1
|
Cupples AM. Propane Monooxygenases in Soil Associated Metagenomes Align Most Closely to those in the Genera Kribbella, Amycolatopsis, Bradyrhizobium, Paraburkholderia and Burkholderia. Curr Microbiol 2024; 81:314. [PMID: 39162848 DOI: 10.1007/s00284-024-03829-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/02/2024] [Indexed: 08/21/2024]
Abstract
Propanotrophs are a focus of interest because of their ability to degrade numerous environmental contaminants. To explore the phylogeny of microorganisms containing the propane monooxygenase gene cluster (prmABCD), NCBI bacterial genomes and publicly available soil associated metagenomes (from soils, rhizospheres, tree roots) were both examined. Nucleic acid sequences were collected only if all four subunits were located together, were of the expected length and were annotated as propane monooxygenase subunits. In the bacterial genomes, this resulted in data collection only from the phyla Actinomycetota and Pseudomonadota. For the soil associated metagenomes, reads from four studies were subject to quality control, assembly and annotation. Following this, the propane monooxygenase subunit nucleic acid sequences were collected and aligned to the collected bacterial sequences. In total, forty-two propane monooxygenase gene clusters were annotated from the soil associated metagenomes. The majority aligned closely to those from the Actinomycetota, followed by the Alphaproteobacteria, then the Betaproteobacteria. Actinomycetota aligning propane monooxygenase sequences were obtained from all four datasets and most closely aligned to the genera Kribbella and Amycolatopsis. Alphaproteobacteria aligning sequences largely originated from metagenomes associated with miscanthus and switchgrass rhizospheres and primarily aligned with the genera Bradyrhizobium, Acidiphilium and unclassified Rhizobiales. Betaproteobacteria aligning sequences were obtained from only the Red Oak root metagenomes and primarily aligned with the genera Paraburkholderia, Burkholderia and Caballeronia. Interestingly, sequences from the environmental metagenomes were not closely aligned to those from well-studied propanotrophs, such as Mycobacterium and Rhodococcus. Overall, the study highlights the previously unreported diversity of putative propanotrophs in environmental samples. The common occurrence of propane monooxygenase gene clusters has implications for their potential use for contaminant biodegradation.
Collapse
Affiliation(s)
- Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, A135, 1449 Engineering Research Court, East Lansing, MI, 48824, USA.
| |
Collapse
|
2
|
Curiel-Alegre S, Khan AHA, Rad C, Velasco-Arroyo B, Rumbo C, Rivilla R, Durán D, Redondo-Nieto M, Borràs E, Molognoni D, Martín-Castellote S, Juez B, Barros R. Bioaugmentation and vermicompost facilitated the hydrocarbon bioremediation: scaling up from lab to field for petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32916-8. [PMID: 38517632 DOI: 10.1007/s11356-024-32916-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 03/11/2024] [Indexed: 03/24/2024]
Abstract
The biodegradation of total petroleum hydrocarbon (TPH) in soil is very challenging due to the complex recalcitrant nature of hydrocarbon, hydrophobicity, indigenous microbial adaptation and competition, and harsh environmental conditions. This work further confirmed that limited natural attenuation of petroleum hydrocarbons (TPHs) (15% removal) necessitates efficient bioremediation strategies. Hence, a scaling-up experiment for testing and optimizing the use of biopiles for bioremediation of TPH polluted soils was conducted with three 500-kg pilots of polluted soil, and respective treatments were implemented: including control soil (CT), bioaugmentation and vermicompost treatment (BAVC), and a combined application of BAVC along with bioelectrochemical snorkels (BESBAVC), all maintained at 40% field capacity. This study identified that at pilot scale level, a successful application of BAVC treatment can achieve 90.3% TPH removal after 90 days. BAVC's effectiveness stemmed from synergistic mechanisms. Introduced microbial consortia were capable of TPH degradation, while vermicompost provided essential nutrients, enhanced aeration, and, potentially, acted as a biosorbent. Hence, it can be concluded that the combined application of BAVC significantly enhances TPH removal compared to natural attenuation. While the combined application of a bioelectrochemical snorkel (BES) with BAVC also showed a significant TPH removal, it did not differ statistically from the individual application of BAVC, under applied conditions. Further research is needed to optimize BES integration with BAVC for broader applicability. This study demonstrates BAVC as a scalable and mechanistically sound approach for TPH bioremediation in soil.
Collapse
Affiliation(s)
- Sandra Curiel-Alegre
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Aqib Hassan Ali Khan
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rad
- Research Group in Composting (UBUCOMP), Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Blanca Velasco-Arroyo
- Department of Biotechnology and Food Science, Faculty of Sciences, University of Burgos, Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Carlos Rumbo
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain
| | - Rafael Rivilla
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - David Durán
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Miguel Redondo-Nieto
- Department of Biology, Faculty of Sciences, University Autónoma of Madrid, Darwin 2, 28049, Madrid, Spain
| | - Eduard Borràs
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | - Daniele Molognoni
- Circular Economy & Decarbonization Department, LEITAT Technology Center, Carrer de La Innovació, 2. 08225, Terrassa, Barcelona, Spain
| | | | - Blanca Juez
- ACCIONA, C/ Valportillo II, 8. 28108, Madrid, Alcobendas, Spain
| | - Rocío Barros
- International Research Center in Critical Raw Materials for Advanced Industrial Technologies (ICCRAM), University of Burgos, Centro de I+D+I. Plaza Misael Bañuelos S/N. 09001, Burgos, Spain.
| |
Collapse
|
3
|
Matturro B, Di Franca ML, Tonanzi B, Cruz Viggi C, Aulenta F, Di Leo M, Giandomenico S, Rossetti S. Enrichment of Aerobic and Anaerobic Hydrocarbon-Degrading Bacteria from Multicontaminated Marine Sediment in Mar Piccolo Site (Taranto, Italy). Microorganisms 2023; 11:2782. [PMID: 38004793 PMCID: PMC10673493 DOI: 10.3390/microorganisms11112782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/07/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Marine sediments act as a sink for the accumulation of various organic contaminants such as polychlorobiphenyls (PCBs). These contaminants affect the composition and activity of microbial communities, particularly favoring those capable of thriving from their biodegradation and biotransformation under favorable conditions. Hence, contaminated environments represent a valuable biological resource for the exploration and cultivation of microorganisms with bioremediation potential. In this study, we successfully cultivated microbial consortia with the capacity for PCB removal under both aerobic and anaerobic conditions. The source of these consortia was a multicontaminated marine sediment collected from the Mar Piccolo (Taranto, Italy), one of Europe's most heavily polluted sites. High-throughput sequencing was employed to investigate the dynamics of the bacterial community of the marine sediment sample, revealing distinct and divergent selection patterns depending on the imposed reductive or oxidative conditions. The aerobic incubation resulted in the rapid selection of bacteria specialized in oxidative pathways for hydrocarbon transformation, leading to the isolation of Marinobacter salinus and Rhodococcus cerastii species, also known for their involvement in aerobic polycyclic aromatic hydrocarbons (PAHs) transformation. On the other hand, anaerobic incubation facilitated the selection of dechlorinating species, including Dehalococcoides mccartyi, involved in PCB reduction. This study significantly contributes to our understanding of the diversity, dynamics, and adaptation of the bacterial community in the hydrocarbon-contaminated marine sediment from one sampling point of the Mar Piccolo basin, particularly in response to stressful conditions. Furthermore, the establishment of consortia with biodegradation and biotransformation capabilities represents a substantial advancement in addressing the challenge of restoring polluted sites, including marine sediments, thus contributing to expanding the toolkit for effective bioremediation strategies.
Collapse
Affiliation(s)
- Bruna Matturro
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Maria Letizia Di Franca
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Barbara Tonanzi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Carolina Cruz Viggi
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
- National Biodiversity Future Center, 90133 Palermo, Italy
| | - Magda Di Leo
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Santina Giandomenico
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), 00010 Montelibretti, Italy (F.A.); (S.R.)
| |
Collapse
|
4
|
Bako C, Martinez A, Ewald JM, Hua JBX, Ramotowski DJ, Dong Q, Schnoor JL, Mattes TE. Aerobic Bioaugmentation to Decrease Polychlorinated Biphenyl (PCB) Emissions from Contaminated Sediments to Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14338-14349. [PMID: 36178372 PMCID: PMC9583607 DOI: 10.1021/acs.est.2c01043] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 09/15/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
We conducted experiments to determine whether bioaugmentation with aerobic, polychlorinated biphenyl (PCB)-degrading microorganisms can mitigate polychlorinated biphenyl (PCB) emissions from contaminated sediment to air. Paraburkholderia xenovorans strain LB400 was added to bioreactors containing PCB-contaminated site sediment. PCB mass in both the headspace and aqueous bioreactor compartments was measured using passive samplers over 35 days. Time-series measurements of all 209 PCB congeners revealed a 57% decrease in total PCB mass accumulated in the vapor phase of bioaugmented treatments relative to non-bioaugmented controls, on average. A comparative congener-specific analysis revealed preferential biodegradation of lower-chlorinated PCBs (LC-PCBs) by LB400. Release of the most abundant congener (PCB 4 [2,2'-dichlorobiphenyl]) decreased by over 90%. Simulations with a PCB reactive transport model closely aligned with experimental observations. We also evaluated the effect of the phytogenic biosurfactant, saponin, on PCB bioavailability and biodegradation by LB400. Time-series qPCR measurements of biphenyl dioxygenase (bphA) genes showed that saponin better maintained bphA abundance, compared to the saponin-free treatment. These findings indicate that an active population of bioaugmented, aerobic PCB-degrading microorganisms can effectively lower PCB emissions and may therefore contribute to minimizing PCB inhalation exposure in communities surrounding PCB-contaminated sites.
