1
|
Jiang C, Jie J, Wang J, Deng X, Qiu J, Liu H. Sesamol hinders the proliferation of intracellular bacteria by promoting fatty acid metabolism and decreasing excessive inflammation. Int Immunopharmacol 2025; 146:113966. [PMID: 39733644 DOI: 10.1016/j.intimp.2024.113966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/15/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
The extraintestinal pathogenic Escherichia coli (ExPEC) is a significant zoonotic bacterial pathogen that can cause severe infections and potentially cross-transmit between different hosts. The treatment of clinical bacterial infections is challenging because of the increasingly severe problem of drug resistance. The development of new strategies for managing bacterial infections is essential. Host-acting antibacterial compound (HAC)-based host-directed therapy (HDT) has emerged as a promising approach to combat bacterial infections by targeting host-pathogen interactions and bacterial intracellular survival strategies. In this study, we conducted a cell-based screening to identify compounds that can inhibit the survival and proliferation of ExPEC within host cells. Our screening revealed that sesamol effectively inhibited ExPEC proliferation but had no effect on the natural growth of bacteria. Analysis of the transcriptome data revealed that sesamol has the ability to increase the metabolism of host fatty acids while also suppressing excessive inflammation. Mechanistic studies have shown that sesamol-induced PPAR-β activation is crucial for increased fatty acid metabolism and clearance of intracellular bacteria. Furthermore, sesamol treatment demonstrated protective effects against ExPEC infection in both Galleria mellonella and mouse models, suggesting its potential use for treating diseases caused by intracellular bacterial pathogens and as a lead compound for further development of anti-infection drugs on the basis of the HDT strategy.
Collapse
Affiliation(s)
- Chenxiao Jiang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jing Jie
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jianfeng Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xuming Deng
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Jiazhang Qiu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| | - Hongtao Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, College of Veterinary Medicine, Jilin University; Department of Respiratory Medicine, Center for Pathogen Biology and Infectious Diseases, Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
2
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. Targeting virulence of resistant Escherichia coli by the FDA-approved drugs sitagliptin and nitazoxanide as an alternative antimicrobial approach. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01215-7. [PMID: 39470968 DOI: 10.1007/s12223-024-01215-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Accepted: 10/21/2024] [Indexed: 11/01/2024]
Abstract
The spread of multidrug-resistant Escherichia coli in healthcare facilities is a global challenge. Hospital-acquired infections produced by Escherichia coli include gastrointestinal, blood-borne, urinary tract, surgical sites, and neonatal infections. Therefore, novel approaches are needed to deal with this pathogen and its rising resistance. The concept of attenuating virulence factors is an alternative strategy that might lead to low levels of resistance and combat this pathogen. A sub-inhibitory concentration (¼ MIC) of sitagliptin and nitazoxanide was used for phenotypic assessments of Escherichia coli virulence factors such as biofilm production, swimming motility, serum resistance, and protease production. Moreover, qRT-PCR was used to determine the impact of sub-MIC of the tested drugs on the relative expression levels of papC, fimH, fliC, kpsMTII, ompT_m, and stcE genes encoding virulence factors in Escherichia coli. Also, an in vivo model was conducted as a confirmatory test. Phenotypically, our findings demonstrated that the tested strains showed a significant decrease in all the tested virulence factors. Moreover, the genotypic results showed a significant downregulation in the relative expression levels of all the tested genes. Besides, the examined drugs were found to be effective in protecting mice against Escherichia coli pathogenesis. Sitagliptin and nitazoxanide exhibited strong anti-virulence activities against Escherichia coli. In addition, it is recommended that they might function as adjuvant in the management of Escherichia coli infections with either conventional antimicrobial agents or alone as alternative treatment measures.
Collapse
Affiliation(s)
- Sara M Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Ali H Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Mahmoud M Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, Birkat Al Mauz, P.O. Box 33, Nizwa, 616, Oman.
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, Brunswick, Germany.
| | - Moustafa M Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said, Egypt
- Faculty of Pharmacy, Ashour University, Baghdad, Iraq
| |
Collapse
|
3
|
Prieto J, Wilson J, Tingle A, Cooper E, Handley M, Rycroft-Malone J, Bostock J, Williams L, Loveday H. Strategies for older people living in care homes to prevent urinary tract infection: the StOP UTI realist synthesis. Health Technol Assess 2024; 28:1-139. [PMID: 39432412 PMCID: PMC11513742 DOI: 10.3310/dadt3410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Background Urinary tract infection is the most diagnosed infection in older people. It accounts for more than 50% of antibiotic prescriptions in care homes and is a frequent reason for care home residents being hospitalised. Objective This realist review developed and refined programme theories for preventing and recognising urinary tract infection, exploring what works, for whom and in what circumstances. Design The review used realist synthesis to explore existing literature on the detection and prevention of urinary tract infection, complemented by stakeholder consultation. It applies to the UK context, although other healthcare systems may identify synergies in our findings. Data sources Bibliographic databases searched included MEDLINE, CINAHL, EMBASE, Cochrane Library, Web of Science Core Collection (including the Social Sciences Citation Index), Sociological Abstracts, Bibliomap and National Institute for Health and Care Research Journals Library. Data selection and extraction Title and abstract screening were undertaken by two researchers independently of each other. Selection and assessment were based on relevance and rigour and cross-checked by a second researcher. Data extracted from the included studies were explored for explanations about how the interventions were considered to work (or not). Evidence tables were constructed to enable identification of patterns across studies that offered insight about the features of successful interventions. Data analysis and synthesis Programme theories were constructed through a four-stage process involving scoping workshops, examination of relevant extant theory, analysis and synthesis of primary research, teacher-learner interviews and a cross-system stakeholder event. A process of abductive and retroductive reasoning was used to construct context-mechanism-outcome configurations to inform programme theory. Results The scoping review and stakeholder engagement identified three theory areas that address the prevention and recognition of urinary tract infection and show what is needed to implement best practice. Nine context-mechanism-outcome configurations provided an explanation of how interventions to prevent and recognise urinary tract infection might work in care homes. These were (1) recognition of urinary tract infection is informed by skills in clinical reasoning, (2) decision-support tools enable a whole care team approach to communication, (3) active monitoring is recognised as a legitimate care routine, (4) hydration is recognised as a care priority for all residents, (5) systems are in place to drive action that helps residents to drink more, (6) good infection prevention practice is applied to indwelling urinary catheters, (7) proactive strategies are in place to prevent recurrent urinary tract infection, (8) care home leadership and culture fosters safe fundamental care and (9) developing knowledgeable care teams. Limitations We adapted our approach and work to online interactions with stakeholders and as a research team because of COVID-19. This also had an impact on bringing stakeholders together at a face-to-face event at the end of the project. Studies focusing on the prevention of urinary tract infection in care home settings were predominantly from the USA and Europe where the regulatory and funding systems for the long-term care of the elderly have some differences, particularly in the USA where national reporting plays a significant role in driving improvements in care. Conclusions Care home staff have a vital role in the prevention and recognition of urinary tract infection, which can be enabled through integration and prioritisation within the systems and routines of care homes and delivery of person-centred care. Promoting fundamental care as a means of facilitating a holistic approach to prevention and recognition of urinary tract infection helps staff to recognise how they can contribute to antimicrobial stewardship and recognition of sepsis. Challenging assumptions made by staff about the presentation of urinary tract infection is complex and requires education that facilitates 'unlearning' and questioning of low-value practices. Programmes to prevent urinary tract infection need to be co-designed and supported through active and visible leadership by care home managers with support from specialist practitioners. Future work We will focus on co-designing tools that facilitate implementation of our findings to ensure they fit with the care home context and address some of the challenges faced by care home leaders. This will underpin action at care home and system levels. Further research is needed to better understand the perspectives of residents and family carers, the effectiveness of non-pharmacological, pharmacological and specialist practitioner interventions and non-traditional approaches to training and educating the workforce in care home settings. Study registration This study is registered as PROSPERO CRD42020201782. Funding This award was funded by the National Institute for Health and Care Research (NIHR) Health Technology Assessment programme (NIHR award ref: NIHR130396) and is published in full in Health Technology Assessment; Vol. 28, No. 68. See the NIHR Funding and Awards website for further award information.
Collapse
Affiliation(s)
- Jacqui Prieto
- School of Health Sciences, University of Southampton, Southampton, UK
| | - Jennie Wilson
- Richard Wells Research Centre, University of West London, London, UK
| | - Alison Tingle
- Richard Wells Research Centre, University of West London, London, UK
| | - Emily Cooper
- Primary Care and Interventions Unit, HCAI, Fungal, AMR, AMU and Sepsis Division, UK Health Security Agency, London, UK
| | - Melanie Handley
- Centre for Public Health and Community Care, University of Hertfordshire, De Havilland Campus, Hatfield, UK
| | | | | | - Lynne Williams
- School of Medical and Health Sciences, Bangor University, Wales, UK
| | - Heather Loveday
- Richard Wells Research Centre, University of West London, London, UK
| |
Collapse
|
4
|
Eltabey SM, Ibrahim AH, Zaky MM, Ibrahim AE, Alrashdi YBA, El Deeb S, Saleh MM. The Promising Effect of Ascorbic Acid and Paracetamol as Anti-Biofilm and Anti-Virulence Agents against Resistant Escherichia coli. Curr Issues Mol Biol 2024; 46:6805-6819. [PMID: 39057048 PMCID: PMC11276426 DOI: 10.3390/cimb46070406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/30/2024] [Indexed: 07/28/2024] Open
Abstract
Escherichia coli is a major cause of serious infections, with antibiotic resistance rendering many treatments ineffective. Hence, novel strategies to combat this pathogen are needed. Anti-virulence therapy is a promising new approach for the subsequent era. Recent research has examined the impact of sub-inhibitory doses of ascorbic acid and paracetamol on Escherichia coli virulence factors. This study evaluated biofilm formation, protease production, motility behavior, serum resistance, expression of virulence-regulating genes (using RT-PCR), and survival rates in a mouse model. Ascorbic acid significantly reduced biofilm formation, protease production, motility, and serum resistance from 100% in untreated isolates to 22-89%, 10-89%, 2-57%, and 31-35% in treated isolates, respectively. Paracetamol also reduced these factors from 100% in untreated isolates to 16-76%, 1-43%, 16-38%, and 31-35%, respectively. Both drugs significantly down-regulated virulence-regulating genes papC, fimH, ompT_m, stcE, fliC, and kpsMTII. Mice treated with these drugs had a 100% survival rate compared with 60% in the positive control group control inoculated with untreated bacteria. This study highlights the potential of ascorbic acid and paracetamol as anti-virulence agents, suggesting their use as adjunct therapies alongside conventional antimicrobials or as alternative treatments for resistant Escherichia coli infections.
