1
|
Santos-Oliveira PH, Silva JGP, Blank LM, Silva LF, Gomez JGC. Constant fed-batch cultivation with glucose and propionate as co-substrate: A strategy to fine-tune polyhydroxyalkanoates monomeric composition in Pseudomonas spp. Int J Biol Macromol 2024; 256:128287. [PMID: 37995793 DOI: 10.1016/j.ijbiomac.2023.128287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/14/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Pseudomonas sp. LFM693 is a 2-methylisocitrate lyase (prpB) disrupted mutant. This enzyme catalyzes a step in the 2-methylcitrate cycle, the only known and described pathway for propionate oxidation in this organism. The affected mutants can efficiently produce PHA containing even and odd-chain length hydroxyalkanoates (HAeven/odd) in the presence of propionate and glucose. In this study, a constant fed-batch configuration was utilized to control the composition of PHA and decrease the toxicity of propionate. The incorporation of HAodd into the copolymer was linear, ranging from 7 to approximately 30 %, and correlated directly with the propionate/glucose molar ratio in the feeding solution. This allowed for the molecular composition of the mclPHA to be fine-tuned with minimum process monitoring and control. The average PHA content was 52 % cell dry weight with a molar composition that favored 3-hydroxyalkanoates containing C8, C9, and C10. The conversion factor of propionate to HAodd varied between 0.36 and 0.53 mol·mol-1 (YHAodd/prop.), which are significantly lower than the theoretical maximum efficiency (1.0 mol·mol-1). These results along with the lack of 2-methylisocitrate as a byproduct provides further support for the evidence that the mutant prpB- is still capable of oxidizing propionate.
Collapse
Affiliation(s)
- Pedro Henrique Santos-Oliveira
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | | | - Lars Mathias Blank
- iAMB - Institute of Applied Microbiology, ABBt - Aachen Biology and Biotechnology, RWTH Aachen University, Worringerweg 1, 52074 Aachen, Germany
| | - Luiziana Ferreira Silva
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
2
|
Sikkema WD, Cal AJ, Hathwaik UI, Orts WJ, Lee CC. Polyhydroxyalkanoate production in Pseudomonas putida from alkanoic acids of varying lengths. PLoS One 2023; 18:e0284377. [PMID: 37471433 PMCID: PMC10358918 DOI: 10.1371/journal.pone.0284377] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 03/29/2023] [Indexed: 07/22/2023] Open
Abstract
Many studies have been conducted to produce microbial polyhydroxyalkanoates (PHA), a biopolymer, from Pseudomonas sp. fed with various alkanoic acids. Because this previous data was collected using methodologies that varied in critical aspects, such as culture media and size range of alkanoic acids, it has been difficult to compare the results for a thorough understanding of the relationship between feedstock and PHA production. Therefore, this study utilized consistent culture media with a wide range of alkanoic acids (C7-C14) to produce medium chain length PHAs. Three strains of Pseudomonas putida (NRRL B-14875, KT2440, and GN112) were used, and growth, cell dry weight, PHA titer, monomer distribution, and molecular weights were all examined. It was determined that although all the strains produced similar PHA titers using C7-C9 alkanoic acids, significant differences were observed with the use of longer chain feedstocks. Specifically, KT2440 and its derivative GN112 produced higher PHA titers compared to B-14875 when fed longer chain alkanoates. We also compared several analytical techniques for determining amounts of PHA and found they produced different results. In addition, the use of an internal standard had a higher risk of calculating inaccurate concentrations compared to an external standard. These observations highlight the importance of considering this aspect of analysis when evaluating different studies.
Collapse
Affiliation(s)
- W Dirk Sikkema
- Bioproducts Research Unit, USDA-ARS-WRRC, Albany, CA, United States of America
| | - Andrew J Cal
- Bioproducts Research Unit, USDA-ARS-WRRC, Albany, CA, United States of America
| | - Upul I Hathwaik
- Bioproducts Research Unit, USDA-ARS-WRRC, Albany, CA, United States of America
| | - William J Orts
- Bioproducts Research Unit, USDA-ARS-WRRC, Albany, CA, United States of America
| | - Charles C Lee
- Bioproducts Research Unit, USDA-ARS-WRRC, Albany, CA, United States of America
| |
Collapse
|
3
|
Kratzl F, Kremling A, Pflüger‐Grau K. Streamlining of a synthetic co-culture towards an individually controllable one-pot process for polyhydroxyalkanoate production from light and CO 2. Eng Life Sci 2023; 23:e2100156. [PMID: 36619884 PMCID: PMC9815089 DOI: 10.1002/elsc.202100156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/23/2021] [Accepted: 02/01/2022] [Indexed: 01/11/2023] Open
Abstract
Rationally designed synthetic microbial consortia carry a vast potential for biotechnological applications. The application of such a consortium in a bioprocess, however, requires tight and individual controllability of the involved microbes. Here, we present the streamlining of a co-cultivation process consisting of Synechococcus elongatus cscB and Pseudomonas putida for the production of polyhydroxyalkanoates (PHA) from light and CO2. First, the process was improved by employing P. putida cscRABY, a strain with a higher metabolic activity towards sucrose. Next, the individual controllability of the co-culture partners was addressed by providing different nitrogen sources, each exclusively available for one strain. By this, the growth rate of the co-culture partners could be regulated individually, and defined conditions could be set. The molC/molN ratio, a key value for PHA accumulation, was estimated from the experimental data, and the necessary feeding rates to obtain a specific ratio could be predicted. This information was then implemented in the co-cultivation process, following the concept of a DBTL-cycle. In total, the streamlining of the process resulted in an increased maximal PHA titer of 393 mg/L and a PHA production rate of 42.1 mg/(L•day).
Collapse
Affiliation(s)
- Franziska Kratzl
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | - Andreas Kremling
- Professorship of Systems BiotechnologyTechnical University of MunichGarchingGermany
| | | |
Collapse
|
4
|
Liu XY, Guo S, Bocklitz T, Rösch P, Popp J, Yu HQ. Nondestructive 3D imaging and quantification of hydrated biofilm matrix by confocal Raman microscopy coupled with non-negative matrix factorization. WATER RESEARCH 2022; 210:117973. [PMID: 34959065 DOI: 10.1016/j.watres.2021.117973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 11/30/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Biofilms are ubiquitous in natural and engineered environments and of great importance in drinking water distribution and biological wastewater treatment systems. Simultaneously acquiring the chemical and structural information of the hydrated biofilm matrix is essential for the cognition and regulation of biofilms in the environmental field. However, the complexity of samples and the limited approaches prevent a holistic understanding of the biofilm matrix. In this work, an approach based on the confocal Raman mapping technique integrated with non-negative matrix factorization (NMF) analysis was developed to probe the hydrated biofilm matrix in situ. The flexibility of the NMF analysis was utilized to subtract the undesired water background signal and resolve the meaningful biological components from Raman spectra of the hydrated biofilms. Diverse chemical components such as proteins, bacterial cells, glycolipids and polyhydroxyalkanoates (PHA) were unraveled within the distinct Pseudomonas spp. biofilm matrices, and the corresponding 3-dimensional spatial organization was visualized and quantified. Of these components, glycolipids and PHA were unique to the P. aeruginosa and P. putida biofilm matrix, respectively. Furthermore, their high abundances in the lower region of the biofilm matrix were found to be related to the specific physiological functions and surrounding microenvironments. Overall, the results demonstrate that our NMF Raman mapping method could serve as a powerful tool complementary to the conventional approaches for identifying and visualizing the chemical components in the biofilm matrix. This work may facilitate the online characterization of the biofilm matrix widely present in the environment and advance the fundamental understanding of biofilm.
Collapse
Affiliation(s)
- Xiao-Yang Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China; School of Energy & Environmental Engineering, Hebei University of Technology, Tianjin 300130, China; Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany; InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Shuxia Guo
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany; Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Strasse 9, Jena D-07745, Germany
| | - Thomas Bocklitz
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany; Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Strasse 9, Jena D-07745, Germany
| | - Petra Rösch
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany; InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany
| | - Jürgen Popp
- Institute of Physical Chemistry and Abbe Center of Photonics, Friedrich Schiller University Jena, Helmholtzweg 4, Jena D-07743, Germany; InfectoGnostics Research Campus Jena, Philosophenweg 7, Jena D-07743, Germany; Center for Sepsis Control and Care (CSCC), Jena University Hospital, Am Klinikum 1, Jena D-07743, Germany; Leibniz Institute of Photonic Technology Jena - Member of the Research Alliance "Leibniz Health Technologies", Albert-Einstein-Strasse 9, Jena D-07745, Germany.