Collapse
Affiliation(s)
- Christian
M. Bako
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Andres Martinez
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jessica M. Ewald
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jason B. X. Hua
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - David J. Ramotowski
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Qin Dong
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Jerald L. Schnoor
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- The
Department of Civil & Environmental Engineering, 4105 Seamans
Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, Iowa 52245, United States
- IIHR—Hydroscience
& Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
5
|
Ullah R, Zhu B, Kakar KU, Nawaz Z, Mushtaq M, Durrani TS, Islam ZU, Nawaz F. Micro-synteny conservation analysis revealed the evolutionary history of bacterial biphenyl degradation pathway. ENVIRONMENTAL MICROBIOLOGY REPORTS 2022; 14:494-505. [PMID: 35560986 DOI: 10.1111/1758-2229.13081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Phenolic compounds have been enlisted by the United States Environmental Protection Agency (USEPA) and the European Union (EU) as pollutants of priority concern. The biphenyl degradation pathway plays an essential role in prokaryote polychlorinated biphenyls degradation. Our understanding of prokaryotic pathways and their evolution has dramatically increased in recent years with the advancements in prokaryotic genome sequencing and analysis tools. In this work, we applied bioinformatics tools to study the evolution of the biphenyl degradation pathway focusing on the phylogeny and initiation of four representative species (Burkholderia xenovorans LB400, Polaromonas naphthalenivorans CJ2, Pseudomonas putida F1 and Rhodococcus jostii RHA1). These species contained partial or full concatenated genes from bph gene cluster (i.e. bphRbphA1A2A3A4BCKHJID). The aim was to establish this pathway's origin and development mode in the prokaryotic world. Genomic screening revealed that many bacterial species possess genes for the biphenyl degradation pathway. However, the micro-synteny conservation analysis indicated that massive gene recruitment events might have occurred during the evolution of the biphenyl degradation pathway. Combining with the phylogenetic positions, this work points to the evolutionary process of acquiring the biphenyl degradation pathway by different fragments through horizontal gene transfer in these bacterial groups. This study reports the first-ever evidence of the birth of this pathway in the represented species.
Collapse
Affiliation(s)
- Raqeeb Ullah
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Bo Zhu
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaleem U Kakar
- Department of Microbiology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zarqa Nawaz
- Department of Botany, University of Central Punjab, Rawalpindi, Pakistan
| | - Muhammd Mushtaq
- Department of Biotechnology, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Taimoor Shah Durrani
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| | - Zia Ul Islam
- Department of Civil and Environmental Engineering, The University of Toledo, Toledo, OH, USA
| | - Faheem Nawaz
- Department of Environmental Science, Faculty of Life Sciences and Informatics, Balochistan University of Information Technology, Engineering and Management Sciences, Quetta, 87300, Pakistan
| |
Collapse
|
6
|
Hara T, Takatsuka Y. Aerobic polychlorinated biphenyl-degrading bacteria isolated from the Tohoku region of Japan are not regionally endemic. Can J Microbiol 2022; 68:191-202. [PMID: 35020498 DOI: 10.1139/cjm-2021-0056] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the Tohoku region of Japan, 72% of the land comprises mountain forest zones. During winter, severe climatic conditions include heavy snowfall. In such an environment, which is considered high in biodiversity, we assumed that aerobic bacteria would be diverse and would possess the ability to degrade polychlorinated biphenyls (PCBs). In this study, 78 environmental samples were collected from the Tohoku region and 56 aerobic PCB-degrading bacterial strains were isolated. They belonged to the genera Achromobacter, Rhodococcus, Pseudomonas, Stenotrophomonas, Comamonas, Pigmentiphaga, Xenophilus, Acinetobacter, and Pandoraea. Previously reported aerobic PCB-degrading bacterial strains isolated in Japan belonged to the same genera, except that the genera Acidovorax and Bacillus were not identified in the present study. In particular, the isolated Comamonas testosteroni strains YAZ2 and YU14-111 had high PCB-degrading abilities. Analysis of the sequences of the YAZ2 and YU14-111 strains showed that the gene structures of the bph operon, which encode enzymes associated with PCB degradation, were the same as those of the Acidovorax sp. KKS102 strain. Moreover, 2,3-biphenyl dioxygenase activity was responsible for the degradation characteristics of all the isolated strains. Overall, this study suggests that aerobic PCB-degrading bacteria are not specifically endemic to the Tohoku region but distributed across Japan.
Collapse
Affiliation(s)
- Tomijiro Hara
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | - Yumiko Takatsuka
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan.,Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| |
Collapse
|
7
|
Hara T, Takatsuka Y, Nakata E, Morii T. Augmentation of an Engineered Bacterial Strain Potentially Improves the Cleanup of PCB Water Pollution. Microbiol Spectr 2021; 9:e0192621. [PMID: 34937186 PMCID: PMC8694117 DOI: 10.1128/spectrum.01926-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are recalcitrant organohalide pollutants, consisting of 209 congeners. PCB cleanup in natural landscapes is expected to be achieved by the metabolic activity of microorganisms, but aerobic PCB-degrading bacteria that inhabit sites polluted by PCBs cannot degrade all PCB congeners due to the specificity of their enzymes. In this study, we investigated the degradability of PCBs when a genetically modified PCB-degrading bacterium was compounded with wild-type PCB-degrading bacteria. We used two bacterial strains, Comamonas testosteroni YAZ2 isolated from a PCB-uncontaminated natural landscape and Escherichia coli BL21(DE3) transformed with a biphenyl dioxygenase (BphA) gene from a well-known PCB degrader, Burkholderia xenovorans LB400. The enzymatic specificities of BphA were 2,3-dioxygenation in the YAZ2 and 2,3- and 3,4-dioxygenations in the recombinant E. coli. For the PCB-degrading experiment, a dedicated bioreactor capable of generating oxygen microbubbles was prototyped and used. The combined cells of the recombinant and the wild-type strains with an appropriate composite ratio degraded 40 mg/L of Kaneclor KC-300 to 0.3 ± 0.1 mg/L within 24 h. All of the health-toxic coplanar PCB congeners in KC-300 were degraded. This study suggested that the augmentation of an engineered bacterial strain could improve the cleanup of PCB water pollution. It also revealed the importance of the ratio of the strains with different PCB-degrading profiles to efficient degradation and that the application of oxygen microbubbles could rapidly accelerate the cleanup. IMPORTANCE PCB cleanup technique in a natural environment relies on the use of enzymes from microorganisms, primarily biphenyl dioxygenase and dehalogenase. Herein, we focused on biphenyl dioxygenase and created a recombinant PCB-degrading E. coli strain. Despite the development of environments for the field use of transgenic microbial strains around the world, verification of the applicability of transgenic microbial strains for PCB cleanup in the field has not yet been reported. We tentatively verified the extent to which degradability could be obtained by an augmentation model of a transgenic strain, the enzyme expression of which is easily regulated in rivers and lakes with PCB pollution. Our experiments used a dedicated bioreactor to model the natural landscape and produced results superior to those of bioremediation or biostimulation methods. The application of micro-nano bubbles, which has recently been discussed, to the cleanup of environmental pollution was also found to be useful in this study.
Collapse
Affiliation(s)
- Tomijiro Hara
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Yumiko Takatsuka
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
8
|
Ines P, Vlasta D, Sanja F, Ana BK, Dubravka H, Fabrice ML, Nikolina UK. Unraveling metabolic flexibility of rhodococci in PCB transformation. CHEMOSPHERE 2021; 282:130975. [PMID: 34111638 DOI: 10.1016/j.chemosphere.2021.130975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/17/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Even though the genetic attributes suggest presence of multiple degradation pathways, most of rhodococci are known to transform PCBs only via regular biphenyl (bph) pathway. Using GC-MS analysis, we monitored products formed during transformation of 2,4,4'-trichlorobiphenyl (PCB-28), 2,2',5,5'-tetrachlorobiphenyl (PCB-52) and 2,4,3'-trichlorobiphenyl (PCB-25) by previously characterized PCB-degrading rhodococci Z6, T6, R2, and Z57, with the aim to explore their metabolic pleiotropy in PCB transformations. A striking number of different transformation products (TPs) carrying a phenyl ring as a substituent, both those generated as a part of the bph pathway and an array of unexpected TPs, implied a curious transformation ability. We hypothesized that studied rhodococcal isolates, besides the regular one, use at least two alternative pathways for PCB transformation, including the pathway leading to acetophenone formation (via 3,4 (4,5) dioxygenase attack on the molecule), and a third sideway pathway that includes stepwise oxidative decarboxylation of the aliphatic side chain of the 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate. Structure of the identified chlorinated benzoic acids and acetophenones allowed us to hypothesize that the first two pathways were the outcome of a ring-hydroxylating dioxygenase with the ability to attack both the 2,3 (5,6) and the 3,4 (4,5) positions of the biphenyl ring as well as dechlorination activity at both, -ortho and -para positions. We propose that several TPs produced by the bph pathway could have caused the triggering of the third sideway pathway. In conclusion, this study proposed ability of rhodococci to use different strategies in PCB transformation, which allows them to circumvent potential negative aspect of TPs on the overall transformation pathway.
