymes involved in lignocelluloses deconstruction, the development of enzyme cocktails and the construction of synthetic microbial consortia for biomass valorization, providing our perspectives to address the current challenges.
Collapse
Affiliation(s)
- Sivasamy Sethupathy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Gabriel Murillo Morales
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yixuan Li
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Yongli Wang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianxiong Jiang
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China
| | - Daochen Zhu
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
18
|
Iwata M, Gutiérrez A, Marques G, Sabat G, Kersten PJ, Cullen D, Bhatnagar JM, Yadav J, Lipzen A, Yoshinaga Y, Sharma A, Adam C, Daum C, Ng V, Grigoriev IV, Hori C. Omics analyses and biochemical study of Phlebiopsis gigantea elucidate its degradation strategy of wood extractives. Sci Rep 2021; 11:12528. [PMID: 34131180 PMCID: PMC8206109 DOI: 10.1038/s41598-021-91756-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/25/2021] [Indexed: 02/05/2023] Open
Abstract
Wood extractives, solvent-soluble fractions of woody biomass, are considered to be a factor impeding or excluding fungal colonization on the freshly harvested conifers. Among wood decay fungi, the basidiomycete Phlebiopsis gigantea has evolved a unique enzyme system to efficiently transform or degrade conifer extractives but little is known about the mechanism(s). In this study, to clarify the mechanism(s) of softwood degradation, we examined the transcriptome, proteome, and metabolome of P. gigantea when grown on defined media containing microcrystalline cellulose and pine sapwood extractives. Beyond the conventional enzymes often associated with cellulose, hemicellulose and lignin degradation, an array of enzymes implicated in the metabolism of softwood lipophilic extractives such as fatty and resin acids, steroids and glycerides was significantly up-regulated. Among these, a highly expressed and inducible lipase is likely responsible for lipophilic extractive degradation, based on its extracellular location and our characterization of the recombinant enzyme. Our results provide insight into physiological roles of extractives in the interaction between wood and fungi.
Collapse
Affiliation(s)
- Mana Iwata
- grid.39158.360000 0001 2173 7691Graduate School of Chemical Sciences and Engineering, Hokkaido University, Sapporo, 080-682 Japan
| | - Ana Gutiérrez
- grid.466818.50000 0001 2158 9975CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Reina Mercedes 10, 41012 Seville, Spain
| | - Gisela Marques
- grid.466818.50000 0001 2158 9975CSIC, Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS), Reina Mercedes 10, 41012 Seville, Spain
| | - Grzegorz Sabat
- grid.28803.310000 0001 0701 8607University of Wisconsin Genetics Biotechnology Center, Madison, WI 53706 USA
| | - Philip J. Kersten
- grid.417548.b0000 0004 0478 6311Forest Products Laboratory, USDA, Madison, WI 53726 USA
| | - Daniel Cullen
- grid.417548.b0000 0004 0478 6311Forest Products Laboratory, USDA, Madison, WI 53726 USA
| | - Jennifer M. Bhatnagar
- grid.189504.10000 0004 1936 7558Department of Biology, Boston University, Boston, MA 02215 USA
| | - Jagjit Yadav
- grid.24827.3b0000 0001 2179 9593University of Cincinnati, Cincinnati, OH 45267 USA
| | - Anna Lipzen
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Yuko Yoshinaga
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Aditi Sharma
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Catherine Adam
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Christopher Daum
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Vivian Ng
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA
| | - Igor V. Grigoriev
- grid.451309.a0000 0004 0449 479XLawrence Berkeley National Laboratory, US Department of Energy Joint Genome Institute, Berkeley, CA 94720 USA ,grid.47840.3f0000 0001 2181 7878Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA 94720 USA
| | - Chiaki Hori
- grid.39158.360000 0001 2173 7691Division of Applied Chemistry, Department of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628 Japan
| |
Collapse
|
19
|
Miyauchi S, Hage H, Drula E, Lesage-Meessen L, Berrin JG, Navarro D, Favel A, Chaduli D, Grisel S, Haon M, Piumi F, Levasseur A, Lomascolo A, Ahrendt S, Barry K, LaButti KM, Chevret D, Daum C, Mariette J, Klopp C, Cullen D, de Vries RP, Gathman AC, Hainaut M, Henrissat B, Hildén KS, Kües U, Lilly W, Lipzen A, Mäkelä MR, Martinez AT, Morel-Rouhier M, Morin E, Pangilinan J, Ram AFJ, Wösten HAB, Ruiz-Dueñas FJ, Riley R, Record E, Grigoriev IV, Rosso MN. Conserved white-rot enzymatic mechanism for wood decay in the Basidiomycota genus Pycnoporus. DNA Res 2021; 27:5856740. [PMID: 32531032 PMCID: PMC7406137 DOI: 10.1093/dnares/dsaa011] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/05/2020] [Indexed: 12/12/2022] Open
Abstract
White-rot (WR) fungi are pivotal decomposers of dead organic matter in forest ecosystems and typically use a large array of hydrolytic and oxidative enzymes to deconstruct lignocellulose. However, the extent of lignin and cellulose degradation may vary between species and wood type. Here, we combined comparative genomics, transcriptomics and secretome proteomics to identify conserved enzymatic signatures at the onset of wood-decaying activity within the Basidiomycota genus Pycnoporus. We observed a strong conservation in the genome structures and the repertoires of protein-coding genes across the four Pycnoporus species described to date, despite the species having distinct geographic distributions. We further analysed the early response of P. cinnabarinus, P. coccineus and P. sanguineus to diverse (ligno)-cellulosic substrates. We identified a conserved set of enzymes mobilized by the three species for breaking down cellulose, hemicellulose and pectin. The co-occurrence in the exo-proteomes of H2O2-producing enzymes with H2O2-consuming enzymes was a common feature of the three species, although each enzymatic partner displayed independent transcriptional regulation. Finally, cellobiose dehydrogenase-coding genes were systematically co-regulated with at least one AA9 lytic polysaccharide monooxygenase gene, indicative of enzymatic synergy in vivo. This study highlights a conserved core white-rot fungal enzymatic mechanism behind the wood-decaying process.
Collapse
Affiliation(s)
- Shingo Miyauchi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Hayat Hage
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Elodie Drula
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Laurence Lesage-Meessen
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Jean-Guy Berrin
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - David Navarro
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Anne Favel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Delphine Chaduli
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France.,INRAE, CIRM-CF, UMR1163, Aix Marseille University, Marseille, France
| | - Sacha Grisel
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Mireille Haon
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - François Piumi
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | | | - Anne Lomascolo
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Steven Ahrendt
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kerrie Barry
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Kurt M LaButti
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Didier Chevret
- INRAE, UMR1319, Micalis, Plateforme d'Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Chris Daum
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Jérôme Mariette
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | - Christophe Klopp
- INRAE, Genotoul Bioinfo, UR875, Mathématiques et Informatique Appliquées de Toulouse, Castanet-Tolosan, France
| | | | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute and Fungal Molecular Physiology, Utrecht University, Utrecht, The Netherlands.,Department of Microbiology, University of Helsinki, Helsinki, Finland
| | - Allen C Gathman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Matthieu Hainaut
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | - Bernard Henrissat
- CNRS, UMR7257, AFMB, Aix Marseille University, Marseille, France.,INRAE, USC1408, AFMB, Marseille, France
| | | | - Ursula Kües
- Department of Molecular Wood Biotechnology and Technical Mycology, Büsgen-Institute, Georg-August-University Göttingen, Göttingen, Germany.,Center for Molecular Biosciences (GZMB), Georg-August-University Göttingen, Göttingen, Germany
| | - Walt Lilly
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MI, USA
| | - Anna Lipzen
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Miia R Mäkelä
- Department of Microbiology, University of Helsinki, Helsinki, Finland
| | | | - Mélanie Morel-Rouhier
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Emmanuelle Morin
- INRAE, UMR1136, Interactions Arbres/Microorganismes, Université de Lorraine, Nancy, France
| | - Jasmyn Pangilinan
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Arthur F J Ram
- Molecular Microbiology and Biotechnology, Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | - Han A B Wösten
- Microbiology, Utrecht University, Utrecht, The Netherlands
| | | | - Robert Riley
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| | - Eric Record
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| | - Igor V Grigoriev
- US Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Marie-Noëlle Rosso
- INRAE, UMR1163, Biodiversity and Biotechnology of Fungi, Aix Marseille University, 13009 Marseille, France
| |
Collapse
|
20
|
Evolution of Fungal Carbohydrate-Active Enzyme Portfolios and Adaptation to Plant Cell-Wall Polymers. J Fungi (Basel) 2021; 7:jof7030185. [PMID: 33807546 PMCID: PMC7998857 DOI: 10.3390/jof7030185] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 12/21/2022] Open
Abstract
The postindustrial era is currently facing two ecological challenges. First, the rise in global temperature, mostly caused by the accumulation of carbon dioxide (CO2) in the atmosphere, and second, the inability of the environment to absorb the waste of human activities. Fungi are valuable levers for both a reduction in CO2 emissions, and the improvement of a circular economy with the optimized valorization of plant waste and biomass. Soil fungi may promote plant growth and thereby increase CO2 assimilation via photosynthesis or, conversely, they may prompt the decomposition of dead organic matter, and thereby contribute to CO2 emissions. The strategies that fungi use to cope with plant-cell-wall polymers and access the saccharides that they use as a carbon source largely rely on the secretion of carbohydrate-active enzymes (CAZymes). In the past few years, comparative genomics and phylogenomics coupled with the functional characterization of CAZymes significantly improved the understanding of their evolution in fungal genomes, providing a framework for the design of nature-inspired enzymatic catalysts. Here, we provide an overview of the diversity of CAZyme enzymatic systems employed by fungi that exhibit different substrate preferences, different ecologies, or belong to different taxonomical groups for lignocellulose degradation.