Collapse
Affiliation(s)
- Sara M. Eltabey
- Microbiology Program, Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt;
| | - Ali H. Ibrahim
- Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt; (A.H.I.); (M.M.Z.)
| | - Mahmoud M. Zaky
- Botany Department, Faculty of Science, Port Said University, Port Said 42521, Egypt; (A.H.I.); (M.M.Z.)
| | - Adel Ehab Ibrahim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa 616, Oman;
| | | | - Sami El Deeb
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universitaet Braunschweig, 38106 Braunschweig, Germany
| | - Moustafa M. Saleh
- Microbiology and Immunology Department, Faculty of Pharmacy, Port Said University, Port Said 42521, Egypt;
| |
Collapse
|
5
|
Lyu C, Hu H, Cai L, He S, Xu X, Zhou G, Wang H. A trans-acting sRNA SaaS targeting hilD, cheA and csgA to inhibit biofilm formation of S. Enteritidis. J Adv Res 2024:S2090-1232(24)00232-7. [PMID: 38852803 DOI: 10.1016/j.jare.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024] Open
Abstract
INTRODUCTION Salmonella Enteritidis has brought great harm to public health, animal production and food safety worldwide. The biofilm formed by Salmonella Enteritidis plays a critical role in microbial cross-contamination. Small non-coding RNAs (sRNAs) have been demonstrated to be responsible for regulating the formation of biofilm. The sRNA SaaS has been identified previously, that promotes pathogenicity by regulating invasion and virulence factors. However, whether the SaaS is implicated in regulating biofilm formation in abiotic surfaces remains unclear. OBJECTIVES This study aimed to clarify the effect of SaaS in Salmonella Enteritidis and explore the modulatory mechanism on the biofilm formation. METHODS Motility characteristics and total biomass of biofilm of test strains were investigated by the phenotypes in three soft agar plates and crystal violet staining in polystyrene microplates. Studies of microscopic structure and extracellular polymeric substances (EPS) of biofilm on solid surfaces were carried out using confocal laser scanning microscope (CLSM) and Raman spectra. Transcriptomics and proteomics were applied to analyze the changes of gene expression and EPS component. The RNA-protein pull-down and promoter-reporter β-galactosidase activity assays were employed to analyze RNA binding proteins and identify target mRNAs, respectively. RESULTS SaaS inhibits biofilm formation by repressing the adhesion potential and the secretion of EPS components. Integration of transcriptomics and proteomics analysis revealed that SaaS strengthened the expression of the flagellar synthesis system and downregulated the expression of curli amyloid fibers. Furthermore, RNA-protein pull-down interactome datasets indicated that SaaS binds to Hfq (an RNA molecular chaperone protein, known as a host factor for phage Qbeta RNA replication) uniquely among 193 candidate proteins, and promoter-reporter β-galactosidase activity assay confirmed target mRNAs including hilD, cheA, and csgA. CONCLUSION SaaS inhibits the properties of bacterial mobility, perturbs the secretion of EPS, and contributes to the inhibition of biofilm formation by interacting with target mRNA (hilD, cheA, and csgA) through the Hfq-mediated pathway.
Collapse
Affiliation(s)
- Chongyang Lyu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Haijing Hu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Linlin Cai
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Shuwen He
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xinglian Xu
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Guanghong Zhou
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Huhu Wang
- State Key Laboratory of Meat Quality Control and Cultured Meat Development, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, People's Republic of China; College of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi, Xinjiang, People's Republic of China.
| |
Collapse
|
6
|
Amarowicz R, Pegg RB. Condensed tannins-Their content in plant foods, changes during processing, antioxidant and biological activities. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 110:327-398. [PMID: 38906590 DOI: 10.1016/bs.afnr.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
Condensed tannins are considered nutritionally undesirable, because they precipitate proteins, inhibit digestive enzymes, and can affect the absorption of vitamins and minerals. From the consumer's point of view, they impart astringency to foods. Yet, they are viewed as a double-edged sword, since they possess antioxidant and anti-inflammatory activities. Intake of a small quantity of the right kind of tannins may in fact be beneficial to human health. This chapter reports on the chemical structure of condensed tannins, their content in plants and food of plant origin, how they are extracted, and methods for their determination. A description of the effects of processing on condensed tannins is discussed and includes soaking, dehulling, thermal processing (i.e., cooking, boiling, autoclaving, extrusion), and germination. The astringency of condensed tannins is described in relation to their interactions with proteins. Finally, details about the biological properties of condensed tannins, including their antimicrobial, anti-inflammatory, anticancer, anti-diabetic, and anti-obesity activities, are reviewed.
Collapse
Affiliation(s)
- Ryszard Amarowicz
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Ronald B Pegg
- Department of Food Science & Technology, The University of Georgia, Athens, GA, United States
| |
Collapse
|
7
|
Santinon C, Borges A, Simões M, Gonçalves ASC, Beppu MM, Vieira MGA. Visible-light photoactivated proanthocyanidin and kappa-carrageenan coating with anti-adhesive properties against clinically relevant bacteria. Int J Biol Macromol 2024; 263:130611. [PMID: 38447837 DOI: 10.1016/j.ijbiomac.2024.130611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/14/2024] [Accepted: 03/02/2024] [Indexed: 03/08/2024]
Abstract
The increase of bacterial resistance to antibiotics is a growing concern worldwide and the search for new therapies could cost billions of dollars and countless lives. Inert surfaces are major sources of contamination due to easier adhesion and formation of bacterial biofilms, hindering the disinfection process. Therefore, the objective of this study was to develop a photoactivatable and anti-adhesive kappa-carrageenan coating using proanthocyanidin as a photosensitizer. The complete reduction (>5-log10 CFU/cm3) of culturable cells of Staphylococcus aureus, Escherichia coli and Pseudomonas aeruginosa pathogens was achieved after 30 min of exposure to visible light (420 nm; 30 mW/cm2) with 5 % (w/v) of the photosensitizer. Cell membrane damage was confirmed by measuring potassium leakage, epifluorescence microscopy and bacterial motility analysis. Overall, visible light irradiation on coated solid surfaces mediated by proanthocyanidin showed no cytotoxicity and inactivated clinically important pathogens through the generation of reactive oxygen species, inhibiting bacterial initial adhesion. The developed coating is a promising alternative for a wide range of applications related to surface disinfection and food biopreservation.
Collapse
Affiliation(s)
- Caroline Santinon
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Marisa Masumi Beppu
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil
| | - Melissa Gurgel Adeodato Vieira
- ªSchool of Chemical Engineering, University of Campinas - UNICAMP, Albert Einstein Av., 500, 13083-852 Campinas, SP, Brazil.
| |
Collapse
|
8
|
Bessalah S, Khorchani T, Hammadi M, Faraz A, Mustafa AB. Inhibitory potential of natural plant extracts against Escherichia coli strain isolated from diarrheic camel calves. Open Vet J 2023; 13:1082-1090. [PMID: 37842111 PMCID: PMC10576579 DOI: 10.5455/ovj.2023.v13.i9.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/05/2023] [Indexed: 10/17/2023] Open
Abstract
Background Camel calf's diarrhea is considered the chief economic loss in the camelid population. There is currently no vaccine licensed to prevent colibacillosis in camel calves. The new era of bacterial antibiotic resistance explains the treatment failure and the high mortality and morbidity associated with the disease. Current protective treatments have thus far limited efficacy and need to be replaced. Due to their antimicrobial properties and safety, natural products are recently finding a capital role in infection management. Aims The current study explores Escherichia coli F17 susceptibility as a clinical strain isolated from diarrheic camel calves to a wide panel of natural products. Methods Agar diffusion method, integrity of cell membrane, hydrophobicity of bacterial surface, biofilm assays, and motility were used to evaluate the antibacterial activity of Coffea, Retama raetam, Moringa oleifera, Juniperus phoenicea, Uritica dioica, Camellia sinensis, Lavandula angustifolia, and Cuminum cyminum extracts against isolated bacteria. Results Interestingly, all eight tested extracts have the damaging ability of E. coli F17's cell membrane and cause the nucleic acid release after 12 hours. Escherichia coli F17 strain has the surface of hydrophobicity which changed after contact with extracts of the plant. Moreover, the motility of the studied bacteria changed after exposure to all plant extracts. Conclusion This study demonstrated that all extracts, exempt U. dioica, can remove up to 50% biofilm of E. coli biomass as compared with the control. Natural extracts can be used as potential antimicrobial agents to mitigate diarrhea in camel calves.
Collapse
Affiliation(s)
- Salma Bessalah
- Livestock and Wildlife Laboratory, Arid Lands Institute (IRA), University of Gabès, Médenine, Tunisia
| | - Touhami Khorchani
- Livestock and Wildlife Laboratory, Arid Lands Institute (IRA), University of Gabès, Médenine, Tunisia
| | - Mohamed Hammadi
- Livestock and Wildlife Laboratory, Arid Lands Institute (IRA), University of Gabès, Médenine, Tunisia
| | - Asim Faraz
- Department of Livestock and Poultry Production, Bahauddin Zakariya University, Multan, Pakistan
| | - Ayman Balla Mustafa
- Therapeutic Nutrition Department, Faculty of Health Sciences, Misurata University, Misurata, Libya
| |
Collapse
|
9
|
Cui F, Wang Q, Liu J, Wang D, Li J, Li T. Effects of deletion of siderophore biosynthesis gene in Pseudomonas fragi on quorum sensing and spoilage ability. Int J Food Microbiol 2023; 396:110196. [PMID: 37031669 DOI: 10.1016/j.ijfoodmicro.2023.110196] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/08/2023]
Abstract
Siderophores are important factors in the spoilage process of Pseudomonas fragi, considered to be one of the main spoilage bacterium of tuna, and the secretion of siderophores is regulated by quorum sensing (QS). This study aimed to construct a mutant with the deletion of the siderophore synthetase gene of P. fragi (MS-10), and to explore its effects on the growth, QS, and spoilage potential of P. fragi. The results showed that the deletion of the siderophore biosynthesis gene slowed down the growth rate of the strain. The apoptosis rate increased by 27.7 % compared with that of the wild-type strain at 4 °C for 48 h. Biofilm formation, extracellular protease expression, and signal molecule production were all significantly lower in the mutant strain compared with the wild-type strain. The total viable count and the histamine content showed that the tuna sterile fish block inoculated with the wild-type strain exceeded the acceptable standards by 5 days and was completely spoiled by 7 days, whereas the mutant strain exceeded the acceptable standards by 6 days and was completely spoiled by 9 days. The pH, texture, and other indicators showed that the variation range of the mutant strain was lower than that of the wild-type strain. The deletion of the siderophore biosynthesis gene reduced the spoilage ability of P. fragi. Based on the results, the development of novel preservation agents targeting the control of the siderophore biosynthesis gene could be a new idea for the preservation of aquatic products.