Collapse
Affiliation(s)
- Petrić Ines
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia.
| | - Drevenkar Vlasta
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | - Fingler Sanja
- Institute for Medical Research and Occupational Health, Zagreb, Croatia
| | | | - Hršak Dubravka
- Ruđer Bošković Institute, Division for Marine and Environmental Research, Zagreb, Croatia
| | | | | |
Collapse
|
9
|
Bako CM, Mattes TE, Marek RF, Hornbuckle KC, Schnoor JL. Biodegradation of PCB congeners by Paraburkholderia xenovorans LB400 in presence and absence of sediment during lab bioreactor experiments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116364. [PMID: 33412450 PMCID: PMC8183161 DOI: 10.1016/j.envpol.2020.116364] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 12/04/2020] [Accepted: 12/19/2020] [Indexed: 05/21/2023]
Abstract
Experiments were conducted to measure biodegradation of polychlorinated biphenyl (PCB) congeners contained in mixture Aroclor 1248 and congeners present in wastewater lagoon sediment contaminated decades earlier at Altavista, Virginia. A well-characterized strain of aerobic PCB-degrading bacteria, Paraburkholderia xenovorans LB400 was incubated in laboratory bioreactors with PCB-contaminated sediment collected at the site. The experiments evaluated strain LB400's ability to degrade PCBs in absence of sediment and in PCB-contaminated sediment slurry. In absence of sediment, LB400 transformed 76% of Aroclor 1248 within seven days, spanning all homolog groups present in the mixture. In sediment slurry, only mono- and di-chlorinated PCB congeners were transformed. These results show that LB400 is capable of rapidly biodegrading most PCB congeners when they are freely dissolved in liquid but cannot degrade PCB congeners having three or more chlorine substituents in sediment slurry. Finally, using GC/MS-MS triple quadrupole spectrometry, this work distinguishes between physical (sorption to cells) and biological removal mechanisms, illuminates the process by which microorganisms with LB400-type congener specificity can selectively transform lower-chlorinated congeners over time, and makes direct comparisons to other studies where individual congener data is reported.
Collapse
Affiliation(s)
- Christian M Bako
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Timothy E Mattes
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Rachel F Marek
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Keri C Hornbuckle
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245
| | - Jerald L Schnoor
- The Department of Civil & Environmental Engineering, 4105 Seamans Center for the Engineering Arts & Sciences, University of Iowa, Iowa City, IA, USA, 52245.
| |
Collapse
|
10
|
Matturro B, Mascolo G, Rossetti S. Microbiome changes and oxidative capability of an anaerobic PCB dechlorinating enrichment culture after oxygen exposure. N Biotechnol 2020; 56:96-102. [DOI: 10.1016/j.nbt.2019.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 12/18/2019] [Accepted: 12/22/2019] [Indexed: 12/16/2022]
|
11
|
Garrido-Sanz D, Sansegundo-Lobato P, Redondo-Nieto M, Suman J, Cajthaml T, Blanco-Romero E, Martin M, Uhlik O, Rivilla R. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb Genom 2020; 6. [PMID: 32238227 PMCID: PMC7276702 DOI: 10.1099/mgen.0.000363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The complete genome sequence of Rhodococcus sp. WAY2 (WAY2) consists of a circular chromosome, three linear replicons and a small circular plasmid. The linear replicons contain typical actinobacterial invertron-type telomeres with the central CGTXCGC motif. Comparative phylogenetic analysis of the 16S rRNA gene along with phylogenomic analysis based on the genome-to-genome blast distance phylogeny (GBDP) algorithm and digital DNA–DNA hybridization (dDDH) with other Rhodococcus type strains resulted in a clear differentiation of WAY2, which is likely a new species. The genome of WAY2 contains five distinct clusters of bph, etb and nah genes, putatively involved in the degradation of several aromatic compounds. These clusters are distributed throughout the linear plasmids. The high sequence homology of the ring-hydroxylating subunits of these systems with other known enzymes has allowed us to model the range of aromatic substrates they could degrade. Further functional characterization revealed that WAY2 was able to grow with biphenyl, naphthalene and xylene as sole carbon and energy sources, and could oxidize multiple aromatic compounds, including ethylbenzene, phenanthrene, dibenzofuran and toluene. In addition, WAY2 was able to co-metabolize 23 polychlorinated biphenyl congeners, consistent with the five different ring-hydroxylating systems encoded by its genome. WAY2 could also use n-alkanes of various chain-lengths as a sole carbon source, probably due to the presence of alkB and ladA gene copies, which are only found in its chromosome. These results show that WAY2 has a potential to be used for the biodegradation of multiple organic compounds.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Paula Sansegundo-Lobato
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Tomas Cajthaml
- Laboratory of Environmental Biotechnology, Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 14200 Prague, Czech Republic
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
12
|
|
13
|
Garrido-Sanz D, Redondo-Nieto M, Guirado M, Pindado Jiménez O, Millán R, Martin M, Rivilla R. Metagenomic Insights into the Bacterial Functions of a Diesel-Degrading Consortium for the Rhizoremediation of Diesel-Polluted Soil. Genes (Basel) 2019; 10:E456. [PMID: 31207997 PMCID: PMC6627497 DOI: 10.3390/genes10060456] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 02/05/2023] Open
Abstract
Diesel is a complex pollutant composed of a mixture of aliphatic and aromatic hydrocarbons. Because of this complexity, diesel bioremediation requires multiple microorganisms, which harbor the catabolic pathways to degrade the mixture. By enrichment cultivation of rhizospheric soil from a diesel-polluted site, we have isolated a bacterial consortium that can grow aerobically with diesel and different alkanes and polycyclic aromatic hydrocarbons (PAHs) as the sole carbon and energy source. Microbiome diversity analyses based on 16S rRNA gene showed that the diesel-degrading consortium consists of 76 amplicon sequence variants (ASVs) and it is dominated by Pseudomonas, Aquabacterium, Chryseobacterium, and Sphingomonadaceae. Changes in microbiome composition were observed when growing on specific hydrocarbons, reflecting that different populations degrade different hydrocarbons. Shotgun metagenome sequence analysis of the consortium growing on diesel has identified redundant genes encoding enzymes implicated in the initial oxidation of alkanes (AlkB, LadA, CYP450) and a variety of hydroxylating and ring-cleavage dioxygenases involved in aromatic and polyaromatic hydrocarbon degradation. The phylogenetic assignment of these enzymes to specific genera allowed us to model the role of specific populations in the diesel-degrading consortium. Rhizoremediation of diesel-polluted soil microcosms using the consortium, resulted in an important enhancement in the reduction of total petroleum hydrocarbons (TPHs), making it suited for rhizoremediation applications.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - María Guirado
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Oscar Pindado Jiménez
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Rocío Millán
- Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas, Avenida Complutense 40, 28040 Madrid, Spain.
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Darwin 2, 28049 Madrid, Spain.
| |
Collapse
|
14
|
Payne RB, Ghosh U, May HD, Marshall CW, Sowers KR. A Pilot-Scale Field Study: In Situ Treatment of PCB-Impacted Sediments with Bioamended Activated Carbon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2626-2634. [PMID: 30698958 DOI: 10.1021/acs.est.8b05019] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A combined approach involving microbial bioaugmentation and enhanced sorption was demonstrated to be effective for in situ treatment of polychlorinated biphenyls (PCBs). A pilot study was conducted for 409 days on PCB impacted sediments in four 400 m2 plots located in a watershed drainage pond in Quantico, VA. Treatments with activated carbon (AC) agglomerate bioamended with PCB dechlorinating and oxidizing bacteria decreased the PCB concentration in the top 7.5 cm by up to 52% and the aqueous concentrations of tri- to nonachlorobiphenyl PCB congeners by as much as 95%. Coplanar congeners decreased by up to 80% in sediment and were undetectable in the porewater. There was no significant decrease in PCB concentrations in non-bioamended plots with or without AC. All homologue groups decreased in bioamended sediment and porewater, indicating that both anaerobic dechlorination and aerobic degradation occurred concurrently. The titer of the bioamendments based on quantitative PCR of functional marker genes decreased but were still detectable after 409 days, whereas indigenous microbial diversity was not significantly different between sites, time points, or depths, indicating that bioaugmentation and the addition of activated carbon did not significantly alter total microbial diversity. In situ treatment of PCBs using an AC agglomerate as a delivery system for bioamendments is particularly well-suited for environmentally sensitive sites where there is a need to reduce exposure of the aquatic food web to sediment-bound PCBs with minimal disruption to the environment.
Collapse
Affiliation(s)
- Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore Maryland 21202 , United States
| | - Upal Ghosh
- Department of Chemical, Biochemical, and Environmental Engineering , University of Maryland Baltimore County , Baltimore Maryland 21250 , United States
| | - Harold D May
- Hollings Marine Laboratory, Department of Microbiology and Immunology , Medical University of South Carolina , Charleston South Carolina 29412 , United States
| | - Christopher W Marshall
- Biosciences Division , Argonne National Laboratory , Argonne , Illinois 60439 , United States
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology , University of Maryland Baltimore County , Baltimore Maryland 21202 , United States
| |
Collapse
|
15
|
Polychlorinated Biphenyls (PCBs): Environmental Fate, Challenges and Bioremediation. MICROORGANISMS FOR SUSTAINABILITY 2019. [DOI: 10.1007/978-981-13-7462-3_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
16
|
Murugan K, Vasudevan N. Intracellular toxicity exerted by PCBs and role of VBNC bacterial strains in biodegradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 157:40-60. [PMID: 29605643 DOI: 10.1016/j.ecoenv.2018.03.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 02/22/2018] [Accepted: 03/06/2018] [Indexed: 06/08/2023]
Abstract
Polychlorinated biphenyls (PCBs) are xenobiotic compounds that persists in the environment for long-term, though its productivity is banned. Abatement of the pollutants have become laborious due to it's recalcitrant nature in the environment leading to toxic effects in humans and other living beings. Biphenyl degrading bacteria co-metabolically degrade low chlorinated PCBs using the active metabolic pathway. bph operon possess different genetic arrangements in gram positive and gram negative bacteria. The binding ability of the genes and the active sites were determined by PCB docking studies. The active site of bphA gene with conserved amino acid residues determines the substrate specificity and biodegradability. Accumulation of toxic intermediates alters cellular behaviour, biomass production and downturn the metabolic activity. Several bacteria in the environment attain unculturable state which is viable and metabolically active but not cultivable (VBNC). Resuscitation-promoting factor (Rpf) and Rpf homologous protein retrieve the culturability of the so far uncultured bacteria. Recovery of this adaptive mechanism against various physical and chemical stressors make a headway in understanding the functionality of both environmental and medically important unculturable bacteria. Thus, this paper review about the general aspects of PCBs, cellular toxicity exerted by PCBs, role of unculturable bacterial strains in biodegradation, genes involved and degradation pathways. It is suggested to extrapolate the research findings on extracellular organic matters produced in culture supernatant of VBNC thus transforming VBNC to culturable state.
