1
|
Wang XW, Zhou LW. Spatiotemporal Pattern of a Macrofungal Genus Phylloporia ( Basidiomycota) Revealing Its Adaptive Evolution in China. J Fungi (Basel) 2024; 10:780. [PMID: 39590699 PMCID: PMC11595563 DOI: 10.3390/jof10110780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/27/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The understanding of distribution and the evolutionary scenario is crucial for the utilization and conservation of biological resources; nevertheless, such explorations rarely focus on macrofungi. The current study selects a macrofungal genus, Phylloporia, and explores its spatiotemporal pattern in China. A total of 117 available occurrence records of Phylloporia in China were summarized for the current analyses. Ensemble modeling supports the highly suitable habitat of Phylloporia concentrated in southern, especially southeastern, China, where the ancestor of Phylloporia originated 77.74 million years ago and then dispersed to other parts of China. Benefitting from the available suitable habitats, Phylloporia rapidly diversified after its divergence in Southeast China. Then, the net diversification rate slowed down when the rapidly diversifying species filled available niches in Southeast China and the dispersed species in other parts of China inhabited the less suitable and unsuitable habitats. During adaptive evolution, precipitation, temperature and the host plant are the major environmental variables that shape the spatiotemporal pattern of Phylloporia. In conclusion, the current study reveals the adaptive evolutionary scenario of Phylloporia and provides the first exploration of the spatiotemporal pattern of macrofungi.
Collapse
Affiliation(s)
- Xue-Wei Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li-Wei Zhou
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| |
Collapse
|
2
|
Eaton WD, Hamilton DA. Increasing Ages of Inga punctata Tree Soils Facilitate Greater Fungal Community Abundance and Successional Development, and Efficiency of Microbial Organic Carbon Utilization. Microorganisms 2024; 12:1996. [PMID: 39458304 PMCID: PMC11509470 DOI: 10.3390/microorganisms12101996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/28/2024] Open
Abstract
Leguminous Inga trees are thought to enhance soil carbon (C) accumulation following reforestation, through mostly unknown mechanisms. This study amplified soil DNA using the ITS1F and ITS4 primers for PCR and Illumina MiSeq methods to identify fungal taxa, and traditional C analysis methods to evaluate how planted 4-, 8-, and 11-year-old Inga punctata trees affected soil fungal community compositions and C utilization patterns compared to old-growth I. punctata trees and an adjacent unplanted pasture within the same reforestation zone in Monteverde, Costa Rica. Along the tree age gradient, the planted I. punctata trees enhanced the tree soil C capture capacity, as indicated by increased levels of soil biomass C, Respiration, and efficiency of organic C use (with lower qCO2 values), and development of increasingly more abundant, stable, and successionally developed fungal communities, including those associated with the decomposition of complex organic C compounds. The level and strength of differences coincided with differences in the time of separation between the pasture and tree age or between the different tree ages. Fungal taxa were also identified as potential indicators of the early and late stages of soil recovery. Thus, planting I. punctata should be part of future reforestation strategies used in this region of the Monteverde Cloud Forest in Costa Rica.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Dyson College, Pace University, New York, NY 10038, USA
- Department of Environment and Development, University for Peace, El Rodeo de Mora, San José 10701, Costa Rica
| | - Debra A. Hamilton
- Vermont Cooperative Fish and Wildlife Research Unit, Rubenstein School of the Environment and Natural Resources, University of Vermont, Burlington, VT 05405, USA;
- Monteverde Institute, Monteverde, Puntarenas 60109, Costa Rica
| |
Collapse
|
3
|
Wang Q, Cole JR. Updated RDP taxonomy and RDP Classifier for more accurate taxonomic classification. Microbiol Resour Announc 2024; 13:e0106323. [PMID: 38436268 PMCID: PMC11008197 DOI: 10.1128/mra.01063-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
The RDP Classifier is one of the most popular machine learning approaches for taxonomic classification due to its robustness and relatively high accuracy. Both the RDP taxonomy and RDP Classifier have been updated to incorporate newly described taxa and recent changes to prokaryotic nomenclature.
Collapse
Affiliation(s)
- Qiong Wang
- Health & Biosciences, International Flavors & Fragrances, Inc., Wilmington, Delaware, USA
| | - James R. Cole
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
4
|
Liu F, Ryu T, Ravasi T, Wang X, Wang G, Li Z. Niche-dependent sponge hologenome expression profiles and the host-microbes interplay: a case of the hawaiian demosponge Mycale Grandis. ENVIRONMENTAL MICROBIOME 2024; 19:22. [PMID: 38589941 PMCID: PMC11000336 DOI: 10.1186/s40793-024-00563-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 03/14/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Most researches on sponge holobionts focus primarily on symbiotic microbes, yet data at the level of the sponge hologenome are still relatively scarce. Understanding of the sponge host and its microbial gene expression profiles and the host-microbes interplay in different niches represents a key aspect of sponge hologenome. Using the Hawaiian demosponge Mycale grandis in different niches as a model, i.e. on rocks, on the surface of coral Porites compressa, under alga Gracilaria salicornia, we compared the bacterial and fungal community structure, functional gene diversity, expression pattern and the host transcriptome by integrating open-format (deep sequencing) and closed-format (GeoChip microarray) high-throughput techniques. RESULTS Little inter-niche variation in bacterial and fungal phylogenetic diversity was detected for M. grandis in different niches, but a clear niche-dependent variability in the functional gene diversity and expression pattern of M. grandis host and its symbiotic microbiota was uncovered by GeoChip microarray and transcriptome analyses. Particularly, sponge host genes related to innate immunity and microbial recognition showed a strong correlation with the microbial symbionts' functional gene diversity and transcriptional richness in different niches. The cross-niche variability with respect to the symbiont functional gene diversity and the transcriptional richness of M. grandis holobiont putatively reflects the interplay of niche-specific selective pressure and the symbiont functional diversity. CONCLUSIONS Niche-dependent gene expression profiles of M. grandis hologenome and the host-microbes interplay were suggested though little inter-niche variation in bacterial and fungal diversity was detected, particularly the sponge innate immunity was found to be closely related to the symbiotic microbes. Altogether, these findings provide novel insights into the black box of one sponge holobiont in different niches at the hologenome level.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China
| | - Taewoo Ryu
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Timothy Ravasi
- Marine Climate Change Unit, Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, 904-0495, Okinawa, Japan
| | - Xin Wang
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, 32611, Gainesville, FL, USA
| | - Guangyi Wang
- School of Environmental Science and Engineering, Tianjin University, 300072, Tianjin, P. R. China
| | - Zhiyong Li
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University, 200240, Shanghai, P. R. China.
| |
Collapse
|
5
|
Alleyne A, Mason S, Vallès Y. Characterization of the Cassava Mycobiome in Symptomatic Leaf Tissues Displaying Cassava Superelongation Disease. J Fungi (Basel) 2023; 9:1130. [PMID: 38132731 PMCID: PMC10743849 DOI: 10.3390/jof9121130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023] Open
Abstract
Superelongation disease (SED) is a fungal disease that affects cassava in the Caribbean. The symptoms include the appearance of dry necrotic spots and lesions on the leaves, which may severely affect the plant yield. However, the primary causal pathogen is difficult to culture and isolate in the lab because of its slow growth and potential contamination from faster-growing organisms. In addition, the leaf symptoms can be confused with those caused by other pathogens that produce similar necrotic spots and scab-like lesions. There is also little or no information on the contribution of endophytes, if any, to disease symptoms in cassava, a plant where the disease is prevalent. Therefore, this study aimed to characterize the fungal communities in cassava associated with SED symptoms by analyzing gross fungal morphology and performing metagenomics profiling. First, several individual pathogenic fungi were isolated and cultured from diseased cassava leaf tissues from seven locations in Barbados (BB). Both culture isolation and molecular community analyses showed the presence of several other fungi in the disease microenvironment of symptomatic cassava leaves. These included Fusarium, Colletotrichum, and Alternaria species and the suspected species Elsinoë brasiliensis synonym Sphaceloma manihoticola. Additionally, a community analysis using ITS2 amplicon sequencing of 21 symptomatic leaf tissues from BB, St. Vincent and the Grenadines (SVG), Trinidad and Tobago (TT), and Jamaica (JA) revealed that the disease symptoms of superelongation may also result from the interactions of fungal communities in the mycobiome, including Elsinoë species and other fungi such as Colletotrichum, Cercospora, Alternaria, and Fusarium. Therefore, we suggest that examining the pathobiome concept in SED in the future is necessary.
Collapse
Affiliation(s)
- Angela Alleyne
- Faculty of Science and Technology, The University of the West Indies, Cave Hill Campus, Bridgetown BB11000, Barbados (Y.V.)
| | | | | |
Collapse
|
6
|
Naumova NB, Barsukov PA, Baturina OA, Kabilov MR. Soil Alveolata diversity in the undisturbed steppe and wheat agrocenoses under different tillage. Vavilovskii Zhurnal Genet Selektsii 2023; 27:703-711. [PMID: 38023813 PMCID: PMC10643539 DOI: 10.18699/vjgb-23-81] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 12/01/2023] Open
Abstract
Microeukaryotes are vital for maintaining soil quality and ecosystem functioning, however, their communities are less studied than bacterial and fungal ones, especially by high throughput sequencing techniques. Alveolates are important members of soil microbial communities, being consumers and/or prey for other microorganisms. We studied alveolate diversity in soil under the undisturbed steppe (US) and cropped for wheat using two tillage practices (conventional, CT, and no-till, NT) by amplifying the ITS2 marker with ITS3_KYO2/ITS4 primers and sequencing amplicons using Illumina MiSeq. A total of 198 Alveolata OTUs were identified, with 158 OTUs attributed to the Ciliophora phylum, containing five classes: Litostomatea, Spirotrichea and Oligohymenophorea, Nassophorea and Phyllopharyngea. Litostomatea and Phyllopharyngea were more abundant in US as compared with CT and NT. The observed OTU richness was higher in US than in CT and NT. The β-biodiversity of soil ciliates also very distinctly differentiated the US field from CT and NT. In the US, Nassophorea and Spirotrichea correlated positively with sand and negatively with clay, silt and SOM contents. This is the first report about soil ciliates diversity in Siberia as assessed by metabarcoding technique. The revealed clear effect of land use on the relative abundance of some taxa and a lack of tillage effect suggest the importance of the quantity and quality of plant material input for shaping the prey for ciliates. The ITS-metabarcoding technique was used for the first time in the research of ciliates diversity; further studies, embracing diverse aspects of soil ciliates by combining -omics methodology with the traditional one, are needed to get a better insight on the ecological roles of the main ciliate taxa in the complex soil system.
Collapse
Affiliation(s)
- N B Naumova
- Institute of Soil Science and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - P A Barsukov
- Institute of Soil Science and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - O A Baturina
- Institute of Soil Science and Agrochemistry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - M R Kabilov
- Institute of Chemical Biology and Fundamental Medicine of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
7
|
Ren Q, Hill JE. Rapid and accurate taxonomic classification of cpn60 amplicon sequence variants. ISME COMMUNICATIONS 2023; 3:77. [PMID: 37479852 PMCID: PMC10362019 DOI: 10.1038/s43705-023-00283-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 07/23/2023]
Abstract
The "universal target" region of the gene encoding the 60 kDa chaperonin protein (cpn60, also known as groEL or hsp60) is a proven sequence barcode for bacteria and a useful target for marker gene amplicon-based studies of complex microbial communities. To date, identification of cpn60 sequence variants from microbiome studies has been accomplished by alignment of queries to a reference database. Naïve Bayesian classifiers offer an alternative identification method that provides variable rank classification and shorter analysis times. We curated a set of cpn60 barcode sequences to train the RDP classifier and tested its performance on data from previous human microbiome studies. Results showed that sequences accounting for 79%, 86% and 92% of the observations (read counts) in saliva, vagina and infant stool microbiome data sets were classified to the species rank. We also trained the QIIME 2 q2-feature-classifier on cpn60 sequence data and demonstrated that it gives results consistent with the standalone RDP classifier. Successful implementation of a naïve Bayesian classifier for cpn60 sequences will facilitate future microbiome studies and open opportunities to integrate cpn60 amplicon sequence identification into existing analysis pipelines.