Collapse
|
10
|
Zhou Y, Zhou Z, Zheng L, Gong Z, Li Y, Jin Y, Huang Y, Chi M. Urinary Tract Infections Caused by Uropathogenic Escherichia coli: Mechanisms of Infection and Treatment Options. Int J Mol Sci 2023; 24:10537. [PMID: 37445714 DOI: 10.3390/ijms241310537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Urinary tract infections (UTIs) are common bacterial infections that represent a severe public health problem. They are often caused by Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumonia), Proteus mirabilis (P. mirabilis), Enterococcus faecalis (E. faecalis), and Staphylococcus saprophyticus (S. saprophyticus). Among these, uropathogenic E. coli (UPEC) are the most common causative agent in both uncomplicated and complicated UTIs. The adaptive evolution of UPEC has been observed in several ways, including changes in colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. While antibiotic therapy has historically been very successful in controlling UTIs, high recurrence rates and increasing antimicrobial resistance among uropathogens threaten to greatly reduce the efficacy of these treatments. Furthermore, the gradual global emergence of multidrug-resistant UPEC has highlighted the need to further explore its pathogenesis and seek alternative therapeutic and preventative strategies. Therefore, a thorough understanding of the clinical status and pathogenesis of UTIs and the advantages and disadvantages of antibiotics as a conventional treatment option could spark a surge in the search for alternative treatment options, especially vaccines and medicinal plants. Such options targeting multiple pathogenic mechanisms of UPEC are expected to be a focus of UTI management in the future to help combat antibiotic resistance.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zuying Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Lin Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Zipeng Gong
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yueting Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yang Jin
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Yong Huang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| | - Mingyan Chi
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
- School of Pharmaceutical Sciences, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China
| |
Collapse
|
11
|
Chen YC, Lee WC, Chuang YC. Emerging Non-Antibiotic Options Targeting Uropathogenic Mechanisms for Recurrent Uncomplicated Urinary Tract Infection. Int J Mol Sci 2023; 24:ijms24087055. [PMID: 37108218 PMCID: PMC10138837 DOI: 10.3390/ijms24087055] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/06/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Urinary tract infections (UTIs) are the most frequent bacterial infections in the clinical setting. Even without underlying anatomic or functional abnormalities, more than 40% of women experience at least one UTI in their lifetime, of which 30% develop recurrent UTIs (rUTIs) within 6 months. Conventional management with antibiotics for rUTIs may eventually lead to the development of multidrug-resistant uropathogens. Targeting of the pathogenicity of rUTIs, the evolution of uropathogenic Escherichia coli (UPEC), and inadequate host defenses by immune responses should be explored to provide non-antibiotic solutions for the management of rUTIs. The adaptive evolution of UPEC has been observed in several aspects, including colonization, attachment, invasion, and intracellular replication to invade the urothelium and survive intracellularly. Focusing on the antivirulence of UPEC and modulating the immunity of susceptible persons, researchers have provided potential alternative solutions in four categories: antiadhesive treatments (i.e., cranberries and D-mannose), immunomodulation therapies, vaccines, and prophylaxis with topical estrogen therapy and probiotics (e.g., Lactobacillus species). Combination therapies targeting multiple pathogenic mechanisms are expected to be a future trend in UTI management, although some of these treatment options have not been well established in terms of their long-term efficacy. Additional clinical trials are warranted to validate the therapeutic efficacy and durability of these techniques.
Collapse
Affiliation(s)
- Yu-Chen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Department of Urology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
- Regenerative Medicine and Cell Therapy Research Center, Kaohsiung Medical University, Kaohsiung 80756, Taiwan
| | - Wei-Chia Lee
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Yao-Chi Chuang
- Division of Urology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- Center for Shock Wave Medicine and Tissue Engineering, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung 833, Taiwan
| |
Collapse
|
12
|
Roussel C, Chabaud S, Lessard-Lord J, Cattero V, Pellerin FA, Feutry P, Bochard V, Bolduc S, Desjardins Y. UPEC Colonic-Virulence and Urovirulence Are Blunted by Proanthocyanidins-Rich Cranberry Extract Microbial Metabolites in a Gut Model and a 3D Tissue-Engineered Urothelium. Microbiol Spectr 2022; 10:e0243221. [PMID: 35972287 PMCID: PMC9603664 DOI: 10.1128/spectrum.02432-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 07/27/2022] [Indexed: 01/04/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) ecology-pathophysiology from the gut reservoir to its urothelium infection site is poorly understood, resulting in equivocal benefits in the use of cranberry as prophylaxis against urinary tract infections. To add further understanding from the previous findings on PAC antiadhesive properties against UPEC, we assessed in this study the effects of proanthocyanidins (PAC) rich cranberry extract microbial metabolites on UTI89 virulence and fitness in contrasting ecological UPEC's environments. For this purpose, we developed an original model combining a colonic fermentation system (SHIME) with a dialysis cassette device enclosing UPEC and a 3D tissue-engineered urothelium. Two healthy fecal donors inoculated the colons. Dialysis cassettes containing 7log10 CFU/mL UTI89 were immersed for 2h in the SHIME colons to assess the effect of untreated (7-day control diet)/treated (14-day PAC-rich extract) metabolomes on UPEC behavior. Engineered urothelium were then infected with dialysates containing UPEC for 6 h. This work demonstrated for the first time that in the control fecal microbiota condition without added PAC, the UPEC virulence genes were activated upstream the infection site, in the gut. However, PAC microbial-derived cranberry metabolites displayed a remarkable propensity to blunt activation of genes encoding toxin, adhesin/invasins in the gut and on the urothelium, in a donor-dependent manner. Variability in subjects' gut microbiota and ensuing contrasting cranberry PAC metabolism affects UPEC virulence and should be taken into consideration when designing cranberry efficacy clinical trials. IMPORTANCE Uropathogenic Escherichia coli (UPEC) are the primary cause of recurrent urinary tract infections (UTI). The poor understanding of UPEC ecology-pathophysiology from its reservoir-the gut, to its infection site-the urothelium, partly explains the inadequate and abusive use of antibiotics to treat UTI, which leads to a dramatic upsurge in antibiotic-resistance cases. In this context, we evaluated the effect of a cranberry proanthocyanidins (PAC)-rich extract on the UPEC survival and virulence in a bipartite model of a gut microbial environment and a 3D urothelium model. We demonstrated that PAC-rich cranberry extract microbial metabolites significantly blunt activation of UPEC virulence genes at an early stage in the gut reservoir. We also showed that altered virulence in the gut affects infectivity on the urothelium in a microbiota-dependent manner. Among the possible mechanisms, we surmise that specific microbial PAC metabolites may attenuate UPEC virulence, thereby explaining the preventative, yet contentious properties of cranberry against UTI.
Collapse
Affiliation(s)
- Charlène Roussel
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Stéphane Chabaud
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Jacob Lessard-Lord
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Valentina Cattero
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | - Félix-Antoine Pellerin
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Perrine Feutry
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| | | | - Stéphane Bolduc
- Centre de Recherche en Organogenèse Expérimentale de l Université Laval/LOEX, Centre de Recherche du CHU de Québec‐Université Laval, Axe Médecine Régénératrice, Québec, Quebec, Canada
| | - Yves Desjardins
- Institute of Nutrition and Functional Foods (INAF), Faculty of Agriculture and Food Sciences, Laval University, Québec, Quebec, Canada
| |
Collapse
|
13
|
Does Protocatechuic Acid Affect the Activity of Commonly Used Antibiotics and Antifungals? LIFE (BASEL, SWITZERLAND) 2022; 12:life12071010. [PMID: 35888098 PMCID: PMC9316016 DOI: 10.3390/life12071010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 12/14/2022]
Abstract
The aim of this study is to evaluate the efficiency of protocatechuic acid (PCA) in enhancing the commonly used drugs used to fight against nosocomial infection. These drugs are represented by routinely used antibiotics, synthetic chemotherapeutic agents with an antimicrobial spectrum, and antifungals. Three concentrations of PCA were added to 12 types of commercial disks used for antibiotic and antifungal susceptibility and tested against bacterial and yeast strains represented by Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans. The results proved that PCA increased up to 50% of the antibacterial activity, especially that of levofloxacin against Staphylococcus aureus and Escherichia coli. These formulations will lead to new drug design ideas containing a smaller amount of antibiotics with the same effectiveness.
Collapse
|
14
|
Dong Q, Sun L, Fang T, Wang Y, Li Z, Wang X, Wu M, Zhang H. Biofilm Formation of Listeria monocytogenes and Pseudomonas aeruginosa in a Simulated Chicken Processing Environment. Foods 2022; 11:1917. [PMID: 35804733 PMCID: PMC9265453 DOI: 10.3390/foods11131917] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 01/30/2023] Open
Abstract
This study aims to investigate the mono- and dual-species biofilm formation of Listeria monocytogenes and Pseudomonas aeruginosa incubated in different culture mediums, inoculum ratios, and incubation time. The planktonic cell population and motility were examined to understand the correlation with biofilm formation. The results showed that chicken juice significantly inhibited the biofilm formation of L. monocytogenes (p < 0.05). Pseudomonas aeruginosa was the dominant bacteria in the dual-species biofilm formation in the trypticase soy broth medium. The dynamic changes in biofilm formation were not consistent with the different culture conditions. The growth of planktonic L. monocytogenes and P. aeruginosa in the suspension was inconsistent with their growth in the biofilms. There was no significant correlation between motility and biofilm formation of L. monocytogenes and P. aeruginosa. Moreover, scanning electron microscopy (SEM) results revealed that the biofilm structure of L. monocytogenes was loose. At the same time, P. aeruginosa formed a relatively dense network in mono-species biofilms in an initial adhesion stage (24 h). SEM results also showed that P. aeruginosa was dominant in the dual-species biofilms. Overall, these results could provide a theoretical reference for preventing and controlling the biofilm formation of L. monocytogenes and P. aeruginosa in the food processing environment in the future.