Collapse
Affiliation(s)
- Karuvelan Murugan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| | - Namasivayam Vasudevan
- Centre for Environmental Studies, Anna University, CEG Campus, Chennai, Tamil Nadu, India.
| |
Collapse
|
17
|
Jiang L, Luo C, Zhang D, Song M, Sun Y, Zhang G. Biphenyl-Metabolizing Microbial Community and a Functional Operon Revealed in E-Waste-Contaminated Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:8558-8567. [PMID: 29733586 DOI: 10.1021/acs.est.7b06647] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Primitive electronic waste (e-waste) recycling activities release massive amounts of persistent organic pollutants (POPs) and heavy metals into surrounding soils, posing a major threat to the ecosystem and human health. Microbes capable of metabolizing POPs play important roles in POPs remediation in soils, but their phylotypes and functions remain unclear. Polychlorinated biphenyls (PCBs), one of the main pollutants in e-waste contaminated soils, have drawn increasing attention due to their high persistence, toxicity, and bioaccumulation. In the present study, we employed the culture-independent method of DNA stable-isotope probing to identify active biphenyl and PCB degraders in e-waste-contaminated soil. A total of 19 rare operational taxonomic units and three dominant bacterial genera ( Ralstonia, Cupriavidus, and uncultured bacterium DA101) were enriched in the 13C heavy DNA fraction, confirming their functions in PCBs metabolism. Additionally, a 13.8 kb bph operon was amplified, containing a bphA gene labeled by 13C that was concentrated in the heavy DNA fraction. The tetranucleotide signature characteristics of the bph operon suggest that it originated from Ralstonia. The bph operon may be shared by horizontal gene transfer because it contains a transposon gene and is found in various bacterial species. This study gives us a deeper understanding of PCB-degrading mechanisms and provides a potential resource for the bioremediation of PCBs-contaminated soils.
Collapse
Affiliation(s)
- Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Dayi Zhang
- School of Environment , Tsinghua University , Beijing 100084 , China
| | - Mengke Song
- College of Natural Resources and Environment , South China Agricultural University , Guangzhou 510642 , China
| | - Yingtao Sun
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640 , China
| |
Collapse
|
18
|
Garrido-Sanz D, Manzano J, Martín M, Redondo-Nieto M, Rivilla R. Metagenomic Analysis of a Biphenyl-Degrading Soil Bacterial Consortium Reveals the Metabolic Roles of Specific Populations. Front Microbiol 2018; 9:232. [PMID: 29497412 PMCID: PMC5818466 DOI: 10.3389/fmicb.2018.00232] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 01/30/2018] [Indexed: 01/09/2023] Open
Abstract
Polychlorinated biphenyls (PCBs) are widespread persistent pollutants that cause several adverse health effects. Aerobic bioremediation of PCBs involves the activity of either one bacterial species or a microbial consortium. Using multiple species will enhance the range of PCB congeners co-metabolized since different PCB-degrading microorganisms exhibit different substrate specificity. We have isolated a bacterial consortium by successive enrichment culture using biphenyl (analog of PCBs) as the sole carbon and energy source. This consortium is able to grow on biphenyl, benzoate, and protocatechuate. Whole-community DNA extracted from the consortium was used to analyze biodiversity by Illumina sequencing of a 16S rRNA gene amplicon library and to determine the metagenome by whole-genome shotgun Illumina sequencing. Biodiversity analysis shows that the consortium consists of 24 operational taxonomic units (≥97% identity). The consortium is dominated by strains belonging to the genus Pseudomonas, but also contains betaproteobacteria and Rhodococcus strains. whole-genome shotgun (WGS) analysis resulted in contigs containing 78.3 Mbp of sequenced DNA, representing around 65% of the expected DNA in the consortium. Bioinformatic analysis of this metagenome has identified the genes encoding the enzymes implicated in three pathways for the conversion of biphenyl to benzoate and five pathways from benzoate to tricarboxylic acid (TCA) cycle intermediates, allowing us to model the whole biodegradation network. By genus assignment of coding sequences, we have also been able to determine that the three biphenyl to benzoate pathways are carried out by Rhodococcus strains. In turn, strains belonging to Pseudomonas and Bordetella are the main responsible of three of the benzoate to TCA pathways while the benzoate conversion into TCA cycle intermediates via benzoyl-CoA and the catechol meta-cleavage pathways are carried out by beta proteobacteria belonging to genera such as Achromobacter and Variovorax. We have isolated a Rhodococcus strain WAY2 from the consortium which contains the genes encoding the three biphenyl to benzoate pathways indicating that this strain is responsible for all the biphenyl to benzoate transformations. The presented results show that metagenomic analysis of consortia allows the identification of bacteria active in biodegradation processes and the assignment of specific reactions and pathways to specific bacterial groups.
Collapse
Affiliation(s)
| | | | | | | | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
19
|
Arslan M, Imran A, Khan QM, Afzal M. Plant-bacteria partnerships for the remediation of persistent organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:4322-4336. [PMID: 26139403 DOI: 10.1007/s11356-015-4935-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 06/22/2015] [Indexed: 05/22/2023]
Abstract
High toxicity, bioaccumulation factor and widespread dispersal of persistent organic pollutants (POPs) cause environmental and human health hazards. The combined use of plants and bacteria is a promising approach for the remediation of soil and water contaminated with POPs. Plants provide residency and nutrients to their associated rhizosphere and endophytic bacteria. In return, the bacteria support plant growth by the degradation and detoxification of POPs. Moreover, they improve plant growth and health due to their innate plant growth-promoting mechanisms. This review provides a critical view of factors that affect absorption and translocation of POPs in plants and the limitations that plant have to deal with during the remediation of POPs. Moreover, the synergistic effects of plant-bacteria interactions in the phytoremediation of organic pollutants with special reference to POPs are discussed.
Collapse
Affiliation(s)
- Muhammad Arslan
- Earth Sciences Department, King Fahd University of Petroleum and Minerals, Dhahran, 31261, Saudi Arabia
| | - Asma Imran
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Qaiser Mahmood Khan
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Afzal
- Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.
| |
Collapse
|
20
|
Kaya D, Imamoglu I, Sanin FD, Payne RB, Sowers KR. Potential risk reduction of Aroclor 1254 by microbial dechlorination in anaerobic Grasse River sediment microcosms. JOURNAL OF HAZARDOUS MATERIALS 2017; 321:879-887. [PMID: 27745958 DOI: 10.1016/j.jhazmat.2016.10.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 06/06/2023]
Abstract
Aroclor 1254 was the second most produced commercial PCB mixture and is found in soils, sediments and sewage throughout the globe. This commercial PCB mixture is considered particularly toxic because of the relatively high concentrations of congeners with dioxin-like properties. The potential for risk reduction by microbial reductive dechlorination of Aroclor 1254 (A1254) was investigated in sediment microcosms from Grasse River (GR), Massena, NY. The specificity of A1254 dechlorination was doubly- and singly-flanked chlorines in meta positions and to a less extent doubly-flanked para chlorines of 2345-substituted chlorobiphenyl rings. The average dechlorination rate of A1254 was 0.0153 Cl-/biphenyl/day, and dechlorination rates of single congeners ranged between 0.001 and 0.0074 Cl-/biphenyl/day. Potential risk associated with A1254 based on the toxic equivalency factors of the dioxin-like congeners was reduced by 83%. Additional potential risk associated with bioaccumulation in fish was reduced by 35% based on biota-sediment accumulation factor estimates for all detected congeners. Finally, the dechlorination end-products were tri- and tetra-chlorobiphenyls with unflanked chlorines, all of which are susceptible to further degradation by aerobic microorganisms. The combined results indicate that microbial reductive dechlorination has the potential for reducing risk associated with toxicity and bioaccumulation in fish in sites contaminated with A1254.
Collapse
Affiliation(s)
- Devrim Kaya
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey; Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA; Department of Environmental Engineering, Kocaeli University, Kocaeli, Turkey
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - F Dilek Sanin
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Rayford B Payne
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Kevin R Sowers
- Department of Marine Biotechnology, Institute of Marine and Environmental Technology, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
21
|
Demirtepe H, Kjellerup B, Sowers KR, Imamoglu I. Evaluation of PCB dechlorination pathways in anaerobic sediment microcosms using an anaerobic dechlorination model. JOURNAL OF HAZARDOUS MATERIALS 2015; 296:120-127. [PMID: 25913678 DOI: 10.1016/j.jhazmat.2015.04.033] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Revised: 04/10/2015] [Accepted: 04/11/2015] [Indexed: 06/04/2023]
Abstract
A detailed quantitative analysis of anaerobic dechlorination (AD) pathways of polychlorinated biphenyls (PCBs) in sediment microcosms was performed by applying an anaerobic dechlorination model (ADM). The purpose of ADM is to systematically analyze changes in a contaminant profile that result from microbial reductive dechlorination according to empirically determined dechlorination pathways. In contrast to prior studies that utilized modeling tools to predict dechlorination pathways, ADM also provides quantification of individual pathways. As only microbial reductive dechlorination of PCBs occurred in the modeled laboratory microcosms, extensive analysis of AD pathways was possible without the complicating effect of concurrent physico-chemical or other weathering mechanisms. The results from this study showed: (1) ninety three AD pathways are active; (2) tetra- to hepta-chlorobiphenyl (CB) congeners were common intermediates in several AD pathways, penta-CBs being the most frequently observed; (3) the highest rates of dechlorination were for penta-CB homologs during the initial 185 days; (4) the dominant terminal products of AD were PCB 32(26-4), 49(24-25), 51(24-26), 52(25-25), 72(25-35), 73(26-35) and 100(246-24), (5) potential toxicity of the sediment was reduced. ADM serves as a powerful tool not only for a thorough analysis of AD pathways, but also for providing necessary input for numerical fate models (as a degradation term) that investigate dechlorination products or outcome of natural attenuation, or bioremediation/bioaugmentation of PCB-impacted sediments.
