1
|
Sarwade V, Funde S. Biotransformation of nitro aromatic amines in artificial alkaline habitat by pseudomonas DL17. Environ Anal Health Toxicol 2022; 37:e2022001-0. [PMID: 35108777 PMCID: PMC9058103 DOI: 10.5620/eaht.2022001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022] Open
Abstract
Nitro-aromatics are listed in carcinogenic, teratogenic, and mutagenic compounds list. p-nitro-aniline is one of them used as a precursor of various chemical compounds in many industries like dyes, drugs, paints and several others. These are mostly given out as an effluent in rivers, lakes or open passage of land which exert several hazards to living creatures and environment. Some of the organic compounds are stable in alkaline condition and persist longer in environment. Very few reports are elaborating bio-remediation in alkaline condition using different hydrocarbons. This study was planned to elaborate mechanism of detoxification and searching the potential of decontamination of p-nitro-aniline in alkaline condition by experimental microbial strain. The bacterial strain pseudomonas DL17 was isolated from alkaline Lake Lonar, Buldana, (MS.) India; and employed in this experiment considering its indigenous property to tolerate the alkaline pH. It also showed resistance to p-nitro-aniline with its raising concentrations on testing after adaptation. The experimental microbial stain showed 100% biodegradation of (500 mg/L) p-nitro-aniline within 48h. On shaking incubator with 110 rpm and at 32 °C optimum temperature. The centrifugate obtained after spinning at 10,000 g by cold centrifuge was used for solvent extraction. Generally, ethyl acetate or DCM was used for solvent extraction. The estimation of residual remains of p-nitro aniline by 6h. intervals was carried after removal of flasks from shaking incubator and centrifugation. At the optimum temperature and pH experiments were carried after knowing the resistance to experimental contaminant range (100–400 mg/L) of p-nitro aniline one month and further extended to 500 mg/L for 15days more. The residual metabolites were purified by column chromatography and various spectrometric studies such as UV-Vis spectroscopy, HNMR, FTIR and GCMS revealed that p-Phenylenediamine, acetanilide, aniline, acetaminophen, catechol, p-bezoquinone, cis-cis muconate as a metabolites. On the basis of the metabolites isolated and characterized by different spectroscopic studies the bio-catalytic mechanism was deduced. The induced enzymes such as nitroreductase, catalase, peroxidase, acetanilide hydroxylase, super oxide dismutase, catechol 1, 2 dioxygenase, catechol 2, 3 dioxygenase has commercial importance in biochemical industries. Induction of such biotransformation enzymes and consumption of p-nitro aniline concentration in experiments makes sure that this microbial strain pseudomonas DL17 can be employed for decontamination of nitro aniline polluted sites as well as isolation of such metabolites characterized and enzymes studied.
Collapse
Affiliation(s)
- Vasudeo Sarwade
- Jamkhed college Jamkhed, Maharashtra, India.,Department of Chemistry, Savitribai Phule Pune University, Pune, India
| | - Sharad Funde
- Department of Chemistry, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
2
|
D'Almeida SR, Buoro RM. Determination of
p
‐Nitrophenol in Synthetic Textile Wastewater Samples Using a Graphene Oxide/Palladium Nanoparticles Modified Carbon Paste Electrode. ELECTROANAL 2021. [DOI: 10.1002/elan.202060539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Suysia R. D'Almeida
- Instituto de Química de São Carlos Universidade de São Paulo Av. Trabalhador São-Carlense, 400 SP, 13566-590 São Carlos Brazil
| | - Rafael M. Buoro
- Instituto de Química de São Carlos Universidade de São Paulo Av. Trabalhador São-Carlense, 400 SP, 13566-590 São Carlos Brazil
| |
Collapse
|
3
|
Calam TT. Electrochemical Oxidative Determination and Electrochemical Behavior of 4‐Nitrophenol Based on an Au Electrode Modified with Electro‐polymerized 3,5‐Diamino‐1,2,4‐triazole Film. ELECTROANAL 2019. [DOI: 10.1002/elan.201900450] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
4
|
Rodriguez SY, Cantú ME, Garcia-Reyes B, Garza-Gonzalez MT, Meza-Escalante ER, Serrano D, Alvarez LH. Biotransformation of 4-nitrophenol by co-immobilized Geobacter sulfurreducens and anthraquinone-2-sulfonate in barium alginate beads. CHEMOSPHERE 2019; 221:219-225. [PMID: 30640004 DOI: 10.1016/j.chemosphere.2019.01.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 12/13/2018] [Accepted: 01/06/2019] [Indexed: 05/17/2023]
Abstract
Geobacter sulfurreducens and anthraquinone-2-sulfonate (AQS) were used suspended and immobilized in barium alginate during the biotransformation of 4-nitrophenol (4-NP). The assays were conducted at different concentrations of 4-NP (50-400 mg/L) and AQS, either in suspended (0-400 μM) or immobilized form (0 or 760 μM), and under different pH values (5-9). G. sulfurreducens showed low capacity to reduce 4-NP in absence of AQS, especially at the highest concentrations of the contaminant. AQS improved the reduction rates from 0.0086 h-1, without AQS, to 0.149 h-1 at 400 μM AQS, which represent an increment of 17.3-fold. The co-immobilization of AQS and G. sulfurreducens in barium alginate beads (AQSi-Gi) increased the reduction rates up to 4.8- and 7.2-fold, compared to incubations with G. sulfurreducens in suspended and immobilized form, but in absence of AQS. AQSi-Gi provides to G. sulfurreducens a barrier against the possibly inhibiting effects of 4-NP.
Collapse
Affiliation(s)
- Sujei Y Rodriguez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria E Cantú
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Bernardo Garcia-Reyes
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Maria T Garza-Gonzalez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico
| | - Edna R Meza-Escalante
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Denisse Serrano
- Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias del Agua y Medio Ambiente, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico
| | - Luis H Alvarez
- Universidad Autonoma de Nuevo Leon (UANL), Facultad de Ciencias Quimicas, Av. Universidad S/N, Cd. Universitaria, San Nicolas de los Garza, 66455, Nuevo Leon, Mexico; Instituto Tecnologico de Sonora (ITSON), Departamento de Ciencias Agronomicas y Veterinarias, 5 de Febrero 818 Sur, C.P. 85000, Cuidad Obregon, Sonora, Mexico.
| |
Collapse
|
5
|
Fang Y, Yin W, Jiang Y, Ge H, Li P, Wu J. Depth treatment of coal-chemical engineering wastewater by a cost-effective sequential heterogeneous Fenton and biodegradation process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:13118-13126. [PMID: 29488201 DOI: 10.1007/s11356-018-1571-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 02/14/2018] [Indexed: 06/08/2023]
Abstract
In this study, a sequential Fe0/H2O2 reaction and biological process was employed as a low-cost depth treatment method to remove recalcitrant compounds from coal-chemical engineering wastewater after regular biological treatment. First of all, a chemical oxygen demand (COD) and color removal efficiency of 66 and 63% was achieved at initial pH of 6.8, 25 mmol L-1 of H2O2, and 2 g L-1 of Fe0 in the Fe0/H2O2 reaction. According to the gas chromatography-mass spectrometer (GC-MS) and gas chromatography-flame ionization detector (GC-FID) analysis, the recalcitrant compounds were effectively decomposed into short-chain organic acids such as acetic, propionic, and butyric acids. Although these acids were resistant to the Fe0/H2O2 reaction, they were effectively eliminated in the sequential air lift reactor (ALR) at a hydraulic retention time (HRT) of 2 h, resulting in a further decrease of COD and color from 120 to 51 mg L-1 and from 70 to 38 times, respectively. A low operational cost of 0.35 $ m-3 was achieved because pH adjustment and iron-containing sludge disposal could be avoided since a total COD and color removal efficiency of 85 and 79% could be achieved at an original pH of 6.8 by the above sequential process with a ferric ion concentration below 0.8 mg L-1 after the Fe0/H2O2 reaction. It indicated that the above sequential process is a promising and cost-effective method for the depth treatment of coal-chemical engineering wastewaters to satisfy discharge requirements.