Collapse
Affiliation(s)
- Qingyi Ren
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada.
| |
Collapse
|
8
|
Porter TM, Hajibabaei M. MetaWorks: A flexible, scalable bioinformatic pipeline for high-throughput multi-marker biodiversity assessments. PLoS One 2022; 17:e0274260. [PMID: 36174014 PMCID: PMC9521933 DOI: 10.1371/journal.pone.0274260] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/24/2022] [Indexed: 01/04/2023] Open
Abstract
Multi-marker metabarcoding is increasingly being used to generate biodiversity information across different domains of life from microbes to fungi to animals such as for molecular ecology and biomonitoring applications in different sectors from academic research to regulatory agencies and industry. Current popular bioinformatic pipelines support microbial and fungal marker analysis, while ad hoc methods are often used to process animal metabarcode markers from the same study. MetaWorks provides a harmonized processing environment, pipeline, and taxonomic assignment approach for demultiplexed Illumina reads for all biota using a wide range of metabarcoding markers such as 16S, ITS, and COI. A Conda environment is provided to quickly gather most of the programs and dependencies for the pipeline. Several workflows are provided such as: taxonomically assigning exact sequence variants, provides an option to generate operational taxonomic units, and facilitates single-read processing. Pipelines are automated using Snakemake to minimize user intervention and facilitate scalability. All pipelines use the RDP classifier to provide taxonomic assignments with confidence measures. We extend the functionality of the RDP classifier for taxonomically assigning 16S (bacteria), ITS (fungi), and 28S (fungi), to also support COI (eukaryotes), rbcL (eukaryotes, land plants, diatoms), 12S (fish, vertebrates), 18S (eukaryotes, diatoms) and ITS (fungi, plants). MetaWorks properly handles ITS by trimming flanking conserved rRNA gene regions as well as protein coding genes by providing two options for removing obvious pseudogenes. MetaWorks can be downloaded from https://github.com/terrimporter/MetaWorks and quickstart instructions, pipeline details, and a tutorial for new users can be found at https://terrimporter.github.io/MetaWorksSite.
Collapse
Affiliation(s)
- Teresita M. Porter
- Centre for Biodiversity Genomics @ Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
- * E-mail:
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics @ Biodiversity Institute of Ontario & Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
9
|
Eshghi Sahraei S, Furneaux B, Kluting K, Zakieh M, Rydin H, Hytteborn H, Rosling A. Effects of operational taxonomic unit inference methods on soil microeukaryote community analysis using long-read metabarcoding. Ecol Evol 2022; 12:e8676. [PMID: 35342585 PMCID: PMC8928899 DOI: 10.1002/ece3.8676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 01/27/2022] [Accepted: 01/30/2022] [Indexed: 11/05/2022] Open
Abstract
Long amplicon metabarcoding has opened the door for phylogenetic analysis of the largely unknown communities of microeukaryotes in soil. Here, we amplified and sequenced the ITS and LSU regions of the rDNA operon (around 1500 bp) from grassland soils using PacBio SMRT sequencing. We tested how three different methods for generation of operational taxonomic units (OTUs) effected estimated richness and identified taxa, and how well large-scale ecological patterns associated with shifting environmental conditions were recovered in data from the three methods. The field site at Kungsängen Nature Reserve has drawn frequent visitors since Linnaeus's time, and its species rich vegetation includes the largest population of Fritillaria meleagris in Sweden. To test the effect of different OTU generation methods, we sampled soils across an abrupt moisture transition that divides the meadow community into a Carex acuta dominated plant community with low species richness in the wetter part, which is visually distinct from the mesic-dry part that has a species rich grass-dominated plant community including a high frequency of F. meleagris. We used the moisture and plant community transition as a framework to investigate how detected belowground microeukaryotic community composition was influenced by OTU generation methods. Soil communities in both moisture regimes were dominated by protists, a large fraction of which were taxonomically assigned to Ciliophora (Alveolata) while 30%-40% of all reads were assigned to kingdom Fungi. Ecological patterns were consistently recovered irrespective of OTU generation method used. However, different methods strongly affect richness estimates and the taxonomic and phylogenetic resolution of the characterized community with implications for how well members of the microeukaryotic communities can be recognized in the data.
Collapse
Affiliation(s)
| | - Brendan Furneaux
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Kerri Kluting
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Mustafa Zakieh
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
- Department of Plant BreedingSwedish University of Agricultural SciencesAlnarpSweden
| | - Håkan Rydin
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Håkan Hytteborn
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| | - Anna Rosling
- Department of Ecology and GeneticsUppsala UniversityUppsalaSweden
| |
Collapse
|
10
|
Ramdass AC, Rampersad SN. Detection and diversity of the mannosylerythritol lipid (MEL) gene cluster and lipase A and B genes of Moesziomyces antarcticus isolated from terrestrial sites chronically contaminated with crude oil in Trinidad. BMC Microbiol 2022; 22:43. [PMID: 35120442 PMCID: PMC8815271 DOI: 10.1186/s12866-021-02419-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 12/06/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Mannosylerythritol lipids (MELs) belong to the class of glycolipid biosurfactants and are produced by members of the Ustilago and Moesziomyces genera. Production of MELs is regulated by a biosynthetic gene cluster (MEL BGC). Extracellular lipase activity is also associated with MEL production. Most microbial glycolipid-producers are isolated from oil-contaminated environments. MEL-producing yeast that are capable of metabolizing crude oil are understudied, and there is very limited data on indigenous strains from tropical climates. Analysis of the MEL BGC and lipase genes in Trinidad M. antarcticus strains, using a gene-targeted approach, revealed a correlation between their intrinsic capability to degrade crude oil and their adaptation to survive in a chronically polluted terrestrial environment. RESULTS M. antarcticus was isolated from naturally-occurring crude oil seeps and an asphaltic mud volcano in Trinidad; these are habitats that have not been previously reported for this species. Genus identification was confirmed by the large-subunit (LSU) and the small-subunit (SSU) sequence comparisons and species identification was confirmed by ITS sequence comparisons and phylogenetic inference. The essential genes (Emt1, Mac1, Mac2, Mmf1) of the MEL BGC were detected with gene-specific primers. Emt1p, Mac1p and Mmf1p sequence analyses confirmed that the Trinidad strains harboured novel synonymous amino acid (aa) substitutions and structural comparisons revealed different regions of disorder, specifically for the Emt1p sequence. Functionality of each protein sequence was confirmed through motif mining and mutation prediction. Phylogenetic relatedness was inferred for Emt1p, Mac1p and Mmf1p sequences. The Trinidad strains clustered with other M. antarcticus sequences, however, the representative Trinidad M. antarcticus sequences consistently formed a separate, highly supported branch for each protein. Similar phylogenetic placement was indicated for LipA and LipB nucleotide and protein sequences. The Trinidad strains also demonstrated lipolytic activity in culture, with an ability to utilize different carbon sources. Comparative evolution of MEL BGC and LipA gene suggested early and late duplication events, depending on the gene, followed by a number of speciation events within Ustilaginaceae. M. antarcticus and M. aphidis were separated from all other members of Ustilaginaceae and two gene homologues were detected, one for each species. CONCLUSIONS Sequence analyses was based on a novel gene-targeted approach to analyze the essential genes of the MEL BGC and LipA and LipB genes of M. antarcticus strains from Trinidad. The findings indicated that these strains accumulated nucleotide mutations to a threshold level that did not affect the function of specific proteins encoded by the MEL BGC and LipA and LipB genes. The biosurfactant and lipase enzymes secreted by these Trinidad M. antarcticus strains facilitated their survival in oil-contaminated terrestrial environments. These findings suggest that the Trinidad strains should be explored as promising candidates for the commercial production of MEL biosurfactants and lipase enzymes.
Collapse
Affiliation(s)
- Amanda C. Ramdass
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| | - Sephra N. Rampersad
- Biochemistry Research Laboratory (Rm216), Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine, West Indies Trinidad and Tobago
| |
Collapse
|
11
|
Shraim R, Nieuwenhuis BPS. The search for Schizosaccharomyces fission yeasts in environmental meta-transcriptomes. Yeast 2021; 39:83-94. [PMID: 34967063 DOI: 10.1002/yea.3689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/09/2021] [Accepted: 12/23/2021] [Indexed: 11/07/2022] Open
Abstract
Fission yeast is an important model organism in evolutionary genetics and cell biology research. Nevertheless, most research is limited to a single laboratory strain and knowledge of its natural occurrence is limited, which reduces our understanding of its life history and hinders isolation of new strains from nature. Understanding the natural diversity of fission yeast can provide insight into its genetic and phenotypic diversity and the evolutionary processes that shaped these. Here we aimed to identify candidate natural habitats of fission yeasts by searching through a large collection of publicly available environmental metatranscriptomic datasets. Using a custom pipeline, we processed over 13,000 NCBI SRA accessions, from a wide range of 34 different environmental categories. Overall, we found a very low abundance of putative yeast transcripts, with most fission yeast signatures coming from the categories of 'food' and 'terrestrial arthropods'. Additionally, a signal could be found in a variety of marine and fresh aquatic habitats. Our results do not provide a conclusive answer on the natural habitat of fission yeasts, but our analysis further narrows the range of locations where fission yeasts naturally occur.
Collapse
Affiliation(s)
- Rasha Shraim
- The SFI Centre for Research Training in Genomics Data Sciences, National University of Ireland Galway and Department of Public Health and Primary Care, School of Medicine, Trinity College Dublin, Republic of Ireland.,Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| | - Bart P S Nieuwenhuis
- Division of Evolutionary Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, Germany
| |
Collapse
|
12
|
Lin F, Letuma P, Li Z, Lin S, Rensing C, Lin W. Rhizospheric pathogen proliferation and ROS production are associated with premature senescence of the osvha-a1 rice mutant. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7247-7263. [PMID: 34297101 DOI: 10.1093/jxb/erab338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Root-pathogen interactions influence premature senescence in rice, however, few studies have addressed the underlying mechanism. In this study, when premature senescence significantly occurred in the osvha-a1 mutant (loss of tonoplast H+-ATPase activity), the relative abundance of rhizospheric bacterial communities was similar between the mutant and its wild type, while the fungi in the rhizosphere of the osvha-a1 mutant significantly differed from the wild type. Furthermore, one key fungal strain in the rhizospheric soil of the osvha-a1 mutant, Gibberella intermedia, increased substantially during the late growing phase, resulting in severe accumulation of reactive oxygen species (ROS). By contrast, the wild type showed much lower levels of ROS when infected by G. intermedia. Using high performance liquid chromatography, sugars in root exudates were identified to be different between osvha-a1 mutant and the wild type. G. intermedia could use mannose and rhamnose in root exudates from the mutant more efficiently than any other sugar. Finally, antagonistic bacteria could be employed for limiting the proliferation of G. intermedia in the rhizosphere, thereby alleviating the early senescent phenotypes of the osvha-a1 mutant, and improving grain yield.