Collapse
Affiliation(s)
- Hale Demirtepe
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Birthe Kjellerup
- A. James Clark School of Engineering, Department of Civil and Environmental Engineering, University of Maryland at College Park, College Park, MD 20742, USA
| | - Kevin R Sowers
- Institute of Marine and Environmental Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, MD 21202, USA
| | - Ipek Imamoglu
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
22
|
Zhang H, Jiang X, Lu L, Xiao W. Biodegradation of polychlorinated biphenyls (PCBs) by the novel identified cyanobacterium Anabaena PD-1. PLoS One 2015; 10:e0131450. [PMID: 26177203 PMCID: PMC4503305 DOI: 10.1371/journal.pone.0131450] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 06/02/2015] [Indexed: 11/24/2022] Open
Abstract
Polychlorinated biphenyls (PCBs), a class of hazardous pollutants, are difficult to dissipate in the natural environment. In this study, a cyanobacterial strain Anabaena PD-1 showed good resistance against PCB congeners. Compared to a control group, chlorophyll a content decreased 3.7% and 11.7% when Anabaena PD-1 was exposed to 2 and 5 mg/L PCBs for 7 d. This cyanobacterial strain was capable of decomposing PCB congeners which was conclusively proved by determination of chloride ion concentrations in chlorine-free medium. After 7 d, the chloride ion concentrations in PCB-treated groups (1, 2, 5 mg/L) were 3.55, 3.05, and 2.25 mg/L, respectively. The genetic information of strain PD-1 was obtained through 16S rRNA sequencing analysis. The GenBank accession number of 16S rRNA of Anabaena PD-1 was KF201693.1. Phylogenetic tree analysis clearly indicated that Anabaena PD-1 belonged to the genus Anabaena. The degradation half-life of Aroclor 1254 by Anabaena PD-1 was 11.36 d; the total degradation rate for Aroclor 1254 was 84.4% after 25 d. Less chlorinated PCB congeners were more likely to be degraded by Anabaena PD-1 in comparison with highly chlorinated congeners. Meta- and para-chlorines in trichlorodiphenyls and tetrachlorobiphenyls were more susceptible to dechlorination than ortho-chlorines during the PCB-degradation process by Anabaena PD-1. Furthermore, Anabaena PD-1 can decompose dioxin-like PCBs. The percent biodegradation of 12 dioxin-like PCBs by strain PD-1 ranged from 37.4% to 68.4% after 25 days. Results above demonstrate that Anabaena PD-1 is a PCB-degrader with great potential for the in situ bioremediation of PCB-contaminated paddy soils.
Collapse
Affiliation(s)
- Hangjun Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou 310036, China
- * E-mail:
| | - Xiaojun Jiang
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Liping Lu
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| | - Wenfeng Xiao
- College of Life and Environmental Sciences, Hangzhou Normal University, Xuelin Road 16#, Xiasha Gaojiao Dongqu, Hangzhou 310036, Zhejiang Province, China
| |
Collapse
|
23
|
Hu J, Qian M, Zhang Q, Cui J, Yu C, Su X, Shen C, Hashmi MZ, Shi J. Sphingobium fuliginis HC3: a novel and robust isolated biphenyl- and polychlorinated biphenyls-degrading bacterium without dead-end intermediates accumulation. PLoS One 2015; 10:e0122740. [PMID: 25875180 PMCID: PMC4395236 DOI: 10.1371/journal.pone.0122740] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 02/12/2015] [Indexed: 11/19/2022] Open
Abstract
Biphenyl and polychlorinated biphenyls (PCBs) are typical environmental pollutants. However, these pollutants are hard to be totally mineralized by environmental microorganisms. One reason for this is the accumulation of dead-end intermediates during biphenyl and PCBs biodegradation, especially benzoate and chlorobenzoates (CBAs). Until now, only a few microorganisms have been reported to have the ability to completely mineralize biphenyl and PCBs. In this research, a novel bacterium HC3, which could degrade biphenyl and PCBs without dead-end intermediates accumulation, was isolated from PCBs-contaminated soil and identified as Sphingobium fuliginis. Benzoate and 3-chlorobenzoate (3-CBA) transformed from biphenyl and 3-chlorobiphenyl (3-CB) could be rapidly degraded by HC3. This strain has strong degradation ability of biphenyl, lower chlorinated (mono-, di- and tri-) PCBs as well as mono-CBAs, and the biphenyl/PCBs catabolic genes of HC3 are cloned on its plasmid. It could degrade 80.7% of 100 mg L -1 biphenyl within 24 h and its biphenyl degradation ability could be enhanced by adding readily available carbon sources such as tryptone and yeast extract. As far as we know, HC3 is the first reported that can degrade biphenyl and 3-CB without accumulation of benzoate and 3-CBA in the genus Sphingobium, which indicates the bacterium has the potential to totally mineralize biphenyl/PCBs and might be a good candidate for restoring biphenyl/PCBs-polluted environments.
Collapse
Affiliation(s)
- Jinxing Hu
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Mingrong Qian
- Institute of Quality and Standard on Agricultural Products, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Qian Zhang
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jinglan Cui
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xiaomei Su
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Chaofeng Shen
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Muhammad Z. Hashmi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| | - Jiyan Shi
- Department of Environmental Engineering, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE. Microbial community analysis of switchgrass planted and unplanted soil microcosms displaying PCB dechlorination. Appl Microbiol Biotechnol 2015; 99:6515-26. [PMID: 25820643 DOI: 10.1007/s00253-015-6545-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 11/28/2022]
Abstract
Polychlorinated biphenyls (PCBs) pose potential risks to human and environmental health because they are carcinogenic, persistent, and bioaccumulative. In this study, we investigated bacterial communities in soil microcosms spiked with PCB 52, 77, and 153. Switchgrass (Panicum virgatum) was employed to improve overall PCB removal, and redox cycling (i.e., sequential periods of flooding followed by periods of no flooding) was performed in an effort to promote PCB dechlorination. Lesser chlorinated PCB transformation products were detected in all microcosms, indicating the occurrence of PCB dechlorination. Terminal restriction fragment length polymorphism (T-RFLP) and clone library analysis showed that PCB spiking, switchgrass planting, and redox cycling affected the microbial community structure. Putative organohalide-respiring Chloroflexi populations, which were not found in unflooded microcosms, were enriched after 2 weeks of flooding in the redox-cycled microcosms. Sequences classified as Geobacter sp. were detected in all microcosms and were most abundant in the switchgrass-planted microcosm spiked with PCB congeners. The presence of possible organohalide-respiring bacteria in these soil microcosms suggests that they play a role in PCB dechlorination therein.
Collapse
Affiliation(s)
- Yi Liang
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | | | | | | | | |
Collapse
|
25
|
Song M, Luo C, Li F, Jiang L, Wang Y, Zhang D, Zhang G. Anaerobic degradation of polychlorinated biphenyls (PCBs) and polychlorinated biphenyls ethers (PBDEs), and microbial community dynamics of electronic waste-contaminated soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 502:426-33. [PMID: 25268572 DOI: 10.1016/j.scitotenv.2014.09.045] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 09/12/2014] [Accepted: 09/15/2014] [Indexed: 05/10/2023]
Abstract
Environmental contamination caused by electronic waste (e-waste) recycling is attracting increasing attention worldwide because of the threats posed to ecosystems and human safety. In the present study, we investigated the feasibility of in situ bioremediation of e-waste-contaminated soils. We found that, in the presence of lactate as an electron donor, higher halogenated congeners were converted to lower congeners via anaerobic halorespiration using ferrous ions in contaminated soil. The 16S rRNA gene sequences of terminal restriction fragments indicated that the three dominant strains were closely related to known dissimilatory iron-reducing bacteria (DIRB) and those able to perform dehalogenation upon respiration. The functional species performed the activities of ferrous oxidation to ferric ions and further ferrous reduction for dehalogenation. The present study links iron cycling to degradation of halogenated materials in natural e-waste-contaminated soil, and highlights the synergistic roles of soil bacteria and ferrous/ferric ion cycling in the dehalogenation of polychlorinated biphenyls (PCBs) and polybrominated biphenyl ethers (PBDEs).
Collapse
Affiliation(s)
- Mengke Song
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Chunling Luo
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Fangbai Li
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou 510650, China
| | - Longfei Jiang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yan Wang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Dayi Zhang
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK
| | - Gan Zhang
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
26
|
Liang Y, Meggo R, Hu D, Schnoor JL, Mattes TE. Enhanced Polychlorinated Biphenyl Removal in a Switchgrass Rhizosphere by Bioaugmentation with Burkholderia xenovorans LB400. ECOLOGICAL ENGINEERING 2014; 71:215-222. [PMID: 25246731 PMCID: PMC4167840 DOI: 10.1016/j.ecoleng.2014.07.046] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Phytoremediation makes use of plants and associated microorganisms to clean up soils and sediments contaminated with inorganic and organic pollutants. In this study, switchgrass (Panicum virgatum) was used to test for its efficiency in improving the removal of three specific polychlorinated biphenyl (PCB) congeners (PCB 52, 77 and 153) in soil microcosms. The congeners were chosen for their ubiquity, toxicity, and recalcitrance. After 24 weeks of incubation, loss of 39.9 ± 0.41% of total PCB molar mass was observed in switchgrass treated soil, significantly higher than in unplanted soil (29.5 ± 3.4%) (p<0.05). The improved PCB removal in switchgrass treated soils could be explained by phytoextraction processes and enhanced microbial activity in the rhizosphere. Bioaugmentation with Burkholderia xenovorans LB400 was performed to further enhance aerobic PCB degradation. The presence of LB400 was associated with improved degradation of PCB 52, but not PCB 77 or PCB 153. Increased abundances of bphA (a functional gene that codes for a subunit of PCB-degrading biphenyl dioxygenase in bacteria) and its transcript were observed after bioaugmentation. The highest total PCB removal was observed in switchgrass treated soil with LB400 bioaugmentation (47.3 ± 1.22 %), and the presence of switchgrass facilitated LB400 survival in the soil. Overall, our results suggest the combined use of phytoremediation and bioaugmentation could be an efficient and sustainable strategy to eliminate recalcitrant PCB congeners and remediate PCB-contaminated soil.