Collapse
|
21
|
Hage H, Miyauchi S, Virágh M, Drula E, Min B, Chaduli D, Navarro D, Favel A, Norest M, Lesage-Meessen L, Bálint B, Merényi Z, de Eugenio L, Morin E, Martínez AT, Baldrian P, Štursová M, Martínez MJ, Novotny C, Magnuson JK, Spatafora JW, Maurice S, Pangilinan J, Andreopoulos W, LaButti K, Hundley H, Na H, Kuo A, Barry K, Lipzen A, Henrissat B, Riley R, Ahrendt S, Nagy LG, Grigoriev IV, Martin F, Rosso MN. Gene family expansions and transcriptome signatures uncover fungal adaptations to wood decay. Environ Microbiol 2021; 23:5716-5732. [PMID: 33538380 PMCID: PMC8596683 DOI: 10.1111/1462-2920.15423] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/16/2022]
Abstract
Because they comprise some of the most efficient wood‐decayers, Polyporales fungi impact carbon cycling in forest environment. Despite continuous discoveries on the enzymatic machinery involved in wood decomposition, the vision on their evolutionary adaptation to wood decay and genome diversity remains incomplete. We combined the genome sequence information from 50 Polyporales species, including 26 newly sequenced genomes and sought for genomic and functional adaptations to wood decay through the analysis of genome composition and transcriptome responses to different carbon sources. The genomes of Polyporales from different phylogenetic clades showed poor conservation in macrosynteny, indicative of genome rearrangements. We observed different gene family expansion/contraction histories for plant cell wall degrading enzymes in core polyporoids and phlebioids and captured expansions for genes involved in signalling and regulation in the lineages of white rotters. Furthermore, we identified conserved cupredoxins, thaumatin‐like proteins and lytic polysaccharide monooxygenases with a yet uncharacterized appended module as new candidate players in wood decomposition. Given the current need for enzymatic toolkits dedicated to the transformation of renewable carbon sources, the observed genomic diversity among Polyporales strengthens the relevance of mining Polyporales biodiversity to understand the molecular mechanisms of wood decay.
Collapse
Affiliation(s)
- Hayat Hage
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Shingo Miyauchi
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,Max Planck Institute for Plant Breeding Research, Department of Plant Microbe Interactions, Köln, Germany
| | - Máté Virágh
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Elodie Drula
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, USC1408, AFMB, Marseille, 13009, France
| | - Byoungnam Min
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Delphine Chaduli
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - David Navarro
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Anne Favel
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Manon Norest
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| | - Laurence Lesage-Meessen
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France.,INRAE, Aix Marseille Univ, CIRM-CF, UMR1163, Marseille, 13009, France
| | - Balázs Bálint
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Zsolt Merényi
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary
| | - Laura de Eugenio
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Emmanuelle Morin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Angel T Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Petr Baldrian
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - Martina Štursová
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic
| | - María Jesús Martínez
- Centro de Investigaciones Biológicas Margarita Salas, CIB-CSIC, Madrid, 28040, Spain
| | - Cenek Novotny
- Institute of Microbiology of the Czech Academy of Sciences, Praha 4, 142 20, Czech Republic.,University of Ostrava, Ostrava, 701 03, Czech Republic
| | - Jon K Magnuson
- Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Joey W Spatafora
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sundy Maurice
- Section for Genetics and Evolutionary Biology, University of Oslo, Oslo, 0316, Norway
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Willian Andreopoulos
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kurt LaButti
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hope Hundley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Hyunsoo Na
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Bernard Henrissat
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Steven Ahrendt
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - László G Nagy
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Center, Szeged, 6726, Hungary.,Department of Plant Anatomy, Institute of Biology, Eötvös Loránd University, Budapest, 1117, Hungary
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA
| | - Francis Martin
- Université de Lorraine, INRAE, UMR1136, Interactions Arbres/Microorganismes, Champenoux, 54280, France
| | - Marie-Noëlle Rosso
- INRAE, Aix Marseille Univ, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, 13009, France
| |
Collapse
|
22
|
Wu H, Nakazawa T, Xu H, Yang R, Bao D, Kawauchi M, Sakamoto M, Honda Y. Comparative transcriptional analyses of Pleurotus ostreatus mutants on beech wood and rice straw shed light on substrate-biased gene regulation. Appl Microbiol Biotechnol 2021; 105:1175-1190. [PMID: 33415371 DOI: 10.1007/s00253-020-11087-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/15/2020] [Accepted: 12/28/2020] [Indexed: 11/25/2022]
Abstract
Distinct wood degraders occupying their preferred habitats have biased enzyme repertoires that are well fitted to their colonized substrates. Pleurotus ostreatus, commonly found on wood, has evolved its own enzyme-producing traits. In our previous study, transcriptional shifts in several P. ostreatus delignification-defective mutants, including Δhir1 and Δgat1 strains, were analyzed, which revealed the downregulation of ligninolytic genes and the upregulation of cellulolytic and xylanolytic genes when compared to their parental strain 20b on beech wood sawdust medium (BWS). In this study, rice straw (RS) was used as an alternative substrate to examine the transcriptional responses of P. ostreatus to distinct substrates. The vp1 gene and a cupredoxin-encoding gene were significantly upregulated in the 20b strain on RS compared with that on BWS, reflecting their distinct regulation patterns. The overall expression level of genes encoding glucuronidases was also higher on RS than on BWS, showing a good correlation with the substrate composition. Transcriptional alterations in the mutants (Δhir1 or Δgat1 versus 20b strain) on RS were similar to those on BWS, and the extracellular lignocellulose-degrading enzyme activities and lignin-degrading ability of the mutants on RS were consistent with the transcriptional alterations of the corresponding enzyme-encoding genes. However, transcripts of specific genes encoding enzymes belonging to the same CAZyme family exhibited distinct alteration patterns in the mutant strains grown on RS compared to those grown on BWS. These findings provide new insights into the molecular mechanisms underlying the transcriptional regulation of lignocellulolytic genes in P. ostreatus.Key Points• P. ostreatus expressed variable enzymatic repertoire-related genes in response to distinct substrates.• A demand to upregulate the cellulolytic genes seems to be present in ligninolysis-deficient mutants.• The regulation of some specific genes probably driven by the demand is dependent on the substrate.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan.
| | - Haibo Xu
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ruiheng Yang
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Dapeng Bao
- Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, 201403, China
| | - Moriyuki Kawauchi
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Oiwakecho, Kitashirakawa, Sakyo-ku, Kyoto, 606-8502, Japan
| |
Collapse
|
23
|
Wu H, Nakazawa T, Morimoto R, Sakamoto M, Honda Y. Targeted disruption of hir1 alters the transcriptional expression pattern of putative lignocellulolytic genes in the white-rot fungus Pleurotus ostreatus. Fungal Genet Biol 2021; 147:103507. [PMID: 33383191 DOI: 10.1016/j.fgb.2020.103507] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022]
Abstract
Pleurotus ostreatus is frequently used in molecular genetics and genomic studies on white-rot fungi because various molecular genetic tools and relatively well-annotated genome databases are available. To explore the molecular mechanisms underlying wood lignin degradation by P. ostreatus, we performed mutational analysis of a newly isolated mutant UVRM28 that exhibits decreased lignin-degrading ability on the beech wood sawdust medium. We identified that a mutation in the hir1 gene encoding a putative histone chaperone, which probably plays an important role in DNA replication-independent nucleosome assembly, is responsible for the mutant phenotype. The expression pattern of ligninolytic genes was altered in hir1 disruptants. The most highly expressed gene vp2 was significantly inactivated, whereas the expression of vp1 was remarkably upregulated (300-400 fold) at the transcription level. Conversely, many cellulolytic and xylanolytic genes were upregulated in hir1 disruptants. Chromatin immunoprecipitation analysis suggested that the histone modification status was altered in the 5'-upstream regions of some of the up- and down-regulated lignocellulolytic genes in hir1 disruptants compared with that in the 20b strain. Hence, our data provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takehito Nakazawa
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan.