Collapse
Affiliation(s)
- Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
| | - Linjun Sun
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
- School of Food and Drug, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China;
| | - Taisong Fang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
| | - Yuan Wang
- School of Food and Drug, Shanghai Zhongqiao Vocational and Technical University, Shanghai 201514, China;
| | - Zhuosi Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
| | - Mengjie Wu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.D.); (L.S.); (T.F.); (Z.L.); (X.W.); (M.W.)
| | - Hongzhi Zhang
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai 200336, China
| |
Collapse
|
15
|
Inhibitory effects of clove and oregano essential oils on biofilm formation of Salmonella Derby isolated from beef processing plant. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
16
|
Marouf R, Mbarga JM, Ermolaev A, Podoprigora I, Smirnova I, Yashina N, Zhigunova A, Martynenkova A. Antibacterial activity of medicinal plants against uropathogenic Escherichia coli. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2022; 14:1-12. [PMID: 35784103 PMCID: PMC9245916 DOI: 10.4103/jpbs.jpbs_124_21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 12/07/2021] [Accepted: 12/13/2021] [Indexed: 11/04/2022] Open
Abstract
Urinary tract infections (UTIs) are one of the most common bacterial infections with uropathogenic Escherichia coli (UPEC) being the most prevalent causative agent in both complicated and uncomplicated UTIs. Antibiotic resistance among UPEC has been already demonstrated against a wide variety of antibiotics and the situation is continuing to deteriorate increasing the rate of recurrence and the difficulty of treatment and prophylaxis. Recently, a big attention has been paid to non-antibiotic approaches as an alternative to conventional antibiotics. Among many strategies, phytotherapy has gained a special attention worldwide. Herbal remedies have been used in traditional medicine since ancient times and they are well known for their effectiveness in treating many health conditions including UTIs. Researches are conducted continuously to validate the use of many medicinal plants against UPEC, investigate their mechanisms of action, and determine their active constituents. Our extensive review of the recent literature revealed that many phytochemicals are shown to target and inhibit a wide variety of bioprocesses in UPEC, such as adhesion, motility, biofilm formation, and quorum sensing. Such natural approaches are very promising in confronting the antibiotic resistance of UPEC and can be further used to develop plant-based strategies and pharmaceutical products to treat and prevent UTIs caused by UPEC.
Collapse
|
17
|
Tao J, Yan S, Wang H, Zhao L, Zhu H, Wen Z. Antimicrobial and antibiofilm effects of total flavonoids from Potentilla kleiniana Wight et Arn on Pseudomonas aeruginosa and its potential application to stainless steel surfaces. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Suriyaprom S, Kaewkod T, Promputtha I, Desvaux M, Tragoolpua Y. Evaluation of Antioxidant and Antibacterial Activities of White Mulberry ( Morus alba L.) Fruit Extracts. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10122736. [PMID: 34961207 PMCID: PMC8703457 DOI: 10.3390/plants10122736] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/06/2021] [Accepted: 12/10/2021] [Indexed: 05/26/2023]
Abstract
The fruit of mulberry trees (Morus sp.), mulberries, are traditionally utilised as a nutritional food and provide health benefits as well as skin nourishment in Thailand. White mulberries (Morus alba L.) from Chiang Mai and Mae Hong Son provinces were evaluated for their antioxidant and antibacterial activities. The antioxidant activities as well as the total phenolic, flavonoid and anthocyanin content of the aqueous and ethanolic extracts were determined using 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis-(3-ethylbenzothiazolin-6-sulfonic acid) (ABTS) and ferric reducing antioxidant power (FRAP) assays. The aqueous extracts of mulberries exhibited the highest antioxidant activity, which was associated with a higher phenolic and anthocyanin content. In testing the potent antibacterial activity against Escherichia coli, Salmonella Typhi, Shigella dysenteriae, Staphylococcus aureus and Vibrio cholerae, the mulberry extracts proved to be quite efficient, especially following water extraction. Time-kill and antibacterial adhesion assays further indicated that aqueous mulberry extracts could inhibit bacterial growth and prevent adhesions of pathogenic enteric bacteria on intestinal epithelial cells. It thus appears that mulberries can potentially be consumed as a good source of antioxidants, containing antimicrobial properties against some pathogenic bacteria which cause gastrointestinal tract infections.
Collapse
Affiliation(s)
- Sureeporn Suriyaprom
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
- Graduate School, Chiang Mai University, Chiang Mai 50200, Thailand
- UMR454 MEDiS, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Thida Kaewkod
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
| | - Itthayakorn Promputtha
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
| | - Mickaël Desvaux
- UMR454 MEDiS, INRAE, Université Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Yingmanee Tragoolpua
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; (S.S.); (T.K.); (I.P.)
- Research Center in Bioresources for Agriculture, Industry, and Medicine, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
19
|
Pycnogenol® Supplementation Prevents Recurrent Urinary Tract Infections/Inflammation and Interstitial Cystitis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9976299. [PMID: 34257695 PMCID: PMC8249140 DOI: 10.1155/2021/9976299] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 11/23/2022]
Abstract
This open pilot registry study aimed to evaluate and compare the prophylactic effects of Pycnogenol® or cranberry extract in subjects with previous, recurrent urinary tract infections (UTI) or interstitial cystitis (IC). Methods. Inclusion criteria were recurrent UTI or IC. One subject group was supplemented with 150 mg/day Pycnogenol®, another with 400 mg/day cranberry extract, and a group served as a control in a 2-month open follow-up. Results. 64 subjects with recurrent UTI/IC completed the study. The 3 groups of subjects were comparable at baseline. All subjects had significant symptoms (minor pain, stranguria, repeated need for urination, and lower, anterior abdominal pain) at inclusion. In the course of the study, the subjects reported no tolerability problems or side effects. The incidence of UTI symptoms, in comparison with the period before inclusion in the standard management (SM) group, decreased significantly; there was a more pronounced decrease in the rate of recurrent infections in the Pycnogenol® group (p < 0.05). The improvement in patients supplemented with Pycnogenol® was significantly superior to the effects of cranberry. At the end of the study, all subjects in the Pycnogenol® group were infection-free (p < 0.05vs. cranberry). Significantly, more subjects were completely symptom-free after 2 months of management with Pycnogenol® (20/22) than with SM (18/22) and cranberry (16/20). Conclusions. This pilot registry suggests that 60 days of Pycnogenol® supplementation possibly decrease the occurrence of UTIs and IC without side effects and with an efficacy superior to cranberry.
Collapse
|
20
|
Wang G, Qing li, Tang W, Ma F, Wang H, Xu X, Qiu W. AprD is important for extracellular proteolytic activity, physicochemical properties and spoilage potential in meat-borne Pseudomonas fragi. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.107868] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
21
|
Wu L, Liu Y, Dong P, Zhang Y, Mao Y, Liang R, Yang X, Zhu L, Luo X. Beef-Based Medium Influences Biofilm Formation of Escherichia coli O157:H7 Isolated from Beef Processing Plants. J Food Prot 2021; 84:1060-1068. [PMID: 33508090 DOI: 10.4315/jfp-20-385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/22/2021] [Indexed: 01/20/2023]
Abstract
ABSTRACT Beef-based medium beef extract (BE) and standard medium tryptic soy broth (TSB) are used as minimally processed food models to study the effects on Escherichia coli O157:H7 biofilm formation. The effects of temperatures (4, 10, 25, 37, and 42°C), pH values (4.5, 5.0, 5.5, 6.0, 7.0, and 8.0), strain characteristics, and the expression of functional genes on the biofilm formation ability of the bacteria were determined. The three tested E. coli O157:H7 strains produced biofilm in both media. Biofilm formation was greater in BE than in TSB (P < 0.05). The strongest biofilm formation capacity of E. coli O157:H7 was achieved at 37°C and pH 7.0. Biofilm formation was significantly inhibited for three tested strains incubated at 4°C. Biofilm formation ability was correlated with swarming in TSB. Biofilm formation was significantly and positively correlated with autoaggregation or hydrophobicity in BE (P < 0.05). At the initial stage of biofilm formation, the expressions of luxS, sdiA, csgD, csgA, flhC, adrA, and rpoS were significantly higher in BE than in TSB (P < 0.05). At the maturity stage, the expressions of luxS, sdiA, csgD, csgA, flhC, csrA, adrB, adrA, iraM, and rpoS were significantly higher in TSB than in BE (P < 0.05). Such information could help in the development of effective biofilm removal technologies to deal with risks of E. coli O157:H7 biofilms in the beef industry. HIGHLIGHTS
Collapse
Affiliation(s)
- Lina Wu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yunge Liu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Pengcheng Dong
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yimin Zhang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Yanwei Mao
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Rongrong Liang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xiaoyin Yang
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Lixian Zhu
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| | - Xin Luo
- Lab of Beef Processing and Quality Control, College of Food Science and Engineering, Shandong Agricultural University, Taian, Shandong, 271018, People's Republic of China
| |
Collapse
|
22
|
Gallique M, Wei K, Maisuria VB, Okshevsky M, McKay G, Nguyen D, Tufenkji N. Cranberry-Derived Proanthocyanidins Potentiate β-Lactam Antibiotics against Resistant Bacteria. Appl Environ Microbiol 2021; 87:e00127-21. [PMID: 33712420 PMCID: PMC8117774 DOI: 10.1128/aem.00127-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/02/2021] [Indexed: 02/06/2023] Open
Abstract
The emergence and spread of extended-spectrum β-lactamases (ESBLs), metallo-β-lactamases (MBLs), or variant low-affinity penicillin-binding proteins (PBPs) pose a major threat to our ability to treat bacterial infection using β-lactam antibiotics. Although combinations of β-lactamase inhibitors with β-lactam agents have been clinically successful, there are no MBL inhibitors in current therapeutic use. Furthermore, recent clinical use of new-generation cephalosporins targeting PBP2a, an altered PBP, has led to the emergence of resistance to these antimicrobial agents. Previous work shows that natural polyphenols such as cranberry-extracted proanthocyanidins (cPAC) can potentiate non-β-lactam antibiotics against Gram-negative bacteria. This study extends beyond previous work by investigating the in vitro effect of cPAC in overcoming ESBL-, MBL-, and PBP2a-mediated β-lactam resistance. The results show that cPAC exhibit variable potentiation of different β-lactams against β-lactam-resistant Enterobacteriaceae clinical isolates as well as ESBL- and MBL-producing E. coli We also discovered that cPAC have broad-spectrum inhibitory properties in vitro on the activity of different classes of β-lactamases, including CTX-M3 ESBL and IMP-1 MBL. Furthermore, we observe that cPAC selectively potentiate oxacillin and carbenicillin against methicillin-resistant but not methicillin-sensitive staphylococci, suggesting that cPAC also interfere with PBP2a-mediated resistance. This study motivates the need for future work to identify the most bioactive compounds in cPAC and to evaluate their antibiotic-potentiating efficacy in vivoIMPORTANCE The emergence of β-lactam-resistant Enterobacteriaceae and staphylococci compromises the effectiveness of β-lactam-based therapy. By acquisition of ESBLs, MBLs, or PBPs, it is highly likely that bacteria may become completely resistant to the most effective β-lactam agents in the near future. In this study, we described a natural extract rich in proanthocyanidins which exerts adjuvant properties by interfering with two different resistance mechanisms. By their broad-spectrum inhibitory ability, cranberry-extracted proanthocyanidins could have the potential to enhance the effectiveness of existing β-lactam agents.