Collapse
|
27
|
Mercier A, Joulian C, Michel C, Auger P, Coulon S, Amalric L, Morlay C, Battaglia-Brunet F. Evaluation of three activated carbons for combined adsorption and biodegradation of PCBs in aquatic sediment. WATER RESEARCH 2014; 59:304-315. [PMID: 24813338 DOI: 10.1016/j.watres.2014.04.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/07/2014] [Accepted: 04/10/2014] [Indexed: 06/03/2023]
Abstract
Three commercial granular activated carbons (GACs) were studied at laboratory scale with a view to the combined adsorption and biodegradation of PCBs in aquatic sediment. The three GACs, with contrasting physico-chemical characteristics, all show a high adsorption of PCBs and are thus capable of reducing aqueous pollutant concentrations. After a one-month incubation with 'Aroclor 1242'-spiked sediment, the three GACs were each colonized by a multispecies biofilm, although with different amounts of attached bacterial biomass and significantly distinct genetic bacterial communities; interestingly, the highest bacterial biomass was attached to the microporous vegetable GAC. The multispecies biofilms developed on the three GACs were all predominantly composed of Proteobacteria, especially the β-, γ- and δ- subclasses, Chloroflexi and Acidobacteria, with genera previously found in environments containing PCBs or biphenyls, or able to perform cometabolic and direct PCB degradation. After an eight-month incubation under aerobic conditions, it was only the vegetable Picabiol GAC, with its low microporous volume, high total surface area and acidic property, that showed a significant (21%) reduction of tri- through penta-CB. Our results suggest that PCB bio-transformation by the bacterial community attached to the GAC is influenced by GAC's physico-chemical characteristics. Thus, a properly selected GAC could effectively be used to a) sequestrate and concentrate PCB from contaminated aquatic sediment and b) act as a support for efficient PCB degradation by an autochthonous bacterial biofilm.
Collapse
Affiliation(s)
- Anne Mercier
- BRGM - Water, Environment & Ecotechnology Division (D3E), 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Catherine Joulian
- BRGM - Water, Environment & Ecotechnology Division (D3E), 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Caroline Michel
- BRGM - Water, Environment & Ecotechnology Division (D3E), 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Pascal Auger
- BRGM - Laboratory Division, 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Stéphanie Coulon
- BRGM - Laboratory Division, 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Laurence Amalric
- BRGM - Laboratory Division, 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France
| | - Catherine Morlay
- Université Lyon 1, INSA-Lyon, MATEIS CNRS UMR 5510, 7 av. Jean Capelle, 69621 Villeurbanne, France
| | - Fabienne Battaglia-Brunet
- BRGM - Water, Environment & Ecotechnology Division (D3E), 3 av. Claude Guillemin, 45060 Orléans, Cedex 2, France.
| |
Collapse
|
28
|
Liang Y, Martinez A, Hornbuckle KC, Mattes TE. Potential for Polychlorinated Biphenyl Biodegradation in Sediments from Indiana Harbor and Ship Canal. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2014; 89:50-57. [PMID: 24764649 PMCID: PMC3993986 DOI: 10.1016/j.ibiod.2014.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Polychlorinated biphenyls (PCBs) are carcinogenic, persistent, and bioaccumulative contaminants that pose risks to human and environmental health. In this study, we evaluated the PCB biodegradation of sediments from Indiana Harbor and Ship Canal (IHSC), a PCB-contaminated site (average PCB concentration = 12,570 ng/g d.w.). PCB congener profiles and bacterial community structure in a core sediment sample (4.57 m long) were characterized. Analysis of vertical PCB congener profile patterns in sediment and pore water strongly suggest that in situ dechlorination occurred in sediments. However, 16S rRNA genes from putative PCB-dechlorinating Chloroflexi were relatively more abundant in upper 2 m sediments, as were genes indicative of aerobic biodegradation potential (i.e. biphenyl dioxygenase (bphA)). Characterization of the bacterial community by terminal restriction fragment length polymorphism and comparison of these with sediment and pore water PCB congener profiles with the Mantel test revealed a statistical correlation (p<0.001). Sequences classified as Acinetobacter and Acidovorax were highly abundant in deep sediments. Overall, our results suggest that PCB dechlorination has already occurred, and that IHSC sediments have the potential for further aerobic and anaerobic PCB biodegradation.
Collapse
Affiliation(s)
- Yi Liang
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | - Andres Martinez
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | - Keri C. Hornbuckle
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
| | - Timothy E. Mattes
- Department of Civil and Environmental Engineering, 4105 Seamans Center, The University of Iowa, Iowa City, IA, 52242, USA
- Corresponding author: Tel.: +1 319 335 5065, Fax: +1 319 335 5660,
| |
Collapse
|
29
|
Long YY, Zhang C, Du Y, Tao XQ, Shen DS. Enhanced reductive dechlorination of polychlorinated biphenyl-contaminated soil by in-vessel anaerobic composting with zero-valent iron. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:4783-4792. [PMID: 24363050 DOI: 10.1007/s11356-013-2420-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 11/29/2013] [Indexed: 06/03/2023]
Abstract
Anaerobic dechlorination is an effective degradation pathway for higher chlorinated polychlorinated biphenyls (PCBs). The enhanced reductive dechlorination of PCB-contaminated soil by anaerobic composting with zero-valent iron (ZVI) was studied, and preliminary reasons for the enhanced reductive dechlorination with ZVI were investigated. The results show that the addition of nanoscale ZVI can enhance dechlorination during in-vessel anaerobic composting. After 140 days, the average number of removed Cl per biphenyl with 10 mg g(-1) of added nanoscale ZVI was 0.63, enhancing the dechlorination by 34 % and improving the initial dechlorination speed. The ZVI enhances dechlorination by providing a suitable acid base environment, reducing volatile fatty acid inhibition and stimulating the microorganisms. The C/N ratios for treatments with the highest rate of ZVI addition were smaller than for the control, indicating that ZVI addition can promote compost maturity.
Collapse
Affiliation(s)
- Yu-Yang Long
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310018, China
| | | | | | | | | |
Collapse
|
30
|
Zhang C, Du Y, Tao XQ, Zhang K, Shen DS, Long YY. Dechlorination of polychlorinated biphenyl-contaminated soil via anaerobic composting with pig manure. JOURNAL OF HAZARDOUS MATERIALS 2013; 261:826-832. [PMID: 23910395 DOI: 10.1016/j.jhazmat.2013.05.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 04/30/2013] [Accepted: 05/07/2013] [Indexed: 06/02/2023]
Abstract
Anaerobic dechlorination is an effective degradation pathway of higher chlorinated polychlorinated biphenyls (PCBs). The efficiency of anaerobic composting remediation of PCB-contaminated soil using pig manure was determined. The results show that the dechlorination of PCB-contaminated soil via anaerobic composting with pig manure is feasible. PCB concentration is the most critical factor. Elevated PCB concentrations can inhibit dechlorination but does not disrupt the anaerobic fermentation process. At 1 mg kg(-1) PCBs, the degradation rate of five or more chlorinated biphenyls is 43.8%. The highest dechlorination performance in this experiment was obtained when the soil-to-organic waste ratio, carbon-to-nitrogen ratio, moisture content, and PCB concentration were 2:3, 20, 60%, and 1 mg kg(-1), respectively.
Collapse
Affiliation(s)
- Chi Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China; Zhejiang Environmental Science & Design Institute, Hangzhou, 310007, China
| | | | | | | | | | | |
Collapse
|
31
|
Meggo RE, Schnoor JL, Hu D. Dechlorination of PCBs in the rhizosphere of switchgrass and poplar. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 178:312-21. [PMID: 23603468 PMCID: PMC4294558 DOI: 10.1016/j.envpol.2013.02.035] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2012] [Revised: 02/12/2013] [Accepted: 02/27/2013] [Indexed: 05/19/2023]
Abstract
Polychlorinated biphenyl (PCB) congeners (PCB 52, 77, and 153) singly and in mixture were spiked and aged in soil microcosms and subsequently planted with switchgrass (Panicum virgatum) or poplar (Populus deltoids x nigra DN34). The planted reactors showed significantly greater reductions in PCB parent compounds when compared to unplanted systems after 32 weeks. There was evidence of reductive dechlorination in both planted and unplanted systems, but the planted microcosms with fully developed roots and rhizospheres showed greater biotransformation than the unplanted reactors. These dechlorination products accounted for approximately all of the molar mass of parent compound lost. Based on the transformation products, reductive dechlorination pathways are proposed for rhizospheric biotransformation of PCB 52, 77, and 153. This is the first report of rhizosphere biotransformation pathways for reductive dechlorination in marginally aerobic, intermittently flooded soil as evidenced by a mass balance on transformation products.