Collapse
Affiliation(s)
- Feifan Lin
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Puleng Letuma
- Crop Science Department, Faculty of Agriculture, National University of Lesotho, Maseru, Lesotho
| | - Zhaowei Li
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Sheng Lin
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Christopher Rensing
- College of Resources and Environment, Fujian Agricultural and Forestry University, Fuzhou, China
| | - Wenxiong Lin
- College of Life Sciences, Fujian Agricultural and Forestry University, Fuzhou, China
- Key Laboratory of Crop Physiology and Molecular Ecology, Fujian Agricultural and Forestry University, Fuzhou, China
| |
Collapse
|
13
|
Reynolds NK, Jusino MA, Stajich JE, Smith ME. Understudied, underrepresented, and unknown: Methodological biases that limit detection of early diverging fungi from environmental samples. Mol Ecol Resour 2021; 22:1065-1085. [PMID: 34695878 DOI: 10.1111/1755-0998.13540] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 09/13/2021] [Accepted: 09/15/2021] [Indexed: 01/04/2023]
Abstract
Metabarcoding is an important tool for understanding fungal communities. The internal transcribed spacer (ITS) rDNA is the accepted fungal barcode but has known problems. The large subunit (LSU) rDNA has also been used to investigate fungal communities but available LSU metabarcoding primers were mostly designed to target Dikarya (Ascomycota + Basidiomycota) with little attention to early diverging fungi (EDF). However, evidence from multiple studies suggests that EDF comprise a large portion of unknown diversity in community sampling. Here, we investigate how DNA marker choice and methodological biases impact recovery of EDF from environmental samples. We focused on one EDF lineage, Zoopagomycota, as an example. We evaluated three primer sets (ITS1F/ITS2, LROR/LR3, and LR3 paired with new primer LR22F) to amplify and sequence a Zoopagomycota mock community and a set of 146 environmental samples with Illumina MiSeq. We compared two taxonomy assignment methods and created an LSU reference database compatible with AMPtk software. The two taxonomy assignment methods recovered strikingly different communities of fungi and EDF. Target fragment length variation exacerbated PCR amplification biases and influenced downstream taxonomic assignments, but this effect was greater for EDF than Dikarya. To improve identification of LSU amplicons we performed phylogenetic reconstruction and illustrate the advantages of this critical tool for investigating identified and unidentified sequences. Our results suggest much of the EDF community may be missed or misidentified with "standard" metabarcoding approaches and modified techniques are needed to understand the role of these taxa in a broader ecological context.
Collapse
Affiliation(s)
- Nicole K Reynolds
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| | - Michelle A Jusino
- Center for Forest Mycology Research, USDA Forest Service, Northern Research Station, Madison, Wisconsin, USA
| | - Jason E Stajich
- Department of Plant Pathology & Microbiology and Institute for Integrative Genome Biology, University of California-Riverside, Riverside, California, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
14
|
Bowd EJ, Banks SC, Bissett A, May TW, Lindenmayer DB. Disturbance alters the forest soil microbiome. Mol Ecol 2021; 31:419-447. [PMID: 34687569 DOI: 10.1111/mec.16242] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 09/24/2021] [Accepted: 10/11/2021] [Indexed: 12/21/2022]
Abstract
Billions of microorganisms perform critical below-ground functions in all terrestrial ecosystems. While largely invisible to the naked eye, they support all higher lifeforms, form symbiotic relationships with ~90% of terrestrial plant species, stabilize soils, and facilitate biogeochemical cycles. Global increases in the frequency of disturbances are driving major changes in the structure and function of forests. However, despite their functional significance, the disturbance responses of forest microbial communities are poorly understood. Here, we explore the influence of disturbance on the soil microbiome (archaea, fungi and bacteria) of some of the world's tallest and most carbon-dense forests, the Mountain Ash forests of south-eastern Australia. From 80 sites, we identified 23,277 and 19,056 microbial operational taxonomic units from the 0-10 cm and 20-30 cm depths of soil respectively. From this extensive data set, we found the diversity and composition of these often cryptic communities has been altered by human and natural disturbance events. For instance, the diversity of ectomycorrhizal fungi declined with clearcut logging, the diversity of archaea declined with salvage logging, and bacterial diversity and overall microbial diversity declined with the number of fires. Moreover, we identified key associations between edaphic (soil properties), environmental (slope, elevation) and spatial variables and the composition of all microbial communities. Specifically, we found that soil pH, manganese, magnesium, phosphorus, iron and nitrate were associated with the composition of all microbial communities. In a period of widespread degradation of global forest ecosystems, our findings provide an important and timely insight into the disturbance responses of soil microbial communities, which may influence key ecological functions.
Collapse
Affiliation(s)
- Elle J Bowd
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| | - Sam C Banks
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia.,College of Engineering, IT and the Environment, Research Institute for Environment and Livelihoods, Charles Darwin University, Darwin, NT, Australia
| | - Andrew Bissett
- The Commonwealth Scientific and Industrial Research Organization, CSIRO Oceans and Atmosphere, Hobart, TAS, Australia
| | - Tom W May
- Royal Botanic Gardens Victoria, Melbourne, VIC, Australia
| | - David B Lindenmayer
- Fenner School of Environment and Society, The Australian National University, Canberra, ACT, Australia
| |
Collapse
|
15
|
Qu W, Kithsiri Wijeratne EM, Bashyal BP, Xu J, Xu YM, Liu MX, Inácio MC, Arnold AE, U'Ren JM, Leslie Gunatilaka AA. Strobiloscyphones A-F, 6-Isopentylsphaeropsidones and Other Metabolites from Strobiloscypha sp. AZ0266, a Leaf-Associated Fungus of Douglas Fir. JOURNAL OF NATURAL PRODUCTS 2021; 84:2575-2586. [PMID: 34495663 DOI: 10.1021/acs.jnatprod.1c00662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Six new 6-isopentylsphaeropsidones, strobiloscyphones A-F (1-6), and a new hexadecanoic acid, (2Z,4E,6E)-8,9-dihydroxy-10-oxohexadeca-2,4,6-trienoic acid (7), together with sphaeropsidone (8) and its known synthetic analogue 5-dehydrosphaeropsidone (9) were isolated from Strobiloscypha sp. AZ0266, a fungus inhabiting the leaf litter of Douglas fir (Pseudotsuga menziesii). The structures of 1-7 were established on the basis of their high-resolution mass and 1D and 2D NMR spectroscopic data, and their relative and/or absolute configurations were determined by NOE, comparison of experimental and calculated ECD spectra, and application of the modified Mosher's ester method. Of these, strobiloscyphone F (6) contains a novel highly oxygenated tetracyclic oxireno-octahydrodibenzofuran ring system. Natural products 1, 6, and 9 and the semisynthetic analogue 12 derived from 8 exhibited cytotoxic activity, whereas 9 and 12 showed antimicrobial activity. Possible biosynthetic pathways to 1-6, 8, and 9 are proposed.
Collapse
Affiliation(s)
- Wei Qu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Bharat P Bashyal
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Jian Xu
- Department of Natural Medicinal Chemistry, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, People's Republic of China
| | - Ya-Ming Xu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Manping X Liu
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Marielle C Inácio
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Jana M U'Ren
- Biosystems Engineering, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
16
|
Paloi S, Mhuantong W, Luangsa-ard JJ, Kobmoo N. Using High-Throughput Amplicon Sequencing to Evaluate Intragenomic Variation and Accuracy in Species Identification of Cordyceps Species. J Fungi (Basel) 2021; 7:767. [PMID: 34575804 PMCID: PMC8467230 DOI: 10.3390/jof7090767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/06/2021] [Accepted: 09/10/2021] [Indexed: 12/30/2022] Open
Abstract
While recent sequencing technologies (third generation sequencing) can successfully sequence all copies of nuclear ribosomal DNA (rDNA) markers present within a genome and offer insights into the intragenomic variation of these markers, high intragenomic variation can be a source of confusion for high-throughput species identification using such technologies. High-throughput (HT) amplicon sequencing via PacBio SEQUEL I was used to evaluate the intragenomic variation of the ITS region and D1-D2 LSU domains in nine Cordyceps species, and the accuracy of such technology to identify these species based on molecular phylogenies was also assessed. PacBio sequences within strains showed variable level of intragenomic variation among the studied Cordyceps species with C. blackwelliae showing greater variation than the others. Some variants from a mix of species clustered together outside their respective species of origin, indicative of intragenomic variation that escaped concerted evolution shared between species. Proper selection of consensus sequences from HT amplicon sequencing is a challenge for interpretation of correct species identification. PacBio consensus sequences with the highest number of reads represent the major variants within a genome and gave the best results in terms of species identification.
Collapse
Affiliation(s)
| | | | | | - Noppol Kobmoo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Development Agency (NSTDA), 113 Thailand Science Park, Phahonuyothin Rd., Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand; (S.P.); (W.M.); (J.J.L.)
| |
Collapse
|
17
|
Schäffer AA, McVeigh R, Robbertse B, Schoch CL, Johnston A, Underwood BA, Karsch-Mizrachi I, Nawrocki EP. Ribovore: ribosomal RNA sequence analysis for GenBank submissions and database curation. BMC Bioinformatics 2021; 22:400. [PMID: 34384346 PMCID: PMC8359073 DOI: 10.1186/s12859-021-04316-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/03/2021] [Indexed: 02/01/2023] Open
Abstract
Background The DNA sequences encoding ribosomal RNA genes (rRNAs) are commonly used as markers to identify species, including in metagenomics samples that may combine many organismal communities. The 16S small subunit ribosomal RNA (SSU rRNA) gene is typically used to identify bacterial and archaeal species. The nuclear 18S SSU rRNA gene, and 28S large subunit (LSU) rRNA gene have been used as DNA barcodes and for phylogenetic studies in different eukaryote taxonomic groups. Because of their popularity, the National Center for Biotechnology Information (NCBI) receives a disproportionate number of rRNA sequence submissions and BLAST queries. These sequences vary in quality, length, origin (nuclear, mitochondria, plastid), and organism source and can represent any region of the ribosomal cistron. Results To improve the timely verification of quality, origin and loci boundaries, we developed Ribovore, a software package for sequence analysis of rRNA sequences. The ribotyper and ribosensor programs are used to validate incoming sequences of bacterial and archaeal SSU rRNA. The ribodbmaker program is used to create high-quality datasets of rRNAs from different taxonomic groups. Key algorithmic steps include comparing candidate sequences against rRNA sequence profile hidden Markov models (HMMs) and covariance models of rRNA sequence and secondary-structure conservation, as well as other tests. Nine freely available blastn rRNA databases created and maintained with Ribovore are used for checking incoming GenBank submissions and used by the blastn browser interface at NCBI. Since 2018, Ribovore has been used to analyze more than 50 million prokaryotic SSU rRNA sequences submitted to GenBank, and to select at least 10,435 fungal rRNA RefSeq records from type material of 8350 taxa. Conclusion Ribovore combines single-sequence and profile-based methods to improve GenBank processing and analysis of rRNA sequences. It is a standalone, portable, and extensible software package for the alignment, classification and validation of rRNA sequences. Researchers planning on submitting SSU rRNA sequences to GenBank are encouraged to download and use Ribovore to analyze their sequences prior to submission to determine which sequences are likely to be automatically accepted into GenBank.
Collapse
Affiliation(s)
- Alejandro A Schäffer
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892, USA.,National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Richard McVeigh
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Barbara Robbertse
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Conrad L Schoch
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Anjanette Johnston
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Beverly A Underwood
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Ilene Karsch-Mizrachi
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA
| | - Eric P Nawrocki
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, 20894, USA.
| |
Collapse
|
18
|
Furneaux B, Bahram M, Rosling A, Yorou NS, Ryberg M. Long- and short-read metabarcoding technologies reveal similar spatiotemporal structures in fungal communities. Mol Ecol Resour 2021; 21:1833-1849. [PMID: 33811446 DOI: 10.1111/1755-0998.13387] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 02/19/2021] [Accepted: 03/01/2021] [Indexed: 01/04/2023]
Abstract
Fungi form diverse communities and play essential roles in many terrestrial ecosystems, yet there are methodological challenges in taxonomic and phylogenetic placement of fungi from environmental sequences. To address such challenges, we investigated spatiotemporal structure of a fungal community using soil metabarcoding with four different sequencing strategies: short-amplicon sequencing of the ITS2 region (300-400 bp) with Illumina MiSeq, Ion Torrent Ion S5 and PacBio RS II, all from the same PCR library, as well as long-amplicon sequencing of the full ITS and partial LSU regions (1200-1600 bp) with PacBio RS II. Resulting community structure and diversity depended more on statistical method than sequencing technology. The use of long-amplicon sequencing enables construction of a phylogenetic tree from metabarcoding reads, which facilitates taxonomic identification of sequences. However, long reads present issues for denoising algorithms in diverse communities. We present a solution that splits the reads into shorter homologous regions prior to denoising, and then reconstructs the full denoised reads. In the choice between short and long amplicons, we suggest a hybrid approach using short amplicons for sampling breadth and depth, and long amplicons to characterize the local species pool for improved identification and phylogenetic analyses.