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
5
|
Miu DM, Eremia MC, Moscovici M. Polyhydroxyalkanoates (PHAs) as Biomaterials in Tissue Engineering: Production, Isolation, Characterization. MATERIALS 2022; 15:ma15041410. [PMID: 35207952 PMCID: PMC8875380 DOI: 10.3390/ma15041410] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/30/2022] [Accepted: 02/07/2022] [Indexed: 12/21/2022]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible biopolymers. These biomaterials have grown in importance in the fields of tissue engineering and tissue reconstruction for structural applications where tissue morphology is critical, such as bone, cartilage, blood vessels, and skin, among others. Furthermore, they can be used to accelerate the regeneration in combination with drugs, as drug delivery systems, thus reducing microbial infections. When cells are cultured under stress conditions, a wide variety of microorganisms produce them as a store of intracellular energy in the form of homo- and copolymers of [R]—hydroxyalkanoic acids, depending on the carbon source used for microorganism growth. This paper gives an overview of PHAs, their biosynthetic pathways, producing microorganisms, cultivation bioprocess, isolation, purification and characterization to obtain biomaterials with medical applications such as tissue engineering.
Collapse
Affiliation(s)
- Dana-Maria Miu
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 011061 Bucharest, Romania
| | - Mihaela Carmen Eremia
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
- Correspondence:
| | - Misu Moscovici
- The National Institute for Chemical Pharmaceutical Research & Development, 031299 Bucharest, Romania; (D.-M.M.); (M.M.)
| |
Collapse
|
6
|
Genome-Wide Metabolic Reconstruction of the Synthesis of Polyhydroxyalkanoates from Sugars and Fatty Acids by Burkholderia Sensu Lato Species. Microorganisms 2021; 9:microorganisms9061290. [PMID: 34204835 PMCID: PMC8231600 DOI: 10.3390/microorganisms9061290] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/07/2021] [Accepted: 06/08/2021] [Indexed: 12/13/2022] Open
Abstract
Burkholderia sensu lato (s.l.) species have a versatile metabolism. The aims of this review are the genomic reconstruction of the metabolic pathways involved in the synthesis of polyhydroxyalkanoates (PHAs) by Burkholderia s.l. genera, and the characterization of the PHA synthases and the pha genes organization. The reports of the PHA synthesis from different substrates by Burkholderia s.l. strains were reviewed. Genome-guided metabolic reconstruction involving the conversion of sugars and fatty acids into PHAs by 37 Burkholderia s.l. species was performed. Sugars are metabolized via the Entner-Doudoroff (ED), pentose-phosphate (PP), and lower Embden-Meyerhoff-Parnas (EMP) pathways, which produce reducing power through NAD(P)H synthesis and PHA precursors. Fatty acid substrates are metabolized via β-oxidation and de novo synthesis of fatty acids into PHAs. The analysis of 194 Burkholderia s.l. genomes revealed that all strains have the phaC, phaA, and phaB genes for PHA synthesis, wherein the phaC gene is generally present in ≥2 copies. PHA synthases were classified into four phylogenetic groups belonging to class I II and III PHA synthases and one outlier group. The reconstruction of PHAs synthesis revealed a high level of gene redundancy probably reflecting complex regulatory layers that provide fine tuning according to diverse substrates and physiological conditions.
Collapse
|
7
|
Koch M, Forchhammer K. Polyhydroxybutyrate: A Useful Product of Chlorotic Cyanobacteria. Microb Physiol 2021; 31:67-77. [PMID: 33979794 DOI: 10.1159/000515617] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/02/2021] [Indexed: 11/19/2022]
Abstract
Polyhydroxybutyrate (PHB) is a carbon polymer with diverse functions, varying greatly on the organism producing it. This microreview describes the current knowledge about PHB metabolism, structure, and different physiological roles with a special focus on cyanobacteria. Despite the physiological function of PHB in the cyanobacterial phylum still being unknown, these organisms provide the unique opportunity to directly convert atmospheric CO2 into bioplastic using a solar-based process. Recent research on PHB metabolism in the cyanobacterial model organism Synechocystis revealed a sophisticated control of PHB granule formation. Novel insights about the metabolic background of PHB synthesis resulted in the engineering of the first cyanobacterial superproducer strain.
Collapse
Affiliation(s)
- Moritz Koch
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, Eberhard Karls University Tübingen, Tübingen, Germany
| |
Collapse
|
8
|
Cal AJ, Kibblewhite RE, Sikkema WD, Torres LF, Hart-Cooper WM, Orts WJ, Lee CC. Production of polyhydroxyalkanoate copolymers containing 4-hydroxybutyrate in engineered Bacillus megaterium. Int J Biol Macromol 2020; 168:86-92. [PMID: 33290766 DOI: 10.1016/j.ijbiomac.2020.12.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 11/15/2022]
Abstract
Despite being used as a common platform for the commercial production of many biochemicals, Bacilli are often overlooked as a source of industrial polyhydroxyalkanoates (PHAs), biodegradable plastic replacements. In addition to having a robust expression system, the lack of lipopolysaccharides and ease of lysis make Bacilli an attractive host for the production of PHAs. In this work, a Bacillus megaterium strain was engineered to generate poly(3-hydroxybutyrate-co-4-hydroxybutryate) (P[3HB-co-4HB]) copolymers, which are among the most useful and industrially-relevant copolymers. These copolymers had lower modulus and increased toughness, thus making the copolymer suitable for a broader range of applications. Due to high metabolic flux through succinate, the engineered B. megaterium strain produced P(3HB-co-4HB) with >10% mol fraction 4HB from glucose, without the use of highly regulated and expensive precursors or potentially damaging truncation of central biochemical pathways.
Collapse
Affiliation(s)
- Andrew J Cal
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Rena E Kibblewhite
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - W Dirk Sikkema
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Lennard F Torres
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - William M Hart-Cooper
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - William J Orts
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA
| | - Charles C Lee
- USDA-ARS-Western Regional Research Center, Bioproducts Research Unit, 800 Buchanan St., Albany, CA 94710, USA.
| |
Collapse
|
9
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
Zhang X, Lin Y, Wu Q, Wang Y, Chen GQ. Synthetic Biology and Genome-Editing Tools for Improving PHA Metabolic Engineering. Trends Biotechnol 2020; 38:689-700. [DOI: 10.1016/j.tibtech.2019.10.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/17/2022]
|
11
|
|
12
|
Altun M. Polyhydroxyalkanoate production using waste vegetable oil and filtered digestate liquor of chicken manure. Prep Biochem Biotechnol 2019; 49:493-500. [DOI: 10.1080/10826068.2019.1587626] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Müslüm Altun
- Department of Material Engineering, Adıyaman University, Adiyaman, Turkey
| |
Collapse
|
13
|
Bonartsev AP, Voinova VV, Bonartseva GA. Poly(3-hydroxybutyrate) and Human Microbiota (Review). APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818060066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
14
|
Huang P, Okoshi T, Mizuno S, Hiroe A, Tsuge T. Gas chromatography-mass spectrometry-based monomer composition analysis of medium-chain-length polyhydroxyalkanoates biosynthesized by Pseudomonas spp. Biosci Biotechnol Biochem 2018; 82:1615-1623. [DOI: 10.1080/09168451.2018.1473027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
ABSTRACT
Medium-chain-length (mcl)-polyhydroxyalkanoates (PHAs), elastomeric polyesters synthesized by Genus Pseudomonas bacteria, generally have many different monomer components. In this study, PHAs biosynthesized by four type strains of Pseudomonas (P. putida, P. citronellolis, P. oleovorans, and P. pseudoalcaligenes) and a typical PHA producer (P. putida KT2440) were characterized in terms of the monomer structure and composition by gas chromatography-mass spectrometry (GC-MS) analysis. With a thiomethyl pretreatment of PHA methanolysis derivatives, two unsaturated monomers, 3-hydroxy-5-dodecenoate (3H5DD) and 3-hydroxy-5-tetradecenoate (3H5TD), were identified in mcl-PHAs produced by P. putida and P. citronellolis. The quantitative analysis of PHA monomers was performed by employing GC-MS with methanolysis derivatives, and the results coincided with those obtained by performing nuclear magnetic resonance spectroscopy. Only poly(3-hydroxybutyrate) was detected from the P. oleovorans and P. pseudoalcaligenes type strains. These analytical results would be useful as a reference standard for phenotyping of new PHA-producing bacteria.