Collapse
Affiliation(s)
- Yili Fang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou, 510006, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Weizhao Yin
- School of Environment, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Yanbin Jiang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Hengjun Ge
- School of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China
| | - Ping Li
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou, 510006, People's Republic of China
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jinhua Wu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- The Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions, South China University of Technology, Guangzhou, 510006, People's Republic of China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
6
|
Öv Bodur GS, Yavuz M, Dege N, Bülbül H, Ağar E. ( E)-2-{[(5-Chloro-2-methoxyphenyl)imino]methyl}-4-nitrophenol. IUCRDATA 2017. [DOI: 10.1107/s2414314617001778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The title compound, C14H11ClN2O4, is a Schiff base. Its molecule is approximatelly planar, with a maximum deviation of 0.096 (4) Å from planarity for the methyl C atom of the methoxy group. The dihedral angle between the 5-chloro-2-methoxyphenyl ring and the phenol ring is 2.40 (10)°. In the crystal structure, intermolecular C—H...O hydrogen bonds and π–π stacking interactions consolidate the crystal packing.
Collapse
|
7
|
Muz M, Krauss M, Kutsarova S, Schulze T, Brack W. Mutagenicity in Surface Waters: Synergistic Effects of Carboline Alkaloids and Aromatic Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1830-1839. [PMID: 28045503 DOI: 10.1021/acs.est.6b05468] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
For decades, mutagenicity has been observed in many surface waters with a possible link to the presence of aromatic amines. River Rhine is a well-known example of this phenomenon but responsible compound(s) are still unknown. To identify the mutagenic compounds, we applied effect-directed analysis (EDA) utilizing novel analytical and biological approaches to a water sample extract from the lower Rhine. We could identify 21 environmental contaminants including two weakly mutagenic aromatic amines, and the known alkaloid comutagen norharman along with two related β-carboline alkaloids, carboline, and 5-carboline, which were reported the first time in surface waters. Results of mixture tests showed a strong synergism of the identified aromatic amines not only with norharman, but also with carboline and 5-carboline. Additionally, other nitrogen-containing compounds also contributed to the mutagenicity when aromatic amines were present. Thus, comutagenicity of β-carboline alkaloids with aromatic amines is shown to occur in surface waters. These results strongly suggest that surface water mutagenicity is highly complex and driven by synergistic mechanisms of a complex compound mixture (of which many are yet unidentified) rather than by single compounds. Therefore, mixture effects should be considered not only from mutagens alone, but also including possible comutagens and nonmutagenic compounds.
Collapse
Affiliation(s)
- Melis Muz
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| | - Martin Krauss
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Stela Kutsarova
- Laboratory of Mathematical Chemistry, University "Prof. Assen Zlatarov" , 1 Yakimov Street, 8010 Bourgas, Bulgaria
| | - Tobias Schulze
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department Effect-Directed Analysis, Helmholtz Centre for Environmental Research - UFZ , Permoserstraße 15, 04318 Leipzig, Germany
- RWTH Aachen University , Department of Ecosystem Analyses, Institute for Environmental Research,Worringerweg 1, 52074 Aachen, Germany
| |
Collapse
|
8
|
Wu J, Chen G, Gu J, Yin W, Lu M, Li P, Yang B. Effects of hydraulic retention time and nitrobenzene concentration on the performance of sequential upflow anaerobic filter and air lift reactors in treating nitrobenzene-containing wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12800-12810. [PMID: 24969431 DOI: 10.1007/s11356-014-3225-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 06/17/2014] [Indexed: 06/03/2023]
Abstract
Sequential upflow anaerobic filter (UAF)/air lift (ALR) reactors were employed to investigate the effects of hydraulic retention time (HRT) and nitrobenzene (NB) concentration on treatment of NB-containing wastewater. The results showed that NB was effectively reduced to aniline (AN) with glucose as co-substrate in the UAF reactor. The AN and the remaining intermediates after the UAF reactor were then efficiently degraded in the ALR reactor. A removal efficiency of 100% and 96% was obtained for NB and chemical oxygen demand (COD), respectively, using sequential UAF/ALR reactors with an HRT of 8-72 h in the UAF reactor and 2-18 h in the ALR reactor. The corresponding optimal influent NB concentration varied between 100 and 400 mg l(-1) to achieve the optimal NB and COD removal. The NB removal efficiency decreased to 90% and to 97% if the HRT in the UAF reactor decreased from 8 to 2 h and the influent NB concentration increased from 400 to 800 mg l(-1), respectively. The results showed that sequential UAF/ALR system can be operated at low HRTs and high NB concentrations without significantly affecting the removal efficiency of NB in the reactor system. The UAF/ALR system can provide an effective yet low cost method for treatment of NB-containing industrial wastewater.
Collapse
Affiliation(s)
- Jinhua Wu
- Key Laboratory of Environmental Protection and Eco-Remediation of Guangdong Regular Higher Education Institutions; Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, China; School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China,
| | | | | | | | | | | | | |
Collapse
|
9
|
Song YZ. Density functional theory study on electrochemical reduction of 2,4-dinitrophenol. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2014. [DOI: 10.1134/s0036024414090295] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Jo WK, Won Y, Hwang I, Tayade RJ. Enhanced Photocatalytic Degradation of Aqueous Nitrobenzene Using Graphitic Carbon–TiO2 Composites. Ind Eng Chem Res 2014. [DOI: 10.1021/ie500245d] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wan-Kuen Jo
- Department
of Environmental Engineering, Kyungpook National University, 80 Daehek-Ro, Bukgu, Daegu 702-701, Republic of Korea
| | - Yangsoo Won
- Department
of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Ingyu Hwang
- Department
of Environmental Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 712-749, Republic of Korea
| | - Rajesh J. Tayade
- Department
of Environmental Engineering, Kyungpook National University, 80 Daehek-Ro, Bukgu, Daegu 702-701, Republic of Korea
- Discipline
of Inorganic Materials and Catalysis, Central Salt and Marine Chemicals Research Institute, Council of Scientific and Industrial Research (CSIR-CSMCRI), G. B. Marg, Bhavnagar, Gujarat 364002, India
| |
Collapse
|
11
|
Liu N, Li H, Ding F, Xiu Z, Liu P, Yu Y. Analysis of biodegradation by-products of nitrobenzene and aniline mixture by a cold-tolerant microbial consortium. JOURNAL OF HAZARDOUS MATERIALS 2013; 260:323-329. [PMID: 23774783 DOI: 10.1016/j.jhazmat.2013.05.033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 05/20/2013] [Accepted: 05/21/2013] [Indexed: 06/02/2023]
Abstract
A cold-tolerant microbial consortium, which can use nitrobenzene (NB) and aniline (AN) as sole carbon, nitrogen and energy sources, was isolated from an NB and AN contaminated site. Pilot 454 pyrosequencing analysis of the consortium showed that it was mainly made up of Pseudomonas spp. (98%). At 10 °C, the consortium degraded the mixture of 50mg/L NB and 50mg/L AN at a similar rate as those achieved at 20 °C and 30 °C. The biodegradation by-products with different initial NB and AN concentrations at 10 °C were analyzed. Azobenzene, azoxybenzene and acetanilide were observed in NB and AN mixtures degradation. These by-products are generated by the reaction between different intermediates resulting from the NB and AN degradation as well as the parent compounds. To the best of our knowledge, this is the first report confirming the by-products of NB and AN mixture biodegradation by a cold-tolerant microbial consortium.
Collapse
Affiliation(s)
- Na Liu
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
| | | | | | | | | | | |
Collapse
|
12
|
Lin Y, Yin J, Wang J, Tian W. Performance and microbial community in hybrid Anaerobic Baffled Reactor-constructed wetland for nitrobenzene wastewater. BIORESOURCE TECHNOLOGY 2012; 118:128-135. [PMID: 22705515 DOI: 10.1016/j.biortech.2012.05.056] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Revised: 05/10/2012] [Accepted: 05/14/2012] [Indexed: 06/01/2023]
Abstract
A process combining an Anaerobic Baffled Reactor (ABR) and a constructed wetland was employed to treat nitrobenzene wastewater. The overall performance was examined throughout long-term operation with a hydraulic retention time (HRT) of 24 h at 30±1 °C. The effluent nitrobenzene concentration of the ABR and constructed wetland was less than 4.81 and 1.94 mg/L, respectively, with an initial nitrobenzene concentration of 80 mg/L at the steady-state periods. The corresponding removal efficiencies were 97.02% and 73.93%, respectively. Moreover, 97.29% of aniline produced in the ABR could be removed in the subsequent wetland. The number of sequenced clones from each library was sufficient to cover archaea and eubacteria diversity at the species level and to obtain a representation of the total microbial diversity in the ABR. The predominant microbial populations in the ABR were identified as Pseudomonas putida, Methanosaeta concilii and Methanothrix soehngenii.