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Masahiro Sakamoto
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
24
|
Corrêa CL, Midorikawa GEO, Filho EXF, Noronha EF, Alves GSC, Togawa RC, Silva-Junior OB, Costa MMDC, Grynberg P, Miller RNG. Transcriptome Profiling-Based Analysis of Carbohydrate-Active Enzymes in Aspergillus terreus Involved in Plant Biomass Degradation. Front Bioeng Biotechnol 2020; 8:564527. [PMID: 33123513 PMCID: PMC7573219 DOI: 10.3389/fbioe.2020.564527] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 09/16/2020] [Indexed: 11/13/2022] Open
Abstract
Given the global abundance of plant biomass residues, potential exists in biorefinery-based applications with lignocellulolytic fungi. Frequently isolated from agricultural cellulosic materials, Aspergillus terreus is a fungus efficient in secretion of commercial enzymes such as cellulases, xylanases and phytases. In the context of biomass saccharification, lignocellulolytic enzyme secretion was analyzed in a strain of A. terreus following liquid culture with sugarcane bagasse (SB) (1% w/v) and soybean hulls (SH) (1% w/v) as sole carbon source, in comparison to glucose (G) (1% w/v). Analysis of the fungal secretome revealed a maximum of 1.017 UI.mL–1 xylanases after growth in minimal medium with SB, and 1.019 UI.mL–1 after incubation with SH as carbon source. The fungal transcriptome was characterized on SB and SH, with gene expression examined in comparison to equivalent growth on G as carbon source. Over 8000 genes were identified, including numerous encoding enzymes and transcription factors involved in the degradation of the plant cell wall, with significant expression modulation according to carbon source. Eighty-nine carbohydrate-active enzyme (CAZyme)-encoding genes were identified following growth on SB, of which 77 were differentially expressed. These comprised 78% glycoside hydrolases, 8% carbohydrate esterases, 2.5% polysaccharide lyases, and 11.5% auxiliary activities. Analysis of the glycoside hydrolase family revealed significant up-regulation for genes encoding 25 different GH family proteins, with predominance for families GH3, 5, 7, 10, and 43. For SH, from a total of 91 CAZyme-encoding genes, 83 were also significantly up-regulated in comparison to G. These comprised 80% glycoside hydrolases, 7% carbohydrate esterases, 5% polysaccharide lyases, 7% auxiliary activities (AA), and 1% glycosyltransferases. Similarly, within the glycoside hydrolases, significant up-regulation was observed for genes encoding 26 different GH family proteins, with predominance again for families GH3, 5, 10, 31, and 43. A. terreus is a promising species for production of enzymes involved in the degradation of plant biomass. Given that this fungus is also able to produce thermophilic enzymes, this first global analysis of the transcriptome following cultivation on lignocellulosic carbon sources offers considerable potential for the application of candidate genes in biorefinery applications.
Collapse
Affiliation(s)
- Camila L Corrêa
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Glaucia E O Midorikawa
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | | | - Eliane Ferreira Noronha
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Gabriel S C Alves
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| | - Roberto Coiti Togawa
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, Brasília, Brazil
| | | | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, Parque Estação Biológica - PqEB, Brasília, Brazil
| | - Robert N G Miller
- Departamento de Biologia Celular, Universidade de Brasília, Campus Universitário Darcy Ribeiro, Brasília, Brazil
| |
Collapse
|
25
|
Gonzalez A, Corsini G, Lobos S, Seelenfreund D, Tello M. Metabolic Specialization and Codon Preference of Lignocellulolytic Genes in the White Rot Basidiomycete Ceriporiopsis subvermispora. Genes (Basel) 2020; 11:genes11101227. [PMID: 33092062 PMCID: PMC7588917 DOI: 10.3390/genes11101227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 11/16/2022] Open
Abstract
Ceriporiopsis subvermispora is a white-rot fungus with a high specificity towards lignin mineralization when colonizing dead wood or lignocellulosic compounds. Its lignocellulose degrading system is formed by cellulose hydrolytic enzymes, manganese peroxidases, and laccases that catalyze the efficient depolymerization and mineralization of lignocellulose. To determine if this metabolic specialization has modified codon usage of the lignocellulolytic system, improving its adaptation to the fungal translational machine, we analyzed the adaptation to host codon usage (CAI), tRNA pool (tAI, and AAtAI), codon pair bias (CPB), and the number of effective codons (Nc). These indexes were correlated with gene expression of C. subvermispora, in the presence of glucose and Aspen wood. General gene expression was not correlated with the index values. However, in media containing Aspen wood, the induction of expression of lignocellulose-degrading genes, showed significantly (p < 0.001) higher values of CAI, AAtAI, CPB, tAI, and lower values of Nc than non-induced genes. Cellulose-binding proteins and manganese peroxidases presented the highest adaptation values. We also identified an expansion of genes encoding glycine and glutamic acid tRNAs. Our results suggest that the metabolic specialization to use wood as the sole carbon source has introduced a bias in the codon usage of genes involved in lignocellulose degradation. This bias reduces codon diversity and increases codon usage adaptation to the tRNA pool available in C. subvermispora. To our knowledge, this is the first study showing that codon usage is modified to improve the translation efficiency of a group of genes involved in a particular metabolic process.
Collapse
Affiliation(s)
- Alex Gonzalez
- Laboratorio de Microbiología Ambiental y Extremófilos, Departamento de Ciencias Biológicas y Biodiversidad, Universidad de los Lagos, Osorno 5290000, Chile;
| | - Gino Corsini
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910132, Chile;
| | - Sergio Lobos
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile; (S.L.); (D.S.)
| | - Daniela Seelenfreund
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 8380492, Chile; (S.L.); (D.S.)
| | - Mario Tello
- Laboratorio de Metagenómica Bacteriana, Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago 9170002, Chile
- Correspondence:
| |
Collapse
|
26
|
Gangwar R, Rasool S, Mishra S. Purified cellobiose dehydrogenase of Termitomyces sp. OE147 fuels cellulose degradation resulting in the release of reducing sugars. Prep Biochem Biotechnol 2020; 51:488-496. [PMID: 33063604 DOI: 10.1080/10826068.2020.1833343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Termitomyces sp. OE 147 is one of the active cellulose degraders in the ecosphere and produces large amount of cellobiose dehydrogenase (CDH) and β-glucosidases when cultivated on cellulose. In order to investigate its effect on cellulose, a highly purified preparation of CDH was obtained from the culture supernatant of the fungus cultivated on cellulose. A combination of ultrafiltration, ion-exchange and gel-filtration chromatography was used to purify CDH by ∼172-fold to a high specific activity of ∼324 U/mg protein on lactose which was used for routine measurement of enzyme activity. The enzyme displayed a pH optimum of 5.0 and stability between pH 5.0 and 8.0 with maximum catalytic efficiency (kcat/Km) of 397 mM-1 s-1 on cellobiose. Incubation of microcrystalline cellulose with the purified CDH led to production of reducing sugars which was accelerated by the addition of FeCl3 during the early stages of incubation. A mass spectrometric analysis revealed fragmentation products of cellulose which were concluded to be cellodextrins, sugars, and corresponding aldonic acids suggesting that CDH can release reducing sugars in the absence of externally added lytic polysaccharide monooxygenases. Polymerized products of glucose were also detected at low intensity.
Collapse
Affiliation(s)
- Rishabh Gangwar
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India.,School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Shafaq Rasool
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, India
| | - Saroj Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
27
|
Wu H, Nakazawa T, Takenaka A, Kodera R, Morimoto R, Sakamoto M, Honda Y. Transcriptional shifts in delignification-defective mutants of the white-rot fungus Pleurotus ostreatus. FEBS Lett 2020; 594:3182-3199. [PMID: 32697375 DOI: 10.1002/1873-3468.13890] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 12/17/2022]
Abstract
White-rot fungi efficiently degrade lignin and, thus, play a pivotal role in the global carbon cycle. However, the mechanisms of lignin degradation are largely unknown. Recently, mutations in four genes, namely wtr1, chd1, pex1, and gat1, were shown to abrogate the wood lignin-degrading ability of Pleurotus ostreatus. In this study, we conducted a comparative transcriptome analysis to identify genes that are differentially expressed in ligninolysis-deficient mutant strains. Putative ligninolytic genes that are highly expressed in parental strains are significantly downregulated in the mutant strains. On the contrary, many putative cellulolytic and xylanolytic genes are upregulated in the chd1-1, Δpex1, and Δgat1 strains. Identifying transcriptional alterations in mutant strains could provide new insights into the regulatory mechanisms of lignocellulolytic genes in P. ostreatus.
Collapse
Affiliation(s)
- Hongli Wu
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Atsuki Takenaka
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Rina Kodera
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Ryota Morimoto
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | | | - Yoichi Honda
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
28
|
Presley GN, Zhang J, Purvine SO, Schilling JS. Functional Genomics, Transcriptomics, and Proteomics Reveal Distinct Combat Strategies Between Lineages of Wood-Degrading Fungi With Redundant Wood Decay Mechanisms. Front Microbiol 2020; 11:1646. [PMID: 32849338 PMCID: PMC7399148 DOI: 10.3389/fmicb.2020.01646] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/24/2020] [Indexed: 01/06/2023] Open
Abstract
Wood-degrading fungi vary in their strategies for deconstructing wood, and their competitive successes shape the rate and fate of carbon released from wood, Earth’s largest pool of aboveground terrestrial carbon. In this study, one-on-one interspecific interactions between two model brown rot (carbohydrate-selective) fungi, Gloeophyllum trabeum and Rhodonia (Postia) placenta, were studied on wood wafers where a clearly resolved interaction zone (IZ) could be generated, reproducibly. Comparative RNAseq and proteomics between the IZ and non-interacting hyphae of each species identified combative strategies for each fungus. Glycoside hydrolases were a relatively smaller portion of the interaction secretome compared to non-interacting hyphae. The interaction zone showed higher pectinase specific activity than all other sampling locations, and higher laminarinase specific activity (branched β-glucan proxy) was seen in the IZ secretome relative to equivalent hyphae in single-species cultures. Our efforts also identified two distinct competitive strategies in these two fungi with a shared nutritional mode (brown rot) but polyphyletic ancestral lineages. Gloeophyllum trabeum (Gloeophyllum clade) upregulated more secondary metabolite (SM) synthesis genes in response to a competitor than did R. placenta. R. placenta (Antrodia clade) upregulated a larger variety of uncharacterized oxidoreductases in interacting hyphae, suggesting that these may play a role in mediating competitor response in this fungus. Both species produced several hypothetical proteins exclusively in the interaction zone, leaving questions as to the function of these proteins. This work supports the existence of multiple interaction strategies among brown rot fungi and highlights the functional diversity among wood decay fungi.