Collapse
Affiliation(s)
- Pengtao Huang
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Takaya Okoshi
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Shoji Mizuno
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| | - Ayaka Hiroe
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
- Department of Chemistry for life Sciences and Agriculture, Tokyo University of Agriculture, Tokyo, Japan
| | - Takeharu Tsuge
- Department of Materials Science and Engineering, Tokyo Institute of Technology, Kanagawa, Japan
| |
Collapse
|
15
|
Venkateswar Reddy M, Mawatari Y, Onodera R, Nakamura Y, Yajima Y, Chang YC. Polyhydroxyalkanoates (PHA) production from synthetic waste using Pseudomonas pseudoflava: PHA synthase enzyme activity analysis from P. pseudoflava and P. palleronii. BIORESOURCE TECHNOLOGY 2017; 234:99-105. [PMID: 28319778 DOI: 10.1016/j.biortech.2017.03.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Revised: 02/28/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
Synthetic wastewater (SW) at various carbon concentrations (5-60g/l) were evaluated for polyhydroxyalkanoates (PHA) production using the bacteria Pseudomonas pseudoflava. Bacteria showed highest PHA production with 20g/l (57±5%), and highest carbon removal at 5g/l (74±6%) concentrations respectively. Structure, molecular weight, and thermal properties of the produced PHA were evaluated using various analytical techniques. Bacteria produced homo-polymer [poly-3-hydroxybutyrate (P3HB)] when only acetate was used as carbon source; and it produced co-polymer [poly-(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV)] by addition of co-substrate propionate. PHA synthase, the enzyme which produce PHA was extracted from two bacterial strains i.e., P. pseudoflava and P. palleronii and its molecular weight was analysed using SDS-PAGE. Protein concentration, and PHA synthase enzyme activity of P. pseudoflava and P. palleronii was carried out using spectrophotometer. Results denoted that P. pseudoflava can be used for degradation of organic carbon persistent in wastewaters and their subsequent conversion into PHA.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Rui Onodera
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuki Nakamura
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
| |
Collapse
|
16
|
Matias F, Brandt CA, da Silva ES, de Andrade Rodrigues MF. Polyhydroxybutyrate and polyhydroxydodecanoate produced by Burkholderia contaminans IPT553. J Appl Microbiol 2017; 123:124-133. [PMID: 28383792 DOI: 10.1111/jam.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 03/01/2017] [Accepted: 03/20/2017] [Indexed: 11/30/2022]
Abstract
AIMS In this paper, we introduce a new Burkholderia contaminans capable of producing a newly characterized polymer. METHODS AND RESULTS CG-MS and magnetic nuclear resonance 1 H and 13 C were used to determine the constitution of polymers produced in glucose, glucose with casein, sucrose and sucrose with casein. Three pairs of primers were used to find the polyhydroxyalkanoates (PHA) synthase class and sequence. The synthesized polymers were composed by short-chain length PHA (scl-PHA), especially polyhydroxybutyrate (PHB), and medium chain length PHA (mcl-PHA), especially polyhydroxydodecanoate (PHDd), and their concentration, constitution and molecular weight depend on carbon source used. The bacterium showed only class I synthase which could not explain the mcl-PHA production. CONCLUSIONS Burkholderia contaminans has a class I PHA synthase and produces PHB combined to PHDd when cultivated in sucrose or glucose, and PHDd concentration is affected when casein is used. SIGNIFICANCE AND IMPACT OF THE STUDY PHA are natural polymers produced by a wide range of bacteria. The presence of PHDd monomers confers to the polymer elastomeric properties. Previously, PHDd was only obtained when bacteria were cultivated in related carbon source. In this work, B. contaminansIPT553 produced PHB with PHDd using simple and low-cost carbon sources that can make possible the cheaper production of a more flexible biopolymer with crystallinity and elasticity different from the more common PHAs.
Collapse
Affiliation(s)
- F Matias
- Universidade de São Paulo, Instituto de Ciências Biomédicas IV, Programa de Pós-Graduação Interunidades em Biotecnologia IPT-USP-Butantan, São Paulo, São Paulo, Brazil.,Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Ciências Animais, Laboratório de Nanobiotecnologia, Universidade Federal Rural do Semi-Árido, Rio Grande do Norte, Brazil
| | - C A Brandt
- Divisão de Ciências Fisiológicas e Químicas, Serviço de Química Orgânica, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - E S da Silva
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, São Paulo, Brazil
| | - M F de Andrade Rodrigues
- Laboratório de Biotecnologia Industrial, Instituto de Pesquisas Tecnológicas do Estado de São Paulo, São Paulo, São Paulo, Brazil
| |
Collapse
|
17
|
Hauschild P, Röttig A, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Lipid accumulation in prokaryotic microorganisms from arid habitats. Appl Microbiol Biotechnol 2017; 101:2203-2216. [PMID: 28175949 DOI: 10.1007/s00253-017-8149-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 01/23/2017] [Accepted: 01/25/2017] [Indexed: 12/20/2022]
Abstract
This review shall provide support for the suitability of arid environments as preferred location to search for unknown lipid-accumulative bacteria. Bacterial lipids are attracting more and more attention as sustainable replacement for mineral oil in fuel and plastic production. The development of prokaryotic microorganisms in arid desert habitats is affected by its harsh living conditions. Drought, nutrient limitation, strong radiation, and extreme temperatures necessitate effective adaption mechanisms. Accumulation of storage lipids as energy reserve and source of metabolic water represents a common adaption in desert animals and presumably in desert bacteria and archaea as well. Comparison of corresponding literature resulted in several bacterial species from desert habitats, which had already been described as lipid-accumulative elsewhere. Based on the gathered information, literature on microbial communities in hot desert, cold desert, and humid soil were analyzed on its content of lipid-accumulative bacteria. With more than 50% of the total community size in single studies, hot deserts appear to be more favorable for lipid-accumulative species then humid soil (≤20%) and cold deserts (≤17%). Low bacterial lipid accumulation in cold deserts is assumed to result from the influence of low temperatures on fatty acids and the increased necessity of permanent adaption methods.
Collapse
Affiliation(s)
- Philippa Hauschild
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany
| | - Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany
| | - Mohamed H Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed M Al-Ansari
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Naief H Almakishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstraße 3, D-48149, Münster, Germany. .,Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589, Saudi Arabia.
| |
Collapse
|
18
|
Synthetic Biology of Polyhydroxyalkanoates (PHA). ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2017; 162:147-174. [DOI: 10.1007/10_2017_3] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
19
|
Venkateswar Reddy M, Mawatari Y, Yajima Y, Satoh K, Venkata Mohan S, Chang YC. Production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) from synthetic wastewater using Hydrogenophaga palleronii. BIORESOURCE TECHNOLOGY 2016; 215:155-162. [PMID: 26995321 DOI: 10.1016/j.biortech.2016.03.025] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 03/01/2016] [Accepted: 03/02/2016] [Indexed: 06/05/2023]
Abstract
In the present study, synthetic wastewater (SW) was used for production of poly-3-hydroxybutyrate (P3HB) and poly(3-hydroxybutyrate-co-3-hydroxyvalerate) P(3HB-co-3HV) using the bacteria Hydrogenophaga palleronii. SW at various volatile fatty acids concentrations (5-60g/l) was evaluated for the growth and biopolymer production using H. palleronii. Substrate degradation was analyzed using total organic carbon (TOC) analyzer and high pressure liquid chromatography (HPLC). H. palleronii showed highest and lowest removal of TOC at 5g/l (88±4%) and 60g/l (15±6%) respectively. Among all the concentrations evaluated, bacteria showed highest biopolymer production with 20g/l (63±5%), followed by 30g/l (58±3%) and 40g/l (56±2%). Lowest biopolymer production was observed at 5g/l concentration (21±3%). Structure, molecular weight, and thermal properties of the produced biopolymer were analyzed. These results denoted that the strain H. palleronii can be used for degradation of high concentration of volatile fatty acids persistent in wastewaters and their subsequent conversion into useable biopolymers.