Collapse
Affiliation(s)
- Yingzi Lin
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Architectural and Civil Engineering Institute, Changchun 130118, PR China.
| | | | | | | |
Collapse
|
13
|
Abstract
Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed.
Collapse
|
14
|
Xie B, Yang J, Yang Q. Biotransformation of nitro-polycyclic aromatic compounds by vegetable and fruit cell extracts. J Zhejiang Univ Sci B 2012; 13:248-53. [PMID: 22467365 DOI: 10.1631/jzus.b1100254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Extracts from various vegetables and fruits were investigated for their abilities to reduce nitro-polycyclic aromatic hydrocarbons (NPAHs). The extracts from grape and onion exhibited an interesting selectivity, yielding corresponding hydroxylamines or amines as major products under mild conditions of 30 °C and pH 7.0. Grape extracts reduced the 4-nitro-1,8-naphthalic anhydride with the highest conversion rate (>99%) and the highest ratio of hydroxylamine to amine (95:5). In contrast, the onion extracts reduced 4-nitro-1,8-naphthalic anhydride with a conversion rate of 94% and a ratio of hydroxylamine to amine of 8:92. The thiol-reducing agent, β-mercaptoethanol, and metal cations, Ca(2+) and Mg(2+), greatly increased the reductive efficiency. This work provides an alternative strategy for biotransformation of nitro-polycyclic compounds.
Collapse
Affiliation(s)
- Bo Xie
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | | | | |
Collapse
|
15
|
Xia S, Li H, Zhang Z, Zhang Y, Yang X, Jia R, Xie K, Xu X. Bioreduction of para-chloronitrobenzene in drinking water using a continuous stirred hydrogen-based hollow fiber membrane biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2011; 192:593-598. [PMID: 21715088 DOI: 10.1016/j.jhazmat.2011.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 03/17/2011] [Accepted: 05/19/2011] [Indexed: 05/31/2023]
Abstract
para-Chloronitrobenzene (p-CNB) is particularly harmful and persistent in the environment and is one of the priority pollutants. A feasible degradation pathway for p-CNB is bioreduction under anaerobic conditions. Bioreduction of p-CNB using a hydrogen-based hollow fiber membrane biofilm reactor (HFMBfR) was investigated in the present study. The experiment results revealed that p-CNB was firstly reduced to para-chloraniline (p-CAN) as an intermediate and then reduced to aniline that involves nitro reduction and reductive dechlorination with H(2) as the electron donor. The HFMBfR had reduced p-CNB to a major extent with a maximum removal percentage of 99.3% at an influent p-CNB concentration of 2mg/L and a hydraulic residence time of 4.8h, which corresponded to a p-CNB flux of 0.058g/m(2) d. The H(2) availability, p-CNB loading, and the presence of competing electron acceptors affected the p-CNB reduction. Flux analysis indicated that the reduction of p-CNB and p-CAN could consume fewer electrons than that of nitrate and sulfate. The HFMBfR had high average hydrogen utilization efficiencies at different steady states in this experiment, with a maximum efficiency at 98.2%.
Collapse
Affiliation(s)
- Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Santos MSD, Bianchin JN, Spinelli A. Desenvolvimento de metodologia analítica baseada em eletrodo de carbono vítreo modificado com filme de bismuto: aplicação em águas de chuva de regiões de Santa Catarina. ECLÉTICA QUÍMICA 2011. [DOI: 10.1590/s0100-46702011000200009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Neste estudo foi desenvolvida uma metodologia analítica para determinação de 2,4-dinitrofenol (2,4-DNP) em amostras de águas de chuva de regiões de Santa Catarina utilizando a voltametria de onda quadrada (VOQ) e de forma ex situ. O estudo envolveu a aplicabilidade de utilizar o eletrodo de carbono vítreo modificado com filme de bismuto. A formação do filme de bismuto foi otimizada por voltametria cíclica e em seguida, estudos de pH e eletrólito de suporte foram investigados para a redução do 2,4-DNP. Os parâmetros analíticos que afetam a sensibilidade da VOQ foram otimizados. Na sequência, as figuras analíticas de mérito foram obtidas: faixa linear de trabalho de 3,2 x 10-7 - 4,6 x 10-6 mol L-1, coeficiente de correlação de 0,996, RSD% = 17,5 (1,3 x 10-6 mol L-1, n = 6), 11,7 (2,5 x 10-6 mol L-1, n = 6) e 6,4 ( 4,5 x 10-6 mol L-1, n = 6), limite de detecção de 1,2 x 10-7 mol L-1. E, finalmente estudos de recuperação foram realizados para avaliar a exatidão da metodologia. Valores obtidos ficaram entre 84-112% (2,5 x 10-6 mol L-1) e 89 - 113% (4,5 x 10-6 mol L-1).
Collapse
|
17
|
Konopka A, Knight D, Turco RF. Characterization of a Pseudomonas sp. Capable of Aniline Degradation in the Presence of Secondary Carbon Sources. Appl Environ Microbiol 2010; 55:385-9. [PMID: 16347847 PMCID: PMC184119 DOI: 10.1128/aem.55.2.385-389.1989] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas strain K1 is a gram-negative rod which grows aerobically on minimal media containing aniline with a doubling time of 2 h at 30 degrees C. The half-saturation parameter for aniline metabolism by aniline-grown cells was 3.8 mumol . liter. Concentrations of aniline as low as 50 nM were metabolized. Neither substituted anilines nor other aromatic compounds (other than aromatic amino acids) supported growth. Cells grew as fast on aniline as on nonaromatic substrates such as lactate. The aromatic ring was cleaved via the meta pathway. Catechol 2,3-oxygenase activity was induced by aniline, even in cultures containing alternative carbon sources such as lactate. Cultures grown on a mixture of aniline and lactate mineralized aniline in the presence of the second substrate. Lactate-grown cultures lacked catechol oxygenase activity, and resting cells from these cultures did not respire aniline. Resting cells from aniline-grown cultures exhibited high respiratory activity upon the addition of aniline or catechol, some activity with toluidine, and no activity after addition of a wide variety of other aromatic compounds, including dihydroxybenzylamine, chloroanilines, ethylanilines, aminophenols, aminobenzoates, and dihydroxybenzoates. Although substituted anilines were not metabolized, 3-or 4-chloroaniline did induce the enzymes for aniline oxidation.
Collapse
Affiliation(s)
- A Konopka
- Department of Biological Sciences and Department of Agronomy, Purdue University, West Lafayette, Indiana 47907
| | | | | |
Collapse
|
18
|
Biodegradation of 5-nitroanthranilic acid by Bradyrhizobium sp. strain JS329. Appl Environ Microbiol 2010; 76:1417-22. [PMID: 20081004 DOI: 10.1128/aem.02816-09] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biodegradation of synthetic compounds has been studied extensively, but the metabolic diversity required for catabolism of many natural compounds has not been addressed. 5-Nitroanthranilic acid (5NAA), produced in soil by Streptomyces scabies, is also the starting material for synthetic dyes and other nitroaromatic compounds. Bradyrhizobium JS329 was isolated from soil by selective enrichment with 5NAA. When grown on 5NAA, the isolate released stoichiometric amounts of nitrite and half of the stoichiometric amounts of ammonia. Enzyme assays indicate that the initial step in 5NAA degradation is an unusual hydrolytic deamination for formation of 5-nitrosalicylic acid (5NSA). Cloning and heterologous expression revealed the genes that encode 5NAA deaminase (naaA) and the 5NSA dioxygenase (naaB) that cleaves the aromatic ring of 5NSA without prior removal of the nitro group. The results provide the first clear evidence for the initial steps in biodegradation of amino-nitroaromatic compounds and reveal a novel deamination reaction for aromatic amines.
Collapse
|
19
|
Tanak H, Macit M, Yavuz M, Işık S. 2-Hydr-oxy-5-nitro-benzaldehyde. Acta Crystallogr Sect E Struct Rep Online 2009; 65:o3056-7. [PMID: 21578788 PMCID: PMC2971860 DOI: 10.1107/s1600536809046807] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 11/05/2009] [Indexed: 11/12/2022]
Abstract
The title compound, C7H5NO4, is essentially planar, with a maximum deviation from the mean plane of 0.0116 (11) Å for the hydroxy O atom. The molecular and crystal structure are stabilized by intra- and intermolecular interactions. An intramolecular O—H⋯O hydrogen bond generates a six-membered ring, producing an S(6) ring motif. The C—H⋯O interactions result in the formation of C(5) chains and R22(8) rings forming an approximately planar network parallel to (10). These planes are interconnected through π–π interactions [centroid–centroid distance 3.582 (2) Å].