Collapse
Affiliation(s)
- Mathias Gallique
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Kuan Wei
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Vimal B Maisuria
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Mira Okshevsky
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| | - Geoffrey McKay
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
23
|
Straub TJ, Chou WC, Manson AL, Schreiber HL, Walker BJ, Desjardins CA, Chapman SB, Kaspar KL, Kahsai OJ, Traylor E, Dodson KW, Hullar MAJ, Hultgren SJ, Khoo C, Earl AM. Limited effects of long-term daily cranberry consumption on the gut microbiome in a placebo-controlled study of women with recurrent urinary tract infections. BMC Microbiol 2021; 21:53. [PMID: 33596852 PMCID: PMC7890861 DOI: 10.1186/s12866-021-02106-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 01/28/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) affect 15 million women each year in the United States, with > 20% experiencing frequent recurrent UTIs. A recent placebo-controlled clinical trial found a 39% reduction in UTI symptoms among recurrent UTI sufferers who consumed a daily cranberry beverage for 24 weeks. Using metagenomic sequencing of stool from a subset of these trial participants, we assessed the impact of cranberry consumption on the gut microbiota, a reservoir for UTI-causing pathogens such as Escherichia coli, which causes > 80% of UTIs. RESULTS The overall taxonomic composition, community diversity, carriage of functional pathways and gene families, and relative abundances of the vast majority of observed bacterial taxa, including E. coli, were not changed significantly by cranberry consumption. However, one unnamed Flavonifractor species (OTU41), which represented ≤1% of the overall metagenome, was significantly less abundant in cranberry consumers compared to placebo at trial completion. Given Flavonifractor's association with negative human health effects, we sought to determine OTU41 characteristic genes that may explain its differential abundance and/or relationship to key host functions. Using comparative genomic and metagenomic techniques, we identified genes in OTU41 related to transport and metabolism of various compounds, including tryptophan and cobalamin, which have been shown to play roles in host-microbe interactions. CONCLUSION While our results indicated that cranberry juice consumption had little impact on global measures of the microbiome, we found one unnamed Flavonifractor species differed significantly between study arms. This suggests further studies are needed to assess the role of cranberry consumption and Flavonifractor in health and wellbeing in the context of recurrent UTI. TRIAL REGISTRATION Clinical trial registration number: ClinicalTrials.gov NCT01776021 .
Collapse
Affiliation(s)
- Timothy J Straub
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Wen-Chi Chou
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Abigail L Manson
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Henry L Schreiber
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Bruce J Walker
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Christopher A Desjardins
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | - Sinéad B Chapman
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA
| | | | - Orsalem J Kahsai
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Elizabeth Traylor
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Karen W Dodson
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Meredith A J Hullar
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | | | - Ashlee M Earl
- Infectious Disease & Microbiome Program, Broad Institute, 415 Main Street, Cambridge, MA, 02142, USA.
| |
Collapse
|
24
|
Liu F, Jin P, Sun Z, Du L, Wang D, Zhao T, Doyle MP. Carvacrol oil inhibits biofilm formation and exopolysaccharide production of Enterobacter cloacae. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
25
|
Gbinigie OA, Spencer EA, Heneghan CJ, Lee JJ, Butler CC. Cranberry Extract for Symptoms of Acute, Uncomplicated Urinary Tract Infection: A Systematic Review. Antibiotics (Basel) 2020; 10:12. [PMID: 33375566 PMCID: PMC7824375 DOI: 10.3390/antibiotics10010012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Effective alternatives to antibiotics for alleviating symptoms of acute infections may be appealing to patients and enhance antimicrobial stewardship. Cranberry-based products are already in wide use for symptoms of acute urinary tract infection (UTI). The aim of this review was to identify and critically appraise the supporting evidence. METHODS The protocol was registered on PROSPERO. Searches were conducted of Medline, Embase, Amed, Cinahl, The Cochrane library, Clinicaltrials.gov and WHO International Clinical Trials Registry Platform. We included randomised clinical trials (RCTs) and non-randomised studies evaluating the effect of cranberry extract in the management of acute, uncomplicated UTI on symptoms, antibiotic use, microbiological assessment, biochemical assessment and adverse events. Study risk of bias assessments were made using Cochrane criteria. RESULTS We included three RCTs (n = 688) judged to be at moderate risk of bias. One RCT (n = 309) found that advice to consume cranberry juice had no statistically significant effect on UTI frequency symptoms (mean difference (MD) -0.01 (95% CI: -0.37 to 0.34), p = 0.94)), on UTI symptoms of feeling unwell (MD 0.02 (95% CI: -0.36 to 0.39), p = 0.93)) or on antibiotic use (odds ratio 1.27 (95% CI: 0.47 to 3.43), p = 0.64), when compared with promoting drinking water. One RCT (n = 319) found no symptomatic benefit from combining cranberry juice with immediate antibiotics for an acute UTI, compared with placebo juice combined with immediate antibiotics. In one RCT (n = 60), consumption of cranberry extract capsules was associated with a within-group improvement in urinary symptoms and Escherichia coli load at day 10 compared with baseline (p < 0.01), which was not found in untreated controls (p = 0.72). Two RCTs were under-powered to detect differences between groups for outcomes of interest. There were no serious adverse effects associated with cranberry consumption. CONCLUSION The current evidence base for or against the use of cranberry extract in the management of acute, uncomplicated UTIs is inadequate; rigorous trials are needed.
Collapse
Affiliation(s)
- Oghenekome A. Gbinigie
- Nuffield Department of Primary Care Health Sciences, University of Oxford, Radcliffe Primary Care Building, Radcliffe Observatory Quarter, Woodstock Road, Oxford OX2 6GG, UK; (E.A.S.); (C.J.H.); (J.J.L.); (C.C.B.)
| | | | | | | | | |
Collapse
|
26
|
|
27
|
Liu L, Xiao X, Li X, Li M, Li K, Liao X, Shi B. Immobilization of Ytterbium by Plant Polyphenols for Antibiofilm Materials with Highly Effective Activity and Long-Term Stability. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03534] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Lu Liu
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Xiao Xiao
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Sichuan 610065, China
| | - Xia Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Meifeng Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Ke Li
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
| | - Xuepin Liao
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Sichuan 610065, China
| | - Bi Shi
- Department of Biomass Chemistry and Engineering, Sichuan University, Sichuan 610065, China
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Sichuan 610065, China
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Sichuan 610065, China
| |
Collapse
|
28
|
Khan F, Tabassum N, Pham DTN, Oloketuyi SF, Kim YM. Molecules involved in motility regulation in Escherichia coli cells: a review. BIOFOULING 2020; 36:889-908. [PMID: 33028083 DOI: 10.1080/08927014.2020.1826939] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/14/2020] [Accepted: 09/15/2020] [Indexed: 06/11/2023]
Abstract
The initial colonization of the host organism by commensal, probiotic, and pathogenic Escherichia coli strains is an important step in the development of infections and biofilms. Sensing and colonization of host cell surfaces are governed by flagellar and fimbriae/pili appendages, respectively. Biofilm formation confers great advantages on pathogenic E. coli cells such as protection against the host immune system, antimicrobial agents, and several environmental stress factors. The transition from planktonic to sessile physiological states involves several signaling cascades and factors responsible for the regulation of flagellar motility in E. coli cells. These regulatory factors have thus become important targets to control pathogenicity. Hence, attenuation of flagellar motility is considered a potential therapy against pathogenic E. coli. The present review describes signaling pathways and proteins involved in direct or indirect regulation of flagellar motility. Furthermore, application strategies for antimotility natural or synthetic compounds are discussed also.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
| | - Nazia Tabassum
- Industrial Convergence Bionix Engineering, Pukyong National University, Busan, Republic of Korea
| | - Dung Thuy Nguyen Pham
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| | | | - Young-Mog Kim
- Institute of Food Science, Pukyong National University, Busan, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, Republic of Korea
| |
Collapse
|
29
|
Liu F, Jin P, Gong H, Sun Z, Du L, Wang D. Antibacterial and antibiofilm activities of thyme oil against foodborne multiple antibiotics-resistant Enterococcus faecalis. Poult Sci 2020; 99:5127-5136. [PMID: 32988551 PMCID: PMC7598324 DOI: 10.1016/j.psj.2020.06.067] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 06/16/2020] [Accepted: 06/17/2020] [Indexed: 01/09/2023] Open
Abstract
The inhibitory and bactericidal activities of thyme oil against the foodborne multiple antibiotics-resistant Enterococcus faecalis biofilm were evaluated in this study. Gas chromatography-mass spectrometry revealed that more than 70% of the composition of thyme oil is thymol. Crystal violet staining assay showed that 128 and 256 μg/mL thyme oil significantly inhibited the biofilm formation of E. faecalis. The cell adherence of E. faecalis, as shown by its swimming and swarming motilities, was reduced by thyme oil. The exopolysaccharide (EPS) quantification assay showed that thyme oil inhibited the EPS synthesis in E. faecalis biofilms. The 3D-view observations through confocal laser scanning and scanning electron microscopy suggested that cell adherence and biofilm thickness were decreased in thyme oil–treated biofilms. Quantitative real-time analyses showed that the transcription of ebp and epa gene clusters, which were related to cell mobility and EPS production, was inhibited by thyme oil. Thus, thyme oil effectively inhibited the biofilm formation of E. faecalis by affecting cell adherence and EPS synthesis. Furthermore, 2,048 and 4,096 μg/mL thyme oil can effectively inactivate E. faecalis population in the mature E. faecalis biofilms by 5.75 and 7.20 log CFU/mL, respectively, after 30 min of treatment. Thus, thyme oil at different concentrations can be used as an effective antibiofilm or germicidal agent to control E. faecalis biofilms.