Collapse
Affiliation(s)
- M Venkateswar Reddy
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Yasuteru Mawatari
- Research Center for Environmentally Friendly Materials Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - Yuka Yajima
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan
| | - Kohki Satoh
- Department of Information and Electronic Engineering, Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran, Hokkaido 050-8585, Japan
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences (BEES), CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Young-Cheol Chang
- Department of Applied Sciences, College of Environmental Technology, Muroran Institute of Technology, 27-1 Mizumoto, Muroran, Hokkaido 050-8585, Japan.
| |
Collapse
|
20
|
Biological System as Reactor for the Production of Biodegradable Thermoplastics, Polyhydroxyalkanoates. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1201/b19347-12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] Open
|
21
|
Chen GQ, Hajnal I, Wu H, Lv L, Ye J. Engineering Biosynthesis Mechanisms for Diversifying Polyhydroxyalkanoates. Trends Biotechnol 2016; 33:565-574. [PMID: 26409776 DOI: 10.1016/j.tibtech.2015.07.007] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/24/2015] [Accepted: 07/30/2015] [Indexed: 11/15/2022]
Abstract
Polyhydroxyalkanoates (PHA) are a family of diverse biopolyesters synthesized by bacteria. PHA diversity, as reflected by its monomers, homopolymers, random and block copolymers, as well as functional polymers, can now be generated by engineering the three basic synthesis pathways including the acetoacetyl-CoA pathway, in situ fatty acid synthesis, and/or β-oxidation cycles, as well as PHA synthase specificity. It is now possible to tailor the PHA structures via genome editing or process engineering. The increasing PHA diversity and maturing PHA production technology should lead to more focused research into their low-cost and/or high-value applications.
Collapse
Affiliation(s)
- Guo-Qiang Chen
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China; Center for Nano and Micro Mechanics, Tsinghua University, Beijing 100084, China; Beijing Key Laboratory of Protein Therapeutics, Tsinghua University, Beijing 100084, China.
| | - Ivan Hajnal
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hong Wu
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Li Lv
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jianwen Ye
- Ministry of Education Key Lab of Bioinformatics, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
22
|
Röttig A, Hauschild P, Madkour MH, Al-Ansari AM, Almakishah NH, Steinbüchel A. Analysis and optimization of triacylglycerol synthesis in novel oleaginous Rhodococcus and Streptomyces strains isolated from desert soil. J Biotechnol 2016; 225:48-56. [PMID: 27034020 DOI: 10.1016/j.jbiotec.2016.03.040] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Revised: 03/20/2016] [Accepted: 03/22/2016] [Indexed: 01/30/2023]
Abstract
As oleaginous microorganisms represent an upcoming novel feedstock for the biotechnological production of lipids or lipid-derived biofuels, we searched for novel, lipid-producing strains in desert soil. This was encouraged by the hypothesis that neutral lipids represent an ideal storage compound, especially under arid conditions, as several animals are known to outlast long periods in absence of drinking water by metabolizing their body fat. Ten lipid-accumulating bacterial strains, affiliated to the genera Bacillus, Cupriavidus, Nocardia, Rhodococcus and Streptomyces, were isolated from arid desert soil due to their ability to synthesize poly(β-hydroxybutyrate), triacylglycerols or wax esters. Particularly two Streptomyces sp. strains and one Rhodococcus sp. strain accumulate significant amounts of TAG under storage conditions under optimized cultivation conditions. Rhodococcus sp. A27 and Streptomyces sp. G49 synthesized approx. 30% (w/w) fatty acids from fructose or cellobiose, respectively, while Streptomyces isolate G25 reached a cellular fatty acid content of nearly 50% (w/w) when cultivated with cellobiose. The stored triacylglycerols were composed of 30-40% branched fatty acids, such as anteiso-pentadecanoic or iso-hexadecanoic acid. To date, this represents by far the highest lipid content described for streptomycetes. A biotechnological production of such lipids using (hemi)cellulose-derived raw material could be used to obtain sustainable biodiesel with a high proportion of branched-chain fatty acids to improve its cold-flow properties and oxidative stability.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Philippa Hauschild
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany
| | - Mohamed H Madkour
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Ahmed M Al-Ansari
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Naief H Almakishah
- Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, D-48149 Münster, Germany; Environmental Sciences Department, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.
| |
Collapse
|
23
|
Muangwong A, Boontip T, Pachimsawat J, Napathorn SC. Medium chain length polyhydroxyalkanoates consisting primarily of unsaturated 3-hydroxy-5-cis-dodecanoate synthesized by newly isolated bacteria using crude glycerol. Microb Cell Fact 2016; 15:55. [PMID: 26988857 PMCID: PMC4797247 DOI: 10.1186/s12934-016-0454-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/09/2016] [Indexed: 11/11/2022] Open
Abstract
Background Our study aimed to search for novel bacteria capable of producing polyhydroxyalkanoates (PHAs) using crude glycerol residue obtained from biodiesel production in which used cooking oils were the substrates. Results Newly isolated bacteria from soils in Thailand were screened for the efficient production of PHAs from crude glycerol. The bacterial strains were cultivated on glucose, refined glycerol, crude glycerol, or various cooking oils (canola oil, palm oil, soybean oil, sunflower oil, corn oil, grape seed oil, olive oil, rice bran oil, camellia seed oil) for growth and PHA production. The effects of the total organic carbon (TOC) concentration and the mole ratio of carbon to nitrogen were investigated in batch cultivation. 1H NMR, two dimensional-1H-correlation spectroscopy (2D-1H-COSY) and 13C NMR analyses confirmed four bacterial strains were capable of producing medium-chain-length PHAs (mcl-PHAs), consisting of 3-hydroxyoctanoate (3HO) and 3-hydroxy-5-cis-dodecanoate (3H5DD), from crude glycerol. On the basis of phenotypic features and genotypic investigations, the bacterial strains were assigned as: ASC1, Acinetobacter genus (94.9 % similarity); ASC2, Pseudomonas genus (99.2 % similarity); ASC3, Enterobacter genus (99.2 % similarity); ASC4, Bacillus genus (98.4 % similarity). The highest amount of mcl-PHAs, 17.5 ± 0.8 g/L (content 61.8 ± 3.3 % wt), with 3HO (14.7 ± 2.2 mol %), 3H5DD (85.3 ± 2.2 mol %), and a total biomass of 32.3 ± 0.3 g/L, was obtained from Pseudomonas sp. ASC2 in batch cultivation after 36 h. The mcl-PHAs recovered had a number-average molecular weight (MN) of 3.6 × 104 Da. Homopolymeric 3H5DD was obtained when the cultivation time was prolonged to 96 h. Conclusions Novel PHA-producing strains were isolated and identified. These bacterial strains are able to produce mcl-PHAs from crude glycerol. The mcl-PHAs produced contained a high percentage of 3H5DD, which suggests their future application as softeners mixed with other biomaterials. The unsaturated side chain of 3H5DD monomers containing double bounds offers additional potential for improving the properties of the mcl-PHAs or extending their applications to the food industry.
Collapse
Affiliation(s)
- Amtiga Muangwong
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Thanawat Boontip
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Jittakan Pachimsawat
- Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand
| | - Suchada Chanprateep Napathorn
- Department of Microbiology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand. .,Program in Biotechnology, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok, 10330, Thailand.
| |
Collapse
|
24
|
Cal AJ, Sikkema WD, Ponce MI, Franqui-Villanueva D, Riiff TJ, Orts WJ, Pieja AJ, Lee CC. Methanotrophic production of polyhydroxybutyrate-co-hydroxyvalerate with high hydroxyvalerate content. Int J Biol Macromol 2016; 87:302-7. [PMID: 26920242 DOI: 10.1016/j.ijbiomac.2016.02.056] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 02/18/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Type II methanotrophic bacteria are a promising production platform for PHA biopolymers. These bacteria are known to produce pure poly-3-hydroxybutyrate homopolymer (PHB). We isolated a strain, Methylocystis sp. WRRC1, that was capable of producing a wide range of polyhydroxybutyrate-co-hydroxyvalerate copolymers (PHB-co-HV) when co-fed methane and valerate or n-pentanol. The ratio of HB to HV monomer was directly related to the concentration of valeric acid in the PHA accumulation media. We observed increased incorporation of HV and total polymer under copper-free growth conditions. The PHB-co-HV copolymers produced had decreased melting temperatures and crystallinity compared with methanotroph-produced PHB.