Collapse
|
20
|
Douglas TA, Johnson L, Walsh M, Collins C. A time series investigation of the stability of nitramine and nitroaromatic explosives in surface water samples at ambient temperature. CHEMOSPHERE 2009; 76:1-8. [PMID: 19329139 DOI: 10.1016/j.chemosphere.2009.02.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 02/19/2009] [Accepted: 02/20/2009] [Indexed: 05/27/2023]
Abstract
We investigated the fate of nitramine and nitroaromatic explosives compounds in surface water to determine how surface water biogeochemistry affects the stability of explosives compounds. Five river water samples and 18.2 MOmega deionized water were spiked with 10 explosives compounds and the samples were held at ambient temperatures (20 degrees C) for 85 d. Surface water represented three rivers with a range of total organic carbon concentrations and two rivers draining glacial watersheds with minimal organic carbon but high suspended solids. 18.2 MOmega deionized water exhibited no explosives transformation. Nitroaromatic compound loss from solution was generally: tetryl>1,3,5-TNB>TNT>1,3-DNB>2,4-DNT. The HMX, RDX, 2,6-DNT, 2ADNT, and 4ADNT concentrations remained somewhat stable over time. The surface water with the highest total organic carbon concentration exhibited the most dramatic nitroaromatic loss from solution with tetryl, 1,3,5-TNB and TNT concentrations decreasing to below detection within 10d. The two water samples with high suspended solid loads exhibited substantial nitroaromatic explosives loss which could be attributable to adsorption onto fresh mineral surfaces and/or enhanced microbiologic biotransformation on mineral surfaces. An identical set of six water samples was spiked with explosives and acidified with sodium bisulfate to a pH of 2. Acidification maintained stable explosives concentrations in most of the water samples for the entire 85 d. Our results suggest sampling campaigns for explosives in surface water must account for biogeochemical characteristics. Acidification of samples with sodium bisulfate immediately following collection is a robust way to preserve nitroaromatic compound concentrations even at ambient temperature for up to three months.
Collapse
Affiliation(s)
- Thomas A Douglas
- Cold Regions Research and Engineering Laboratory, Fort Wainwright, AK 99703, USA.
| | | | | | | |
Collapse
|
21
|
El Mhammedi MA, Achak M, Bakasse M, Chtaini A. Electrochemical determination of para-nitrophenol at apatite-modified carbon paste electrode: application in river water samples. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:323-8. [PMID: 18774219 DOI: 10.1016/j.jhazmat.2008.06.126] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Revised: 06/24/2008] [Accepted: 06/25/2008] [Indexed: 05/12/2023]
Abstract
The behavior of a modified carbon paste electrode (CPE) for para-nitrophenol detection by cyclic and square wave voltammetry (SWV) was studied. The electrode was built by incorporating the hydroxyapatite (HAP) to carbon paste. The overall analysis involved a two-step procedure: an accumulation step at open circuit, followed by medium exchange to a pure electrolyte solution for the voltammetric quantification. During the preconcentration step, para-nitrophenol was adsorbed onto hydroxyapatite surface. The influence of various experimental parameters on the HAP-CPE response was investigated (i.e. pH, carbon paste composition, accumulation time). Under the optimized conditions, the reduction peak shows that the peak height was found to be directly proportional to the para-nitrophenol concentration in the range comprised between 2x10(-7) mol L(-1) and 1x10(-4) mol L(-1). With this, it was possible to determine detection limit (DL), which resulted in 8x10(-9) mol L(-1) for peak 1. The proposed electrode (HAP-CPE) presented good repeatability, evaluated in term of relative standard deviation (R.S.D.=2.87%) for n=7 and was applied for para-nitrophenol determination in water samples. The average recovery for these samples was 86.2%.
Collapse
Affiliation(s)
- M A El Mhammedi
- Equipe d'Electrochimie et des Matériaux Inorganiques, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, Beni-Mellal, Morocco.
| | | | | | | |
Collapse
|
22
|
Muñiz FM, Alcázar V, Simón L, Raposo C, Calle E, Morán JR. Daxabe - A Xanthene-Based Fluorescent Sensor for 3,5-Dinitrobenzoic Acid and Anions. European J Org Chem 2009. [DOI: 10.1002/ejoc.200800725] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Surolia PK, Lazar MA, Tayade RJ, Jasra RV. Photocatalytic Degradation of 3,3′-Dimethylbiphenyl-4,4′-diamine (o-Tolidine) over Nanocrystalline TiO2 Synthesized by Sol−Gel, Solution Combustion, and Hydrothermal Methods. Ind Eng Chem Res 2008. [DOI: 10.1021/ie800073j] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Praveen K. Surolia
- Discipline of Inorganic Materials and Catalysis, Central Salt & Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar-364002, India
| | - Manoj A. Lazar
- Discipline of Inorganic Materials and Catalysis, Central Salt & Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar-364002, India
| | - Rajesh J. Tayade
- Discipline of Inorganic Materials and Catalysis, Central Salt & Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar-364002, India
| | - Raksh V. Jasra
- Discipline of Inorganic Materials and Catalysis, Central Salt & Marine Chemicals Research Institute, Council of Scientific and Industrial Research, G. B. Marg, Bhavnagar-364002, India
| |
Collapse
|
24
|
A Fluorescent Sensor for Dinitrobenzoic Acid Based on a Cyanuric Acid and Xanthene Skeleton. SENSORS 2008; 8:1637-1644. [PMID: 27879785 PMCID: PMC3663016 DOI: 10.3390/s8031637] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Accepted: 03/11/2008] [Indexed: 11/16/2022]
Abstract
A new fluorescent sensor based on a dimethylxanthene skeleton has beensynthesized. Because of its oxyanion hole structure, this receptor includes a suitablecavity for the association of carboxylic acids. The receptor's fluorescence is quenchedupon addition of dinitrobenzoic acid.
Collapse
|
25
|
Cortinas I, Field JA, Kopplin M, Garbarino JR, Gandolfi AJ, Sierra-Alvarez R. Anaerobic biotransformation of roxarsone and related N-substituted phenylarsonic acids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2006; 40:2951-7. [PMID: 16719096 DOI: 10.1021/es051981o] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Large quantities of arsenic are introduced into the environment through land application of poultry litter containing the organoarsenical feed additive roxarsone (3-nitro-4-hydroxyphenylarsonic acid). The objective of this study was to evaluate the bioconversion of roxarsone and related N-substituted phenylarsonic acid derivatives under anaerobic conditions. The results demonstrate that roxarsone is rapidly transformed in the absence of oxygen to the corresponding aromatic amine, 4-hydroxy-3-aminophenylarsonic acid (HAPA). The formation of HAPA is attributable to the facile reduction of the nitro group. Electron-donating substrates, such as hydrogen gas, glucose, and lactate, stimulated the rate of nitro group reduction, indicating a microbial role. During long-term incubations, HAPA and the closely related 4-aminophenylarsonic acid (4-APA) were slowly biologically eliminated by up to 99% under methanogenic and sulfate-reducing conditions, whereas little or no removal occurred in heat-killed inoculum controls. Arsenite and, to a lesser extent, arsenate were observed as products of the degradation. Freely soluble forms of the inorganic arsenical species accounted for 19-28% of the amino-substituted phenylarsonic acids removed. This constitutes the first report of a biologically catalyzed rupture of the phenylarsonic group under anaerobic conditions.