Collapse
Affiliation(s)
- Gerald N Presley
- Department of Wood Science and Engineering, Oregon State University, Corvallis, OR, United States
| | - Jiwei Zhang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul, MN, United States
| | - Samuel O Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
29
|
Improving the fermentable sugar yields of wheat straw by high-temperature pre-hydrolysis with thermophilic enzymes of Malbranchea cinnamomea. Microb Cell Fact 2020; 19:149. [PMID: 32711527 PMCID: PMC7382850 DOI: 10.1186/s12934-020-01408-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 07/20/2020] [Indexed: 12/23/2022] Open
Abstract
Background Enzymatic hydrolysis is a key step in the conversion of lignocellulosic polysaccharides to fermentable sugars for the production of biofuels and high-value chemicals. However, current enzyme preparations from mesophilic fungi are deficient in their thermostability and biomass-hydrolyzing efficiency at high temperatures. Thermophilic fungi represent promising sources of thermostable and highly active enzymes for improving the biomass-to-sugar conversion process. Here we present a comprehensive study on the lignocellulosic biomass-degrading ability and enzyme system of thermophilic fungus Malbranchea cinnamomea N12 and the application of its enzymes in the synergistic hydrolysis of lignocellulosic biomass. Results Malbranchea cinnamomea N12 was capable of utilizing untreated wheat straw to produce high levels of xylanases and efficiently degrading lignocellulose under thermophilic conditions. Temporal analysis of the wheat straw-induced secretome revealed that M. cinnamomea N12 successively degraded the lignocellulosic polysaccharides through sequential secretion of enzymes targeting xylan and cellulose. Xylanase-enriched cocktail from M. cinnamomea N12 was more active on native and alkali‑pretreated wheat straw than the commercial xylanases from Trichoderma reesei over temperatures ranging from 40 to 75 °C. Integration of M. cinnamomea N12 enzymes with the commercial cellulase preparation increased the glucose and xylose yields of alkali‑pretreated wheat straw by 32 and 166%, respectively, with pronounced effects at elevated temperature. Conclusions This study demonstrated the remarkable xylanase-producing ability and strategy of sequential lignocellulose breakdown of M. cinnamomea N12. A new process for the hydrolysis of lignocellulosic biomass was proposed, comprising thermophilic enzymolysis by enzymes of M. cinnamomea N12 followed with mesophilic enzymolysis by commercial cellulases. Developing M. cinnamomea N12 as platforms for thermophilic enzyme mixture production will provide new perspectives for improved conversion yields for current biomass saccharification schemes.
Collapse
|
30
|
Liu J, Yang J, Wang R, Liu L, Zhang Y, Bao H, Jang JM, Wang E, Yuan H. Comparative characterization of extracellular enzymes secreted by Phanerochaete chrysosporium during solid-state and submerged fermentation. Int J Biol Macromol 2020; 152:288-294. [DOI: 10.1016/j.ijbiomac.2020.02.256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 01/22/2023]
|
31
|
van Erven G, Wang J, Sun P, de Waard P, van der Putten J, Frissen GE, Gosselink RJA, Zinovyev G, Potthast A, van Berkel WJH, Kabel MA. Structural Motifs of Wheat Straw Lignin Differ in Susceptibility to Degradation by the White-Rot Fungus Ceriporiopsis subvermispora. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2019; 7:20032-20042. [PMID: 31867146 PMCID: PMC6921689 DOI: 10.1021/acssuschemeng.9b05780] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Indexed: 05/11/2023]
Abstract
The white-rot fungus Ceriporiopsis subvermispora delignifies plant biomass extensively and selectively and, therefore, has great biotechnological potential. We previously demonstrated that after 7 weeks of fungal growth on wheat straw 70% w/w of lignin was removed and established the underlying degradation mechanisms via selectively extracted diagnostic substructures. In this work, we fractionated the residual (more intact) lignin and comprehensively characterized the obtained isolates to determine the susceptibility of wheat straw lignin's structural motifs to fungal degradation. Using 13C IS pyrolysis gas chromatography-mass spectrometry (py-GC-MS), heteronuclear single quantum coherence (HSQC) and 31P NMR spectroscopy, and size-exclusion chromatography (SEC) analyses, it was shown that β-O-4' ethers and the more condensed phenylcoumarans and resinols were equally susceptible to fungal breakdown. Interestingly, for β-O-4' ether substructures, marked cleavage preferences could be observed: β-O-4'-syringyl substructures were degraded more frequently than their β-O-4'-guaiacyl and β-O-4'-tricin analogues. Furthermore, diastereochemistry (threo > erythro) and γ-acylation (γ-OH > γ-acyl) influenced cleavage susceptibility. These results indicate that electron density of the 4'-O-coupled ring and local steric hindrance are important determinants of oxidative β-O-4' ether degradation. Our findings provide novel insight into the delignification mechanisms of C. subvermispora and contribute to improving the valorization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Gijs van Erven
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Jianli Wang
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Peicheng Sun
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Pieter de Waard
- MAGNEFY
(MAGNEtic Resonance Research FacilitY), Wageningen University & Research, Stippeneng 4, 6708
WE Wageningen, The Netherlands
| | - Jacinta van der Putten
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Guus E. Frissen
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Richard J. A. Gosselink
- Wageningen
Food and Biobased Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Grigory Zinovyev
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Antje Potthast
- Department
of Chemistry, Division of Chemistry of Renewable Resources, University of Natural Resources and Life Sciences, Konrad-Lorenz-Strasse 24, A-3430 Tulln, Austria
| | - Willem J. H. van Berkel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Mirjam A. Kabel
- Laboratory
of Food Chemistry, Wageningen University
& Research, Bornse Weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|
32
|
Abstract
Fungi dominate the turnover of wood, Earth’s largest pool of aboveground terrestrial carbon. Fungi first evolved this capacity by degrading lignin to access and hydrolyze embedded carbohydrates (white rot). Multiple lineages, however, adapted faster reactive oxygen species (ROS) pretreatments to loosen lignocellulose and selectively extract sugars (brown rot). This brown rot “shortcut” often coincided with losses (>60%) of conventional lignocellulolytic genes, implying that ROS adaptations supplanted conventional pathways. We used comparative transcriptomics to further pursue brown rot adaptations, which illuminated the clear temporal expression shift of ROS genes, as well as the shift toward synthesizing more GHs in brown rot relative to white rot. These imply that gene regulatory shifts, not simply ROS innovations, were key to brown rot fungal evolution. These results not only reveal an important biological shift among these unique fungi, but they may also illuminate a trait that restricts brown rot fungi to certain ecological niches. Fungi dominate the recycling of carbon sequestered in woody biomass. This process of organic turnover was first evolved among “white rot” fungi that degrade lignin to access carbohydrates and later evolved multiple times toward more efficient strategies to selectively target carbohydrates—“brown rot.” The brown rot adaption was often explained by mechanisms to deploy reactive oxygen species (ROS) to oxidatively attack wood structures. However, its genetic basis remains unclear, especially in the context of gene contractions of conventional carbohydrate-active enzymes (CAZYs) relative to white rot ancestors. Here, we hypothesized that these apparent gains in brown rot efficiency despite gene losses were due, in part, to upregulation of the retained genes. We applied comparative transcriptomics to multiple species of both rot types grown across a wood wafer to create a gradient of progressive decay and to enable tracking temporal gene expression. Dozens of “decay-stage-dependent” ortho-genes were isolated, narrowing a pool of candidate genes with time-dependent regulation unique to brown rot fungi. A broad comparison of the expression timing of CAZY families indicated a temporal regulatory shift of lignocellulose-oxidizing genes toward early stages in brown rot compared to white rot, enabling the segregation of oxidative treatment ahead of hydrolysis. These key brown rot ROS-generating genes with iron ion binding functions were isolated. Moreover, transcription energy was shifted to be invested on the retained GHs in brown rot fungi to strengthen carbohydrate conversion. Collectively, these results support the hypothesis that gene regulation shifts played a pivotal role in brown rot adaptation.
Collapse
|
33
|
Liu Y, Wu Y, Zhang Y, Yang X, Yang E, Xu H, Yang Q, Chagan I, Cui X, Chen W, Yan J. Lignin degradation potential and draft genome sequence of Trametes trogii S0301. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:256. [PMID: 31687044 PMCID: PMC6820987 DOI: 10.1186/s13068-019-1596-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 10/18/2019] [Indexed: 05/07/2023]
Abstract
BACKGROUND Trametes trogii is a member of the white-rot fungi family, which has a unique ability to break down recalcitrant lignin polymers to CO2 and water, and they have enormous potential to biodegrade a wide range of toxic environmental pollutants. Because of its industrial potential, the identification of lignin-degrading enzyme systems in Trametes is an important area of research. Development and utilization of industrial value genes are suffering due to deficiency knowledge of genome available for their manipulation. RESULTS In the present study, Homokaryotic strains of T. trogii S0301 were screened and sequencing by PacBio Sequel II platform. The final draft genome is ~ 39.88 Mb, with a contig N50 size of 2.4 Mb, this was the first genome sequencing and assembly of T. trogii species. Further analyses predicted 14,508 protein-coding genes. Results showed that T. trogii S0301 contains 602 genes encoding CAZymes, include 211 glycoside hydrolase and 117 lignin-degrading family genes, nine laccases related genes. Small subunit ribosomal RNA gene (18S rRNA) sequencing confirms its phylogenetic position. Moreover, T. trogii S0301 has the largest number of cytochromes P450 (CYPs) superfamily genes compare to other fungi. All these results are consistent with enzymatic assays and transcriptome analysis results. We also analyzed other genome characteristics in the T. trogii S0301genome. CONCLUSION Here, we present a nearly complete genome for T. trogii S0301, which will help elucidate the biosynthetic pathways of the lignin-degrading enzyme, advancing the discovery, characterization, and modification of novel enzymes from this genus. This genome sequence will provide a valuable reference for the investigation of lignin degradation in the Trametes genus.