Collapse
Affiliation(s)
- Andrew J Cal
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States
| | - W Dirk Sikkema
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States
| | - Maria I Ponce
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States
| | | | - Timothy J Riiff
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States
| | - William J Orts
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States
| | - Allison J Pieja
- Mango Materials, 490 Lake Park Ave #16098, Oakland, CA 94610, United States
| | - Charles C Lee
- USDA-ARS-WRRC, Bioproducts Research Unit, 800 Buchanan Street, Albany, CA 94710, United States.
| |
Collapse
|
25
|
Two Polyhydroxyalkanoate Synthases from Distinct Classes from the Aromatic Degrader Cupriavidus pinatubonensis JMP134 Exhibit the Same Substrate Preference. PLoS One 2015; 10:e0142332. [PMID: 26544851 PMCID: PMC4636328 DOI: 10.1371/journal.pone.0142332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 10/19/2015] [Indexed: 12/04/2022] Open
Abstract
Cupriavidus pinatubonensis JMP134 utilizes a variety of aromatic substrates as sole carbon sources, including meta-nitrophenol (MNP). Two polyhydroxyalkanoate (PHA) synthase genes, phaC1 and phaC2, were annotated and categorized as class I and class II PHA synthase genes, respectively. In this study, both His-tagged purified PhaC1 and PhaC2 were shown to exhibit typical class I PHA synthase substrate specificity to make short-chain-length (SCL) PHA from 3-hydroxybutyryl-CoA and failed to make medium-chain-length (MCL) PHA from 3-hydroxyoctanoyl-CoA. The phaC1 or phaC2 deletion strain could also produce SCL PHA when grown in fructose or octanoate, but the double mutant of phaC1 and phaC2 lost this ability. The PhaC2 also exhibited substrate preference towards SCL substrates when expressed in Pseudomonas aeruginosa PAO1 phaC mutant strain. On the other hand, the transcriptional level of phaC1 was 70-fold higher than that of phaC2 in MNP-grown cells, but 240-fold lower in octanoate-grown cells. Further study demonstrated that only phaC1 was involved in PHA synthesis in MNP-grown cells. These findings suggested that phaC1 and phaC2 genes were differentially regulated under different growth conditions in this strain. Within the phaC2-containing gene cluster, a single copy of PHA synthase gene was present clustering with genes encoding enzymes in the biosynthesis of PHA precursors. This is markedly different from the genetic organization of all other previously reported class II PHA synthase gene clusters and this cluster likely comes from a distinct evolutionary path.
Collapse
|
26
|
Lundgren BR, Harris JR, Sarwar Z, Scheel RA, Nomura CT. The metabolism of (R)-3-hydroxybutyrate is regulated by the enhancer-binding protein PA2005 and the alternative sigma factor RpoN in Pseudomonas aeruginosa PAO1. MICROBIOLOGY-SGM 2015; 161:2232-42. [PMID: 26311173 DOI: 10.1099/mic.0.000163] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
A variety of soil-dwelling bacteria produce polyhydroxybutyrate (PHB), which serves as a source of energy and carbon under nutrient deprivation. Bacteria belonging to the genus Pseudomonas do not generally produce PHB but are capable of using the PHB degradation product (R)-3-hydroxybutyrate [(R)-3-HB] as a growth substrate. Essential to this utilization is the NAD+-dependent dehydrogenase BdhA that converts (R)-3-HB into acetoacetate, a molecule that readily enters central metabolism. Apart from the numerous studies that had focused on the biochemical characterization of BdhA, there was nothing known about the assimilation of (R)-3-HB in Pseudomonas, including the genetic regulation of bdhA expression. This study aimed to define the regulatory factors that govern or dictate the expression of the bdhA gene and (R)-3-HB assimilation in Pseudomonas aeruginosa PAO1. Importantly, expression of the bdhA gene was found to be specifically induced by (R)-3-HB in a manner dependent on the alternative sigma factor RpoN and the enhancer-binding protein PA2005.This mode of regulation was essential for the utilization of (R)-3-HB as a sole source of energy and carbon. However, non-induced levels of bdhA expression were sufficient for P. aeruginosa PAO1 to grow on ( ± )-1,3-butanediol, which is catabolized through an (R)-3-HB intermediate. Because this is, we believe, the first report of an enhancer-binding protein that responds to (R)-3-HB, PA2005 was named HbcR for (R)-3-hydroxybutyrate catabolism regulator.
Collapse
Affiliation(s)
- Benjamin R Lundgren
- 1Department of Chemistry, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Joshua R Harris
- 1Department of Chemistry, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Zaara Sarwar
- 1Department of Chemistry, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Ryan A Scheel
- 1Department of Chemistry, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA
| | - Christopher T Nomura
- 1Department of Chemistry, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA 2Center for Applied Microbiology, State University of New York - College of Environmental Science and Forestry, 1 Forestry Drive, Syracuse, New York, 13210, USA
| |
Collapse
|
27
|
Zhang YZ, Liu GM, Weng WQ, Ding JY, Liu SJ. Engineering of Ralstonia eutropha for the production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from glucose. J Biotechnol 2015; 195:82-8. [DOI: 10.1016/j.jbiotec.2014.12.014] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/04/2014] [Accepted: 12/06/2014] [Indexed: 01/24/2023]
|
28
|
Eggers J, Steinbüchel A. Impact of Ralstonia eutropha's poly(3-Hydroxybutyrate) (PHB) Depolymerases and Phasins on PHB storage in recombinant Escherichia coli. Appl Environ Microbiol 2014; 80:7702-9. [PMID: 25281380 PMCID: PMC4249218 DOI: 10.1128/aem.02666-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 09/29/2014] [Indexed: 11/20/2022] Open
Abstract
The model organism for polyhydroxybutyrate (PHB) biosynthesis, Ralstonia eutropha H16, possesses multiple isoenzymes of granules coating phasins as well as of PHB depolymerases, which degrade accumulated PHB under conditions of carbon limitation. In this study, recombinant Escherichia coli BL21(DE3) strains were used to study the impact of selected PHB depolymerases of R. eutropha H16 on the growth behavior and on the amount of accumulated PHB in the absence or presence of phasins. For this purpose, 20 recombinant E. coli BL21(DE3) strains were constructed, which harbored a plasmid carrying the phaCAB operon from R. eutropha H16 to ensure PHB synthesis and a second plasmid carrying different combinations of the genes encoding a phasin and a PHB depolymerase from R. eutropha H16. It is shown in this study that the growth behavior of the respective recombinant E. coli strains was barely affected by the overexpression of the phasin and PHB depolymerase genes. However, the impact on the PHB contents was significantly greater. The strains expressing the genes of the PHB depolymerases PhaZ1, PhaZ2, PhaZ3, and PhaZ7 showed 35% to 94% lower PHB contents after 30 h of cultivation than the control strain. The strain harboring phaZ7 reached by far the lowest content of accumulated PHB (only 2.0% [wt/wt] PHB of cell dry weight). Furthermore, coexpression of phasins in addition to the PHB depolymerases influenced the amount of PHB stored in cells of the respective strains. It was shown that the phasins PhaP1, PhaP2, and PhaP4 are not substitutable without an impact on the amount of stored PHB. In particular, the phasins PhaP2 and PhaP4 seemed to limit the degradation of PHB by the PHB depolymerases PhaZ2, PhaZ3, and PhaZ7, whereas almost no influence of the different phasins was observed if phaZ1 was coexpressed. This study represents an extensive analysis of the impact of PHB depolymerases and phasins on PHB accumulation and provides a deeper insight into the complex interplay of these enzymes.