Collapse
Affiliation(s)
- Irail Cortinas
- Department of Chemical and Environmental Engineering, University of Arizona, Arizona, P.O. Box 210011, Tucson, Arizona 85721-011, USA
| | | | | | | | | | | |
Collapse
|
26
|
Kutty R, Bennett GN. Studies on inhibition of transformation of 2,4,6-trinitrotoluene catalyzed by Fe-only hydrogenase from Clostridium acetobutylicum. J Ind Microbiol Biotechnol 2006; 33:368-76. [PMID: 16550436 DOI: 10.1007/s10295-005-0067-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 12/03/2005] [Indexed: 10/25/2022]
Abstract
The major enzyme in Clostridium acetobutylicum ATCC 824 leading to transformation of TNT has been reported to be the Fe-only hydrogenase. In this study, we examine the effect of inhibitors of hydrogenase on TNT reduction by Clostridial extracts. These experiments further demonstrate the major role of hydrogenase in TNT transformation. The C. acetobutylicum hydrogenase is closely related to that of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 1.18 angstroms for the Calpha atoms of the generated 3D simulation model. The Hyd1, Hyd2, and Hyd3 antibodies generated against hydrogenase reacted with both the hydrogenase in cell extracts and with C. acetobutylicum hydrogenase expressed in Escherichia coli. Inhibition studies using antibodies against Fe-only hydrogenase from C. acetobutylicum indicated that the transformation of TNT by crude cell extracts was completely inhibited by Hyd2 antibody (to amino acid 415-428) whereas antibodies Hyd1 (to residues 1-16) and Hyd3 (to amino acid 424-448) inhibited less effectively. The TNT transforming activity of the cell extract was retained when Hyd2 antibody pretreated with purified but enzymatically inactive recombinant hydrogenase was added to the extract. Addition of the transition metal Cu2+ to extracts completely inhibited the transformation of TNT suggesting the destruction of [4Fe-4S] centers which are essential for transfer of electrons from the H2-activating site to TNT. Growth of C. acetobutylicum was also inhibited by 0.5 mM Cu2+ and Hg2+ ions. The triazine dye, procion red and the nitroimidazole drug, metronidazole inhibit TNT reduction. The inhibition studies using antibodies, procion red, metronidazole, and transition metals suggest that different portions of hydrogenase are required for effective TNT reduction.
Collapse
Affiliation(s)
- Razia Kutty
- Department of Biochemistry and Cell Biology MS-140, Rice University, Houston, TX 77005-1892, USA
| | | |
Collapse
|
27
|
Leung KT, Tresse O, Errampalli D, Lee H, Trevors JT. Mineralization of p-nitrophenol by pentachlorophenol-degrading Sphingomonas spp. FEMS Microbiol Lett 2006. [DOI: 10.1111/j.1574-6968.1997.tb12693.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
28
|
Tago K, Sato J, Takesa H, Kawagishi H, Hayatsu M. Characterization of methylhydroquinone-metabolizing oxygenase genes encoded on plasmid in Burkholderia sp. NF100. J Biosci Bioeng 2005; 100:517-23. [PMID: 16384790 DOI: 10.1263/jbb.100.517] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Accepted: 07/20/2005] [Indexed: 11/17/2022]
Abstract
Methylhydroquinone is an intermediate in the degradation of fenitrothion by Burkholderia sp. NF100. The catabolic gene (mhq) for methylhydroquinone degradation encoded on the plasmid pNF1 in the strain was cloned and sequenced. The mhq clone contained two ORFs, mhqA and mhqB, of which the deduced amino acid sequence shared significant homology with NAD(P)H-dependent flavoprotein monooxygenases and extradiol dioxygenases, respectively. Parts of the consensus sequences of the monooxygenase gene and dioxygenase gene have been identified in MhqA and MhqB from strain NF100, respectively. MhqA was overexpressed in Escherichia coli, and partially purified MhqA catalyzed the NADPH-dependent hydroxylation of methylhydroquinone. MhqB was also overexpressed in E. coli, and the purified enzyme showed an extradiol ring cleavage activity toward 3-methylcatechol but a very low activity was observed toward 4-methylcatechol.
Collapse
Affiliation(s)
- Kanako Tago
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu city, Japan
| | | | | | | | | |
Collapse
|
29
|
Soojhawon I, Lokhande P, Kodam K, Gawai K. Biotransformation of nitroaromatics and their effects on mixed function oxidase system. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.03.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
30
|
Mulchandani P, Hangarter CM, Lei Y, Chen W, Mulchandani A. Amperometric microbial biosensor for p-nitrophenol using Moraxella sp.-modified carbon paste electrode. Biosens Bioelectron 2005; 21:523-7. [PMID: 16076444 DOI: 10.1016/j.bios.2004.11.011] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Revised: 11/14/2004] [Accepted: 11/16/2004] [Indexed: 11/20/2022]
Abstract
An amperometric microbial biosensor for highly specific, sensitive and rapid quantitative determination of p-nitrophenol was developed. The biosensor takes advantage of the ability of Moraxella sp. to specifically degrade p-nitrophenol to hydroquinone, a more electroactive compound than p-nitrophenol. The electrochemical oxidation current of hydroquinone formed in biodegradation of p-nitrophenol was measured at Moraxella sp.-modified carbon paste electrode and correlated to p-phenol concentrations. The optimum response was realized by electrode constructed using 15 mg of dry cell weight per 1 g of carbon paste and operating at 0.3 V (versus Ag/AgCl reference) in pH 7.5, 20 mM sodium phosphate buffer. Operating at these optimum conditions the biosensor had excellent selectivity against phenol derivatives and was able to measure as low as 20 nM (2.78 ppb) p-nitrophenol with very good accuracy and reproducibility. The biosensor was stable for approximately 3 weeks when stored at 4 degrees C. The applicability of the biosensor to measure p-nitrophenol in lake water was demonstrated.
Collapse
Affiliation(s)
- Priti Mulchandani
- Department of Chemical and Environmental Engineering, University of California, Riverside, CA 92521, USA
| | | | | | | | | |
Collapse
|
31
|
Teramoto H, Tanaka H, Wariishi H. Degradation of 4-nitrophenol by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl Microbiol Biotechnol 2005; 66:312-7. [PMID: 15448939 DOI: 10.1007/s00253-004-1637-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The fungal metabolism of 4-nitrophenol (4-NP) was investigated using the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Despite its phenolic feature, 4-NP was not oxidized by extracellular ligninolytic peroxidases. However, 4-NP was converted to 1,2-dimethoxy-4-nitrobenzene via intermediate formation of 4-nitroanisole by the fungus only under ligninolytic conditions. The metabolism proceeded via hydroxylation of the aromatic ring and methylation of phenolic hydroxyl groups. Although the involvement of nitroreductase in the metabolism of 2,4-dinitrotoluene by many aerobic and anaerobic microorganisms including P. chrysosporium has been reported, no formation of 4-aminophenol was observed during 4-NP metabolism. The formation of 1,2-dimethoxy-4-nitrobenzene was effectively inhibited by exogenously added piperonyl butoxide, a cytochrome P450 inhibitor, suggesting that cytochrome P450 is involved in the hydroxylation reaction. Thus, P. chrysosporium seems to utilize hydroxylation and methylation reactions to produce a more susceptible structure for an oxidative metabolic system.
Collapse
Affiliation(s)
- Hiroshi Teramoto
- Faculty of Agriculture, Kyushu University, 6-10-1, Hakozaki, Higashi-ku, Fukuoka, 812-8581, Japan.
| | | | | |
Collapse
|
32
|
Nipper M, Qian Y, Carr RS, Miller K. Degradation of picric acid and 2,6-DNT in marine sediments and waters: the role of microbial activity and ultra-violet exposure. CHEMOSPHERE 2004; 56:519-530. [PMID: 15212895 DOI: 10.1016/j.chemosphere.2004.04.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2003] [Revised: 03/16/2004] [Accepted: 04/20/2004] [Indexed: 05/24/2023]
Abstract
Bio- and photo-transformation of two munitions and explosives of concern, 2,6-dinitrotoluene (2,6-DNT) and 2,4,6-trinitrophenol (picric acid) were assessed in spiked marine sediments and water. A sandy and a fine-grained sediment, with 0.25% and 1.1% total organic carbon, respectively, were used for biotransformation assessments at 10 and 20 degrees C. Sterilized sediments were used as controls for biotic vs. abiotic transformation. Transformation products were analyzed by HPLC, GC/MS and LC/MS. Biotransformation in sediments started soon after the initial contact of the chemicals with the sediments and proceeded for several months, with rates in the following sequence: fine-grain at 20 degrees C > fine-grain at 10 degrees C > sand at 20 degrees C > sand at 10 degrees C. The biotransformation paths seemed to be similar for all conditions. The major biotransformation product of 2,6-DNT was 2-amino-6-nitrotoluene (2-A-6-NT). 2-Nitrotoluene (2-NT) and other minor components, including N,N-dimethyl-3-nitroaniline, benzene nitrile, methylamino-2-nitrosophenol and diaminophenol, were also identified. After more prolonged incubation these chemicals were replaced by high molecular weight polymers. Several breakdown products of picric acid were identified by GC/MS, including 2,4-dinitrophenol, amino dinitrophenols, 3,4-diamino phenol, amino nitrophenol and nitro diaminophenol. Photo-transformation of 2,6-DNT and picric acid in seawater was assessed under simulated solar radiation (SSR). No significant photolysis of picric acid in seawater was observed for up to 47 days, but photo-transformation of 2,6-DNT began soon after the initial exposure to SSR, with 89% being photo-transformed in 24 h and none remaining after 72 h. High molecular weight chemicals were generated, with mass spectra ranging from molecular weight 200-500 compared to 182 for DNT, and the color of the stock solution changed from clear to orange. Complexity of the mass spectra and mass differences among fragments suggest that multiple polymers were produced and were co-eluting during the LC/MS analyses.