Collapse
Affiliation(s)
- Fang Liu
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Panpan Jin
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Hansheng Gong
- School of Food Engineering, Ludong University, Yantai 264025, China
| | - Zhilan Sun
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Lihui Du
- College of Food Science and Engineering, Collaborative Innovation Center for Modern Grain Circulation and Safety, Key Laboratory of Grains and Oils Quality Control and Processing, Nanjing University of Finance and Economics, Nanjing 210023, China.
| | - Daoying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
| |
Collapse
|
30
|
Sihra N, Malde S, Greenwell T, Pakzad M, Kujawa M, Sinclair A. Management of recurrent urinary tract infections in women. JOURNAL OF CLINICAL UROLOGY 2020. [DOI: 10.1177/2051415820939456] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Urinary tract infections are highly prevalent and result in significant patient morbidity as well as large financial costs to healthcare systems. Recurrent urinary tract infections can be challenging for many healthcare professionals, and the repeated use of antibiotics in this patient cohort inevitably contributes to the growing issue of antimicrobial resistance and superbugs. It is essential that these patients are appropriately diagnosed and managed to ensure rapid resolution of symptoms and the prevention of chronic or recurrent urinary tract infections. There are several antibiotic-based options available for the prophylaxis of recurrent urinary tract infections however, in the current era of rising antimicrobial resistance, an awareness of antibiotic stewardship and the use of non-antibiotic alternatives for the treatment and prevention of urinary tract infections is of critical importance. We present a case-based multidisciplinary team discussion to highlight how women with recurrent urinary tract infections should be managed, encouraging the use of non-antibiotic prophylactic measures when suitable. Level of evidence: Level 5
Collapse
|
31
|
Scharf B, Schmidt TJ, Rabbani S, Stork C, Dobrindt U, Sendker J, Ernst B, Hensel A. Antiadhesive natural products against uropathogenic E. coli: What can we learn from cranberry extract? JOURNAL OF ETHNOPHARMACOLOGY 2020; 257:112889. [PMID: 32311481 DOI: 10.1016/j.jep.2020.112889] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Extracts from Cranberry fruits (Vaccinium macrocarpon) are traditionally used against urinary tract infections, mainly due to antiadhesive activity against uropathogenic E. coli (UPEC), but the exact mode of action and compounds, responsible for the activity, are unknown. AIM OF THE STUDY i. To investigate if cranberry extract acts only by a single component or must be assessed as a multi-active-compound preparation; ii to screen isolated cranberry-related natural products under in vitro conditions to pinpoint natural products with antiadhesive effects against UPEC, followed by in silico calculations (QSAR) to predict potential antiadhesive compounds; iii. investigations by using urine samples from cranberry treated volunteers for evaluation on the bacterial transcriptome and the mannose-binding side of FimH, iv. to investigate if besides Tamm Horsfall Protein induction in the kidney, the extract acts also directly against UPEC. MATERIAL AND METHODS Antiadhesive activity of 105 compounds was determined by flow cytometric adhesion assay (UPEC UTI89 on T24 bladder cells). Urine samples from 16 volunteers treated with cranberry extract (p.o., 7 days, 900 mg/day) were used for ex vivo testing concerning influence on the bacterial transcriptome (Illumina RNA-seq) and interaction with the mannose binding domain of type-1 fimbriae. RESULTS i. The antiadhesive effect of cranberry extract cannot be attributed to a single compound or to a single fraction. ii. Unglycosylated flavones and flavonols with bulky substitution of the B ring contribute to the antiadhesive activity. 3'-8″-biflavones and flavolignans (not related to cranberry fruits) were identified as potent antiadhesive compounds against UPEC. iii. QSAR yielded a model with good statistical performance and sufficient internal and external predictive ability. iv. Urine samples from male cranberry-treated volunteers indicated significant interaction with the mannose binding domain of type-1 fimbriae, which correlated with the amount of Tamm-Horsfall Protein in the test samples. v Cranberry extract did not influence the UPEC transcriptome; gene expression of bacterial adhesins (P-, S-fimbrae, curli) was not influenced by the urine samples, while a slight, but non-significant upregulation of type 1 fimbriae was observed. CONCLUSIONS B-ring substituted flavones and flavonols from cranberry contribute to the antiadhesive activity against UPEC by inhibition of the FimH-mediated interaction with the host cell bladder epithelium.
Collapse
Affiliation(s)
- Birte Scharf
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Thomas J Schmidt
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Said Rabbani
- University of Basel, Department Pharmaceutical Sciences, Molecular Pharmacy, Basel, Switzerland
| | - Christoph Stork
- University Hospital Münster, Institute of Hygiene, Münster, Germany
| | - Ulrich Dobrindt
- University Hospital Münster, Institute of Hygiene, Münster, Germany
| | - Jandirk Sendker
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | - Beat Ernst
- University of Basel, Department Pharmaceutical Sciences, Molecular Pharmacy, Basel, Switzerland
| | - Andreas Hensel
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany.
| |
Collapse
|
32
|
Minami M, Takase H, Nakamura M, Makino T. Methanol extract of Lonicera caerulea var. emphyllocalyx fruit has anti-motility and anti-biofilm activity against enteropathogenic Escherichia coli. Drug Discov Ther 2020; 13:335-342. [PMID: 31956232 DOI: 10.5582/ddt.2019.01087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Foodborne diseases have become a worldwide problem that threatens public health and welfare. Enteropathogenic Escherichia coli (EPEC) is one of major pathogens of moderate to severe diarrhea. The increased prevalence of EPEC strains that produce extended spectrum β-lactamase (ESBL) has deepened the problem. The fruit of Lonicera caerulea var. emphyllocalyx (LCE) has been used as a traditional food preservative and medicine in northern temperate zones such as Hokkaido Island, Japan. In this study, we investigated the antibacterial effect of LCE fruit extract (LCEE) against EPEC. The antibacterial activities of LCEE were examined by bacterial growth, time-kill curve, soft-agar motility, electron microscopy, and 96 well-microplate biofilm assays. We also investigated the bacterial mRNA expression of biofilm-associated genes (fliC, csgA, and fimA) by quantitative real-time PCR assays. LCEE was found to suppress the growth, time-kill curve, and spread of EPEC. It also reduced the biofilm formation in a dose-dependent manner. Morphological analysis using transmission and scanning electron microscopy revealed that LCEE diminished the function of flagella resulting in reduced motility and biofilm formation. The mRNA expression of all three biofilm associated genes was downregulated under LCEE treatment. Extracts of the fruit of LCE inhibit the motility and biofilm formation of EPEC as a result of the inhibition of flagella development and function. We propose LCEE as a therapeutic candidate for the effective therapy of EPEC-associated infectious diseases.
Collapse
Affiliation(s)
- Masaaki Minami
- Department of Bacteriology, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japann
| | - Hiroshi Takase
- Core Laboratory, Graduate School of Medical Sciences, Nagoya City University, Nagoya, Japan
| | | | - Toshiaki Makino
- Department of Pharmacognosy, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
33
|
Liu F, Sun Z, Wang F, Liu Y, Zhu Y, Du L, Wang D, Xu W. Inhibition of biofilm formation and exopolysaccharide synthesis of Enterococcus faecalis by phenyllactic acid. Food Microbiol 2020; 86:103344. [DOI: 10.1016/j.fm.2019.103344] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 07/23/2019] [Accepted: 09/27/2019] [Indexed: 12/15/2022]
|
34
|
Hu H, Jia K, Wang H, Xu X, Zhou G, He S. Novel sRNA and regulatory genes repressing the adhesion of Salmonella enteritidis exposed to meat-related environment. Food Control 2020. [DOI: 10.1016/j.foodcont.2019.107030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Bernal‐Mercado A, Gutierrez‐Pacheco MM, Encinas‐Basurto D, Mata‐Haro V, Lopez‐Zavala A, Islas‐Osuna M, Gonzalez‐Aguilar G, Ayala‐Zavala J. Synergistic mode of action of catechin, vanillic and protocatechuic acids to inhibit the adhesion of uropathogenic
Escherichia coli
on silicone surfaces. J Appl Microbiol 2019; 128:387-400. [DOI: 10.1111/jam.14472] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/18/2019] [Accepted: 09/29/2019] [Indexed: 12/19/2022]
Affiliation(s)
- A.T. Bernal‐Mercado
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - M. Melissa Gutierrez‐Pacheco
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - D. Encinas‐Basurto
- Departamento de Fisica. Posgrado en Nanotecnología Universidad de Sonora Hermosillo Sonora Mexico
| | - V. Mata‐Haro
- Coordinacion de Ciencia de los Alimentos Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - A.A. Lopez‐Zavala
- Departamento de Ciencias Químico Biologicas Universidad de Sonora Hermosillo Sonora Mexico
| | - M.A. Islas‐Osuna
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - G.A. Gonzalez‐Aguilar
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| | - J.F. Ayala‐Zavala
- Coordinacion de Tecnologia de Alimentos de Origen Vegetal Centro de Investigacion en Alimentacion y Desarrollo A.C. Hermosillo Sonora Mexico
| |
Collapse
|
36
|
Abstract
Urinary tract infections (UTIs) are highly prevalent, lead to considerable patient morbidity, incur large financial costs to health-care systems and are one of the most common reasons for antibiotic use worldwide. The growing problem of antimicrobial resistance means that the search for nonantibiotic alternatives for the treatment and prevention of UTI is of critical importance. Potential nonantibiotic measures and treatments for UTIs include behavioural changes, dietary supplementation (such as Chinese herbal medicines and cranberry products), NSAIDs, probiotics, D-mannose, methenamine hippurate, estrogens, intravesical glycosaminoglycans, immunostimulants, vaccines and inoculation with less-pathogenic bacteria. Some of the results of trials of these approaches are promising; however, high-level evidence is required before firm recommendations for their use can be made. A combination of these agents might provide the optimal treatment to reduce recurrent UTI, and trials in specific population groups are required.
Collapse
|
37
|
Maisuria VB, Okshevsky M, Déziel E, Tufenkji N. Proanthocyanidin Interferes with Intrinsic Antibiotic Resistance Mechanisms of Gram-Negative Bacteria. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802333. [PMID: 31406662 PMCID: PMC6685479 DOI: 10.1002/advs.201802333] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 04/03/2019] [Indexed: 05/30/2023]
Abstract
Antibiotic resistance is spreading at an alarming rate among pathogenic bacteria in both medicine and agriculture. Interfering with the intrinsic resistance mechanisms displayed by pathogenic bacteria has the potential to make antibiotics more effective and decrease the spread of acquired antibiotic resistance. Here, it is demonstrated that cranberry proanthocyanidin (cPAC) prevents the evolution of resistance to tetracycline in Escherichia coli and Pseudomonas aeruginosa, rescues antibiotic efficacy against antibiotic-exposed cells, and represses biofilm formation. It is shown that cPAC has a potentiating effect, both in vitro and in vivo, on a broad range of antibiotic classes against pathogenic E. coli, Proteus mirabilis, and P. aeruginosa. Evidence that cPAC acts by repressing two antibiotic resistance mechanisms, selective membrane permeability and multidrug efflux pumps, is presented. Failure of cPAC to potentiate antibiotics against efflux pump-defective mutants demonstrates that efflux interference is essential for potentiation. The use of cPAC to potentiate antibiotics and mitigate the development of resistance could improve treatment outcomes and help combat the growing threat of antibiotic resistance.