Collapse
Affiliation(s)
- Jessica Eggers
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms Universität Münster, Münster, Germany Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
29
|
Polythioester synthesis in Ralstonia eutropha H16: Novel insights into 3,3′-thiodipropionic acid and 3,3′-dithiodipropionic acid catabolism. J Biotechnol 2014; 184:187-98. [DOI: 10.1016/j.jbiotec.2014.05.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 05/13/2014] [Accepted: 05/19/2014] [Indexed: 12/24/2022]
|
30
|
Raberg M, Voigt B, Hecker M, Steinbüchel A. A closer look on the polyhydroxybutyrate- (PHB-) negative phenotype of Ralstonia eutropha PHB-4. PLoS One 2014; 9:e95907. [PMID: 24787649 PMCID: PMC4008487 DOI: 10.1371/journal.pone.0095907] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 04/01/2014] [Indexed: 11/18/2022] Open
Abstract
The undefined poly(3-hydroxybutyrate)- (PHB-) negative mutant R. eutropha PHB-4 was generated in 1970 by 1-nitroso-3-nitro-1-methylguanidine (NMG) treatment. Although being scientific relevant, its genotype remained unknown since its isolation except a recent first investigation. In this study, the mutation causing the PHA-negative phenotype of R. eutropha PHB-4 was confirmed independently: sequence analysis of the phaCAB operon identified a G320A mutation in phaC yielding a stop codon, leading to a massively truncated PhaC protein of 106 amino acids (AS) in R. eutropha PHB-4 instead of 589 AS in the wild type. No other mutations were observed within the phaCAB operon. As further mutations probably occurred in the genome of mutant PHB-4 potentially causing secondary effects on the cells' metabolism, the main focus of the study was to perform a 2D PAGE-based proteome analysis in order to identify differences in the proteomes of the wild type and mutant PHB-4. A total of 20 differentially expressed proteins were identified which provide valuable insights in the metabolomic changes of mutant PHB-4. Besides excretion of pyruvate, mutant PHB-4 encounters the accumulation of intermediates such as pyruvate and acetyl-CoA by enhanced expression of the observed protein species: (i) ThiJ supports biosynthesis of cofactor TPP and thereby reinforces the 2-oxoacid dehydrogenase complexes as PDHC, ADHC and OGDHC in order to convert pyruvate at a higher rate and the (ii) 3-isopropylmalate dehydrogenase LeuB3 apparently directs pyruvate to synthesis of several amino acids. Different (iii) acylCoA-transferases enable transfer reactions between organic acid intermediates, and (iv) citrate lyase CitE4 regenerates oxaloacetate from citrate for conversion with acetyl-CoA in the TCC in an anaplerotic reaction. Substantial amounts of reduction equivalents generated in the TCC are countered by (v) synthesis of more ubiquinones due to enhanced synthesis of MenG2 and MenG3, thereby improving the respiratory chain which accepts electrons from NADH and succinate.
Collapse
Affiliation(s)
- Matthias Raberg
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Department of Environmental Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- * E-mail:
| |
Collapse
|
31
|
Meng DC, Shen R, Yao H, Chen JC, Wu Q, Chen GQ. Engineering the diversity of polyesters. Curr Opin Biotechnol 2014; 29:24-33. [PMID: 24632193 DOI: 10.1016/j.copbio.2014.02.013] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 11/26/2022]
Abstract
Many bacteria have been found to produce various polyhydroxyalkanoates (PHA) biopolyesters. In many cases, it is not easy to control the structures of PHA including homopolymers, random copolymers and block copolymers as well as ratios of monomers in the copolymers. It has become possible to engineer bacteria for controllable synthesis of PHA with the desirable structures by creating new PHA synthesis pathways. Remarkably, the weakening of β-oxidation cycle in Pseudomonas putida and Pseudomonas entomophila led to controllable synthesis of all kinds of PHA structures including monomer ratios in random and/or block copolymers when fatty acids are used as PHA precursors. Introduction of functional groups into PHA polymer chains in predefined proportions has become a reality provided fatty acids containing the functional groups are taken up by the bacteria for PHA synthesis. This allows the formation of functional PHA for further grafting. The PHA diversity is further widened by the endless possibility of controllable homopolymerization, random copolymerization, block copolymerization and grafting on functional PHA site chains.
Collapse
Affiliation(s)
- De-Chuan Meng
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rui Shen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hui Yao
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jin-Chun Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qiong Wu
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Guo-Qiang Chen
- MOE Key Lab of Bioinformatics, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
32
|
Viscoelastic, Spectroscopic, and Microscopic Characterization of Novel Bio-Based Plasticized Poly(vinyl chloride) Compound. INT J POLYM SCI 2014. [DOI: 10.1155/2014/846189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Plasticized poly(vinyl chloride) (PVC) is one of the most widely consumed commodity plastics. Nevertheless, the commonly used plasticizers, particularly phthalates, are found to be detrimental to the environment and human health. This study aimed to investigate the ability of an alternative greener material, medium-chain-length polyhydroxyalkanoates (mcl-PHA), a kind of biopolyester and its thermally degraded oligoesters, to act as a compatible bioplasticizer for PVC. In this study, mcl-PHA were synthesized byPseudomonas putidaPGA1 in shake flask fermentation using saponified palm kernel oil (SPKO) and subsequently moderately thermodegraded to low molecular weight oligoesters (degPHA). SEM, ATR-FTIR,1H-NMR, and DMA were conducted to study the film morphology, microstructure, miscibility, and viscoelastic properties of the PVC-PHA and PVC/degPHA binary blends. Increased height and sharpness of tanδmaxpeak for all binary blends reveal an increase in chain mobility in the PVC matrix and high miscibility within the system. The PVC-PHA miscibility is possibly due to the presence of specific interactions between chlorines of PVC with the C=O group of PHA as evidenced by spectroscopic analyses. Dynamic viscoelastic measurements also showed that mcl-PHA and their oligoesters could reduce theTgof PVC, imparting elasticity to the PVC compounds and decreasing the stiffness of PVC.
Collapse
|
33
|
Madkour MH, Heinrich D, Alghamdi MA, Shabbaj II, Steinbüchel A. PHA Recovery from Biomass. Biomacromolecules 2013; 14:2963-72. [DOI: 10.1021/bm4010244] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mohamed H. Madkour
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Daniel Heinrich
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Mansour A. Alghamdi
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Ibraheem I. Shabbaj
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| | - Alexander Steinbüchel
- Institut
für Molekulare Mikrobiologie und Biotechnologie, Westfälische
Wilhelms-Universität Münster, and ‡Environmental Sciences Department,
Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah, 21589,
Saudi-Arabia
| |
Collapse
|
34
|
Abstract
Long-chain-length hydrophobic acyl residues play a vital role in a multitude of essential biological structures and processes. They build the inner hydrophobic layers of biological membranes, are converted to intracellular storage compounds, and are used to modify protein properties or function as membrane anchors, to name only a few functions. Acyl thioesters are transferred by acyltransferases or transacylases to a variety of different substrates or are polymerized to lipophilic storage compounds. Lipases represent another important enzyme class dealing with fatty acyl chains; however, they cannot be regarded as acyltransferases in the strict sense. This review provides a detailed survey of the wide spectrum of bacterial acyltransferases and compares different enzyme families in regard to their catalytic mechanisms. On the basis of their studied or assumed mechanisms, most of the acyl-transferring enzymes can be divided into two groups. The majority of enzymes discussed in this review employ a conserved acyltransferase motif with an invariant histidine residue, followed by an acidic amino acid residue, and their catalytic mechanism is characterized by a noncovalent transition state. In contrast to that, lipases rely on completely different mechanism which employs a catalytic triad and functions via the formation of covalent intermediates. This is, for example, similar to the mechanism which has been suggested for polyester synthases. Consequently, although the presented enzyme types neither share homology nor have a common three-dimensional structure, and although they deal with greatly varying molecule structures, this variety is not reflected in their mechanisms, all of which rely on a catalytically active histidine residue.
Collapse
Affiliation(s)
- Annika Röttig
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
- Environmental Sciences Department, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
35
|
Muhr A, Rechberger EM, Salerno A, Reiterer A, Malli K, Strohmeier K, Schober S, Mittelbach M, Koller M. Novel Description of mcl-PHA Biosynthesis by Pseudomonas chlororaphis from Animal-Derived Waste. J Biotechnol 2013; 165:45-51. [DOI: 10.1016/j.jbiotec.2013.02.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 10/27/2022]
|
36
|
Wang Q, Zhuang Q, Liang Q, Qi Q. Polyhydroxyalkanoic acids from structurally-unrelated carbon sources in Escherichia coli. Appl Microbiol Biotechnol 2013; 97:3301-7. [DOI: 10.1007/s00253-013-4809-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/22/2013] [Accepted: 02/22/2013] [Indexed: 10/27/2022]
|
37
|
A propionate CoA-transferase of Ralstonia eutropha H16 with broad substrate specificity catalyzing the CoA thioester formation of various carboxylic acids. Appl Microbiol Biotechnol 2012; 97:7699-709. [PMID: 23250223 DOI: 10.1007/s00253-012-4624-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/22/2012] [Accepted: 11/26/2012] [Indexed: 10/27/2022]
Abstract
In this study, we have investigated a propionate CoA-transferase (Pct) homologue encoded in the genome of Ralstonia eutropha H16. The corresponding gene has been cloned into the vector pET-19b to yield a histidine-tagged enzyme which was expressed in Escherichia coli BL21 (DE3). After purification, high-performance liquid chromatography/mass spectrometry (HPLC/MS) analyses revealed that the enzyme exhibits a broad substrate specificity for carboxylic acids. The formation of the corresponding CoA-thioesters of acetate using propionyl-CoA as CoA donor, and of propionate, butyrate, 3-hydroxybutyrate, 3-hydroxypropionate, crotonate, acrylate, lactate, succinate and 4-hydroxybutyrate using acetyl-CoA as CoA donor could be shown. According to the substrate specificity, the enzyme can be allocated in the family I of CoA-transferases. The apparent molecular masses as determined by gel filtration and detected by SDS polyacrylamide gel electrophoresis were 228 and 64 kDa, respectively, and point to a quaternary structure of the native enzyme (α4). The enzyme exhibited similarities in sequence and structure to the well investigated Pct of Clostridium propionicum. It does not contain the typical conserved (S)ENG motif, but the derived motif sequence EXG with glutamate 342 to be, most likely, the catalytic residue. Due to the homo-oligomeric structure and the sequence differences with the subclasses IA-C of family I CoA-transferases, a fourth subclass of family I is proposed, comprising - amongst others - the Pcts of R. eutropha H16 and C. propionicum. A markerless precise-deletion mutant R. eutropha H16∆pct was generated. The growth and accumulation behaviour of this mutant on gluconate, gluconate plus 3,3'-dithiodipropionic acid (DTDP), acetate and propionate was investigated but resulted in no observable phenotype. Both, the wild type and the mutant showed the same growth and storage behaviour with these carbon sources. It is probable that R. eutropha H16 is upregulating other CoA-transferase(s) or CoA-synthetase(s), thereby compensating for the lacking Pct. The ability of R. eutropha H16 to substitute absent enzymes by isoenzymes has been already shown in different other studies in the past.