Collapse
Affiliation(s)
- Marion Nipper
- Center for Coastal Studies, Texas A&M University-Corpus Christi, 6300 Ocean Drive, NRC Suite 3200, Corpus Christi, TX 78412, USA.
| | | | | | | |
Collapse
|
33
|
Cerdà-Cuéllar M, Kint DP, Muñoz-Guerra S, Soledad Marqués-Calvo M. Biodegradability of aromatic building blocks for poly(ethylene terephthalate) copolyesters. Polym Degrad Stab 2004. [DOI: 10.1016/j.polymdegradstab.2004.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Negri M, Manfredini A, Saponaro S, Sorlini C, Bonomo L, Valle A, Zanardini E. Solid phase treatment of an aged soil contaminated by polycyclic aromatic hydrocarbons. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2004; 39:1-17. [PMID: 15030139 DOI: 10.1081/ese-120027365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Laboratory scale tests were carried out in order to evaluate the removal efficiency of polyaromatic hydrocarbons (PAHs) during the different biological treatments of a Manufacturing Gas Plant site aged soil, heavily contaminated by high molecular weight compounds. Biodegradation studies were carried out at nearly 25 degrees C in solid phase reactors. Three tests were performed, over a period of 100 days for each test. In the first test (P1-bioaugmentated), soil was mixed with wood chips and urea at the start of the treatment and after six weeks from the beginning of the test was also periodically inoculated (at 42, 54, 69, 82, and 96 days) with selected consortia of autochthonous PAH-degrading bacteria. The second test (P2-biostimulated) was performed similarly to the previous one, but without any inoculations. In the third test (P3-control) only soil was introduced. All systems were aerated daily and humidified at the occurrence. PAH concentration, total cultivable heterotrophs, PAH-degrading bacteria, mycetes, pH, ATP concentration, and enzymatic activities were monitored every two weeks during the treatments. Tests showed that nearly 50% of light (three rings) PAHs, 35% of benzo-PAHs and 40% of the total PAHs could be removed in the reactor P2 following 100 days of treatment. Lower removal efficiency could be observed for light PAHs (28%) in the inoculated reactor (P1) at the end of the treatment: comparable abatements were obtained for benzo- and total PAHs. In the reactor P3 (control), the concentration of all polyaromatic hydrocarbons was nearly always constant, suggesting that the physical losses were negligible during the solid phase treatments. Therefore the C to N ratio balance resulted to be the key factor in promoting the biodegradation process of all PAHs.
Collapse
Affiliation(s)
- Marco Negri
- Dipartimento Ingegneria Idraulica, Ambientale, Infrastrutture Viarie, Rilevamento, Sez. Ambientale, Politecnico di Milano, Milan, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Majumder PS, Gupta SK. Hybrid reactor for priority pollutant nitrobenzene removal. WATER RESEARCH 2003; 37:4331-4336. [PMID: 14511702 DOI: 10.1016/s0043-1354(03)00436-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The performance of a hybrid reactor, comprising of trickling filter and activated sludge process, in treating nitrobenzene wastewater was investigated. Acetate induced cells of mixed consortia was acclimatized with gradual increase of nitrobenzene concentration up to 90 mg/l in 100 days using sodium acetate as co-substrate and considering COD and nitrobenzene concentration as paramount parameters for assessing the growth of biofilm and acclimation. A removal of 60-95.80% COD and 80-90.23% nitrobenzene was observed during acclimation. During hydraulic retention time (HRT) studies, the optimum HRT was found to be 29.55 h at which a maximum of 95.83% COD and 97.93% nitrobenzene removal was observed. Other studies included optimization of C:N ratio, substrate:co-substrate ratio, effect of shock loading and estimation of volatilization losses. The optimum C:N ratio was found to be 100:20 at which maximum 97.93% removal of nitrobenzene was observed. At optimum HRT (29.55 h) and optimum C:N ratio (100:20) optimum substrate:co-substrate ratio was found to be 1:33. From the shock load studies it can be concluded that the system can withstand shock load up to two times of usual nitrobenzene concentration. A loss of 9.44% nitrobenzene was observed due to volatilization and mass balance gave an efficiency of 87.49% biological removal of nitrobenzene.
Collapse
Affiliation(s)
- Partha Sarathi Majumder
- Centre for Environmental Science and Engineering, Indian Institute of Technology, Powai, 400076 Mumbai, India
| | | |
Collapse
|
36
|
Takeo M, Abe Y, Negoro S, Heiss G. Simultaneous Degradation of 4-Nitrophenol and Picric Acid by Two Different Mechanisms of Rhodococcus sp. PN1. JOURNAL OF CHEMICAL ENGINEERING OF JAPAN 2003. [DOI: 10.1252/jcej.36.1178] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Masahiro Takeo
- Department of Materials Science and Chemistry, Graduate School of Engineering, Himeji Institute of Technology
| | - Yoshikatsu Abe
- Department of Materials Science and Chemistry, Graduate School of Engineering, Himeji Institute of Technology
| | - Seiji Negoro
- Department of Materials Science and Chemistry, Graduate School of Engineering, Himeji Institute of Technology
| | - Gesche Heiss
- Institute of Microbiology, University of Stuttgart
| |
Collapse
|
37
|
Travkin V, Baskunov BP, Golovlev EL, Boersma MG, Boeren S, Vervoort J, van Berkel WJH, Rietjens IMCM, Golovleva LA. Reductive deamination as a new step in the anaerobic microbial degradation of halogenated anilines. FEMS Microbiol Lett 2002; 209:307-12. [PMID: 12007823 DOI: 10.1111/j.1574-6968.2002.tb11149.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this paper we report the isolation and characterization of an anaerobic enrichment culture as well as of a Rhodococcus sp. strain 2 capable of degrading 3,4-dihaloanilines under nitrate reducing conditions. Using mass spectrometry several of the intermediates formed in the process of 3,4-dichloroaniline conversion were identified. Most interesting is the observation of reductive deamination and the formation of 1,2-dichlorobenzene as one of the intermediates. Using 19F NMR and fluorinated 3,4-dihaloaniline model substrates it was corroborated that reductive deamination of the anilines to give dihalobenzene intermediates represents a new initial step in the anaerobic microbial degradation of these halogenated anilines.
Collapse
Affiliation(s)
- Vasili Travkin
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Russian Federation
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hasegawa Y, Muraki T, Tokuyama T, Iwaki H, Tatsuno M, Lau PC. A novel degradative pathway of 2-nitrobenzoate via 3-hydroxyanthranilate in Pseudomonas fluorescens strain KU-7. FEMS Microbiol Lett 2000; 190:185-90. [PMID: 11034277 DOI: 10.1111/j.1574-6968.2000.tb09284.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A bacterial strain KU-7, identified as a Pseudomonas fluorescens by 16S rDNA sequencing, was one of the 12 new isolates that are able to grow on 2-nitrobenzoate as a sole source of carbon, nitrogen, and energy. Resting cells of KU-7 were found to accumulate ammonia in the medium indicating that degradation of 2-NBA proceeds through a reductive route. Metabolite analyses by thin layer chromatography and high pressure liquid chromatography indicated that 3-hydroxyanthranilate is an intermediate of 2-nitrobenzoate metabolism in KU-7 cells. This offers an alternative route to 2-nitrobenzoate metabolism since anthranilate (2-aminobenzoate) or catechol were detected as intermediates in other bacteria. Crude extracts of KU-7 cells converted 2-nitrobenzoate to 3-hydroxyanthranilate with oxidation of 2 mol of NADPH. Ring cleavage of 3-hydroxyanthranilate produced a transient yellow product, identified as 2-amino-3-carboxymuconic 6-semialdehyde, that has a maximum absorbance at 360 nm. The initial enzymes of the 2-nitrobenzoate degradation pathway were found to be inducible since succinate-grown cells produced very low enzyme activities. A pathway for 2-nitrobenzoate degradation in KU-7 was proposed.