Collapse
Affiliation(s)
- Yuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500 China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500 China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650500 China
| | - Yuanyuan Wu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Yu Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Xulei Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Huini Xu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Qiliang Yang
- Faculty of Modern Agricultural Engineering, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Irbis Chagan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| | - Xiuming Cui
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
- Yunnan Provincial Key Laboratory of Panax notoginseng, Kunming, 650500 China
- Key Laboratory of Panax notoginseng Resources Sustainable Development and Utilization of State Administration of Traditional Chinese Medicine, Kunming, 650500 China
- Kunming Key Laboratory of Sustainable Development and Utilization of Famous-Region Drug, Kunming, 650500 China
| | - Weimin Chen
- Biotechnology and Germplasm Resources Institute, Yunnan Academy of Agricultural Sciences, Kunming, 650223 Yunnan China
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500 Yunnan China
| |
Collapse
|
34
|
Wang X, Qin X, Hao Z, Luo H, Yao B, Su X. Degradation of Four Major Mycotoxins by Eight Manganese Peroxidases in Presence of a Dicarboxylic Acid. Toxins (Basel) 2019; 11:E566. [PMID: 31569657 PMCID: PMC6833064 DOI: 10.3390/toxins11100566] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/26/2019] [Indexed: 01/05/2023] Open
Abstract
Enzymatic treatment is an attractive method for mycotoxin detoxification, which ideally prefers the use of one or a few enzymes. However, this is challenged by the diverse structures and co-contamination of multiple mycotoxins in food and feed. Lignin-degrading fungi have been discovered to detoxify organics including mycotoxins. Manganese peroxidase (MnP) is a major enzyme responsible for lignin oxidative depolymerization in such fungi. Here, we demonstrate that eight MnPs from different lignocellulose-degrading fungi (five from Irpex lacteus, one from Phanerochaete chrysosporium, one from Ceriporiopsis subvermispora, and another from Nematoloma frowardii) could all degrade four major mycotoxins (aflatoxin B1, AFB1; zearalenone, ZEN; deoxynivalenol, DON; fumonisin B1, FB1) only in the presence of a dicarboxylic acid malonate, in which free radicals play an important role. The I. lacteus and C. subvermispora MnPs behaved similarly in mycotoxins transformation, outperforming the P. chrysosporium and N. frowardii MnPs. The large evolutionary diversity of these MnPs suggests that mycotoxin degradation tends to be a common feature shared by MnPs. MnP can, therefore, serve as a candidate enzyme for the degradation of multiple mycotoxins in food and feed if careful surveillance of the residual toxicity of degradation products is properly carried out.
Collapse
Affiliation(s)
- Xiaolu Wang
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenzhen Hao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
35
|
Reina R, Kellner H, Hess J, Jehmlich N, García-Romera I, Aranda E, Hofrichter M, Liers C. Genome and secretome of Chondrostereum purpureum correspond to saprotrophic and phytopathogenic life styles. PLoS One 2019; 14:e0212769. [PMID: 30822315 PMCID: PMC6396904 DOI: 10.1371/journal.pone.0212769] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 02/09/2019] [Indexed: 11/28/2022] Open
Abstract
The basidiomycete Chondrostereum purpureum (Silverleaf fungus) is a saprotroph and plant pathogen commercially used for combatting forest "weed" trees in vegetation management. However, little is known about its lignocellulose-degrading capabilities and the enzymatic machinery that is responsible for the degradative potential, and it is not yet clear to which group of wood-rot fungi it actually belongs. Here, we sequenced and analyzed the draft genome of C. purpureum (41.2 Mbp) and performed a quantitative proteomic approach during growth in submerged and solid-state cultures based on soybean meal suspension or containing beech wood supplemented with phenol-rich olive mill residues, respectively. The fungus harbors characteristic lignocellulolytic hydrolases (GH6 and GH7) and oxidoreductases (e.g. laccase, heme peroxidases). High abundance of some of these genes (e.g. 45 laccases, nine GH7) can be explained by gene expansion, e.g. identified for the laccase orthogroup ORTHOMCL11 that exhibits a total of 18 lineage-specific duplications. Other expanded genes families encode for proteins more related to a pathogenic lifestyle (e.g. protease and cytochrome P450s). The fungus responds to the presence of complex growth substrates (lignocellulose, phenolic residues) by the secretion of most of these lignocellulolytic and lignin-modifying enzymes (e.g. alcohol and aryl alcohol oxidases, laccases, GH6, GH7). Based on the genetic and enzymatic constitution, we consider the 'marasmioid' fungus C. purpureum as a 'phytopathogenic' white-rot fungus (WRF) that possesses a complex extracellular enzyme machinery to accomplish efficient lignocellulose degradation during both saprotrophic and phytopathogenic life phases.
Collapse
Affiliation(s)
- Rocio Reina
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Harald Kellner
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Jaqueline Hess
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Nico Jehmlich
- Department of Molecular Systems Biology, Helmholtz-Centre for Environmental Research, Leipzig, Germany
| | - Immaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Elisabet Aranda
- Department of Soil Microbiology and Symbiotic Systems, Consejo Superior de Investigaciones Científicas, Estación Experimental del Zaidín, Granada, Spain
| | - Martin Hofrichter
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| | - Christiane Liers
- Unit of Environmental Biotechnology, Dresden University of Technology, International Institute Zittau, Zittau, Germany
| |
Collapse
|
36
|
Zhang J, Mitchell HD, Markillie LM, Gaffrey MJ, Orr G, Schilling J. Reference genes for accurate normalization of gene expression in wood-decomposing fungi. Fungal Genet Biol 2018; 123:33-40. [PMID: 30529285 DOI: 10.1016/j.fgb.2018.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 11/08/2018] [Accepted: 11/27/2018] [Indexed: 12/28/2022]
Abstract
Wood-decomposing fungi efficiently decompose plant lignocellulose, and there is increasing interest in characterizing and perhaps harnessing the fungal gene regulation strategies that enable wood decomposition. Proper interpretation of these fungal mechanisms relies on accurate quantification of gene expression, demanding reliable internal control genes (ICGs) as references. Commonly used ICGs such as actin, however, fluctuate among wood-decomposing fungi under defined conditions. In this study, by mining RNA-seq data in silico and validating ICGs in vitro using qRT-PCR, we targeted more reliable ICGs for studying transcriptional responses in wood-decomposing fungi, particularly responses to changing environments (e.g., carbon sources, decomposition stages) in various culture conditions. Using the model brown rot fungus Postia placenta in a first-pass study, our mining efforts yielded 15 constitutively-expressed genes robust in variable carbon sources (e.g., no carbon, glucose, cellobiose, aspen) and cultivation stages (e.g., 15 h, 72 h) in submerged cultures. Of these, we found 7 genes as most suitable ICGs. Expression stabilities of these newly selected ICGs were better than commonly used ICGs, analyzed by NormFinder algorithm and qRT-PCR. In a second-pass, multi-species study in solid wood, our RNA-seq mining efforts revealed hundreds of highly constitutively expressed genes among four wood-decomposing fungi with varying nutritional modes (brown rot, white rot), including a shared core set of ICGs numbering 11 genes. Together, the newly selected ICGs highlighted here will increase reliability when studying gene regulatory mechanisms of wood-decomposing fungi.
Collapse
Affiliation(s)
- Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States
| | - Hugh D Mitchell
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Lye Meng Markillie
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Matthew J Gaffrey
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Galya Orr
- Earth and Biological Sciences Divisions, Pacific Northwest National Laboratory, Richland, WA 99354, United States
| | - Jonathan Schilling
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN, United States.
| |
Collapse
|
37
|
Bissaro B, Várnai A, Røhr ÅK, Eijsink VGH. Oxidoreductases and Reactive Oxygen Species in Conversion of Lignocellulosic Biomass. Microbiol Mol Biol Rev 2018; 82:e00029-18. [PMID: 30257993 PMCID: PMC6298611 DOI: 10.1128/mmbr.00029-18] [Citation(s) in RCA: 157] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Biomass constitutes an appealing alternative to fossil resources for the production of materials and energy. The abundance and attractiveness of vegetal biomass come along with challenges pertaining to the intricacy of its structure, evolved during billions of years to face and resist abiotic and biotic attacks. To achieve the daunting goal of plant cell wall decomposition, microorganisms have developed many (enzymatic) strategies, from which we seek inspiration to develop biotechnological processes. A major breakthrough in the field has been the discovery of enzymes today known as lytic polysaccharide monooxygenases (LPMOs), which, by catalyzing the oxidative cleavage of recalcitrant polysaccharides, allow canonical hydrolytic enzymes to depolymerize the biomass more efficiently. Very recently, it has been shown that LPMOs are not classical monooxygenases in that they can also use hydrogen peroxide (H2O2) as an oxidant. This discovery calls for a revision of our understanding of how lignocellulolytic enzymes are connected since H2O2 is produced and used by several of them. The first part of this review is dedicated to the LPMO paradigm, describing knowns, unknowns, and uncertainties. We then present different lignocellulolytic redox systems, enzymatic or not, that depend on fluxes of reactive oxygen species (ROS). Based on an assessment of these putatively interconnected systems, we suggest that fine-tuning of H2O2 levels and proximity between sites of H2O2 production and consumption are important for fungal biomass conversion. In the last part of this review, we discuss how our evolving understanding of redox processes involved in biomass depolymerization may translate into industrial applications.