Collapse
Affiliation(s)
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering 4105 Seamans Center University of Iowa, IA, 52242, USA ()
| | - Dingfei Hu
- Department of Civil and Environmental Engineering 4105 Seamans Center University of Iowa, IA, 52242, USA ()
| |
Collapse
|
32
|
Payne RB, Fagervold SK, May HD, Sowers KR. Remediation of Polychlorinated Biphenyl Impacted Sediment by Concurrent Bioaugmentation with Anaerobic Halorespiring and Aerobic Degrading Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3807-15. [PMID: 23463900 PMCID: PMC3671860 DOI: 10.1021/es304372t] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Rayford B. Payne
- Institute of Marine and Environmental
Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202,
United States
| | - Sonja K. Fagervold
- UPMC Univ
Paris 06, UMR 8882, LECOB, Observatoire Océanologique, F-66650, Banyuls/Mer, France
| | - Harold D. May
- Marine Biomedicine and Environmental
Science Center, Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South
Carolina 29412, United States
| | - Kevin R. Sowers
- Institute of Marine and Environmental
Technology, Department of Marine Biotechnology, University of Maryland Baltimore County, Baltimore, Maryland 21202,
United States
| |
Collapse
|
33
|
Silva CR, Souza JC, Araújo LS, Kagohara E, Garcia TP, Pelizzari VH, Andrade LH. Exploiting the enzymatic machinery of Arthrobacter atrocyaneus for oxidative kinetic resolution of secondary alcohols. ACTA ACUST UNITED AC 2012. [DOI: 10.1016/j.molcatb.2012.06.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
34
|
2,4,6-trichlorophenol (TCP) photobiodegradation and its effect on community structure. Biodegradation 2012; 23:575-83. [DOI: 10.1007/s10532-012-9534-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/02/2012] [Indexed: 11/27/2022]
|
35
|
Hong CY, Gwak KS, Lee SY, Kim SH, Lee SM, Kwon M, Choi IG. Biodegradation of PCB congeners by white rot fungus, Ceriporia sp. ZLY-2010, and analysis of metabolites. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1878-1888. [PMID: 22755535 DOI: 10.1080/03601234.2012.676432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polychlorinated biphenyls (PCBs) are difficult to degrade due to poor solubility, toxicity, and thermal stability. In the present study, the feasibility of PCB congener biodegradation by Ceriporia sp. ZLY-2010 was evaluated. The biodegradation rates of four PCB congeners, 4,4'-dichlorobiphenyl, 2,3',4',5-tetrachlorobiphenyl, 2,2',4,5,5'-pentachlorobiphenyl, and 2,2',4,4',5,5'-hexachlorobiphenyl were evaluated. The degradation rate of 4,4'-dichlorobiphenyl was 34.03% on incubation day 13, while that of 2,2',4,4',5,5'-hexachlorobiphenyl reached 40.05% on incubation day 17. Therefore, Ceriporia sp. ZLY-2010 was degrading the higher PCB congeners more efficiently. PCB congener degradation products were extracted using acetone and ethyl acetate. No 2,2',4,5,5'-pentachlorobiphenyl metabolites were detected in Ceriporia sp. ZLY-2010 culture, whereas 2,2',4,4',5,5'-hexachlorobiphenyl appeared to degrade to benzoic acid. However, intermediates of 2,2',4,4',5,5'-hexachlorobiphenyl were not detected during degradation. Therefore, additional studies should be performed to explore the mechanisms of PCB degradation. Our results indicate that Ceriporia sp. ZLY-2010 is able to degrade highly chlorinated biphenyls and has potential for use in PCB biodegradation and bioremediation.
Collapse
Affiliation(s)
- Chang-Young Hong
- Department of Forest Sciences, Seoul National University, Seoul, South Korea
| | | | | | | | | | | | | |
Collapse
|
36
|
Plant exudates promote PCB degradation by a rhodococcal rhizobacteria. Appl Microbiol Biotechnol 2011; 95:1589-603. [PMID: 22202970 DOI: 10.1007/s00253-011-3824-z] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/04/2011] [Accepted: 12/07/2011] [Indexed: 10/14/2022]
Abstract
Rhodococcus erythropolis U23A is a polychlorinated biphenyl (PCB)-degrading bacterium isolated from the rhizosphere of plants grown on a PCB-contaminated soil. Strain U23A bphA exhibited 99% identity with bphA1 of Rhodococcus globerulus P6. We grew Arabidopsis thaliana in a hydroponic axenic system, collected, and concentrated the plant secondary metabolite-containing root exudates. Strain U23A exhibited a chemotactic response toward these root exudates. In a root colonizing assay, the number of cells of strain U23A associated to the plant roots (5.7 × 10⁵ CFU g⁻¹) was greater than the number remaining in the surrounding sand (4.5 × 10⁴ CFU g⁻¹). Furthermore, the exudates could support the growth of strain U23A. In a resting cell suspension assay, cells grown in a minimal medium containing Arabidopsis root exudates as sole growth substrate were able to metabolize 2,3,4'- and 2,3',4-trichlorobiphenyl. However, no significant degradation of any of congeners was observed for control cells grown on Luria-Bertani medium. Although strain U23A was unable to grow on any of the flavonoids identified in root exudates, biphenyl-induced cells metabolized flavanone, one of the major root exudate components. In addition, when used as co-substrate with sodium acetate, flavanone was as efficient as biphenyl to induce the biphenyl catabolic pathway of strain U23A. Together, these data provide supporting evidence that some rhodococci can live in soil in close association with plant roots and that root exudates can support their growth and trigger their PCB-degrading ability. This suggests that, like the flagellated Gram-negative bacteria, non-flagellated rhodococci may also play a key role in the degradation of persistent pollutants.
Collapse
|
37
|
Zorádová-Murínová S, Dudášová H, Lukáčová L, Certík M, Silharová K, Vrana B, Dercová K. Adaptation mechanisms of bacteria during the degradation of polychlorinated biphenyls in the presence of natural and synthetic terpenes as potential degradation inducers. Appl Microbiol Biotechnol 2011; 94:1375-85. [PMID: 22159613 DOI: 10.1007/s00253-011-3763-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Revised: 11/13/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
In this study, we examined the effect of polychlorinated biphenyls (PCBs) in the presence of natural and synthetic terpenes and biphenyl on biomass production, lipid accumulation, and membrane adaptation mechanisms of two PCB-degrading bacterial strains Pseudomonas stutzeri and Burkholderia xenovorans LB400. According to the results obtained, it could be concluded that natural terpenes, mainly those contained in ivy leaves and pine needles, decreased adaptation responses induced by PCBs in these strains. The adaptation processes under investigation included growth inhibition, lipid accumulation, composition of fatty acids, cis/trans isomerization, and membrane saturation. Growth inhibition effect decreased upon addition of these natural compounds to the medium. The amount of unsaturated fatty acids that can lead to elevated membrane fluidity increased in both strains after the addition of the two natural terpene sources. The cells adaptation changes were more prominent in the presence of carvone, limonene, and biphenyl than in the presence of natural terpenes, as indicated by growth inhibition, lipid accumulation, and cis/trans isomerization. Addition of biphenyl and carvone simultaneously with PCBs increased the trans/cis ratio of fatty acids in membrane fractions probably as a result of fluidizing effects of PCBs. This stimulation is more pronounced in the presence of PCBs as a sole carbon source. This suggests that PCBs alone have a stronger effect on bacterial membrane adaptation mechanisms than when added together with biphenyl or natural or synthetic terpenes.
Collapse
Affiliation(s)
- Slavomíra Zorádová-Murínová
- Institute of Biotechnology and Food Science, Department of Biochemical Technology, Slovak University of Technology, Faculty of Chemical and Food Technology, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
AbstractBacteria belonging to the genus Burkholderia are well known for their adaptability to habitats as diverse as freshwater sediments, lungs of cystic fibrosis patients and plant tissues. This genus includes also plant, animal and human pathogenic species, such as Burkholderia glumae, Burkholderia pseudomallei and the Burkholderia cepacia complex. Over the past few years, several newly discovered non-pathogenic plant associated Burkholderia species have raised particular interest for their potential use in plant growth promotion, biocontrol of plant pathogens, phytoremediation and xenobiotics degradation. Highlights from recent studies on the taxonomy, ecology and pathogenicity of different species of the Burkholderia genus are presented with the aim to evaluate their potential use in biotechnology.
Collapse
|
39
|
Insight into the metabolism of 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) by biphenyl dioxygenases. Arch Biochem Biophys 2011; 516:35-44. [DOI: 10.1016/j.abb.2011.09.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2011] [Revised: 09/27/2011] [Accepted: 09/29/2011] [Indexed: 11/21/2022]
|
40
|
Zimbron JA, Reardon KF. Continuous combined Fenton's oxidation and biodegradation for the treatment of pentachlorophenol-contaminated water. WATER RESEARCH 2011; 45:5705-5714. [PMID: 21924453 PMCID: PMC3199144 DOI: 10.1016/j.watres.2011.08.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Revised: 08/22/2011] [Accepted: 08/23/2011] [Indexed: 05/29/2023]
Abstract
Pentachlorophenol (PCP) was studied as a model recalcitrant compound for a sequential chemical oxidation and biodegradation treatment, in a continuous laboratory-scale system that combined a Fenton's chemical reactor and a packed-bed bioreactor. PCP degradation and dechlorination were observed in the Fenton's reactor at a residence time of 1.5 h, although no reduction of total organic carbon (TOC) was observed. Both PCP degradation and dechlorination were strongly dependent on the H(2)O(2) dose to the chemical reactor. The PCP degradation intermediates tetrachlorohydroquinone and dichloromaleic acid were identified in this reactor. Further treatment of the Fenton's reactor effluent with a packed-bed bioreactor (operating at a residence time of 5.5 h) resulted in partial biodegradation of PCP degradation intermediates and reduction in TOC, although no further reduction of PCP or dechlorination was achieved in the bioreactor. Increased residence time in the bioreactor had no significant impact on degradation of TOC. Recycle of the effluent from the bioreactor to the chemical reactor increased the TOC degradation, but not the extent of the PCP degradation or dechlorination. A mathematical model of the combined Fenton's oxidation and biodegradation system supported the experimental results. While the model over-predicted the PCP and TOC degradation in the combined system, it adequately predicted the sensitivity of these parameters to different H(2)O(2) doses and recycle rates. The model indicated that high recycle rates would improve TOC degradation.