Collapse
|
38
|
Luque-Almagro VM, Acera F, Igeño MI, Wibberg D, Roldán MD, Sáez LP, Hennig M, Quesada A, Huertas MJ, Blom J, Merchán F, Escribano MP, Jaenicke S, Estepa J, Guijo MI, Martínez-Luque M, Macías D, Szczepanowski R, Becerra G, Ramirez S, Carmona MI, Gutiérrez O, Manso I, Pühler A, Castillo F, Moreno-Vivián C, Schlüter A, Blasco R. Draft whole genome sequence of the cyanide-degrading bacterium Pseudomonas pseudoalcaligenes CECT5344. Environ Microbiol 2012; 15:253-70. [PMID: 22998548 DOI: 10.1111/j.1462-2920.2012.02875.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/15/2012] [Accepted: 08/19/2012] [Indexed: 11/30/2022]
Abstract
Pseudomonas pseudoalcaligenes CECT5344 is a Gram-negative bacterium able to tolerate cyanide and to use it as the sole nitrogen source. We report here the first draft of the whole genome sequence of a P. pseudoalcaligenes strain that assimilates cyanide. Three aspects are specially emphasized in this manuscript. First, some generalities of the genome are shown and discussed in the context of other Pseudomonadaceae genomes, including genome size, G + C content, core genome and singletons among other features. Second, the genome is analysed in the context of cyanide metabolism, describing genes probably involved in cyanide assimilation, like those encoding nitrilases, and genes related to cyanide resistance, like the cio genes encoding the cyanide insensitive oxidases. Finally, the presence of genes probably involved in other processes with a great biotechnological potential like production of bioplastics and biodegradation of pollutants also is discussed.
Collapse
Affiliation(s)
- Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, 14071, Córdoba, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Le Meur S, Zinn M, Egli T, Thöny-Meyer L, Ren Q. Production of medium-chain-length polyhydroxyalkanoates by sequential feeding of xylose and octanoic acid in engineered Pseudomonas putida KT2440. BMC Biotechnol 2012; 12:53. [PMID: 22913372 PMCID: PMC3542253 DOI: 10.1186/1472-6750-12-53] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/17/2012] [Indexed: 11/25/2022] Open
Abstract
Background Pseudomonas putida KT2440 is able to synthesize large amounts of medium-chain-length polyhydroxyalkanoates (mcl-PHAs). To reduce the substrate cost, which represents nearly 50% of the total PHA production cost, xylose, a hemicellulose derivate, was tested as the growth carbon source in an engineered P. putida KT2440 strain. Results The genes encoding xylose isomerase (XylA) and xylulokinase (XylB) from Escherichia coli W3110 were introduced into P. putida KT2440. The recombinant KT2440 exhibited a XylA activity of 1.47 U and a XylB activity of 0.97 U when grown on a defined medium supplemented with xylose. The cells reached a maximum specific growth rate of 0.24 h-1 and a final cell dry weight (CDW) of 2.5 g L-1 with a maximal yield of 0.5 g CDW g-1 xylose. Since no mcl-PHA was accumulated from xylose, mcl-PHA production can be controlled by the addition of fatty acids leading to tailor-made PHA compositions. Sequential feeding strategy was applied using xylose as the growth substrate and octanoic acid as the precursor for mcl-PHA production. In this way, up to 20% w w-1 of mcl-PHA was obtained. A yield of 0.37 g mcl-PHA per g octanoic acid was achieved under the employed conditions. Conclusions Sequential feeding of relatively cheap carbohydrates and expensive fatty acids is a practical way to achieve more cost-effective mcl-PHA production. This study is the first reported attempt to produce mcl-PHA by using xylose as the growth substrate. Further process optimizations to achieve higher cell density and higher productivity of mcl-PHA should be investigated. These scientific exercises will undoubtedly contribute to the economic feasibility of mcl-PHA production from renewable feedstock.
Collapse
Affiliation(s)
- Sylvaine Le Meur
- Laboratory for Biomaterials, Swiss Federal Laboratories for Materials Science and Technology (Empa), Gallen, Switzerland
| | | | | | | | | |
Collapse
|
40
|
Kaddor C, Voigt B, Hecker M, Steinbüchel A. Impact of the Core Components of the Phosphoenolpyruvate-Carbohydrate Phosphotransferase System, HPr and EI, on Differential Protein Expression in Ralstonia eutropha H16. J Proteome Res 2012; 11:3624-36. [DOI: 10.1021/pr300042f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Chlud Kaddor
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
| | - Birgit Voigt
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie, Ernst-Moritz-Arndt Universität, Friedrich-Ludwig-Jahn-Straße
15, D-17489 Greifswald, Germany
| | - Alexander Steinbüchel
- Institut für
Molekulare
Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse
3, D-48149 Münster, Germany
- King Abdul Aziz University, Jeddah 22254,
Saudi Arabia
| |
Collapse
|
41
|
Sin MC, Tan IKP, Annuar MSM, Gan SN. Kinetics of thermodegradation of palm kernel oil derived medium-chain-length polyhydroxyalkanoates. J Appl Polym Sci 2012. [DOI: 10.1002/app.38033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
42
|
Numata K, Doi Y. Biosynthesis of polyhydroxyalkanaotes by a novel facultatively anaerobic Vibrio sp. under marine conditions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2012; 14:323-331. [PMID: 22068389 DOI: 10.1007/s10126-011-9416-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 10/07/2011] [Indexed: 05/31/2023]
Abstract
Marine bacteria have recently attracted attention as potentially useful candidates for the production of practical materials from marine ecosystems, including the oceanic carbon dioxide cycle. The advantages of using marine bacteria for the biosynthesis of poly(hydroxyalkanoate) (PHA), one of the eco-friendly bioplastics, include avoiding contamination with bacteria that lack salt-water resistance, ability to use filtered seawater as a culture medium, and the potential for extracellular production of PHA, all of which would contribute to large-scale industrial production of PHA. A novel marine bacterium, Vibrio sp. strain KN01, was isolated and characterized in PHA productivity using various carbon sources under aerobic and aerobic-anaerobic marine conditions. The PHA contents of all the samples under the aerobic-anaerobic condition, especially when using soybean oil as the sole carbon source, were enhanced by limiting the amount of dissolved oxygen. The PHA accumulated using soybean oil as a sole carbon source under the aerobic-anaerobic condition contained 14% 3-hydroxypropionate (3HP) and 3% 5-hydroxyvalerate (5HV) units in addition to (R)-3-hydroxybutyrate (3HB) units and had a molecular weight of 42 × 10³ g/mol. The present result indicates that the activity of the beta-oxidation pathway under the aerobic-anaerobic condition is reduced due to a reduction in the amount of dissolved oxygen. These findings have potential for use in controlling the biosynthesis of long main-chain PHA by regulating the activity of the beta-oxidation pathway, which also could be regulated by varying the dissolved oxygen concentration.