Collapse
Affiliation(s)
- Bastien Bissaro
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Anikó Várnai
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Åsmund K Røhr
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Vincent G H Eijsink
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
38
|
Jurak E, Suzuki H, van Erven G, Gandier JA, Wong P, Chan K, Ho CY, Gong Y, Tillier E, Rosso MN, Kabel MA, Miyauchi S, Master ER. Dynamics of the Phanerochaete carnosa transcriptome during growth on aspen and spruce. BMC Genomics 2018; 19:815. [PMID: 30424733 PMCID: PMC6234650 DOI: 10.1186/s12864-018-5210-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 10/30/2018] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The basidiomycete Phanerochaete carnosa is a white-rot species that has been mainly isolated from coniferous softwood. Given the particular recalcitrance of softwoods to bioconversion, we conducted a comparative transcriptomic analysis of P. carnosa following growth on wood powder from one softwood (spruce; Picea glauca) and one hardwood (aspen; Populus tremuloides). P. carnosa was grown on each substrate for over one month, and mycelia were harvested at five time points for total RNA sequencing. Residual wood powder was also analyzed for total sugar and lignin composition. RESULTS Following a slightly longer lag phase of growth on spruce, radial expansion of the P. carnosa colony was similar on spruce and aspen. Consistent with this observation, the pattern of gene expression by P. carnosa on each substrate converged following the initial adaptation. On both substrates, highest transcript abundances were attributed to genes predicted to encode manganese peroxidases (MnP), along with auxiliary activities from carbohydrate-active enzyme (CAZy) families AA3 and AA5. In addition, a lytic polysaccharide monooxygenase from family AA9 was steadily expressed throughout growth on both substrates. P450 sequences from clans CPY52 and CYP64 accounted for 50% or more of the most highly expressed P450s, which were also the P450 clans that were expanded in the P. carnosa genome relative to other white-rot fungi. CONCLUSIONS The inclusion of five growth points and two wood substrates was important to revealing differences in the expression profiles of specific sequences within large glycoside hydrolase families (e.g., GH5 and GH16), and permitted co-expression analyses that identified new targets for study, including non-catalytic proteins and proteins with unknown function.
Collapse
Affiliation(s)
- E Jurak
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland.,Department of Aquatic Biotechnology and Bioproduct Engineering, Groningen, The Netherlands
| | - H Suzuki
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - G van Erven
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - J A Gandier
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada
| | - P Wong
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - K Chan
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - C Y Ho
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Canada
| | - Y Gong
- Centre for the Analysis of Genome Evolution and Function, University of Toronto, Toronto, Canada
| | - E Tillier
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - M-N Rosso
- Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - M A Kabel
- Wageningen University, Laboratory of Food Chemistry, Bornse Weilanden 9, 6708, WG, Wageningen, The Netherlands
| | - S Miyauchi
- Laboratory of Excellence ARBRE, INRA, Nancy, Lorraine, France.,Aix-Marseille Université, INRA, UMR1163, Biodiversité et Biotechnologie Fongiques, Marseille, France
| | - E R Master
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland. .,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Canada.
| |
Collapse
|
39
|
Guo H, Wang XD, Lee DJ. Proteomic researches for lignocellulose-degrading enzymes: A mini-review. BIORESOURCE TECHNOLOGY 2018; 265:532-541. [PMID: 29884341 DOI: 10.1016/j.biortech.2018.05.101] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 05/29/2018] [Accepted: 05/30/2018] [Indexed: 05/14/2023]
Abstract
Protective action of lignin/hemicellulose networks and crystalline structures of embedded cellulose render lignocellulose material resistant to external enzymatic attack. To eliminate this bottleneck, research has been conducted in which advanced proteomic techniques are applied to identify effective commercial hydrolytic enzymes. This mini-review summarizes researches on lignocellulose-degrading enzymes, the mechanisms of the responses of various lignocellulose-degrading strains and microbial communities to various carbon sources and various biomass substrates, post-translational modifications of lignocellulose-degrading enzymes, new lignocellulose-degrading strains, new lignocellulose-degrading enzymes and a new method of secretome analysis. The challenges in the practical use of enzymatic hydrolysis process to realize lignocellulose biorefineries are discussed, along with the prospects for the same.
Collapse
Affiliation(s)
- Hongliang Guo
- College of Food Engineering, Harbin University of Commerce, Harbin 150076, China
| | - Xiao-Dong Wang
- Research Center of Engineering Thermophysics, North China Electric Power University, Beijing 102206, China; School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan.
| |
Collapse
|
40
|
Lin MI, Hiyama A, Kondo K, Nagata T, Katahira M. Classification of fungal glucuronoyl esterases (FGEs) and characterization of two new FGEs from Ceriporiopsis subvermispora and Pleurotus eryngii. Appl Microbiol Biotechnol 2018; 102:9635-9645. [PMID: 30232535 DOI: 10.1007/s00253-018-9318-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/21/2018] [Accepted: 08/08/2018] [Indexed: 11/29/2022]
Abstract
Fungal glucuronoyl esterases (FGEs) catalyze cleavage of the ester bond connecting a lignin alcohol to the xylan-bound 4-O-methyl-D-glucuronic acid of glucuronoxylans. Thus, FGEs are capable of degrading lignin-carbohydrate complexes and have potential for biotechnological applications toward woody biomass utilization. Therefore, identification and characterization of new FGEs are of critical importance. Firstly, in this study, we built a phylogenetic tree from almost 400 putative FGEs obtained on BLAST analysis and defined six main clades. In the phylogenetic tree, all the putative FGEs of ascomycetes cluster in clades I to IV, and most of the putative FGEs of basidiomycetes (B-FGEs) cluster in clades V to VI. Interestingly, several B-FGEs were found to cluster in clade II; most FGEs of clade II were found to have higher theoretical isoelectric points than those in the other five clades. To gain an insight into the putative FGEs in the clades that have not been characterized yet, we chose the FGEs of Ceriporiopsis subvermispora (CsGE) and Pleurotus eryngii (PeGE), which belong to clades V and II, respectively. The catalytic domains of both CsGE and PeGE were successfully expressed using Pichia pastoris, and then purified. Benzyl glucuronic acid was used as a substrate to confirm the activities of the CsGE and PeGE, and the hydrolyzed product, glucuronic acid, was quantified spectrophotometrically. Both CsGE and PeGE clearly exhibited the esterase activity. Additionally, we demonstrated that PeGE exhibits high tolerance toward several denaturing agents, which may make it a potentially more applicable enzyme.
Collapse
Affiliation(s)
- Meng-I Lin
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan.,Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan
| | - Akiho Hiyama
- Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan
| | - Keiko Kondo
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Kyoto, 611-0011, Japan. .,Graduate School of Energy Science, Kyoto University, Kyoto, 611-0011, Japan.
| |
Collapse
|
41
|
Wu B, Gaskell J, Held BW, Toapanta C, Vuong T, Ahrendt S, Lipzen A, Zhang J, Schilling JS, Master E, Grigoriev IV, Blanchette RA, Cullen D, Hibbett DS. Substrate-Specific Differential Gene Expression and RNA Editing in the Brown Rot Fungus Fomitopsis pinicola. Appl Environ Microbiol 2018; 84:e00991-18. [PMID: 29884757 PMCID: PMC6070754 DOI: 10.1128/aem.00991-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/03/2018] [Indexed: 12/20/2022] Open
Abstract
Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.
