1
|
Lopes W, Deolindo P, de Souza Costa AA, Gomes da Silva MT, de Miranda OP, Pacheco GJ. Optimization of a medium composition for the heterologous production of Alcaligenes faecalis penicillin G acylase in Bacillus megaterium. Protein Expr Purif 2023:106327. [PMID: 37348663 DOI: 10.1016/j.pep.2023.106327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/06/2023] [Accepted: 06/20/2023] [Indexed: 06/24/2023]
Abstract
Penicillin G acylase (PGA) is a strategic enzyme in the production processes of beta-lactam antibiotics. High demand for β-lactam semisynthetic antibiotics explain the genetic and biochemical engineering strategies devoted towards novel ways for PGA production and application. This work presents a fermentation process for the heterologous production of PGA from Alcaligenes faecalis in Bacillus megaterium with optimization. The thermal stability from A. faecalis PGA is considerably higher than other described PGA and the recombinant enzyme is secreted to the culture medium by B. megaterium, which facilitates the separation and purification steps. Media optimization using fractional factorial design experiments was used to identify factors related to PGA activity detection in supernatant and cell lysates. The optimized medium resulted in almost 6-fold increased activity in the supernatant samples when compared with the basal medium. Maximum enzyme activity in optimized medium composition achieves values between 135 and 140 IU/ml. The results suggest a promising model for recombinant production of PGA in B. megaterium with possible extracellular expression of the active enzyme.
Collapse
Affiliation(s)
- Wagner Lopes
- Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | - Poliana Deolindo
- Institute of Drug Technology, Oswaldo Cruz Foundation, Rio de Janeiro, RJ, Brazil
| | | | | | | | | |
Collapse
|
2
|
The "beauty in the beast"-the multiple uses of Priestia megaterium in biotechnology. Appl Microbiol Biotechnol 2021; 105:5719-5737. [PMID: 34263356 PMCID: PMC8390425 DOI: 10.1007/s00253-021-11424-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Abstract Over 30 years, the Gram-positive bacterium Priestia megaterium (previously known as Bacillus megaterium) was systematically developed for biotechnological applications ranging from the production of small molecules like vitamin B12, over polymers like polyhydroxybutyrate (PHB) up to the in vivo and in vitro synthesis of multiple proteins and finally whole-cell applications. Here we describe the use of the natural vitamin B12 (cobalamin) producer P. megaterium for the elucidation of the biosynthetic pathway and the subsequent systematic knowledge-based development for production purposes. The formation of PHB, a natural product of P. megaterium and potential petro-plastic substitute, is covered and discussed. Further important biotechnological characteristics of P. megaterium for recombinant protein production including high protein secretion capacity and simple cultivation on value-added carbon sources are outlined. This includes the advanced system with almost 30 commercially available expression vectors for the intracellular and extracellular production of recombinant proteins at the g/L scale. We also revealed a novel P. megaterium transcription-translation system as a complementary and versatile biotechnological tool kit. As an impressive biotechnology application, the formation of various cytochrome P450 is also critically highlighted. Finally, whole cellular applications in plant protection are completing the overall picture of P. megaterium as a versatile giant cell factory. Key points • The use of Priestia megaterium for the biosynthesis of small molecules and recombinant proteins through to whole-cell applications is reviewed. • P. megaterium can act as a promising alternative host in biotechnological production processes.
Collapse
|
3
|
Correlation between the quality and microbial community of natural-type and artificial-type Yongchuan Douchi. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110788] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
4
|
Cuaxinque-Flores G, Aguirre-Noyola JL, Hernández-Flores G, Martínez-Romero E, Romero-Ramírez Y, Talavera-Mendoza O. Bioimmobilization of toxic metals by precipitation of carbonates using Sporosarcina luteola: An in vitro study and application to sulfide-bearing tailings. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138124. [PMID: 32268286 DOI: 10.1016/j.scitotenv.2020.138124] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Metal release from mining wastes is a major environmental problem affecting ecosystems that requires effective, low-cost strategies for prevention and reclamation. The capacity of two strains (UB3 and UB5) of Sporosarcina luteola was investigated to induce the sequestration of metals by precipitation of carbonates in vitro and under microcosm conditions. These strains carry the ureC gene and have high urease activity. Also, they are highly resistant to metals and have the capacity for producing metallophores and arsenophores. SEM, EDX and XRD reveal that the two strains induced precipitation of calcite, vaterite and magnesian calcite as well as several (M2+)CO3 such as hydromagnesite (Mg2+), rhodochrosite (Mn2+), cerussite (Pb2+), otavite (Cd2+), strontianite (Sr2+), witherite (Ba2+) and hydrozincite (Zn2+) in vitro. Inoculation of the mixed culture of UB3+UB5 in tailings increased the pH and induced the precipitation of vaterite, calcite and smithsonite enhancing biocementation and reducing pore size and permeability slowing down the oxidation of residual sulfides. Results further demonstrated that the strains of S. luteola immobilize bioavailable toxic elements through the precipitation and coprecipitation of thermodynamically stable (M2+)CO3, Fe-Mn oxyhydroxides and organic chelates.