Collapse
Affiliation(s)
- Vimal B. Maisuria
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Mira Okshevsky
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| | - Eric Déziel
- INRS‐Institut Armand‐Frappier531 boul. des PrairiesLavalQuébecH7V 1B7Canada
| | - Nathalie Tufenkji
- Department of Chemical EngineeringMcGill University3610 University StreetMontrealQuebecH3A 0C5Canada
| |
Collapse
|
38
|
Das Q, Lepp D, Yin X, Ross K, McCallum JL, Warriner K, Marcone MF, Diarra MS. Transcriptional profiling of Salmonella enterica serovar Enteritidis exposed to ethanolic extract of organic cranberry pomace. PLoS One 2019; 14:e0219163. [PMID: 31269043 PMCID: PMC6608956 DOI: 10.1371/journal.pone.0219163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/17/2019] [Indexed: 11/19/2022] Open
Abstract
Non-typhoidal Salmonella enterica serovars continue to be an important food safety issue worldwide. Cranberry (Vaccinium macrocarpon Ait) fruits possess antimicrobial properties due to their various acids and phenolic compounds; however, the underlying mechanism of actions is poorly understood. We evaluated the effects of cranberry extracts on the growth rate of Salmonella enterica serovars Typhimurium, Enteritidis and Heidelberg and on the transcriptomic profile of Salmonella Enteritidis to gain insight into phenotypic and transcriptional changes induced by cranberry extracts on this pathogen. An ethanolic extract from cranberry pomaces (KCOH) and two of its sub-fractions, anthocyanins (CRFa20) and non-anthocyanin polyphenols (CRFp85), were used. The minimum inhibitory (MICs) and bactericidal (MBCs) concentrations of these fractions against tested pathogens were obtained using the broth micro-dilution method according to the Clinical Laboratory Standard Institute’s guidelines. Transcriptional profiles of S. Enteritidis grown in cation-adjusted Mueller-Hinton broth supplemented with or without 2 or 4 mg/ml of KCOH were compared by RNASeq to reveal gene modulations serving as markers for biological activity. The MIC and MBC values of KCOH were 8 and 16 mg/mL, respectively, against all tested S. enterica isolates. The MIC value was 4 mg/mL for both CRFa20 and CRFp85 sub-fractions, and a reduced MBC value was obtained for CRFp85 (4 mg/ml). Treatment of S. Enteritidis with KCOH revealed a concentration-dependent transcriptional signature. Compared to the control, 2 mg/ml of KCOH exposure resulted in 89 differentially expressed genes (DEGs), of which 53 and 36 were downregulated and upregulated, respectively. The upregulated genes included those involved in citrate metabolism, enterobactin synthesis and transport, and virulence. Exposure to 4 mg/ml KCOH led to the modulated expression of 376 genes, of which 233 were downregulated and 143 upregulated, which is 4.2 times more DEGs than from exposure to 2 mg/ml KCOH. The downregulated genes were related to flagellar motility, Salmonella Pathogenicity Island-1 (SPI-1), cell wall/membrane biogenesis, and transcription. Moreover, genes involved in energy production and conversion, carbohydrate transport and metabolism, and coenzyme transport and metabolism were upregulated during exposure to 4 mg/ml KCOH. Overall, 57 genes were differentially expressed (48 downregulated and 9 upregulated) in response to both concentrations. Both concentrations of KCOH downregulated expression of hilA, which is a major SPI-1 transcriptional regulator. This study provides information on the response of Salmonella exposed to cranberry extracts, which could be used in the control of this important foodborne pathogen.
Collapse
Affiliation(s)
- Quail Das
- Department of Food Science, University of Guelph, Ontario, Canada
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Dion Lepp
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
| | - Kelly Ross
- Summerland Research and Development Center, Agriculture and Agri-Food Canada, Summerland, British Columbia, Canada
| | - Jason L. McCallum
- Charlottetown Research and Development Center, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island, Canada
| | - Keith Warriner
- Department of Food Science, University of Guelph, Ontario, Canada
| | | | - Moussa S. Diarra
- Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, Ontario, Canada
- * E-mail:
| |
Collapse
|
39
|
Famuyide IM, Aro AO, Fasina FO, Eloff JN, McGaw LJ. Antibacterial activity and mode of action of acetone crude leaf extracts of under-investigated Syzygium and Eugenia (Myrtaceae) species on multidrug resistant porcine diarrhoeagenic Escherichia coli. BMC Vet Res 2019; 15:162. [PMID: 31118023 PMCID: PMC6532232 DOI: 10.1186/s12917-019-1914-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 05/13/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Diarrhoea, a global economically important disease burden affecting swine and, especially piglets, is commonly caused by infection with entero-toxigenic E. coli (ETEC). Adherence of ETEC to porcine intestinal epithelial cells following infection, is necessary for its pathogenesis. While antimicrobials are commonly given as therapy or as feed additives for prophylaxis against microbial infections, the concern over increased levels of antimicrobial resistance necessitate the search for safe and effective alternatives in livestock feed. Attention is shifting to natural products including plants as suitable alternatives to antimicrobials. The activity of acetone crude leaf extracts of nine under-explored South African endemic plants from the Myrtaceae family with good antimicrobial activity were tested against pathogenic E. coli of porcine origin using a microplate serial dilution method. Bioautography, also with p-iodonitrotetrazolium violet as growth indicator was used to view the number of bioactive compounds in each extract. In vitro toxicity of extracts was determined against Caco-2 cells using the 3-(4,5-dimethythiazolyl-2)-2,5-diphenyltetrazolium bromide reduction assay. The antimicrobial susceptibility of E. coli isolates was tested on a panel of antimicrobials using the Kirby-Bauer agar diffusion method while the anti-adherence mechanism was evaluated using a Caco-2 cell enterocyte anti-adhesion model. RESULTS The MIC of the extracts ranged from 0.07-0.14 mg/mL with S. legatii having the best mean MIC (0.05 mg/mL). Bioautography revealed at least two active bands in each plant extract. The 50% lethal concentration (LC50) values ranged between 0.03-0.66 mg/mL. Eugenia zeyheri least cytotoxic (LC50 = 0.66 mg/ml) while E. natalitia had the highest cytotoxicity (LC50 = 0.03 mg/mL). All the bacteria were completely resistant to doxycycline and colistin sulphate and many of the plant extracts significantly reduced adhesion of E. coli to Caco-2 cells. CONCLUSIONS The extracts of the plants had good antibacterial activity as well as a protective role on intestinal epithelial cells against enterotoxigenic E. coli bacterial adhesion. This supports the potential use of these species in limiting infection causes by E. coli. Some of these plants or extracts may be useful as phytogenic feed additives but it has to be investigated by animal feed trials.
Collapse
Affiliation(s)
- Ibukun M. Famuyide
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Abimbola O. Aro
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Folorunso O. Fasina
- 0000 0001 2107 2298grid.49697.35Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
- Emergency Center for Transboundary Animal Diseases-Food and Agriculture Organization of the United Nations, Dar es Salaam, Tanzania
| | - Jacobus N. Eloff
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| | - Lyndy J. McGaw
- 0000 0001 2107 2298grid.49697.35Phytomedicine Programme, Department of Paraclinical Sciences, Faculty of Veterinary Science, University of Pretoria, Private Bag X04, Onderstepoort, Pretoria, 0110 South Africa
| |
Collapse
|
40
|
Nwabor OF, Vongkamjan K, Voravuthikunchai SP. Antioxidant Properties and Antibacterial Effects of Eucalyptus camaldulensis Ethanolic Leaf Extract on Biofilm Formation, Motility, Hemolysin Production, and Cell Membrane of the Foodborne Pathogen Listeria monocytogenes. Foodborne Pathog Dis 2019; 16:581-589. [PMID: 30998111 DOI: 10.1089/fpd.2019.2620] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Consumer concerns toward chemical preservatives have resulted in increased search for healthy green alternative. In this study, the antioxidant activity and antibacterial effects of Eucalyptus camaldulensis ethanolic leaf extract against Listeria monocytogenes, a serious foodborne pathogen, was evaluated. Total phenolic and flavonoid contents of the extract were 11.10 mg garlic acid equivalent/mg extract and 15.05 mg quercetin equivalent/mg extract, respectively. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration of the extract was 64-128 μg/mL and 256-512 μg/mL, respectively. Time-kill assay revealed growth inhibitory effects after 4-h treatment of the bacteria with the extract. A reduction of ≈2-3 log colony-forming units per milliliter was observed against the tested food and environmental isolates after challenging the pathogens with the extract at MIC for 6 h. Sub-MICs of the extract significantly inhibited motility and listeriolysin O production up to 80%, with 60% inhibition of biofilm formation (p < 0.05). Antioxidant assay revealed free radical scavenging activity with 50% inhibitory concentration (IC50) of 57.07 μg/mL for 2,2-diphenyl-1-picrylhydrazyl and 29.01 μg/mL for ABTS [2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)] assay. Ferric reducing antioxidant power assay further showed a total antioxidant power equivalent to 92.93 μM ascorbic acid equivalent/mg extract. As the extract exhibited profound antilisterial activity and good radical scavenging ability, it might serve as a potential alternative source of biopreservative agent against L. monocytogenes.
Collapse
Affiliation(s)
- Ozioma Forstinus Nwabor
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| | - Kitiya Vongkamjan
- 2Department of Food Technology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, Thailand
| | - Supayang Piyawan Voravuthikunchai
- 1Excellence Research Laboratory on Natural Products, Department of Microbiology, Faculty of Science and Natural Product Research Center of Excellence, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
41
|
Tovaglieri A, Sontheimer-Phelps A, Geirnaert A, Prantil-Baun R, Camacho DM, Chou DB, Jalili-Firoozinezhad S, de Wouters T, Kasendra M, Super M, Cartwright MJ, Richmond CA, Breault DT, Lacroix C, Ingber DE. Species-specific enhancement of enterohemorrhagic E. coli pathogenesis mediated by microbiome metabolites. MICROBIOME 2019; 7:43. [PMID: 30890187 PMCID: PMC6425591 DOI: 10.1186/s40168-019-0650-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 02/21/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Species-specific differences in tolerance to infection are exemplified by the high susceptibility of humans to enterohemorrhagic Escherichia coli (EHEC) infection, whereas mice are relatively resistant to this pathogen. This intrinsic species-specific difference in EHEC infection limits the translation of murine research to human. Furthermore, studying the mechanisms underlying this differential susceptibility is a difficult problem due to complex in vivo interactions between the host, pathogen, and disparate commensal microbial communities. RESULTS We utilize organ-on-a-chip (Organ Chip) microfluidic culture technology to model damage of the human colonic epithelium induced by EHEC infection, and show that epithelial injury is greater when exposed to metabolites derived from the human gut microbiome compared to mouse. Using a multi-omics approach, we discovered four human microbiome metabolites-4-methyl benzoic acid, 3,4-dimethylbenzoic acid, hexanoic acid, and heptanoic acid-that are sufficient to mediate this effect. The active human microbiome metabolites preferentially induce expression of flagellin, a bacterial protein associated with motility of EHEC and increased epithelial injury. Thus, the decreased tolerance to infection observed in humans versus other species may be due in part to the presence of compounds produced by the human intestinal microbiome that actively promote bacterial pathogenicity. CONCLUSION Organ-on-chip technology allowed the identification of specific human microbiome metabolites modulating EHEC pathogenesis. These identified metabolites are sufficient to increase susceptibility to EHEC in our human Colon Chip model and they contribute to species-specific tolerance. This work suggests that higher concentrations of these metabolites could be the reason for higher susceptibility to EHEC infection in certain human populations, such as children. Furthermore, this research lays the foundation for therapeutic-modulation of microbe products in order to prevent and treat human bacterial infection.