Collapse
Affiliation(s)
- Brendan Furneaux
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Mohammad Bahram
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden.,Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Anna Rosling
- Program in Evolutionary Biology, Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden
| | - Nourou S Yorou
- Research Unit in Tropical Mycology and Plant-Fungi Interactions, LEB, University of Parakou, Parakou, Benin
| | - Martin Ryberg
- Program in Systematic Biology, Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
19
|
Francioli D, Lentendu G, Lewin S, Kolb S. DNA Metabarcoding for the Characterization of Terrestrial Microbiota-Pitfalls and Solutions. Microorganisms 2021; 9:361. [PMID: 33673098 PMCID: PMC7918050 DOI: 10.3390/microorganisms9020361] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 02/04/2021] [Accepted: 02/09/2021] [Indexed: 02/06/2023] Open
Abstract
Soil-borne microbes are major ecological players in terrestrial environments since they cycle organic matter, channel nutrients across trophic levels and influence plant growth and health. Therefore, the identification, taxonomic characterization and determination of the ecological role of members of soil microbial communities have become major topics of interest. The development and continuous improvement of high-throughput sequencing platforms have further stimulated the study of complex microbiota in soils and plants. The most frequently used approach to study microbiota composition, diversity and dynamics is polymerase chain reaction (PCR), amplifying specific taxonomically informative gene markers with the subsequent sequencing of the amplicons. This methodological approach is called DNA metabarcoding. Over the last decade, DNA metabarcoding has rapidly emerged as a powerful and cost-effective method for the description of microbiota in environmental samples. However, this approach involves several processing steps, each of which might introduce significant biases that can considerably compromise the reliability of the metabarcoding output. The aim of this review is to provide state-of-the-art background knowledge needed to make appropriate decisions at each step of a DNA metabarcoding workflow, highlighting crucial steps that, if considered, ensures an accurate and standardized characterization of microbiota in environmental studies.
Collapse
Affiliation(s)
- Davide Francioli
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Guillaume Lentendu
- Laboratory of Soil Biodiversity, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland;
| | - Simon Lewin
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| | - Steffen Kolb
- Microbial Biogeochemistry, Research Area Landscape Functioning, Leibniz Centre for Agricultural Landscape Research (ZALF), Eberswalder Str. 84, 15374 Müncheberg, Germany; (S.L.); (S.K.)
| |
Collapse
|
20
|
Leopold DR, Fukami T. Greater local diversity under older species pools may arise from enhanced competitive equivalence. Ecol Lett 2020; 24:310-318. [PMID: 33216438 DOI: 10.1111/ele.13647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/26/2020] [Accepted: 10/26/2020] [Indexed: 01/04/2023]
Abstract
Ecological communities typically contain more species when located within geologically older regions. This pattern is traditionally attributed to the long-term accumulation of species in the regional species pool, with local species interactions playing a minor role. We provide evidence suggesting a more important role of local species interactions than generally assumed. We assembled 320 communities of root-associated fungi under 80 species pools, varying species pool richness and the mean age of the sites from which the fungi were collected across a 4-myr soil chronosequence. We found that local diversity increased more with increasing species pool richness when species were from older sites. We also found that older species pools had lower functional and phylogenetic diversity, indicating greater competitive equivalence among species. Our results suggest that older regions have higher local richness not simply because older pools are more speciose but also because species have evolved traits that allow them to locally co-occur.
Collapse
Affiliation(s)
- Devin R Leopold
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA.,Department of Botany and Plant Pathology, Oregon State University, 2082 Cordley Hall, Corvallis, OR, 97331, USA
| | - Tadashi Fukami
- Department of Biology, Stanford University, 371 Jane Stanford Way, Stanford, CA, 94305, USA
| |
Collapse
|
21
|
Teratopyrones A-C, Dimeric Naphtho-γ-Pyrones and Other Metabolites from Teratosphaeria sp. AK1128, a Fungal Endophyte of Equisetum arvense. Molecules 2020; 25:molecules25215058. [PMID: 33143346 PMCID: PMC7662774 DOI: 10.3390/molecules25215058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 11/30/2022] Open
Abstract
Bioassay-guided fractionation of a cytotoxic extract derived from a solid potato dextrose agar (PDA) culture of Teratosphaeria sp. AK1128, a fungal endophyte of Equisetum arvense, afforded three new naphtho-γ-pyrone dimers, teratopyrones A–C (1–3), together with five known naphtho-γ-pyrones, aurasperone B (4), aurasperone C (5), aurasperone F (6), nigerasperone A (7), and fonsecin B (8), and two known diketopiperazines, asperazine (9) and isorugulosuvine (10). The structures of 1–3 were determined on the basis of their spectroscopic data. Cytotoxicity assay revealed that nigerasperone A (7) was moderately active against the cancer cell lines PC-3M (human metastatic prostate cancer), NCI-H460 (human non-small cell lung cancer), SF-268 (human CNS glioma), and MCF-7 (human breast cancer), with IC50s ranging from 2.37 to 4.12 μM while other metabolites exhibited no cytotoxic activity up to a concentration of 5.0 μM.
Collapse
|
22
|
de Amorim MR, Wijeratne EMK, Zhou S, Arnold AE, Batista ANL, Batista JM, Dos Santos LC, Gunatilaka AAL. An epigenetic modifier induces production of 3-(4-oxopyrano)-chromen-2-ones in Aspergillus sp. AST0006, an endophytic fungus of Astragalus lentiginosus. Tetrahedron 2020; 76:131525. [PMID: 33716326 PMCID: PMC7945046 DOI: 10.1016/j.tet.2020.131525] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Incorporation of the epigenetic modifier suberoylanilide hydroxamic acid (SAHA) into a potato dextrose broth culture of the endophytic fungus Aspergillus sp. AST0006 affected its polyketide biosynthetic pathway providing two new 3-(4-oxopyrano)-chromen-2-ones, aspyranochromenones A (1) and B (2), and the isocoumarin, (-)-6,7-dihydroxymellein (3). Eight additional metabolites (4-11) and two biotransformation products of SAHA (12-13) were also encountered. The planar structures and relative configurations of the new metabolites 1-2 were elucidated with the help of high-resolution mass, 1D and 2D NMR spectroscopic data and the absolute configurations of 1-3 were determined by comparison of experimental and calculated ECD data. Possible biosynthetic pathways to 1 and 2 are presented.
Collapse
Affiliation(s)
- Marcelo R de Amorim
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil
| | - E M Kithsiri Wijeratne
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| | - Shengliang Zhou
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province, Jiangsu Normal University, 101 Shanghai Rd, Xuzhou 221116, P. R. China
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences, University of Arizona, Tucson, Arizona 85721, United States
| | - Andrea N L Batista
- Department of Organic Chemistry, Chemistry Institute, Fluminense Federal University, Niterói, RJ 24020-141, Brazil
| | - João M Batista
- Institute of Science and Technology, Federal University of São Paulo, São José dos Campos, São Paulo 12231-280, Brazil
| | - Lourdes C Dos Santos
- Institute of Chemistry, São Paulo State University, Araraquara, São Paulo 14800-900, Brazil
| | - A A Leslie Gunatilaka
- Southwest Center for Natural Products Research, School of Natural Resources and the Environment, College of Agriculture and Life Sciences, University of Arizona, 250 E. Valencia Road, Tucson, Arizona 85706, United States
| |
Collapse
|
23
|
Hanafy RA, Johnson B, Youssef NH, Elshahed MS. Assessing anaerobic gut fungal diversity in herbivores using D1/D2 large ribosomal subunit sequencing and multi-year isolation. Environ Microbiol 2020; 22:3883-3908. [PMID: 32656919 DOI: 10.1111/1462-2920.15164] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/22/2020] [Accepted: 07/10/2020] [Indexed: 11/30/2022]
Abstract
The anaerobic gut fungi (AGF, Neocallimastigomycota) reside in the alimentary tracts of herbivores where they play a central role in the breakdown of plant material. Here, we report on the development of the hypervariable domains D1/D2 of the large ribosomal subunit (D1/D2 LSU) as a barcoding marker for the AGF. We generated a reference D1/D2 LSU database for all cultured AGF genera, as well as the majority of candidate genera encountered in prior internal transcribed spacer 1 (ITS1)-based surveys. Subsequently, a D1/D2 LSU-based diversity survey using long read PacBio SMRT sequencing was conducted on faecal samples from 21 wild and domesticated herbivores. Twenty-eight genera and candidate genera were identified, including multiple novel lineages that were predominantly, but not exclusively, identified in wild herbivores. Association between certain AGF genera and animal lifestyles, or animal host family was observed. Finally, to address the current paucity of AGF isolates, concurrent isolation efforts utilizing multiple approaches to maximize recovery yielded 216 isolates belonging to 12 different genera, several of which have no prior cultured-representatives. Our results establish the utility of D1/D2 LSU and PacBio sequencing for AGF diversity surveys, the culturability of multiple AGF taxa, and demonstrate that wild herbivores represent a yet-untapped reservoir of AGF diversity.
Collapse
Affiliation(s)
- Radwa A Hanafy
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Britny Johnson
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Noha H Youssef
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| | - Mostafa S Elshahed
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, USA
| |
Collapse
|
24
|
Porter TM, Hajibabaei M. Putting COI Metabarcoding in Context: The Utility of Exact Sequence Variants (ESVs) in Biodiversity Analysis. Front Ecol Evol 2020. [DOI: 10.3389/fevo.2020.00248] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
25
|
Eaton WD, McGee KM, Alderfer K, Jimenez AR, Hajibabaei M. Increase in abundance and decrease in richness of soil microbes following Hurricane Otto in three primary forest types in the Northern Zone of Costa Rica. PLoS One 2020; 15:e0231187. [PMID: 32730267 PMCID: PMC7392270 DOI: 10.1371/journal.pone.0231187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 07/07/2020] [Indexed: 11/26/2022] Open
Abstract
Little is known of how hurricane-induced deposition of canopy material onto tropical forest floors influences the soil microbial communities involved in decomposition of these materials. In this study, to identify how soil bacterial and fungal communities might change after a hurricane, and their possible roles in the C and N cycles, soils were collected from five 2000 m2 permanent plots in Lowland, Upland and Riparian primary forests in Costa Rica 3 months before and 7 months after Hurricane Otto damaged the forests. The soil Water, inorganic N and Biomass C increased and total organic C decreased Post-Hurricane, all of which best predicted the changes in the Post-Hurricane soil microbial communities. Post-Hurricane soils from all forest types showed significant changes in community composition of total bacteria, total fungi, and five functional groups of microbes (i.e., degrading/lignin degrading, NH4+-producing, and ammonium oxidizing bacteria, and the complex C degrading/wood rot/lignin degrading and ectomycorrhizal fungi), along with a decrease in richness in genera of all groups. As well, the mean proportion of DNA sequences (MPS) of all five functional groups increased. There were also significant changes in the MPS values of 7 different fungal and 7 different bacterial genera that were part of these functional groups. This is the first evidence that hurricane-induced deposition of canopy material is stimulating changes in the soil microbial communities after the hurricane, involving changes in specific taxonomic and functional group genera, and reduction in the community richness while selecting for dominant genera possibly better suited to process the canopy material. These changes may represent examples of taxonomic switching of functionally redundant microbial genera in response to dramatic changes in resource input. It is possible that differences in these microbial communities and genera may serve as indicators of disturbed and recovering regional soil ecosystems, and should be evaluated in the future.