Collapse
Affiliation(s)
- Baojun Wu
- Biology Department, Clark University, Worcester, Massachusetts, USA
| | - Jill Gaskell
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - Benjamin W Held
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Cristina Toapanta
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Thu Vuong
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Steven Ahrendt
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Anna Lipzen
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
| | - Jiwei Zhang
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Jonathan S Schilling
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Emma Master
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Igor V Grigoriev
- Department of Energy Joint Genome Institute, Walnut Creek, California, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, California, USA
| | - Robert A Blanchette
- Department of Plant Pathology, University of Minnesota, St. Paul, Minnesota, USA
| | - Dan Cullen
- USDA Forest Products Laboratory, Madison, Wisconsin, USA
| | - David S Hibbett
- Biology Department, Clark University, Worcester, Massachusetts, USA
| |
Collapse
|
42
|
Coupling Secretomics with Enzyme Activities To Compare the Temporal Processes of Wood Metabolism among White and Brown Rot Fungi. Appl Environ Microbiol 2018; 84:AEM.00159-18. [PMID: 29884760 DOI: 10.1128/aem.00159-18] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Accepted: 05/17/2018] [Indexed: 01/07/2023] Open
Abstract
Wood-degrading fungi use a sequence of oxidative and hydrolytic mechanisms to loosen lignocellulose and then release and metabolize embedded sugars. These temporal sequences have recently been mapped at high resolution using directional growth on wood wafers, revealing previously obscured dynamics as fungi progressively colonize wood. Here, we applied secretomics in the same wafer design to track temporal trends on aspen decayed by fungi with distinct nutritional modes: two brown rot (BR) fungi (Postia placenta and Gloeophyllum trabeum) and two white rot (WR) fungi (Stereum hirsutum and Trametes versicolor). We matched secretomic data from three zones of decay (early, middle, and late) with enzyme activities in these zones, and we included measures of total protein and ergosterol as measures of fungal biomass. In line with previous transcriptomics data, the fungi tested showed an initial investment in pectinases and a delayed investment in glycoside hydrolases (GHs). Brown rot fungi also staggered the abundance of some oxidoreductases ahead of GHs to produce a familiar two-step mechanism. White rot fungi, however, showed late-stage investment in pectinases as well, unlike brown rot fungi. Ligninolytic enzyme activities and abundances were also different between the two white rot fungi. Specifically, S. hirsutum ligninolytic activity was delayed, which was explained almost entirely by the activity and abundance of five atypical manganese peroxidases, unlike more varied peroxidases and laccases in T. versicolor These secretomic analyses support brown rot patterns generated via transcriptomics, they reveal distinct patterns among and within rot types, and they link spectral counts with activities to help functionalize these multistrain secretomic data.IMPORTANCE Wood decay, driven primarily by wood-degrading basidiomycetes, is an essential component of global carbon cycles, and decay mechanisms are essential for understanding forest ecosystem function. These fungi efficiently consolidate pretreatment and saccharification of wood under mild conditions, making them promising templates for low-cost lignocellulose conversion. Species are categorized as ligninolytic white rots and polysaccharide-selective brown rots, with considerable undescribed variability in decay mechanism that may manifest in the sequential variation in protein secretion over the progression of decay. Here we resolved spatially a temporal progression of decay on intact wood wafers and compared secretome dynamics in two white and two brown rot fungi. We identified several universal mechanistic components among decay types, including early pectinolytic "pretreatment" and later-stage glycoside hydrolase-mediated saccharification. Interspecific comparisons also identified considerable mechanistic diversity within rot types, indicating that there are multiple avenues to facilitate white and brown rots.
Collapse
|
43
|
Miyauchi S, Rancon A, Drula E, Hage H, Chaduli D, Favel A, Grisel S, Henrissat B, Herpoël-Gimbert I, Ruiz-Dueñas FJ, Chevret D, Hainaut M, Lin J, Wang M, Pangilinan J, Lipzen A, Lesage-Meessen L, Navarro D, Riley R, Grigoriev IV, Zhou S, Raouche S, Rosso MN. Integrative visual omics of the white-rot fungus Polyporus brumalis exposes the biotechnological potential of its oxidative enzymes for delignifying raw plant biomass. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:201. [PMID: 30061923 PMCID: PMC6055342 DOI: 10.1186/s13068-018-1198-5] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND Plant biomass conversion for green chemistry and bio-energy is a current challenge for a modern sustainable bioeconomy. The complex polyaromatic lignin polymers in raw biomass feedstocks (i.e., agriculture and forestry by-products) are major obstacles for biomass conversions. White-rot fungi are wood decayers able to degrade all polymers from lignocellulosic biomass including cellulose, hemicelluloses, and lignin. The white-rot fungus Polyporus brumalis efficiently breaks down lignin and is regarded as having a high potential for the initial treatment of plant biomass in its conversion to bio-energy. Here, we describe the extraordinary ability of P. brumalis for lignin degradation using its enzymatic arsenal to break down wheat straw, a lignocellulosic substrate that is considered as a biomass feedstock worldwide. RESULTS We performed integrative multi-omics analyses by combining data from the fungal genome, transcriptomes, and secretomes. We found that the fungus possessed an unexpectedly large set of genes coding for Class II peroxidases involved in lignin degradation (19 genes) and GMC oxidoreductases/dehydrogenases involved in generating the hydrogen peroxide required for lignin peroxidase activity and promoting redox cycling of the fungal enzymes involved in oxidative cleavage of lignocellulose polymers (36 genes). The examination of interrelated multi-omics patterns revealed that eleven Class II Peroxidases were secreted by the fungus during fermentation and eight of them where tightly co-regulated with redox cycling enzymatic partners. CONCLUSION As a peculiar feature of P. brumalis, we observed gene family extension, up-regulation and secretion of an abundant set of versatile peroxidases and manganese peroxidases, compared with other Polyporales species. The orchestrated secretion of an abundant set of these delignifying enzymes and redox cycling enzymatic partners could contribute to the delignification capabilities of the fungus. Our findings highlight the diversity of wood decay mechanisms present in Polyporales and the potentiality of further exploring this taxonomic order for enzymatic functions of biotechnological interest.
Collapse
Affiliation(s)
- Shingo Miyauchi
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- Present Address: Laboratoire d’Excellence ARBRE, UMR 1136, INRA-Université de Lorraine ‘Interactions Arbres/Microorganismes’, Champenoux, France
| | - Anaïs Rancon
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Elodie Drula
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Hayat Hage
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Delphine Chaduli
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- CIRM-CF, UMR1163, INRA, Aix-Marseille Univ, Marseille, France
| | - Anne Favel
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- CIRM-CF, UMR1163, INRA, Aix-Marseille Univ, Marseille, France
| | - Sacha Grisel
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Bernard Henrissat
- UMR 7257, CNRS, Aix-Marseille Univ, Marseille, France
- INRA, USC 1408, AFMB, Marseille, France
- Department of Biological Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isabelle Herpoël-Gimbert
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | | | - Didier Chevret
- INRA, UMR1319, Micalis, Plateforme d’Analyse Protéomique de Paris Sud-Ouest, Jouy-en-Josas, France
| | - Matthieu Hainaut
- UMR 7257, CNRS, Aix-Marseille Univ, Marseille, France
- INRA, USC 1408, AFMB, Marseille, France
| | - Junyan Lin
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Jasmyn Pangilinan
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Laurence Lesage-Meessen
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- CIRM-CF, UMR1163, INRA, Aix-Marseille Univ, Marseille, France
| | - David Navarro
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- CIRM-CF, UMR1163, INRA, Aix-Marseille Univ, Marseille, France
| | - Robert Riley
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
| | - Igor V. Grigoriev
- US Department of Energy Joint Genome Institute, Walnut Creek, CA USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA USA
| | - Simeng Zhou
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
- Present Address: Institut des Sciences Moléculaires de Marseille, UMR 7313, CNRS, Aix-Marseille Université, Marseille, France
| | - Sana Raouche
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| | - Marie-Noëlle Rosso
- Aix Marseille Univ, INRA, UMR 1163, Biodiversité et Biotechnologie Fongiques, BBF, Marseille, France
| |
Collapse
|
44
|
Manivel G, Meyyazhagan A, Durairaj D R, Piramanayagam S. Genome-wide analysis of Excretory/Secretory proteins in Trypanosoma brucei brucei: Insights into functional characteristics and identification of potential targets by immunoinformatics approach. Genomics 2018; 111:1124-1133. [PMID: 30006035 DOI: 10.1016/j.ygeno.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 07/08/2018] [Indexed: 11/28/2022]
Abstract
Trypanosoma brucei brucei (T.b.brucei) is an extra-cellular parasite that causes Animal African Trypanosomiasis (AAT) disease in animals. Till day, this disease is more difficult to treat and control due to lack of efficient vaccines and early diagnosis of the parasite infection. T.b.brucei Excretory/Secretory (ES) proteins were involved in pathogenesis and key for understanding the host-parasite interactions. Functions of T.b.brucei's ES proteins were poorly investigated and experimental identification is expensive and time-consuming. Bioinformatics approaches are cost-effective by facilitating the experimental analysis of potential drug targets for parasitic diseases. Here we applied several bioinformatics tools to predict and functionalize the annotation of 1104 ES proteins and immunoinformatics approaches carried out to predict and evaluate the epitopes in T.b.brucei. Secretory information, functional annotations and potential epitopes of each ES proteins were available at http://tbb.insilico.in. This study provides functional information of T.b.brucei for experimental studies to identify potential targets for diagnosis and therapeutics development.
Collapse
Affiliation(s)
- Gowdham Manivel
- Department of Bioinformatics, Bharathiar University, Coimbatore, India.
| | - Arun Meyyazhagan
- Cytogenetics Department, EuroEspes Biomedical Research Center, Institute of Medical Science and Genomic Medicine, 15165 Bergondo, Corunna, Spain
| | - Ruban Durairaj D
- Department of Bioinformatics, Bharathiar University, Coimbatore, India
| | | |
Collapse
|
45
|
Gahoi S, Singh S, Gautam B. Genome-wide identification and comprehensive analysis of Excretory/Secretory proteins in nematodes provide potential drug targets for parasite control. Genomics 2018. [PMID: 29522800 DOI: 10.1016/j.ygeno.2018.03.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Nematodes are responsible for causing severe diseases in plants, humans and other animals. Infection is associated with the release of Excretory/Secretory (ES) proteins into host cytoplasm and interference with the host immune system which make them attractive targets for therapeutic use. The identification of ES proteins through bioinformatics approaches is cost- and time-effective and could be used for screening of potential targets for parasitic diseases for further experimental studies. Here, we identified and functionally annotated 93,949 ES proteins, in the genome of 73 nematodes using integration of various bioinformatics tools. 30.6% of ES proteins were found to be supported at RNA level. The predicted ES proteins, annotated by Gene Ontology terms, domains, metabolic pathways, proteases and enzyme class analysis were enriched in molecular functions of proteases, protease inhibitors, c-type lectin and hydrolases which are strongly associated with typical functions of ES proteins. We identified a total of 452 ES proteins from human and plant parasitic nematodes, homologues to DrugBank-approved targets and C. elegans RNA interference phenotype genes which could represent potential targets for parasite control and provide valuable resource for further experimental studies to understand host-pathogen interactions.