Collapse
Affiliation(s)
- Y Hasegawa
- Department of Biotechnology, Faculty of Engineering and High Technology Research Center, Kansai University, Osaka, Japan.
| | | | | | | | | | | |
Collapse
|
39
|
Bhushan B, Chauhan A, Samanta SK, Jain RK. Kinetics of biodegradation of p-nitrophenol by different bacteria. Biochem Biophys Res Commun 2000; 274:626-30. [PMID: 10924328 DOI: 10.1006/bbrc.2000.3193] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Three bacterial species, i.e., Ralstonia sp. SJ98, Arthrobacter protophormiae RKJ100, and Burkholderia cepacia RKJ200, have been examined for their efficiency and kinetics behavior toward PNP degradation. All the three bacteria utilized PNP as the sole source of carbon, nitrogen, and energy. The rates of radiolabeled [U-(14)C]PNP degradation by all the bacteria were higher in the nitrogen-free medium compared to the medium with nitrogen. The apparent K(m) values of PNP degradation by SJ98, RKJ100, and RKJ200 were 0.32, 0.28, and 0.23 mM, respectively, as determined from the Michaelis-Menten curves. The maximum rates of PNP degradation (V(max)) according to Lineweaver-Burk's plots were 11.76, 7.81, and 3.84 micromol PNP degraded/min/mg dry biomass, respectively. The interpretation drawn from the Lineweaver-Burk's plots showed that the PNP degradation by SJ98 was stimulated by 4-nitrocatechol and 1, 2,4-benzenetriol. Benzoquinone and hydroquinone inhibited PNP degradation by RKJ100 noncompetitively and competitively, respectively, whereas in the case of RKJ200, benzoquinone and hydroquinone inhibited PNP degradation in an uncompetitive manner. beta-Ketoadipate did not affect the rate of PNP degradation in any case.
Collapse
Affiliation(s)
- B Bhushan
- Institute of Microbial Technology, Sector 39A, Chandigarh, 160036, India
| | | | | | | |
Collapse
|
40
|
Chauhan A, Samanta SK, Jain RK. Degradation of 4-nitrocatechol by Burkholderia cepacia: a plasmid-encoded novel pathway. J Appl Microbiol 2000; 88:764-72. [PMID: 10792536 DOI: 10.1046/j.1365-2672.2000.01018.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pseudomonas cepacia RKJ200 (now described as Burkholderia cepacia) has been shown to utilize p-nitrophenol (PNP) as sole carbon and energy source. The present work demonstrates that RKJ200 utilizes 4-nitrocatechol (NC) as the sole source of carbon, nitrogen and energy, and is degraded with concomitant release of nitrite ions. Several lines of evidence, including thin layer chromatography, gas chromatography, 1H-nuclear magnetic resonance, gas chromatography-mass spectrometry, spectral analyses and quantification of intermediates by high performance liquid chromatography, have shown that NC is degraded via 1,2, 4-benzenetriol (BT) and hydroquinone (HQ) formation. Studies carried out on a PNP- derivative and a PNP+ transconjugant also demonstrate that the genes for the NC degradative pathway reside on the plasmid present in RKJ200; the same plasmid had earlier been shown to encode genes for PNP degradation, which is also degraded via HQ formation. It is likely, therefore, that the same sets of genes encode the further metabolism of HQ in NC and PNP degradation.
Collapse
Affiliation(s)
- A Chauhan
- Institute of Microbial Technology, Chandigarh, India
| | | | | |
Collapse
|
41
|
Kutty R, Purohit HJ, Khanna P. Isolation and characterization of aPseudomonassp. strain PH1 utilizing meta-aminophenol. Can J Microbiol 2000. [DOI: 10.1139/w99-132] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas sp. strain PH1 was isolated from soil contaminated with pharmaceutical and dye industry waste. The isolate PH1 could use m-aminophenol as a sole source of carbon, nitrogen, and energy to support the growth. PH1 could degrade up to 0.32 mM m-aminophenol in 120 h, when provided as nitrogen source at 0.4 mM concentration with citrate (0.5 mM) as a carbon source in the growth medium. The presence of ammonium chloride as an additional nitrogen source repressed the degradation of m-aminophenol by PH1. To identify strain PH1, the 16S rDNA sequence was amplified by PCR using conserved eubacterial primers. The FASTA program was used to analyze the 16S rDNA sequence and the resulting homology patterns suggested that PH1 is a Pseudomonas.Key words: m-aminophenol, resorcinol, DNA sequencing.
Collapse
|
42
|
So JS, Oh KH. Monitoring ofgfp-taggedMoraxella sp. under starvation condition. BIOTECHNOL BIOPROC E 1999. [DOI: 10.1007/bf02932377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
43
|
Talmage SS, Opresko DM, Maxwell CJ, Welsh CJ, Cretella FM, Reno PH, Daniel FB. Nitroaromatic munition compounds: environmental effects and screening values. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 1999; 161:1-156. [PMID: 10218448 DOI: 10.1007/978-1-4757-6427-7_1] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Available data on the occurrence, transport, transformation, and toxicity of eight nitroaromatic munition compounds and their degradation products, TNT, TNB, DNB, DNA, 2-ADNT, RDX, HMX, and tetryl were used to identify potential fate in the environment and to calculate screening benchmarks or safe environmental levels for aquatic and terrestrial organisms. Results of monitoring studies revealed that some of these compounds persist at sites where they were produced or processed. Most of the compounds are present in soil, sediment, and surface water or groundwater at military sites. Soil adsorption coefficients indicate that these chemicals are only moderately adsorbed to soil and may leach to groundwater. Most of these compounds are transformed by abiotic or biotic mechanisms in environmental media. Primary transformation mechanisms involve photolysis (TNT, RDX, HMX, tetryl), hydrolysis (tetryl), and microbial degradation (TNT, TNB, DNB, DNA, 2-ADNT, and HMX). Microbial degradation for both nitro and nitramine aromatic compounds involves rapid reduction of nitro groups to amino groups, but further metabolism is slow. With the exception of DNB, complete mineralization did not usually occur under the conditions of the studies. RDX was resistant to microbial degradation. Available ecotoxicological data on acute and chronic studies with freshwater fish and invertebrates were summarized, and water quality criteria or ecotoxicological screening benchmarks were developed. Depending on the available data, criteria/benchmarks were calculated according to USEPA Tier I or Tier II guidelines. The munitions chemicals are moderately to highly toxic to freshwater organisms, with chronic screening values < 1 mg/L. For some chemicals, these low values are caused by inherent toxicity; in other cases, they result from the conservative methods used in the absence of data. For nonionic organic munitions chemicals, sediment quality benchmarks were calculated (based on Kow values and the final chronic value) according to USEPA guidelines. Available data indicate that none of the compounds is expected to bioconcentrate. In the same manner in which reference doses for humans are based on studies with laboratory animals, reference doses or screening benchmarks for wildlife may also be calculated by extrapolation among mammalian species. Chronic NOAELs for the compounds of interest were determined from available laboratory studies. Endpoints selected for wildlife species were those that diminish population growth or survival. Equivalent NOAELs for wildlife were calculated by scaling the test data on the basis of differences in body weight. Data on food and water intake for seven selected wildlife species--short-tailed shrew, white-footed mouse, meadow vole, cottontail rabbit, mink, red fox, and whitetail deer--were used to calculate NOAELs for oral intake. In the case of TNB, a comparison of toxicity data from studies conducted with both the white-footed mouse and the laboratory rat indicates that the white-footed mouse may be more resistant to the toxic effects of chemicals than the laboratory rat and may further indicate the lesser sensitivity of wildlife species to chemical insult. Chronic NOAEL values for the test species based on the laboratory studies indicate that, by the oral route of exposure, TNB and RDX are not highly toxic to mammalian species. However, as seen with TNB, values are less conservative when chronic studies are available or when studies were conducted with wildlife species. Insufficient data were located to calculate NOAELs for avian species. In the absence of criteria or guidelines for terrestrial plants, invertebrates, and soil heterotrophic processes, LOECs were used as screening benchmarks for effect levels in the environment. In most cases, too few data were available to derive a screening benchmark or to have a high degree of confidence in the benchmarks that were derived. (ABSTRACT TRUNCATED)
Collapse
Affiliation(s)
- S S Talmage
- Life Sciences Division, Oak Ridge National Laboratory, TN 37830, USA
| | | | | | | | | | | | | |
Collapse
|
44
|
Tresse O, Errampalli D, Kostrzynska M, Leung KT, Lee H, Trevors JT, van Elsas JD. Green fluorescent protein as a visual marker in a p-nitrophenol degrading Moraxella sp. FEMS Microbiol Lett 1998; 164:187-93. [PMID: 9675864 DOI: 10.1111/j.1574-6968.1998.tb13084.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The green fluorescent protein gene (gfp) was introduced into a p-nitrophenol-metabolizing strain of Moraxella sp. by chromosomal integration. The gfp-marked transformants, designated Moraxella sp. strains G21 and G25, exhibited green fluorescence under UV light. Molecular characterization by PCR and Southern hybridization showed the presence of gfp in both transformants. Both transformants and the parent strain degraded 720 microM of p-nitrophenol with nitrite release within 4 h after inoculation in minimal medium supplemented with yeast extract. Transformants degraded up to 1440 microM p-nitrophenol and mineralized about 60% of 720 microM p-nitrophenol, both in broth and in soil, to the same extent as the parent strain. Insertion of gfp did not adversely affect the expression of p-nitrophenol-degrading genes in the transformants. Survival studies indicated that individual green fluorescent colonies of transformants can be detected up to 2 weeks after inoculation in soil. These marked strains could be of value in studies on microbial survival in the environment.