Collapse
Affiliation(s)
- William D. Eaton
- Biology Department, Pace University, New York, NY, United States of America
- * E-mail:
| | - Katie M. McGee
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| | - Kiley Alderfer
- Biology Department, Pace University, New York, NY, United States of America
| | | | - Mehrdad Hajibabaei
- Department of Integrative Biology, Biodiversity Institute of Ontario, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
26
|
Vu D, Groenewald M, Verkley G. Convolutional neural networks improve fungal classification. Sci Rep 2020; 10:12628. [PMID: 32724224 PMCID: PMC7387343 DOI: 10.1038/s41598-020-69245-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/06/2020] [Indexed: 01/30/2023] Open
Abstract
Sequence classification plays an important role in metagenomics studies. We assess the deep neural network approach for fungal sequence classification as it has emerged as a successful paradigm for big data classification and clustering. Two deep learning-based classifiers, a convolutional neural network (CNN) and a deep belief network (DBN) were trained using our recently released barcode datasets. Experimental results show that CNN outperformed the traditional BLAST classification and the most accurate machine learning based Ribosomal Database Project (RDP) classifier on datasets that had many of the labels present in the training datasets. When classifying an independent dataset namely the "Top 50 Most Wanted Fungi", CNN and DBN assigned less sequences than BLAST. However, they could assign much more sequences than the RDP classifier. In terms of efficiency, it took the machine learning classifiers up to two seconds to classify a test dataset while it was 53 s for BLAST. The result of the current study will enable us to speed up the taxonomic assignments for the fungal barcode sequences generated at our institute as ~ 70% of them still need to be validated for public release. In addition, it will help to quickly provide a taxonomic profile for metagenomics samples.
Collapse
Affiliation(s)
- Duong Vu
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands.
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| | - Gerard Verkley
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584CT, Utrecht, The Netherlands
| |
Collapse
|
27
|
Horn IR, Verleg PA, Ibrahim NZ, Soeleman K, van Kampen F, Ruesen MO, Reulen NM, Breij H, Bakker RJ, Gravendeel B. Mushroom DNA barcoding project: Sequencing a segment of the 28S rRNA gene. BIOCHEMISTRY AND MOLECULAR BIOLOGY EDUCATION : A BIMONTHLY PUBLICATION OF THE INTERNATIONAL UNION OF BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 48:404-410. [PMID: 32585770 PMCID: PMC7497104 DOI: 10.1002/bmb.21388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 04/22/2020] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
DNA barcoding is an important molecular methodology for species identification that was developed over the last two decades and it should be covered in the biology bachelor curriculum. Here, we present an example of DNA barcoding by sequencing a segment of the 28S nuclear ribosomal large subunit rRNA gene of wild mushrooms and framing the education in a project form for undergraduate students in biology. Students perform this project in 6-8 weeks, which also includes preparing a poster, writing a report and presenting a paper related to the work in a journal club format. First, fieldwork in the Netherlands was carried out, during which students collected mushrooms under supervision of a professional mycologist with the goal to (a) verify morphologically based identifications with a molecular method and (b) assess phylogenetic relationships of the different species collected. Next, DNA extractions and quantitation were performed, PCR amplification was done, and samples were sent out for Sanger sequencing. Students aligned and analyzed the sequences using BLAST and Geneious and subsequently created a phylogenetic tree. In case of collecting DNA barcodes of an earlier sequenced species, students could upload the data to a repository established for facilitation of future research projects. The method described is very robust, reagents and equipment are readily available, and costs are relatively low. In addition, the results can be compared to published fungal phylogenetic trees.
Collapse
Affiliation(s)
- Ivo R. Horn
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
- Naturalis Biodiversity Center, Endless Forms GroupLeidenThe Netherlands
- Leiden Centre for Applied BioscienceLeidenThe Netherlands
| | - Peter A. Verleg
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Nafiesa Z. Ibrahim
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Khadiedjah Soeleman
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Floris van Kampen
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Mia O. Ruesen
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Naïsha M. Reulen
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Henk Breij
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Roderick J. Bakker
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
| | - Barbara Gravendeel
- University of Applied Sciences Leiden, Faculty of Science and TechnologyLeidenThe Netherlands
- Naturalis Biodiversity Center, Endless Forms GroupLeidenThe Netherlands
- Institute of Biology Leiden, Leiden UniversityLeidenThe Netherlands
| |
Collapse
|
28
|
Martins MR, Santos C, Soares C, Santos C, Lima N. Gongronella eborensis sp. nov., from vineyard soil of Alentejo (Portugal). Int J Syst Evol Microbiol 2020; 70:3475-3482. [DOI: 10.1099/ijsem.0.004201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This study describes a novel fungal species belonging to the genus Gongronella. During a previous work focusing on metalaxyl degradation by Mucorales strains, two isolates from vineyard soil samples collected in the Alentejo region, south Portugal, were identified as a putative novel species based on combined molecular and MALDI-TOF MS data. This new species is described here using a polyphasic approach that combines morphology, internal transcribed spacer of ribosomal DNA (ITS) and 28S ribosomal DNA (LSU) sequence data analysis and proteomic profiling by MALDI-TOF MS. Phenotypic and molecular data enabled this novel species to be clearly distinguished from other Gongronella species with results of combined ITS+LSU analysis showing that the Gongronella species is related to Gongronella butleri and Gongronella brasiliensis. Therefore, from the results of morphological and molecular analyses, isolates MUM 10.262 and MUM 10.263 seem to represent a new Gongronella species and the name Gongronella eborensis sp. nov. is proposed, with the ex-type strain MUM 10.262 (=CCMI 1100=CBS 128763).
Collapse
Affiliation(s)
- Maria Rosário Martins
- HERCULES Lab., Departamento de Química, Escola de Ciências e Tecnologia, Universidade de Évora, 7000-809 Évora, Portugal
| | - Carla Santos
- CEB-Biological Engineering Centre, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Célia Soares
- CEB-Biological Engineering Centre, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Cledir Santos
- Department of Chemical Science and Natural Resources, BIOREN-UFRO, Universidad de La Frontera, Temuco 4811-230, Chile
| | - Nelson Lima
- CEB-Biological Engineering Centre, Micoteca da Universidade do Minho, Universidade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
29
|
Tanney J, Seifert K. Mollisiaceae: An overlooked lineage of diverse endophytes. Stud Mycol 2020; 95:293-380. [PMID: 32855742 PMCID: PMC7426276 DOI: 10.1016/j.simyco.2020.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 01/04/2023] Open
Abstract
Mollisia is a taxonomically neglected discomycete genus (Helotiales, Leotiomycetes) of commonly encountered saprotrophs on decaying plant tissues throughout temperate regions. The combination of indistinct morphological characters, more than 700 names in the literature, and lack of reference DNA sequences presents a major challenge when working with Mollisia. Unidentified endophytes, including strains that produced antifungal or antiinsectan secondary metabolites, were isolated from conifer needles in New Brunswick and placed with uncertainty in Phialocephala and Mollisia, necessitating a more comprehensive treatment of these genera. In this study, morphology and multigene phylogenetic analyses were used to explore the taxonomy of Mollisiaceae, including Mollisia, Phialocephala, and related genera, using new field collections, herbarium specimens, and accessioned cultures and sequences. The phylogeny of Mollisiaceae was reconstructed and compared using the nuc internal transcribed spacer rDNA (ITS) barcode and partial sequences of the 28S nuc rDNA (LSU) gene, largest subunit of RNA polymerase II (RPB1), DNA topoisomerase I (TOP1), and the hypothetical protein Lipin/Ned1/Smp2 (LNS2). The results show that endophytism is common throughout the Mollisiaceae lineage in a diverse range of hosts but is infrequently attributed to Mollisia because of a paucity of reference sequences. Generic boundaries within Mollisiaceae are poorly resolved and based on phylogenetic evidence the family included species placed in Acephala, Acidomelania, Barrenia, Bispora, Cheirospora, Cystodendron, Fuscosclera, Hysteronaevia, Loramyces, Mollisia, Neopyrenopeziza, Obtectodiscus, Ombrophila, Patellariopsis, Phialocephala, Pulvinata, Tapesia (=Mollisia), and Trimmatostroma. Taxonomic novelties included the description of five novel Mollisia species and five novel Phialocephala species and the synonymy of Fuscosclera with Phialocephala, Acidomelania with Mollisia, and Loramycetaceae with Mollisiaceae.
Collapse
Affiliation(s)
- J.B. Tanney
- Pacific Forestry Centre, Canadian Forest Service, Natural Resources Canada, 506 Burnside Road, Victoria, British Columbia, V8Z 1M5, Canada
| | - K.A. Seifert
- Ottawa Research and Development Centre, Biodiversity (Mycology and Microbiology), Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, Ontario, K1A 0C6, Canada
- Department of Biology, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario, K1S 5B6, Canada
| |
Collapse
|
30
|
Kivlin SN, Hawkes CV. Spatial and temporal turnover of soil microbial communities is not linked to function in a primary tropical forest. Ecology 2020; 101:e02985. [PMID: 31958139 DOI: 10.1002/ecy.2985] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 11/06/2022]
Abstract
The spatial and temporal linkages between turnover of soil microbial communities and their associated functions remain largely unexplored in terrestrial ecosystems. Yet defining these relationships and how they vary across ecosystems and microbial lineages is key to incorporating microbial communities into ecological forecasts and ecosystem models. To define linkages between turnover of soil bacterial and fungal communities and their function we sampled fungal and bacterial composition, abundance, and enzyme activities across a 3-ha area of wet tropical primary forest over 2 yr. We show that fungal and bacterial communities both exhibited temporal turnover, but turnover of both groups was much lower than in temperate ecosystems. Turnover over time was driven by gain and loss of microbial taxa and not changes in abundance of individual species present in multiple samples. Only fungi varied over space with idiosyncratic variation that did not increase linearly with distance among sampling locations. Only phosphorus-acquiring enzyme activities were linked to shifts in septate, decomposer fungal abundance; no enzymes were affected by composition or diversity of fungi or bacteria. Although temporal and spatial variation in composition was appreciable, because turnover of microbial communities did not alter the functional repertoire of decomposing enzymes, functional redundancy among taxa may be high in this ecosystem. Slow temporal turnover of tropical soil microbial communities and large functional redundancy suggests that shifts in abundance of particular functional groups may capture ecosystem function more accurately than composition in these heterogeneous ecosystems.
Collapse
Affiliation(s)
- Stephanie N Kivlin
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| | - Christine V Hawkes
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, 78712, USA
| |
Collapse
|
31
|
A rapid approach to profiling diverse fungal communities using the MinION™ nanopore sequencer. Biotechniques 2019; 68:72-78. [PMID: 31849245 DOI: 10.2144/btn-2019-0072] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Oxford Nanopore Technologies MinION™ sequencer holds the capability to generate long amplicon reads; however, only a small amount of information is available regarding methodological approaches and the ability to identify a broad diversity of fungal taxa. To assess capabilities, three fungal mock communities were sequenced, each of which had varying ratios of 16 taxa. The data were processed through our selected pipeline. The MinION recovered all mock community members, when mixed at equal ratios. When a taxon was represented at a lower ratio, it was not recovered or decreased in relative abundance. Despite high error rates, highly accurate consensus sequences can be derived. This methodological approach identified all mock community taxa, demonstrating the MinION can be used as a practical alternative to profile fungal communities.