Collapse
Affiliation(s)
- Alessio Tovaglieri
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Alexandra Sontheimer-Phelps
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Biology, University of Freiburg, 79085, Freiburg, Germany
| | - Annelies Geirnaert
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Rachelle Prantil-Baun
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Diogo M Camacho
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - David B Chou
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, 02115, USA
| | - Sasan Jalili-Firoozinezhad
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Department of Bioengineering and iBB, Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, 1649-004, Lisbon, Portugal
| | - Tomás de Wouters
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Magdalena Kasendra
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
- Present Address: Emulate Inc., 27 Drydock Avenue, Boston, MA, 02210, USA
| | - Michael Super
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Mark J Cartwright
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Camilla A Richmond
- Division of Gastroenterology, Boston Children's Hospital, Boston, MA, 02115, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02139, USA
| | - David T Breault
- Department of Pediatrics, Harvard Medical School, Boston, MA, 02115, USA
- Harvard Stem Cell Institute, Harvard University, Boston, MA, 02139, USA
- Division of Endocrinology, Boston Children's Hospital, Boston, MA, 02115, USA
| | - Christophe Lacroix
- Department of Health Sciences and Technology, ETH Zurich, 8092, Zurich, Switzerland
| | - Donald E Ingber
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, MA, 02139, USA.
| |
Collapse
|
42
|
ROSA ENDAH, MARDHIAH BATUBARA UMMI, SUPARJO SUPARJO. Chemotactic Motility and Growth of Pseudomonas fluorescens Towards Glucose Concentration. MICROBIOLOGY INDONESIA 2019. [DOI: 10.5454/mi.13.2.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
43
|
Ranfaing J, Dunyach-Remy C, Lavigne JP, Sotto A. Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) in reducing the motility and the biofilm formation of uropathogenic Escherichia coli. PLoS One 2018; 13:e0202609. [PMID: 30138443 PMCID: PMC6107218 DOI: 10.1371/journal.pone.0202609] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 08/06/2018] [Indexed: 12/28/2022] Open
Abstract
One strategy to prevent urinary tract infections is the use of natural products such as cranberry (Vaccinium macrocarpon) and propolis. The objective of this study was to evaluate the impact of these products alone and combined on the motility and biofilm formation of a collection of representative uropathogenic Escherichia coli (UPEC). Motility was evaluated by the swarming and swimming capacity of the isolates in presence/absence of cranberry ± propolis. Early and late biofilm formation was observed with the Biofilm Ring test (BioFilm Control) and the crystal violet method. Cranberry alone was seen to have a variable effect on motility and biofilm formation unrelated to bacterial characteristics, but a reduced motility and biofilm formation was observed for all the isolates in the presence of cranberry + propolis. These results suggest that cranberry alone doesn’t work on all the E. coli strains and propolis potentiates the effect of cranberry on UPEC, representing a new strategy to prevent recurrent urinary tract infections.
Collapse
Affiliation(s)
- Jérémy Ranfaing
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
| | - Catherine Dunyach-Remy
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Microbiology, Nîmes University Hospital, Nîmes, France
| | - Jean-Philippe Lavigne
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Microbiology, Nîmes University Hospital, Nîmes, France
- * E-mail:
| | - Albert Sotto
- French National Institute of Health and Medical Research Unit 1047, University Montpellier, Faculty of Medicine, Nîmes, France
- Department of Infectious Diseases, Nîmes University Hospital, Nîmes, France
| |
Collapse
|
44
|
Sundararajan A, Rane HS, Ramaraj T, Sena J, Howell AB, Bernardo SM, Schilkey FD, Lee SA. Cranberry-derived proanthocyanidins induce a differential transcriptomic response within Candida albicans urinary biofilms. PLoS One 2018; 13:e0201969. [PMID: 30089157 PMCID: PMC6082538 DOI: 10.1371/journal.pone.0201969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 07/25/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is one of the most common causes of hospital-acquired urinary tract infections (UTIs). However, azoles are poorly active against biofilms, echinocandins do not achieve clinically useful urinary concentrations, and amphotericin B exhibits severe toxicities. Thus, novel strategies are needed to prevent Candida UTIs, which are often associated with urinary catheter biofilms. We previously demonstrated that cranberry-derived proanthocyanidins (PACs) prevent C. albicans biofilm formation in an in vitro urinary model. To elucidate functional pathways unique to urinary biofilm development and PAC inhibition, we investigated the transcriptome of C. albicans in artificial urine (AU), with and without PACs. C. albicans biofilm and planktonic cells were cultivated with or without PACs. Genome-wide expression analysis was performed by RNA sequencing. Differentially expressed genes were determined using DESeq2 software; pathway analysis was performed using Cytoscape. Approximately 2,341 of 6,444 total genes were significantly expressed in biofilm relative to planktonic cells. Functional pathway analysis revealed that genes involved in filamentation, adhesion, drug response and transport were up-regulated in urinary biofilms. Genes involved in carbon and nitrogen metabolism and nutrient response were down-regulated. In PAC-treated urinary biofilms compared to untreated control biofilms, 557 of 6,444 genes had significant changes in gene expression. Genes downregulated in PAC-treated biofilms were implicated in iron starvation and adhesion pathways. Although urinary biofilms share key features with biofilms formed in other environments, many genes are uniquely expressed in urinary biofilms. Cranberry-derived PACs interfere with the expression of iron acquisition and adhesion genes within urinary biofilms.
Collapse
Affiliation(s)
- Anitha Sundararajan
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Hallie S. Rane
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States of America
| | | | - Johnny Sena
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Amy B. Howell
- Marucci Center for Blueberry and Cranberry Research and Extension, Rutgers, The State University of New Jersey, Chatsworth, NJ, United States of America
| | - Stella M. Bernardo
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
| | - Faye D. Schilkey
- National Center for Genome Resources, Santa Fe, NM, United States of America
| | - Samuel A. Lee
- Section of Infectious Diseases, New Mexico VA Healthcare System, Albuquerque, NM, United States of America
- Division of Infectious Diseases, University of New Mexico Health Science Center, Albuquerque, NM, United States of America
| |
Collapse
|
45
|
Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Rep 2018; 8:10706. [PMID: 30013052 PMCID: PMC6048107 DOI: 10.1038/s41598-018-29082-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the most prevalent bacteria isolated in urinary tract infections (UTI), is now frequently resistant to antibiotics used to treat this pathology. The antibacterial properties of cranberry and propolis could reduce the frequency of UTIs and thus the use of antibiotics, helping in the fight against the emergence of antibiotic resistance. Transcriptomic profiles of a clinical UPEC strain exposed to cranberry proanthocyanidins alone (190 µg/mL), propolis alone (102.4 µg/mL) and a combination of both were determined. Cranberry alone, but more so cranberry + propolis combined, modified the expression of genes involved in different essential pathways: down-expression of genes involved in adhesion, motility, and biofilm formation, and up-regulation of genes involved in iron metabolism and stress response. Phenotypic assays confirmed the decrease of motility (swarming and swimming) and biofilm formation (early formation and formed biofilm). This study showed for the first time that propolis potentiated the effect of cranberry proanthocyanidins on adhesion, motility, biofilm formation, iron metabolism and stress response of UPEC. Cranberry + propolis treatment could represent an interesting new strategy to prevent recurrent UTI.
Collapse
|
46
|
dos Santos JF, Tintino SR, de Freitas TS, Campina FF, de A. Menezes IR, Siqueira-Júnior JP, Coutinho HD, Cunha FA. In vitro e in silico evaluation of the inhibition of Staphylococcus aureus efflux pumps by caffeic and gallic acid. Comp Immunol Microbiol Infect Dis 2018; 57:22-28. [DOI: 10.1016/j.cimid.2018.03.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 03/05/2018] [Indexed: 02/07/2023]
|
47
|
Wang H, Qi J, Dong Y, Li Y, Xu X, Zhou G. Characterization of attachment and biofilm formation by meat-borne Enterobacteriaceae strains associated with spoilage. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.08.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Peron G, Sut S, Pellizzaro A, Brun P, Voinovich D, Castagliuolo I, Dall'Acqua S. The antiadhesive activity of cranberry phytocomplex studied by metabolomics: Intestinal PAC-A metabolites but not intact PAC-A are identified as markers in active urines against uropathogenic Escherichia coli. Fitoterapia 2017; 122:67-75. [DOI: 10.1016/j.fitote.2017.08.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 08/22/2017] [Accepted: 08/23/2017] [Indexed: 12/22/2022]
|
49
|
Development of an HTS system to identify natural chemicals that specifically inhibit Escherichia coli O157:H7 adhesion to host cells. Food Control 2017. [DOI: 10.1016/j.foodcont.2016.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Cranberry-derived proanthocyanidins impair virulence and inhibit quorum sensing of Pseudomonas aeruginosa. Sci Rep 2016; 6:30169. [PMID: 27503003 PMCID: PMC4977528 DOI: 10.1038/srep30169] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/08/2016] [Indexed: 01/28/2023] Open
Abstract
Bacteria have evolved multiple strategies for causing infections that include producing virulence factors, undertaking motility, developing biofilms, and invading host cells. N-acylhomoserine lactone (AHL)-mediated quorum sensing (QS) tightly regulates the expression of multiple virulence factors in the opportunistic pathogenic bacterium Pseudomonas aeruginosa. Thus, inhibiting QS could lead to health benefits. In this study, we demonstrate an anti-virulence activity of a cranberry extract rich in proanthocyanidins (cerPAC) against P. aeruginosa in the model host Drosophila melanogaster and show this is mediated by QS interference. cerPAC reduced the production of QS-regulated virulence determinants and protected D. melanogaster from fatal infection by P. aeruginosa PA14. Quantification of AHL production using liquid chromatography-mass spectrometry confirmed that cerPAC effectively reduced the level of AHLs produced by the bacteria. Furthermore, monitoring QS signaling gene expression revealed that AHL synthases LasI/RhlI and QS transcriptional regulators LasR/RhlR genes were inhibited and antagonized, respectively, by cerPAC. Molecular docking studies suggest that cranberry-derived proanthocyanidin binds to QS transcriptional regulators, mainly interacting with their ligand binding sites. These findings provide insights into the underlying mechanisms of action of a cerPAC to restrict the virulence of P. aeruginosa and can have implications in the development of alternative approaches to control infections.
Collapse
|