Collapse
Affiliation(s)
- O Tresse
- Department of Environmental Biology, University of Guelph, Ont., Canada
| | | | | | | | | | | | | |
Collapse
|
45
|
Witte CP, Blasco R, Castillo F. Microbial photodegradation of aminoarenes. Metabolism of 2-amino-4-nitrophenol by Rhodobacter capsulatus. Appl Biochem Biotechnol 1998; 69:191-200. [PMID: 9584054 DOI: 10.1007/bf02788813] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The phototrophic bacterium Rhodobacter capsulatus photoreduces 2,4-dinitrophenol to 2-amino-4-nitrophenol, which is further metabolized by an aerobic pathway that is also light-dependent. The catabolism of 2-amino-4-nitrophenol requires O2 and the presence of alternative carbon (C) and nitrogen (N) sources, preferably acetate and ammonium. Rhodobacter capsulatus B10, a bacterium unable to assimilate nitrate, releases negligible amounts of nitrite when growing with 2-amino-4-nitrophenol, thus suggesting that an oxygenase, nitrite-producing activity is not involved in the metabolization of the compound. The diazotrophic growth of R. capsulatus increases in the presence of 2-amino-4-nitrophenol, but growth with ammonium is clearly inhibited by the compound. Mutant strains of R. capsulatus B10, which are affected in nifHDK, nifR1, or nifR4 genes, unable to fix dinitrogen, do not grow with 2-amino-4-nitrophenol as the sole N source. This indicates that the compound cannot be used as a N source. The nif mutants degrade 2-amino-4-nitrophenol to the same extent as the wild-type in the presence of ammonium. The compound is not used as a C source by the bacterium, either. Aromatic stable intermediates, such as 2,4-diaminophenol or 4-nitrocatechol, are not detectable in microaerobic cultures of R. capsulatus growing with 2,4-dinitrophenol or 2-amino-4-nitrophenol.
Collapse
Affiliation(s)
- C P Witte
- Botanisches Institut, University of Braunschweig, Germany
| | | | | |
Collapse
|
46
|
He Z, Spain JC. Studies of the catabolic pathway of degradation of nitrobenzene by Pseudomonas pseudoalcaligenes JS45: removal of the amino group from 2-aminomuconic semialdehyde. Appl Environ Microbiol 1997; 63:4839-43. [PMID: 9471964 PMCID: PMC168809 DOI: 10.1128/aem.63.12.4839-4843.1997] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas pseudoalcaligenes JS45 utilizes nitrobenzene as the sole source of nitrogen, carbon, and energy. Previous studies have shown that degradation of nitrobenzene involves the reduction of nitrobenzene to nitrosobenzene and hydroxylaminobenzene, followed by rearrangement to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. In the present paper, we report the enzymatic reactions responsible for the release of ammonia after ring cleavage. 2-Aminomuconic semialdehyde was oxidized to 2-aminomuconate in the presence of NAD by enzymes in crude extracts. 2-Aminomuconate was subsequently deaminated stoichiometrically to 4-oxalocrotonic acid. No cofactors are required for the deamination. Two enzymes, 2-aminomuconic semialdehyde dehydrogenase and a novel 2-aminomuconate deaminase, distinguished by partial purification of the crude extracts, catalyzed the two reactions. 4-Oxalocrotonic acid was further degraded to pyruvate and acetaldehyde. The key enzyme, 2-aminomuconate deaminase, catalyzed the hydrolytic deamination that released ammonia, which served as the nitrogen source for growth of the organism.
Collapse
Affiliation(s)
- Z He
- Air Force Research Laboratory, Tyndall Air Force Base, Floride 32403, USA.
| | | |
Collapse
|
47
|
HARVEY SD, FREDRICKSON HL, EVANS WE, ZAPPI ME, HILL DO. Evaluation of Bioslurry Ecosystems for Removal of TNT from Contaminated Soil Using a Variety of Process Amendments. Ann N Y Acad Sci 1997. [DOI: 10.1111/j.1749-6632.1997.tb48572.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Lendenmann U, Spain JC. 2-aminophenol 1,6-dioxygenase: a novel aromatic ring cleavage enzyme purified from Pseudomonas pseudoalcaligenes JS45. J Bacteriol 1996; 178:6227-32. [PMID: 8892823 PMCID: PMC178494 DOI: 10.1128/jb.178.21.6227-6232.1996] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Most bacterial pathways for the degradation of aromatic compounds involve introduction of two hydroxyl groups either ortho or para to each other. Ring fission then occurs at the bond adjacent to one of the hydroxyl groups. In contrast, 2-aminophenol is cleaved to 2-aminomuconic acid semialdehyde in the nitrobenzene-degrading strain Pseudomonas pseudoalcaligenes JS45. To examine the relationship between this enzyme and other dioxygenases, 2-aminophenol 1,6-dioxygenase has been purified by ethanol precipitation, gel filtration, and ion exchange chromatography. The molecular mass determined by gel filtration was 140,000 Da. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed two subunits of 35,000 and 39,000 Da, which suggested an alpha2beta2 subunit structure. Studies with inhibitors indicated that ferrous iron was the sole cofactor. The Km values for 2-aminophenol and oxygen were 4.2 and 710 microM, respectively. The enzyme catalyzed the oxidation of catechol, 6-amino-m-cresol, 2-amino-m-cresol, and 2-amino-4-chlorophenol. 3-Hydroxyanthranilate, protocatechuate, gentisate, and 3- and 4-methylcatechol were not substrates. The substrate range and the subunit structure are unique among those of the known ring cleavage dioxygenases.
Collapse
Affiliation(s)
- U Lendenmann
- AL/EQL, Tyndall Air Force Base, Florida 32403-5323, USA
| | | |
Collapse
|
49
|
Lièvremont D, Seigle-Murandi F, Benoit-Guyod JL, Steiman R. Biotransformation and biosorption of pentachloronitrobenzene by fungal mycelia. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0953-7562(96)80047-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
50
|
Noguera DR, Freedman DL. Reduction and Acetylation of 2,4-Dinitrotoluene by a Pseudomonas aeruginosa Strain. Appl Environ Microbiol 1996; 62:2257-63. [PMID: 16535348 PMCID: PMC1388886 DOI: 10.1128/aem.62.7.2257-2263.1996] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Aerobic and anoxic biotransformation of 2,4-dinitrotoluene (DNT) was examined by using a Pseudomonas aeruginosa strain isolated from a plant treating propellant manufacturing wastewater. DNT biotransformation in the presence and absence of oxygen was mostly reductive and was representative of the type of cometabolic transformations that occur when a high concentration of an easily degradable carbon source is present. P. aeruginosa reduced both nitro groups on DNT, with the formation of mainly 4-amino-2-nitrotoluene and 2-amino-4-nitrotoluene and small quantities of 2,4-diaminotoluene. Acetylation of the arylamines was a significant reaction. 4-Acetamide-2-nitrotoluene and the novel compounds 2-acetamide-4-nitrotoluene, 4-acetamide-2-aminotoluene, and 2,4-diacetamidetoluene were identified as DNT metabolites. The biotransformation of 2,4-diaminotoluene to 4-acetamide-2-aminotoluene was 24 times faster than abiotic transformation. 2-Nitrotoluene and 4-nitrotoluene were also reduced to their corresponding toluidines and then acetylated. However, the yield of 4-acetamidetoluene was much higher than that of 2-acetamidetoluene, demonstrating that acetylation at the position para to the methyl group was favored.
Collapse
|