Collapse
|
32
|
Argiroff WA, Zak DR, Upchurch RA, Salley SO, Grandy AS. Anthropogenic N deposition alters soil organic matter biochemistry and microbial communities on decaying fine roots. GLOBAL CHANGE BIOLOGY 2019; 25:4369-4382. [PMID: 31314956 DOI: 10.1111/gcb.14770] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 07/06/2019] [Indexed: 06/10/2023]
Abstract
Fine root litter is a primary source of soil organic matter (SOM), which is a globally important pool of C that is responsive to climate change. We previously established that ~20 years of experimental nitrogen (N) deposition has slowed fine root decay and increased the storage of soil carbon (C; +18%) across a widespread northern hardwood forest ecosystem. However, the microbial mechanisms that have directly slowed fine root decay are unknown. Here, we show that experimental N deposition has decreased the relative abundance of Agaricales fungi (-31%) and increased that of partially ligninolytic Actinobacteria (+24%) on decaying fine roots. Moreover, experimental N deposition has increased the relative abundance of lignin-derived compounds residing in SOM (+53%), and this biochemical response is significantly related to shifts in both fungal and bacterial community composition. Specifically, the accumulation of lignin-derived compounds in SOM is negatively related to the relative abundance of ligninolytic Mycena and Kuehneromyces fungi, and positively related to Microbacteriaceae. Our findings suggest that by altering the composition of microbial communities on decaying fine roots such that their capacity for lignin degradation is reduced, experimental N deposition has slowed fine root litter decay, and increased the contribution of lignin-derived compounds from fine roots to SOM. The microbial responses we observed may explain widespread findings that anthropogenic N deposition increases soil C storage in terrestrial ecosystems. More broadly, our findings directly link composition to function in soil microbial communities, and implicate compositional shifts in mediating biogeochemical processes of global significance.
Collapse
Affiliation(s)
- William A Argiroff
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rima A Upchurch
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - Sydney O Salley
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI, USA
| | - A Stuart Grandy
- Department of Natural Resources and the Environment, University of New Hampshire, Durham, NH, USA
| |
Collapse
|
33
|
Hyde J, Gorham C, Brackney DE, Steven B. Antibiotic resistant bacteria and commensal fungi are common and conserved in the mosquito microbiome. PLoS One 2019; 14:e0218907. [PMID: 31412044 PMCID: PMC6693846 DOI: 10.1371/journal.pone.0218907] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/31/2019] [Indexed: 11/19/2022] Open
Abstract
The emerging and increasing prevalence of bacterial antibiotic resistance is a significant public health challenge. To begin to tackle this problem, it will be critical to not only understand the origins of this resistance but also document environmental reservoirs of antibiotic resistance. In this study we investigated the possibility that both colony and field caught mosquitoes could harbor antibiotic resistant bacteria. Specifically, we characterized the antibiotic resistant bacterial populations from colony-reared Aedes aegypti larvae and adults and two field caught mosquito species Coquillettidia perturbans and Ochlerotatus canadensis. The cultured bacterial populations were dominated by isolates belonging to the class Gammaproteobacteria. Among the antibiotic resistant populations, we found bacteria resistant to carbenicillin, kanamycin, and tetracycline, including bacteria resistant to a cocktail of all three antibiotics in combination. The antibiotic resistant bacteria were numerically rare, at most 5% of total cell counts. Isolates were characterized by 16S rRNA gene sequencing, and clustering into Operational Taxonomic Units (OTUs; 99% sequence identity). 27 antibiotic resistant OTUs were identified, although members of an OTU did not always share the same resistance profile. This suggests the clustering was either not sensitive enough to distinguish different bacteria taxa or different antibiotic resistant sub-populations exist within an OTU. Finally, the antibiotic selection opened up a niche to culture mosquito-associated fungi, and 10 fungal OTUs (28S rRNA gene sequencing) were identified. Two fungal OTUs both classified to the class Microbotryomycetes were commonly identified in the field-caught mosquitoes. Thus, in this study we demonstrate that antibiotic resistant bacteria and certain fungi are common and conserved mosquito microbiome members. These observations highlight the potential of invertebrates to serve as vehicles for the spread of antibiotic resistance throughout the environment.
Collapse
Affiliation(s)
- Josephine Hyde
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Courtney Gorham
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Doug E. Brackney
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- Center for Vector Biology and Zoonotic Diseases, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
| | - Blaire Steven
- Department of Environmental Sciences, Connecticut Agricultural Experiment Station, New Haven, Connecticut, United States of America
- * E-mail:
| |
Collapse
|
34
|
Salivary mycobiome dysbiosis and its potential impact on bacteriome shifts and host immunity in oral lichen planus. Int J Oral Sci 2019; 11:13. [PMID: 31263096 PMCID: PMC6802619 DOI: 10.1038/s41368-019-0045-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/19/2018] [Accepted: 01/16/2019] [Indexed: 02/07/2023] Open
Abstract
The biodiversity of the mycobiome, an important component of the oral microbial community, and the roles of fungal–bacterial and fungal–immune system interactions in the pathogenesis of oral lichen planus (OLP) remain largely uncharacterized. In this study, we sequenced the salivary mycobiome and bacteriome associated with OLP. First, we described the dysbiosis of the microbiome in OLP patients, which exhibits lower levels of fungi and higher levels of bacteria. Significantly higher abundances of the fungi Candida and Aspergillus in patients with reticular OLP and of Alternaria and Sclerotiniaceae_unidentified in patients with erosive OLP were observed compared to the healthy controls. Aspergillus was identified as an “OLP-associated” fungus because of its detection at a higher frequency than in the healthy controls. Second, the co-occurrence patterns of the salivary mycobiome–bacteriome demonstrated negative associations between specific fungal and bacterial taxa identified in the healthy controls, which diminished in the reticular OLP group and even became positive in the erosive OLP group. Moreover, the oral cavities of OLP patients were colonized by dysbiotic oral flora with lower ecological network complexity and decreased fungal–Firmicutes and increased fungal–Bacteroidetes sub-networks. Third, several keystone fungal genera (Bovista, Erysiphe, Psathyrella, etc.) demonstrated significant correlations with clinical scores and IL-17 levels. Thus, we established that fungal dysbiosis is associated with the aggravation of OLP. Fungal dysbiosis could alter the salivary bacteriome or may reflect a direct effect of host immunity, which participates in OLP pathogenesis. Imbalance in the oral fungal community could lead to the development of oral lichen planus (OLP), a chronic inflammatory disease that affects the mucous membranes in the mouth. The exact cause of OLP is uncertain, which is a major obstacle to therapeutic development. Using salivary samples, a team headed by Xuedong Zhou at Sichuan University in China investigated the composition and diversity of the fungal community in OLP patients and healthy individuals. The authors found that the oral fungal community was less diverse and that there were higher levels of bacteria in OLP patients. The team concluded that fungal community imbalance could affect the bacterial community in the saliva and the host immunity in the mucous membrane, thereby constituting a direct or indirect cause of the development of OLP.
Collapse
|
35
|
Eaton WD, McGee KM, Donnelly R, Lemenze A, Karas O, Hajibabaei M. Differences in the soil microbial community and carbon‐use efficiency following development of
Vochysia guatemalensis
tree plantations in unproductive pastures in Costa Rica. Restor Ecol 2019. [DOI: 10.1111/rec.12978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- William D. Eaton
- Biology Department Pace University, One Pace Plaza, New York, NY 10038 U.S.A
| | - Katie M. McGee
- Department of Integrative Biology Centre for Biodiversity Genomics at Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| | - Robert Donnelly
- Department of Pathology and Medicine, NJMS‐Molecular Resource Facility Rutgers Biomedical and Health Sciences, 185 South Orange Ave, MSB, F‐503, Newark, NJ 07103 U.S.A
| | - Alex Lemenze
- Department of Pathology and Medicine, NJMS‐Molecular Resource Facility Rutgers Biomedical and Health Sciences, 185 South Orange Ave, MSB, F‐503, Newark, NJ 07103 U.S.A
| | - Olivia Karas
- Department of Biology University of North Carolina, 120 South Road, Chapel Hill, NC 27599‐3280 U.S.A
| | - Mehrdad Hajibabaei
- Department of Integrative Biology Centre for Biodiversity Genomics at Biodiversity Institute of Ontario, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1 Canada
| |
Collapse
|
36
|
Frau A, Kenny JG, Lenzi L, Campbell BJ, Ijaz UZ, Duckworth CA, Burkitt MD, Hall N, Anson J, Darby AC, Probert CSJ. DNA extraction and amplicon production strategies deeply inf luence the outcome of gut mycobiome studies. Sci Rep 2019; 9:9328. [PMID: 31249384 PMCID: PMC6597572 DOI: 10.1038/s41598-019-44974-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 05/28/2019] [Indexed: 12/28/2022] Open
Abstract
Microbial ecology studies are often performed through extraction of metagenomic DNA followed by amplification and sequencing of a marker. It is known that each step may bias the results. These biases have been explored for the study of bacterial communities, but rarely for fungi. Our aim was therefore to evaluate methods for the study of the gut mycobiome. We first evaluated DNA extraction methods in fungal cultures relevant to the gut. Afterwards, to assess how these methods would behave with an actual sample, stool from a donor was spiked with cells from the same cultures. We found that different extraction kits favour some species and bias against others. In terms of amplicon sequencing, we evaluated five primer sets, two for ITS2 and one for ITS1, 18S and 28S rRNA. Results showed that 18S rRNA outperformed the other markers: it was able to amplify all the species in the mock community and to discriminate among them. ITS primers showed both amplification and sequencing biases, the latter related to the variable length of the product. We identified several biases in the characterisation of the gut mycobiome and showed how crucial it is to be aware of these before drawing conclusions from the results of these studies.
Collapse
Affiliation(s)
- Alessandra Frau
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - John G Kenny
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK.,Teagasc Food Research Centre, Moorepark, Cork, Ireland
| | - Luca Lenzi
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Umer Z Ijaz
- School of Engineering, University of Glasgow, Oakfield Avenue, Glasgow, G12 8LT, UK
| | - Carrie A Duckworth
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK
| | - Michael D Burkitt
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.,Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Dover Street, Manchester, M13 9PT, UK
| | - Neil Hall
- Earlham Institute, Colney Ln, Norwich, NR4 7UZ, UK
| | - Jim Anson
- Liverpool Clinical Laboratories Directorate of Infection and Immunity, Royal Liverpool and Broadgreen University Hospitals NHS Trust, Prescot Street, Liverpool, L7 8XP, UK
| | - Alistair C Darby
- Centre for Genomic Research (CGR), University of Liverpool, Crown Street, Liverpool, L69 7ZB, UK
| | - Christopher S J Probert
- Gastroenterology Research Unit, Department of Cellular & Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Ashton Street, Liverpool, L69 3GE, UK.
| |
Collapse
|
37
|
Kazenel MR, Kivlin SN, Taylor DL, Lynn JS, Rudgers JA. Altitudinal gradients fail to predict fungal symbiont responses to warming. Ecology 2019; 100:e02740. [DOI: 10.1002/ecy.2740] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 03/08/2019] [Accepted: 03/26/2019] [Indexed: 01/06/2023]
Affiliation(s)
- Melanie R. Kazenel
- Department of Biology The University of New Mexico Albuquerque New Mexico 87131 USA
- Rocky Mountain Biological Laboratory Crested Butte Colorado 81224 USA
| | - Stephanie N. Kivlin
- Department of Biology The University of New Mexico Albuquerque New Mexico 87131 USA
- Rocky Mountain Biological Laboratory Crested Butte Colorado 81224 USA
- Department of Ecology and Evolutionary Biology The University of Tennessee Knoxville Tennessee 37996 USA
| | - D. Lee Taylor
- Department of Biology The University of New Mexico Albuquerque New Mexico 87131 USA
| | - Joshua S. Lynn
- Department of Biology The University of New Mexico Albuquerque New Mexico 87131 USA
- Rocky Mountain Biological Laboratory Crested Butte Colorado 81224 USA
| | - Jennifer A. Rudgers
- Department of Biology The University of New Mexico Albuquerque New Mexico 87131 USA
- Rocky Mountain Biological Laboratory Crested Butte Colorado 81224 USA
| |
Collapse
|
38
|
Castañeda LE, Miura T, Sánchez R, Barbosa O. Effects of agricultural management on phyllosphere fungal diversity in vineyards and the association with adjacent native forests. PeerJ 2018; 6:e5715. [PMID: 30397540 PMCID: PMC6211267 DOI: 10.7717/peerj.5715] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022] Open
Abstract
Agriculture is one of the main drivers of land conversion, and agriculture practices can impact on microbial diversity. Here we characterized the phyllosphere fungal diversity associated with Carménère grapevines under conventional and organic agricultural management. We also explored the fungal diversity present in the adjacent sclerophyllous forests to explore the potential role of native forest on vineyard phyllosphere. After conducting D2 and ITS2 amplicon sequencing, we found that fungal diversity indices did not change between conventional and organic vineyards, but community structure was sensitive to the agricultural management. On the other hand, we found a high proportion of shared fungal OTUs between vineyards and native forests. In addition, both habitats had similar levels of fungal diversity despite forest samples were derived from multiple plant species. In contrast, the community structure was different in both habitats. Interestingly, the native forest had more unidentified species and unique OTUs than vineyards. Forest dominant species were Aureobasidium pullulans and Endoconidioma populi, whereas Davidiella tassiana, Didymella sp., and Alternaria eichhorniae were more abundant in vineyards. Overall, this study argues that a better understanding of the relationship native forests and agroecosystems is needed for maintaining and enhancing ecosystem services provided by natural ecosystems. Finally, knowledge of microbial communities living in the Chilean Mediterranean biome is needed for appropriate conservation management of these biomes and their classification as biodiversity hotspots.