Collapse
Affiliation(s)
| | - Kenneth F. Reardon
- Corresponding author Department of Chemical and Biological Engineering, 100 Glover Building, Colorado State University, Fort Collins, CO 80523-1370, USA, Phone: (970) 491-6505, Fax: (970) 491-7369,
| |
Collapse
|
41
|
Weber CF, King GM. The phylogenetic distribution and ecological role of carbon monoxide oxidation in the genus Burkholderia. FEMS Microbiol Ecol 2011; 79:167-75. [DOI: 10.1111/j.1574-6941.2011.01206.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Affiliation(s)
- Carolyn F. Weber
- Department of Biological Sciences; Louisiana State University; Baton Rouge; LA; USA
| | - Gary M. King
- Department of Biological Sciences; Louisiana State University; Baton Rouge; LA; USA
| |
Collapse
|
42
|
Genomic analysis of the phenylacetyl-CoA pathway in Burkholderia xenovorans LB400. Arch Microbiol 2011; 193:641-50. [PMID: 21519854 DOI: 10.1007/s00203-011-0705-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 03/23/2011] [Accepted: 03/31/2011] [Indexed: 10/18/2022]
Abstract
The phenylacetyl-CoA (Paa) catabolic pathway and genome-wide gene expression responses to phenylacetate catabolism were studied in the polychlorinated biphenyl (PCB)-degrading strain Burkholderia xenovorans LB400. Microarray and RT-qPCR analyses identified three non-contiguous chromosomal clusters of genes that are predicted to encode a complete Paa pathway that were induced up to 40-fold during growth of LB400 on phenylacetate: paaGHIJKR, paaANEBDF, and paaC. Comparison of the available genome sequences revealed that this organization is unique to Burkholderiaceae. Parallel proteomic studies identified 7 of the 14 predicted Paa proteins, most of which were detected only in phenylacetate-grown cells, but not in benzoate- or succinate-grown cells. Finally, the transcriptomic and proteomic analyses revealed the induction of at least 7 predicted catabolic pathways of aromatic compounds and some aromatic plant products (phenols, mandelate, biphenyl, C(1) compounds, mevalonate, opine, and isoquinoline), as well as an oxidative stress response and a large group of transporters. Most of these genes were not induced during growth on benzoate or biphenyl, suggesting that phenylacetate or a metabolite may act as a signal that triggers multiple physiological processes. Identifying the components of the Paa pathway is important since the pathway appears to contribute to virulence of Burkholderia pathogens.
Collapse
|
43
|
Kumar P, Gómez-Gil L, Mohammadi M, Sylvestre M, Eltis LD, Bolin JT. Anaerobic crystallization and initial X-ray diffraction data of biphenyl 2,3-dioxygenase from Burkholderia xenovorans LB400: addition of agarose improved the quality of the crystals. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 67:59-62. [PMID: 21206025 DOI: 10.1107/s1744309110043393] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2010] [Accepted: 10/25/2010] [Indexed: 11/10/2022]
Abstract
Biphenyl 2,3-dioxygenase (BPDO; EC 1.14.12.18) catalyzes the initial step in the degradation of biphenyl and some polychlorinated biphenyls (PCBs). BPDOLB400, the terminal dioxygenase component from Burkholderia xenovorans LB400, a proteobacterial species that degrades a broad range of PCBs, has been crystallized under anaerobic conditions by sitting-drop vapour diffusion. Initial crystals obtained using various polyethylene glycols as precipitating agents diffracted to very low resolution (∼8 Å) and the recorded reflections were diffuse and poorly shaped. The quality of the crystals was significantly improved by the addition of 0.2% agarose to the crystallization cocktail. In the presence of agarose, wild-type BPDOLB400 crystals that diffracted to 2.4 Å resolution grew in space group P1. Crystals of the BPDOP4 and BPDORR41 variants of BPDOLB400 grew in space group P2(1).
Collapse
Affiliation(s)
- Pravindra Kumar
- Department of Biological Sciences and Center for Cancer Research, Purdue University, West Lafayette, Indiana, USA.
| | | | | | | | | | | |
Collapse
|
44
|
Seto M, Kimbara K, Shimura M, Hatta T, Fukuda M, Yano K. A Novel Transformation of Polychlorinated Biphenyls by Rhodococcus sp. Strain RHA1. Appl Environ Microbiol 2010; 61:3353-8. [PMID: 16535122 PMCID: PMC1388576 DOI: 10.1128/aem.61.9.3353-3358.1995] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have characterized a biphenyl degrader, Rhodococcus sp. strain RHA1. Biphenyl-grown cells of strain RHA1 efficiently transformed 45 components in the 62 major peaks of a polychlorinated biphenyl (PCB) mixture of Kanechlors 200, 300, 400, and 500 within 3 days, which includes mono- to octachlorobiphenyls. Among the intermediate metabolites of PCB transformation, di- and trichlorobenzoic acids were identified. The gradual decrease of these chlorobenzoic acids during incubation indicated that these chlorobenzoic acids would also be degraded by this strain. The effect of the position of chlorine substitution was determined by using PCB mixtures that have chlorine substitutions mainly at either the ortho or the meta position. This strain transformed both types of congeners, and strong PCB transformation activity of RHA1 was indicated. RHA1 accumulated 4-chlorobenzoic acid temporally during the transformation of 4-chlorobiphenyl. The release of most chloride in the course of 2,2(prm1)-dichlorobiphenyl degradation was observed. These results suggested that RHA1 would break down at least some PCB congeners into smaller molecules to a considerable extent.
Collapse
|
45
|
Liu X, Germaine KJ, Ryan D, Dowling DN. Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. SENSORS 2010; 10:1377-98. [PMID: 22205873 PMCID: PMC3244019 DOI: 10.3390/s100201377] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/14/2010] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
Abstract
Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ, to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs).
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland.
| | | | | | | |
Collapse
|
46
|
Ding N, Guo H, Hayat T, Wu Y, Xu J. Microbial community structure changes during Aroclor 1242 degradation in the rhizosphere of ryegrass (Lolium multiflorumL.). FEMS Microbiol Ecol 2009; 70:149-58. [PMID: 19663919 DOI: 10.1111/j.1574-6941.2009.00742.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Affiliation(s)
- Na Ding
- Zhejiang Provincial Key Laboratory of Subtropical Soil and Plant Nutrition, College of Environmental and Natural Resource Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | |
Collapse
|
47
|
Parnell JJ, Denef VJ, Park J, Tsoi T, Tiedje JM. Environmentally relevant parameters affecting PCB degradation: carbon source- and growth phase-mitigated effects of the expression of the biphenyl pathway and associated genes in Burkholderia xenovorans LB400. Biodegradation 2009; 21:147-56. [PMID: 19672561 DOI: 10.1007/s10532-009-9289-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 07/29/2009] [Indexed: 11/26/2022]
Affiliation(s)
- J Jacob Parnell
- Center for Microbial Ecology and Crop and Soil Science, Michigan State University, East Lansing, MI 48823, USA.
| | | | | | | | | |
Collapse
|
48
|
DNA-stable isotope probing integrated with metagenomics for retrieval of biphenyl dioxygenase genes from polychlorinated biphenyl-contaminated river sediment. Appl Environ Microbiol 2009; 75:5501-6. [PMID: 19648381 DOI: 10.1128/aem.00121-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing with [(13)C]biphenyl was used to explore the genetic properties of indigenous bacteria able to grow on biphenyl in PCB-contaminated River Raisin sediment. A bacterial 16S rRNA gene clone library generated from [(13)C]DNA after a 14-day incubation with [(13)C]biphenyl revealed the dominant organisms to be members of the genera Achromobacter and Pseudomonas. A library built from PCR amplification of genes for aromatic-ring-hydroxylating dioxygenases from the [(13)C]DNA fraction revealed two sequence groups similar to bphA (encoding biphenyl dioxygenase) of Comamonas testosteroni strain B-356 and of Rhodococcus sp. RHA1. A library of 1,568 cosmid clones was produced from the [(13)C]DNA fraction. A 31.8-kb cosmid clone, detected by aromatic dioxygenase primers, contained genes of biphenyl dioxygenase subunits bphAE, while the rest of the clone's sequence was similar to that of an unknown member of the Gammaproteobacteria. A discrepancy in G+C content near the bphAE genes implies their recent acquisition, possibly by horizontal transfer. The biphenyl dioxygenase from the cosmid clone oxidized biphenyl and unsubstituted and para-only-substituted rings of polychlorinated biphenyl (PCB) congeners. A DNA-stable isotope probing-based cosmid library enabled the retrieval of functional genes from an uncultivated organism capable of PCB metabolism and suggest dispersed dioxygenase gene organization in nature.
Collapse
|
49
|
Bedard DL. A case study for microbial biodegradation: anaerobic bacterial reductive dechlorination of polychlorinated biphenyls-from sediment to defined medium. Annu Rev Microbiol 2008; 62:253-70. [PMID: 18729735 DOI: 10.1146/annurev.micro.62.081307.162733] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The history of anaerobic microbial polychlorinated biphenyl (PCB) dechlorination is traced over 20 years using a case study of PCB dechlorination in the Housatonic River (Massachusetts) as an example. The history progresses from the characterization of the PCBs in the sediment, to cultivation in sediment microcosms, to the identification of four distinct types of PCB dechlorination, to a successful field test, to the cultivation in defined medium of the organisms responsible for extensive dechlorination of Aroclor 1260, and finally to the identification of a Dehalococcoides population that links its growth to the dechlorination of Aroclor 1260. Other PCB dechlorinators have also been identified. Two bacterial strains, o-17 and DF-1, that link their growth to the dechlorination of several PCB congeners belong to a novel clade of putative dechlorinating bacteria within the phylum Chloroflexi. Dehalococcoides ethenogenes strain 195 also dechlorinates several PCB congeners when grown on chlorinated ethenes. Evidence is mounting that Dehalococcoides and other dechlorinating Chloroflexi may play a significant role in the dechlorination of commercial PCBs in situ.
Collapse
Affiliation(s)
- Donna L Bedard
- Department of Biology, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.
| |
Collapse
|
50
|
Degradation of polychlorinated biphenyl (PCB) by a consortium obtained from a contaminated soil composed of Brevibacterium, Pandoraea and Ochrobactrum. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9875-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|