Collapse
Affiliation(s)
- Gustavo Cuaxinque-Flores
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico
| | - José Luis Aguirre-Noyola
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Giovanni Hernández-Flores
- CONACyT-Universidad Autónoma de Guerrero, Escuela Superior de Ciencias de la Tierra, Ex hacienda San Juan Bautista s/n, Taxco el Viejo, Guerrero C.P. 40323, Mexico
| | - Esperanza Martínez-Romero
- Programa de Ecología Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Chamilpa, 62210 Cuernavaca, Morelos, Mexico
| | - Yanet Romero-Ramírez
- Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av Lázaro Cárdenas, Ciudad Universitaria, 39070 Chilpancingo, Guerrero, Mexico
| | - Oscar Talavera-Mendoza
- Maestría en Recursos Naturales y Ecología, Facultad de Ecología Marina, Universidad Autónoma de Guerrero, Gran vía tropical 20, Fraccionamiento Las playas, Acapulco de Juárez, Guerrero, Mexico; Escuela Superior de Ciencias de la Tierra, Universidad Autónoma de Guerrero, Ex-hacienda San Juan Bautista s/n, C.P. 40323 Taxco el Viejo, Guerrero, Mexico.
| |
Collapse
|
5
|
Zhao CC, Kim DW, Eun JB. Physicochemical properties and bacterial community dynamics of hongeo, a Korean traditional fermented skate product, during fermentation at 10 °C. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.01.048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Raff J, Matys S, Suhr M, Vogel M, Günther T, Pollmann K. S-Layer-Based Nanocomposites for Industrial Applications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 940:245-279. [PMID: 27677516 DOI: 10.1007/978-3-319-39196-0_11] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
This chapter covers the fundamental aspects of bacterial S-layers: what are S-layers, what is known about them, and what are their main features that makes them so interesting for the production of nanostructures. After a detailed introduction of the paracrystalline protein lattices formed by S-layer systems in nature the chapter explores the engineering of S-layer-based materials. How can S-layers be used to produce "industry-ready" nanoscale bio-composite materials, and which kinds of nanomaterials are possible (e.g., nanoparticle synthesis, nanoparticle immobilization, and multifunctional coatings)? What are the advantages and disadvantages of S-layer-based composite materials? Finally, the chapter highlights the potential of these innovative bacterial biomolecules for future technologies in the fields of metal filtration, catalysis, and bio-functionalization.
Collapse
Affiliation(s)
- Johannes Raff
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany.
| | - Sabine Matys
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Matthias Suhr
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Manja Vogel
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Tobias Günther
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| | - Katrin Pollmann
- Department of Processing, Helmholtz-Zentrum Dresden-Rossendorf, Helmholtz Institute Freiberg for Resource Technology, 51 01 19, 01314, Dresden, Germany
| |
Collapse
|
7
|
Autodisplay of an archaeal γ-lactamase on the cell surface of Escherichia coli using Xcc_Est as an anchoring scaffold and its application for preparation of the enantiopure antiviral drug intermediate (-) vince lactam. Appl Microbiol Biotechnol 2014; 98:6991-7001. [PMID: 24756321 DOI: 10.1007/s00253-014-5704-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 01/30/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
Abstract
At present, autotransporter protein mediated surface display has opened a new dimension in the development of whole-cell biocatalysts. Here, we report the identification of a novel autotransporter Xcc_Est from Xanthomonas campestris pv campestris 8004 by bioinformatic analysis and application of Xcc_Est as an anchoring motif for surface display of γ-lactamase (Gla) from thermophilic archaeon Sulfolobus solfataricus P2 in Escherichia coli. The localization of γ-lactamase in the cell envelope was monitored by Western blot, activity assay and flow cytometry analysis. Either the full-length or truncated Xcc_Est could efficiently transport γ-lactamase to the cell surface. Compared with the free enzyme, the displayed γ-lactamase exhibited optimum temperature of 30 °C other than 90 °C, with a substantial decrease of 60 °C. Under the preparation system, the engineered E. coli with autodisplayed γ-lactamase converted 100 g racemic vince lactam to produce 49.2 g (-) vince lactam at 30 °C within 4 h. By using chiral HPLC, the ee value of the produced (-) vince lactam was determined to be 99.5 %. The whole-cell biocatalyst exhibited excellent stability under the operational conditions. Our results indicate that the E. coli with surface displayed γ-lactamase is an efficient and economical whole cell biocatalyst for preparing the antiviral drug intermediate (-) vince lactam at mild temperature, eliminating expensive energy cost performed at high temperature.
Collapse
|
8
|
Baneyx F, Matthaei JF. Self-assembled two-dimensional protein arrays in bionanotechnology: from S-layers to designed lattices. Curr Opin Biotechnol 2013; 28:39-45. [PMID: 24832073 DOI: 10.1016/j.copbio.2013.11.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/30/2013] [Accepted: 11/01/2013] [Indexed: 02/04/2023]
Abstract
Although the crystalline S-layer arrays that form the exoskeleton of many archaea and bacteria have been studied for decades, a long-awaited crystal structure coupled with a growing understanding of the S-layer assembly process are injecting new excitement in the field. The trend is amplified by computational strategies that allow for in silico design of protein building blocks capable of self-assembling into 2D lattices and other prescribed quaternary structures. We review these and other recent developments toward achieving unparalleled control over the geometry, chemistry and function of protein-based 2D objects from the nanoscale to the mesoscale.
Collapse
Affiliation(s)
- François Baneyx
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA.
| | - James F Matthaei
- Department of Chemical Engineering, University of Washington, Box 351750, Seattle, WA 98195-1750, USA
| |
Collapse
|