Collapse
Affiliation(s)
- Luis E. Castañeda
- Programa de Genética Humana, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Toshiko Miura
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture, Japan
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Roland Sánchez
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| | - Olga Barbosa
- Instituto de Ciencias Ambientales y Evolutivas, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
- Instituto de Ecología y Biodiversidad, Santiago, Chile
| |
Collapse
|
39
|
Davis WJ, Picard KT, Antonetti J, Edmonds J, Fults J, Letcher PM, Powell MJ. Inventory of chytrid diversity in two temporary forest ponds using a multiphasic approach. Mycologia 2018; 110:811-821. [DOI: 10.1080/00275514.2018.1510725] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- William J. Davis
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Kathryn T. Picard
- Department of Biology, Duke University, Durham, North Carolina 27708
| | - Jonathan Antonetti
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Jennifer Edmonds
- Department of Physical and Life Sciences, Nevada State College, Henderson, Nevada 89002
| | - Jessica Fults
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Peter M. Letcher
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| | - Martha J. Powell
- Department of Biological Sciences, University of Alabama, Tuscaloosa, Alabama 35487
| |
Collapse
|
40
|
Murali A, Bhargava A, Wright ES. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. MICROBIOME 2018; 6:140. [PMID: 30092815 PMCID: PMC6085705 DOI: 10.1186/s40168-018-0521-5] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 07/25/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Microbiome studies often involve sequencing a marker gene to identify the microorganisms in samples of interest. Sequence classification is a critical component of this process, whereby sequences are assigned to a reference taxonomy containing known sequence representatives of many microbial groups. Previous studies have shown that existing classification programs often assign sequences to reference groups even if they belong to novel taxonomic groups that are absent from the reference taxonomy. This high rate of "over classification" is particularly detrimental in microbiome studies because reference taxonomies are far from comprehensive. RESULTS Here, we introduce IDTAXA, a novel approach to taxonomic classification that employs principles from machine learning to reduce over classification errors. Using multiple reference taxonomies, we demonstrate that IDTAXA has higher accuracy than popular classifiers such as BLAST, MAPSeq, QIIME, SINTAX, SPINGO, and the RDP Classifier. Similarly, IDTAXA yields far fewer over classifications on Illumina mock microbial community data when the expected taxa are absent from the training set. Furthermore, IDTAXA offers many practical advantages over other classifiers, such as maintaining low error rates across varying input sequence lengths and withholding classifications from input sequences composed of random nucleotides or repeats. CONCLUSIONS IDTAXA's classifications may lead to different conclusions in microbiome studies because of the substantially reduced number of taxa that are incorrectly identified through over classification. Although misclassification error is relatively minor, we believe that many remaining misclassifications are likely caused by errors in the reference taxonomy. We describe how IDTAXA is able to identify many putative mislabeling errors in reference taxonomies, enabling training sets to be automatically corrected by eliminating spurious sequences. IDTAXA is part of the DECIPHER package for the R programming language, available through the Bioconductor repository or accessible online ( http://DECIPHER.codes ).
Collapse
Affiliation(s)
- Adithya Murali
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Aniruddha Bhargava
- Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, WI 53715 USA
| | - Erik S. Wright
- Department of Biomedical Informatics, Pittsburgh Center for Evolutionary Biology and Medicine, School of Medicine, University of Pittsburgh, 426 Bridgeside Point II, 450 Technology Dr, Pittsburgh, PA 15219 USA
| |
Collapse
|
41
|
Chen KH, Liao HL, Arnold AE, Bonito G, Lutzoni F. RNA-based analyses reveal fungal communities structured by a senescence gradient in the moss Dicranum scoparium and the presence of putative multi-trophic fungi. THE NEW PHYTOLOGIST 2018; 218:1597-1611. [PMID: 29604236 DOI: 10.1111/nph.15092] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/07/2018] [Indexed: 05/15/2023]
Abstract
Diverse plant-associated fungi are thought to have symbiotrophic and saprotrophic states because they can be isolated from both dead and living plant tissues. However, such tissues often are separated in time and space, and fungal activity at various stages of plant senescence is rarely assessed directly in fungal community studies. We used fungal ribosomal RNA metatranscriptomics to detect active fungal communities across a natural senescence gradient within wild-collected gametophytes of Dicranum scoparium (Bryophyta) to understand the distribution of active fungal communities in adjacent living, senescing and dead tissues. Ascomycota were active in all tissues across the senescence gradient. By contrast, Basidiomycota were prevalent and active in senescing and dead tissues. Several fungi were detected as active in living and dead tissues, suggesting their capacity for multi-trophy. Differences in community assembly detected by metatranscriptomics were echoed by amplicon sequencing of cDNA and compared to culture-based inferences and observation of fungal fruit bodies in the field. The combination of amplicon sequencing of cDNA and metatranscriptomics is promising for studying symbiotic systems with complex microbial diversity, allowing for the simultaneous detection of their presence and activity.
Collapse
Affiliation(s)
- Ko-Hsuan Chen
- Department of Biology, Duke University, Durham, NC, 27708, USA
| | - Hui-Ling Liao
- Department of Biology, Duke University, Durham, NC, 27708, USA
- Soil and Water Sciences Department, North Florida Research and Education Center, University of Florida, Quincy, FL, 32351, USA
| | - A Elizabeth Arnold
- School of Plant Sciences and Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, 85721, USA
| | - Gregory Bonito
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI, 48824, USA
| | | |
Collapse
|
42
|
Pelzer ES, Willner D, Buttini M, Hafner LM, Theodoropoulos C, Huygens F. The fallopian tube microbiome: implications for reproductive health. Oncotarget 2018; 9:21541-21551. [PMID: 29765558 PMCID: PMC5940370 DOI: 10.18632/oncotarget.25059] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Objective There is a paucity of data characterizing the microbiota of the female upper genital tract, which controversially is described as a sterile site. We examine whether the fallopian tube harbours an endogenous microbial community. Design This prospective study collected from women undergoing total hysterectomy or salpingectomy-oophorectomy. Setting Private hospital gynaecology department. Patients Fallopian tubes were collected from women diagnosed with benign disease or for prophylaxis. Interventions Samples were interrogated for the presence of microbial DNA using a next generation sequencing technology approach to exploit the V5 to V9 regions of the 16S rRNA gene. Main outcome measures The fallopian tube microbiota was characterized using traditional culture techniques and next generation sequencing. Results Bacteria were isolated from 50% of cultured samples, and 100% of samples returned positive PCR results. Only 68% of the culture isolates could be confidently identified using automated diagnostic equipment in a clinical microbiology laboratory. Monomicrobial communities were identified only for cultured isolates (50%). Pyrosequencing revealed that all communities were polymicrobial. Lactobacillus spp. were not present in all groups, nor were they the most dominant isolates. Distinct differences in the microbial communities were evident for left compared to right fallopian tubes, ampulla versus isthmus, pre- and post- menopausal tissue, and in secretory phase fallopian tubes with and without Mirena intrauterine devices in situ (all p < 0.05). Conclusion The female upper genital tract is not sterile. Distinct microbial community profiles in the fallopian tubes of healthy women suggest that this genital tract site supports an endogenous microbiota.
Collapse
Affiliation(s)
- Elise S Pelzer
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 Australia.,The Wesley Research Institute, Women's Health Laboratory, The Wesley Hospital, Auchenflower, Queensland, 4066 Australia
| | - Dana Willner
- The Australian Centre for Ecogenomics, St Lucia, Queensland, 4067 Australia
| | - Melissa Buttini
- The Wesley Hospital, Auchenflower, Queensland, 4066 Australia
| | - Louise M Hafner
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 Australia
| | - Christina Theodoropoulos
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 Australia
| | - Flavia Huygens
- Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, 4001 Australia
| |
Collapse
|
43
|
Padumadasa C, Xu YM, Wijeratne EMK, Espinosa-Artiles P, U'Ren JM, Arnold AE, Gunatilaka AAL. Cytotoxic and Noncytotoxic Metabolites from Teratosphaeria sp. FL2137, a Fungus Associated with Pinus clausa. JOURNAL OF NATURAL PRODUCTS 2018; 81:616-624. [PMID: 29373790 DOI: 10.1021/acs.jnatprod.7b00838] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A new naphthoquinone, teratosphaerone A (1), four new naphthalenones, namely, teratosphaerone B (2), structurally related to 1, iso-balticol B (3), iso-balticol B-4,9-acetonide (4), and (+)-balticol C (5), a new furanonaphthalenone, (3a S,9 R,9a S)-1(9a),3(3a),9-hexahydromonosporascone (6), and the known metabolite monosporascone (7) were isolated from Teratosphaeria sp. FL2137, a fungal strain inhabiting the internal tissue of recently dead but undecomposed foliage of Pinus clausa. The structures of 1-6 were elucidated on the basis of their spectroscopic data including 2D NMR, and absolute configurations of 2, 3, and 6 were determined by the modified Mosher's ester method. When evaluated in a panel of five tumor cell lines, metabolites 1 and 7 isolated from a cytotoxic fraction of the extract exhibited moderate selectivity for metastatic breast adenocarcinoma cell line MDA-MB-231. Of these, 1 showed cytotoxicity to this cell line with an IC50 of 1.2 ± 0.1 μM.
Collapse
Affiliation(s)
- Chayanika Padumadasa
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
- Department of Chemistry, Faculty of Applied Sciences , University of Sri Jayewardenepura , Gangodawila, Nugegoda , Sri Lanka
| | - Ya-Ming Xu
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - E M Kithsiri Wijeratne
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - Patricia Espinosa-Artiles
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| | - Jana M U'Ren
- Department of Agricultural and Biosystems Engineering, College of Agriculture and Life Sciences , University of Arizona , Tucson , Arizona 85721 , United States
| | - A Elizabeth Arnold
- School of Plant Sciences, College of Agriculture and Life Sciences , University of Arizona , Tucson , Arizona 85721 , United States
| | - A A Leslie Gunatilaka
- Natural Products Center, School of Natural Resources and the Environment, College of Agriculture and Life Sciences , University of Arizona , 250 E. Valencia Road , Tucson , Arizona 85706 , United States
| |
Collapse
|
44
|
Abstract
We introduce a method for assigning names to CO1 metabarcode sequences with confidence scores in a rapid, high-throughput manner. We compiled nearly 1 million CO1 barcode sequences appropriate for classifying arthropods and chordates. Compared to our previous Insecta classifier, the current classifier has more than three times the taxonomic coverage, including outgroups, and is based on almost five times as many reference sequences. Unlike other popular rDNA metabarcoding markers, we show that classification performance is similar across the length of the CO1 barcoding region. We show that the RDP classifier can make taxonomic assignments about 19 times faster than the popular top BLAST hit method and reduce the false positive rate from nearly 100% to 34%. This is especially important in large-scale biodiversity and biomonitoring studies where datasets can become very large and the taxonomic assignment problem is not trivial. We also show that reference databases are becoming more representative of current species diversity but that gaps still exist. We suggest that it would benefit the field as a whole if all investigators involved in metabarocoding studies, through collaborations with taxonomic experts, also planned to barcode representatives of their local biota as a part of their projects.