Collapse
Affiliation(s)
- Shachi Gahoi
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Satendra Singh
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| | - Budhayash Gautam
- Department of Computational Biology and Bioinformatics, Sam Higginbottom University of Agriculture, Technology and Sciences, Allahabad 211007, India.
| |
Collapse
|
46
|
Lin MI, Nagata T, Katahira M. High yield production of fungal manganese peroxidases by E. coli through soluble expression, and examination of the activities. Protein Expr Purif 2018; 145:45-52. [PMID: 29305178 DOI: 10.1016/j.pep.2017.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 12/26/2017] [Accepted: 12/27/2017] [Indexed: 11/25/2022]
Abstract
Oxidative enzymes of white-rot fungi play a key role in lignin biodegradation. Among those fungus, Ceriporiopsis subvermispora degrades lignin before cellulose in wood; C. subvermispora is the only fungus that secretes all known types of manganese peroxidases (CsMnPs). Utilization of lignin-degrading peroxidases has been limited so far due to the lack of efficient preparation methods and intensive characterization. In this study, we developed a highly efficient method to prepare active CsMnPs through soluble expression by E. coli, which had long been impossible. The genes of MnPs selected from each subfamily were codon-optimized and expressed under the control of a cold shock promoter. A proper level of heme incorporation was achieved by continuous addition of hemin during cultivation. As much as 3 mg of purified MnPs was obtained from 100 mL culture, which is an about 20-fold higher yield than that from inclusion bodies through refolding. Further improvement of the solubility on the expression was achieved by combinatorial coexpression of chaperones. All obtained MnPs had heme-to-protein ratios as high as those of native MnPs. They were all active below pH 5. Our method is applicable to other fungal-secreted enzymes should help the progress of their basic characterization and application for better utilization of woody biomass.
Collapse
Affiliation(s)
- Meng-I Lin
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan
| | - Takashi Nagata
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan.
| | - Masato Katahira
- Institute of Advanced Energy, Kyoto University, Japan; Graduate School of Energy Science, Kyoto University, Japan.
| |
Collapse
|
47
|
Qin X, Su X, Luo H, Ma R, Yao B, Ma F. Deciphering lignocellulose deconstruction by the white rot fungus Irpex lacteus based on genomic and transcriptomic analyses. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:58. [PMID: 29507610 PMCID: PMC5833081 DOI: 10.1186/s13068-018-1060-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Irpex lacteus is one of the most potent white rot fungi for biological pretreatment of lignocellulose for second biofuel production. To elucidate the underlying molecular mechanism involved in lignocellulose deconstruction, genomic and transcriptomic analyses were carried out for I. lacteus CD2 grown in submerged fermentation using ball-milled corn stover as the carbon source. RESULTS Irpex lacteus CD2 efficiently decomposed 74.9% lignin, 86.3% cellulose, and 83.5% hemicellulose in corn stover within 9 days. Manganese peroxidases were rapidly induced, followed by accumulation of cellulase and hemicellulase. Genomic analysis revealed that I. lacteus CD2 possessed a complete set of lignocellulose-degrading enzyme system composed mainly of class II peroxidases, dye-decolorizing peroxidases, auxiliary enzymes, and 182 glycoside hydrolases. Comparative transcriptomic analysis substantiated the notion of a selection mode of degradation. These analyses also suggested that free radicals, derived either from MnP-organic acid interplay or from Fenton reaction involving Fe2+ and H2O2, could play an important role in lignocellulose degradation. CONCLUSIONS The selective strategy employed by I. lacteus CD2, in combination with low extracellular glycosidases cleaving plant cell wall polysaccharides into fermentable sugars, may account for high pretreatment efficiency of I. lacteus. Our study also hints the importance of free radicals for future designing of novel, robust lignocellulose-degrading enzyme cocktails.
Collapse
Affiliation(s)
- Xing Qin
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| | - Xiaoyun Su
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Huiying Luo
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Rui Ma
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Bin Yao
- Key Laboratory for Feed Biotechnology of the Ministry of Agriculture, Feed Research Institute, Chinese Academy of Agricultural Sciences, No. 12 South Zhongguancun Street, Beijing, 100081 People’s Republic of China
| | - Fuying Ma
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074 People’s Republic of China
| |
Collapse
|
48
|
Kamimura N, Takahashi K, Mori K, Araki T, Fujita M, Higuchi Y, Masai E. Bacterial catabolism of lignin-derived aromatics: New findings in a recent decade: Update on bacterial lignin catabolism. ENVIRONMENTAL MICROBIOLOGY REPORTS 2017; 9:679-705. [PMID: 29052962 DOI: 10.1111/1758-2229.12597] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 09/26/2017] [Accepted: 10/03/2017] [Indexed: 05/21/2023]
Abstract
Lignin is the most abundant phenolic polymer; thus, its decomposition by microorganisms is fundamental to carbon cycling on earth. Lignin breakdown is initiated by depolymerization catalysed by extracellular oxidoreductases secreted by white-rot basidiomycetous fungi. On the other hand, bacteria play a predominant role in the mineralization of lignin-derived heterogeneous low-molecular-weight aromatic compounds. The outline of bacterial catabolic pathways for lignin-derived bi- and monoaryls are typically composed of the following sequential steps: (i) funnelling of a wide variety of lignin-derived aromatics into vanillate and syringate, (ii) O demethylation of vanillate and syringate to form catecholic derivatives and (iii) aromatic ring-cleavage of the catecholic derivatives to produce tricarboxylic acid cycle intermediates. Knowledge regarding bacterial catabolic systems for lignin-derived aromatic compounds is not only important for understanding the terrestrial carbon cycle but also valuable for promoting the shift to a low-carbon economy via biological lignin valorisation. This review summarizes recent progress in bacterial catabolic systems for lignin-derived aromatic compounds, including newly identified catabolic pathways and genes for decomposition of lignin-derived biaryls, transcriptional regulation and substrate uptake systems. Recent omics approaches on catabolism of lignin-derived aromatic compounds are also described.
Collapse
Affiliation(s)
- Naofumi Kamimura
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kenji Takahashi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Kosuke Mori
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Takuma Araki
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Masaya Fujita
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Yudai Higuchi
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| | - Eiji Masai
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Niigata 940-2188, Japan
| |
Collapse
|
49
|
Watanabe T, Yoshioka K, Kido A, Lee J, Akiyoshi H, Watanabe T. Preparation of intracellular proteins from a white-rot fungus surrounded by polysaccharide sheath and optimization of their two-dimensional electrophoresis for proteomic studies. J Microbiol Methods 2017; 142:63-70. [PMID: 28916445 DOI: 10.1016/j.mimet.2017.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/11/2017] [Accepted: 09/11/2017] [Indexed: 11/26/2022]
Abstract
The functions and properties of fungal sheath, an extracellular polysaccharide produced by many white-rot fungi, have been studied. However, the strong adherence of the sheath to fungal hyphae had been a major impediment in preparing intracellular proteins from the fungi and analyzing their cellular responses. To overcome this issue, we developed a rapid and easy method to remove the polysaccharide sheath using a selective lignin degrader, Ceriporiopsis subvermispora, which produces large sheath amounts in the presence of a lignin-derived aromatic compound. Using this approach, we achieved thorough removal of sheath and cell disruption using beads and a solution with a high protein-solubilizing power, which enabled the efficient extraction of intracellular proteins from C. subvermispora surrounded by sheath. In addition, for proteomic analysis, we investigated whether these extracted proteins were compatible with two-dimensional electrophoresis. By efficiently concentrating on protein solubilization in the first dimension and using a stacking gel in the second dimension, we successfully obtained a high-resolution proteome map of C. subvermispora. We also used the same proteins for fluorescence two-dimensional difference gel electrophoresis to obtain the quantitative protein expression profiles. These steps demonstrated that two-dimensional electrophoresis-based proteomics can be used to clarify the composition of intracellular proteins from sheath-producing white-rot fungi.
Collapse
Affiliation(s)
- Takahito Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan.
| | - Koichi Yoshioka
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan; Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Ayako Kido
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Junseok Lee
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Hikari Akiyoshi
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| | - Takashi Watanabe
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Japan
| |
Collapse
|
50
|
Zeiner CA, Purvine SO, Zink EM, Paša-Tolić L, Chaput DL, Wu S, Santelli CM, Hansel CM. Quantitative iTRAQ-based secretome analysis reveals species-specific and temporal shifts in carbon utilization strategies among manganese(II)-oxidizing Ascomycete fungi. Fungal Genet Biol 2017; 106:61-75. [DOI: 10.1016/j.fgb.2017.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 01/05/2023]
|