Collapse
Affiliation(s)
- Teresita M Porter
- The Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada. .,Great Lakes Forestry Centre, Natural Resources Canada, 1219 Queen Street East, Sault Ste. Marie, ON, P6A 2E5, Canada.
| | - Mehrdad Hajibabaei
- The Centre for Biodiversity Genomics & Department of Integrative Biology, University of Guelph, 50 Stone Road East, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
45
|
Porter TM, Hajibabaei M. Scaling up: A guide to high-throughput genomic approaches for biodiversity analysis. Mol Ecol 2018; 27:313-338. [PMID: 29292539 DOI: 10.1111/mec.14478] [Citation(s) in RCA: 140] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 12/11/2017] [Accepted: 12/13/2017] [Indexed: 12/19/2022]
Abstract
The purpose of this review is to present the most common and emerging DNA-based methods used to generate data for biodiversity and biomonitoring studies. As environmental assessment and monitoring programmes may require biodiversity information at multiple levels, we pay particular attention to the DNA metabarcoding method and discuss a number of bioinformatic tools and considerations for producing DNA-based indicators using operational taxonomic units (OTUs), taxa at a variety of ranks and community composition. By developing the capacity to harness the advantages provided by the newest technologies, investigators can "scale up" by increasing the number of samples and replicates processed, the frequency of sampling over time and space, and even the depth of sampling such as by sequencing more reads per sample or more markers per sample. The ability to scale up is made possible by the reduced hands-on time and cost per sample provided by the newest kits, platforms and software tools. Results gleaned from broad-scale monitoring will provide opportunities to address key scientific questions linked to biodiversity and its dynamics across time and space as well as being more relevant for policymakers, enabling science-based decision-making, and provide a greater socio-economic impact. As genomic approaches are continually evolving, we provide this guide to methods used in biodiversity genomics.
Collapse
Affiliation(s)
- Teresita M Porter
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Guelph, ON, Canada.,Natural Resources Canada, Great Lakes Forestry Centre, Sault Ste. Marie, ON, Canada
| | - Mehrdad Hajibabaei
- Centre for Biodiversity Genomics, Biodiversity Institute of Ontario and Department of Integrative Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
46
|
Pertile G, Panek J, Oszust K, Siczek A, Frąc M. Intraspecific functional and genetic diversity of Petriella setifera. PeerJ 2018; 6:e4420. [PMID: 29507826 PMCID: PMC5834937 DOI: 10.7717/peerj.4420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Accepted: 02/07/2018] [Indexed: 11/20/2022] Open
Abstract
The aim of the study was an analysis of the intraspecific genetic and functional diversity of the new isolated fungal strains of P. setifera. This is the first report concerning the genetic and metabolic diversity of Petriella setifera strains isolated from industrial compost and the first description of a protocol for AFLP fingerprinting analysis optimised for these fungal species. The results showed a significant degree of variability among the isolates, which was demonstrated by the clearly subdivision of all the isolates into two clusters with 51% and 62% similarity, respectively. For the metabolic diversity, the BIOLOG system was used and this analysis revealed clearly different patterns of carbon substrates utilization between the isolates resulting in a clear separation of the five isolates into three clusters with 0%, 42% and 54% of similarity, respectively. These results suggest that genetic diversity does not always match the level of functional diversity, which may be useful in discovering the importance of this fungus to ecosystem functioning. The results indicated that P. setifera strains were able to degrade substrates produced in the degradation of hemicellulose (D-Arabinose, L-Arabinose, D-Glucuronic Acid, Xylitol, γ-Amino-Butyric Acid, D-Mannose, D-Xylose and L-Rhamnose), cellulose (α-D-Glucose and D-Cellobiose) and the synthesis of lignin (Quinic Acid) at a high level, showing their importance in ecosystem services as a decomposer of carbon compounds and as organisms, which make a significant contribution to carbon cycling in the ecosystem.The results showed for the first time that the use of molecular biology techniques (such as AFLP and BIOLOG analyses) may allow for the identification of intraspecific diversity of as yet poorly investigated fungal species with favourable consequences for our understanding their ecosystem function.
Collapse
Affiliation(s)
- Giorgia Pertile
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Jacek Panek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Karolina Oszust
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Anna Siczek
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| | - Magdalena Frąc
- Institute of Agrophysics, Polish Academy of Sciences, Lublin, Polska
| |
Collapse
|
47
|
Entwistle EM, Zak DR, Argiroff WA. Anthropogenic N deposition increases soil C storage by reducing the relative abundance of lignolytic fungi. ECOL MONOGR 2018. [DOI: 10.1002/ecm.1288] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Elizabeth M. Entwistle
- School of Natural Resources & Environment University of Michigan Ann Arbor Michigan 48109 USA
| | - Donald R. Zak
- School of Natural Resources & Environment University of Michigan Ann Arbor Michigan 48109 USA
- Department of Ecology and Evolutionary Biology University of Michigan Ann Arbor Michigan 48109 USA
| | - William A. Argiroff
- School of Natural Resources & Environment University of Michigan Ann Arbor Michigan 48109 USA
| |
Collapse
|
48
|
Tedersoo L, Tooming-Klunderud A, Anslan S. PacBio metabarcoding of Fungi and other eukaryotes: errors, biases and perspectives. THE NEW PHYTOLOGIST 2018; 217:1370-1385. [PMID: 28906012 DOI: 10.1111/nph.14776] [Citation(s) in RCA: 147] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/31/2017] [Indexed: 05/04/2023]
Abstract
Second-generation, high-throughput sequencing methods have greatly improved our understanding of the ecology of soil microorganisms, yet the short barcodes (< 500 bp) provide limited taxonomic and phylogenetic information for species discrimination and taxonomic assignment. Here, we utilized the third-generation Pacific Biosciences (PacBio) RSII and Sequel instruments to evaluate the suitability of full-length internal transcribed spacer (ITS) barcodes and longer rRNA gene amplicons for metabarcoding Fungi, Oomycetes and other eukaryotes in soil samples. Metabarcoding revealed multiple errors and biases: Taq polymerase substitution errors and mis-incorporating indels in sequencing homopolymers constitute major errors; sequence length biases occur during PCR, library preparation, loading to the sequencing instrument and quality filtering; primer-template mismatches bias the taxonomic profile when using regular and highly degenerate primers. The RSII and Sequel platforms enable the sequencing of amplicons up to 3000 bp, but the sequence quality remains slightly inferior to Illumina sequencing especially in longer amplicons. The full ITS barcode and flanking rRNA small subunit gene greatly improve taxonomic identification at the species and phylum levels, respectively. We conclude that PacBio sequencing provides a viable alternative for metabarcoding of organisms that are of relatively low diversity, require > 500-bp barcode for reliable identification or when phylogenetic approaches are intended.
Collapse
Affiliation(s)
- Leho Tedersoo
- Natural History Museum, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| | - Ave Tooming-Klunderud
- Department of Biosciences, Norwegian Sequencing Centre and Centre for Ecological and Evolutionary Synthesis, University of Oslo, PO Box 1066, Blindern, Oslo, NO-0316, Norway
| | - Sten Anslan
- Institute of Ecology and Earth Sciences, University of Tartu, 14a Ravila, Tartu, 50411, Estonia
| |
Collapse
|
49
|
Chaib De Mares M, Sipkema D, Huang S, Bunk B, Overmann J, van Elsas JD. Host Specificity for Bacterial, Archaeal and Fungal Communities Determined for High- and Low-Microbial Abundance Sponge Species in Two Genera. Front Microbiol 2017; 8:2560. [PMID: 29326681 PMCID: PMC5742488 DOI: 10.3389/fmicb.2017.02560] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 12/11/2017] [Indexed: 02/01/2023] Open
Abstract
Sponges are engaged in intimate symbioses with a diversity of microorganisms from all three domains of life, namely Bacteria, Archaea and Eukarya. Sponges have been well studied and categorized for their bacterial communities, some displaying a high microbial abundance (HMA), while others show low microbial abundance (LMA). However, the associated Archaea and Eukarya have remained relatively understudied. We assessed the bacterial, archaeal and eukaryotic diversities in the LMA sponge species Dysidea avara and Dysidea etheria by deep amplicon sequencing, and compared the results to those in the HMA sponges Aplysina aerophoba and Aplysina cauliformis. D. avara and A. aerophoba are sympatric in the Mediterranean Sea, while D. etheria and A. cauliformis are sympatric in the Caribbean Sea. The bacterial communities followed a host-specific pattern, with host species identity explaining most of the variation among samples. We identified OTUs shared by the Aplysina species that support a more ancient association of these microbes, before the split of the two species studied here. These shared OTUs are suitable targets for future studies of the microbial traits that mediate interactions with their hosts. Even though the archaeal communities were not as rich as the bacterial ones, we found a remarkable diversification and specificity of OTUs of the family Cenarchaeaceae and the genus Nitrosopumilus in all four sponge species studied. Similarly, the differences in fungal communities were driven by sponge identity. The structures of the communities of small eukaryotes such as dinophytes and ciliophores (alveolates), and stramenopiles, could not be explained by either sponge host, sponge genus or geographic location. Our analyses suggest that the host specificity that was previously described for sponge bacterial communities also extends to the archaeal and fungal communities, but not to other microbial eukaryotes.
Collapse
Affiliation(s)
- Maryam Chaib De Mares
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
| | - Sixing Huang
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz-Institut Deutsche Sammlung von Mikroorganismen und Zellkulturen, Braunschweig, Germany.,German Centre of Infection Research (DZIF), Partner site Hannover-Braunschweig, Braunschweig, Germany
| | - Jan Dirk van Elsas
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
50
|
Huseyin CE, O'Toole PW, Cotter PD, Scanlan PD. Forgotten fungi-the gut mycobiome in human health and disease. FEMS Microbiol Rev 2017; 41:479-511. [PMID: 28430946 DOI: 10.1093/femsre/fuw047] [Citation(s) in RCA: 164] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 01/04/2017] [Indexed: 12/11/2022] Open
Abstract
The human body is home to a complex and diverse microbial ecosystem that plays a central role in host health. This includes a diversity of fungal species that is collectively referred to as our 'mycobiome'. Although research into the mycobiome is still in its infancy, its potential role in human disease is increasingly recognised. Here we review the existing literature available on the human mycobiota with an emphasis on the gut mycobiome, including how fungi interact with the human host and other microbes. In doing so, we provide a comprehensive critique of the methodologies available to research the human mycobiota as well as highlighting the latest research findings from mycological surveys of different groups of interest including infants, obese and inflammatory bowel disease cohorts. This in turn provides new insights and directions for future studies in this burgeoning research area.
Collapse
Affiliation(s)
- Chloe E Huseyin
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul W O'Toole
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland.,School of Microbiology, University College Cork, Cork T12 YT20, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork P61 C996, Ireland.,APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| | - Pauline D Scanlan
- APC Microbiome Institute, Biosciences Institute, University College Cork, Cork T12 YT20 Ireland
| |
Collapse
|