Collapse
Affiliation(s)
- Keiji Numata
- Enzyme Research Team, RIKEN Biomass Engineering Program, RIKEN, Saitama, Japan.
| | | |
Collapse
|
43
|
Genetically modified strains of Ralstonia eutropha H16 with β-ketothiolase gene deletions for production of copolyesters with defined 3-hydroxyvaleric acid contents. Appl Environ Microbiol 2012; 78:5375-83. [PMID: 22636005 DOI: 10.1128/aem.00824-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
β-Ketothiolases catalyze the first step of poly(3-hydroxybutyrate) [poly(3HB)] biosynthesis in bacteria by condensation of two acetyl coenzyme A (acetyl-CoA) molecules to acetoacetyl-CoA and also take part in the degradation of fatty acids. During growth on propionate or valerate, Ralstonia eutropha H16 produces the copolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [poly(3HB-co-3HV)]. In R. eutropha, 15 β-ketothiolase homologues exist. The synthesis of 3-hydroxybutyryl-CoA (3HB-CoA) could be significantly reduced in an 8-fold mutant (Lindenkamp et al., Appl. Environ. Microbiol. 76:5373-5382, 2010). In this study, a 9-fold mutant deficient in nine β-ketothiolase gene homologues (phaA, bktB, H16_A1713, H16_B1771, H16_A1528, H16_B0381, H16_B1369, H16_A0170, and pcaF) was generated. In order to examine the polyhydroxyalkanoate production capacity when short- or long-chain and even- or odd-chain-length fatty acids were provided as carbon sources, the growth and storage behavior of several mutants from the previous study and the newly generated 9-fold mutant were analyzed. Propionate, valerate, octanoate, undecanoic acid, or oleate was chosen as the sole carbon source. On octanoate, no significant differences in growth or storage behavior were observed between wild-type R. eutropha and the mutants. In contrast, during the growth on oleate of a multiple mutant lacking phaA, bktB, and H16_A0170, diminished poly(3HB) accumulation occurred. Surprisingly, the amount of accumulated poly(3HB) in the multiple mutants grown on gluconate differed; it was much lower than that on oleate. The β-ketothiolase activity toward acetoacetyl-CoA in H16ΔphaA and all the multiple mutants remained 10-fold lower than the activity of the wild type, regardless of which carbon source, oleate or gluconate, was employed. During growth on valerate as a sole carbon source, the 9-fold mutant accumulated almost a poly(3-hydroxyvalerate) [poly(3HV)] homopolyester with 99 mol% 3HV constituents.
Collapse
|
44
|
Hazer DB, Kılıçay E, Hazer B. Poly(3-hydroxyalkanoate)s: Diversification and biomedical applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.01.021] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
45
|
Goh YS, Tan IKP. Polyhydroxyalkanoate production by antarctic soil bacteria isolated from Casey Station and Signy Island. Microbiol Res 2012; 167:211-9. [DOI: 10.1016/j.micres.2011.08.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2011] [Revised: 08/12/2011] [Accepted: 08/22/2011] [Indexed: 10/17/2022]
|
46
|
Brandt U, Raberg M, Voigt B, Hecker M, Steinbüchel A. Elevated poly(3-hydroxybutyrate) synthesis in mutants of Ralstonia eutropha H16 defective in lipopolysaccharide biosynthesis. Appl Microbiol Biotechnol 2012; 95:471-83. [DOI: 10.1007/s00253-012-3909-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Revised: 01/11/2012] [Accepted: 01/17/2012] [Indexed: 11/24/2022]
|
47
|
Impact of each individual component of the mutated PTS(Nag) on glucose uptake and phosphorylation in Ralstonia eutropha G⁺1. Appl Microbiol Biotechnol 2012; 95:735-44. [PMID: 22307500 DOI: 10.1007/s00253-012-3911-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 01/12/2012] [Accepted: 01/18/2012] [Indexed: 10/14/2022]
Abstract
A recent study of the UV-generated glucose-utilizing mutant Ralstonia eutropha G⁺1 comprising transcriptomic and proteomic analyses revealed clear evidence that glucose is transported by the N-acetylglucosamine-specific phosphotransferase system (PTS(Nag)), which is overexpressed in this mutant due to a derepression of the encoding nag operon by an identified insertion mutation in nagR (Raberg et al., Appl Environ Microbiol 77:2058-2070, 2011). The inability of the defined deletion mutant R. eutropha G⁺1∆nagFEC to utilize glucose confirms this finding. Furthermore, a missense mutation in nagE (membrane component comprising the cell membrane spanning EIIC(Nag) and the cytosolic domain EIIB(Nag)) was identified, which yields a substitution of an alanine by threonine at aa 153 of NagE and may affect glucose specificity of the mutated PTS(Nag) in R. eutropha G⁺1. The investigation of various generated deletion and substitution mutants of R. eutropha H16 and G⁺1 in this study was able to elucidate these phenomena. It could be shown that the porin NagC, encoded by nagC being part of the nag operon, is not necessary, while NagE is required and is probably responsible for glucose transport through the cell membrane. The intracellular phosphorylation of glucose is obviously mediated by the glucokinase GLK and not by NagF (cytosolic component comprising the three soluble domains EIIA(Nag), HPr(Nag), and EI(Nag)). Our data clearly indicate that the derepression of the nag operon is essential for glucose uptake. The point mutation in NagE is not an essential prerequisite for glucose transport although it increased glucose transport as observed in this study.
Collapse
|
48
|
Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbüchel A, Maier UG. Microalgae as bioreactors for bioplastic production. Microb Cell Fact 2011; 10:81. [PMID: 22004563 PMCID: PMC3214846 DOI: 10.1186/1475-2859-10-81] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Accepted: 10/17/2011] [Indexed: 11/21/2022] Open
Abstract
Background Poly-3-hydroxybutyrate (PHB) is a polyester with thermoplastic properties that is naturally occurring and produced by such bacteria as Ralstonia eutropha H16 and Bacillus megaterium. In contrast to currently utilized plastics and most synthetic polymers, PHB is biodegradable, and its production is not dependent on fossil resources making this bioplastic interesting for various industrial applications. Results In this study, we report on introducing the bacterial PHB pathway of R. eutropha H16 into the diatom Phaeodactylum tricornutum, thereby demonstrating for the first time that PHB production is feasible in a microalgal system. Expression of the bacterial enzymes was sufficient to result in PHB levels of up to 10.6% of algal dry weight. The bioplastic accumulated in granule-like structures in the cytosol of the cells, as shown by light and electron microscopy. Conclusions Our studies demonstrate the great potential of microalgae like the diatom P. tricornutum to serve as solar-powered expression factories and reveal great advantages compared to plant based production systems.
Collapse
Affiliation(s)
- Franziska Hempel
- LOEWE Research Centre for Synthetic Microbiology, Hans-Meerwein-Strasse, 35032 Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Kaddor C, Steinbüchel A. Implications of various phosphoenolpyruvate-carbohydrate phosphotransferase system mutations on glycerol utilization and poly(3-hydroxybutyrate) accumulation in Ralstonia eutropha H16. AMB Express 2011; 1:16. [PMID: 21906371 PMCID: PMC3222305 DOI: 10.1186/2191-0855-1-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Accepted: 07/13/2011] [Indexed: 11/10/2022] Open
Abstract
The enhanced global biodiesel production is also yielding increased quantities of glycerol as main coproduct. An effective application of glycerol, for example, as low-cost substrate for microbial growth in industrial fermentation processes to specific products will reduce the production costs for biodiesel. Our study focuses on the utilization of glycerol as a cheap carbon source during cultivation of the thermoplastic producing bacterium Ralstonia eutropha H16, and on the investigation of carbohydrate transport proteins involved herein. Seven open reading frames were identified in the genome of strain H16 to encode for putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS). Although the core components of PEP-PTS, enzyme I (ptsI) and histidine phosphocarrier protein (ptsH), are available in strain H16, a complete PTS-mediated carbohydrate transport is lacking. Growth experiments employing several PEP-PTS mutants indicate that the putative ptsMHI operon, comprising ptsM (a fructose-specific EIIA component of PTS), ptsH, and ptsI, is responsible for limited cell growth and reduced PHB accumulation (53%, w/w, less PHB than the wild type) of this strain in media containing glycerol as a sole carbon source. Otherwise, the deletion of gene H16_A0384 (ptsN, nitrogen regulatory EIIA component of PTS) seemed to largely compensate the effect of the deleted ptsMHI operon (49%, w/w, PHB). The involvement of the PTS homologous proteins on the utilization of the non-PTS sugar alcohol glycerol and its effect on cell growth as well as PHB and carbon metabolism of R. eutropha will be discussed.
Collapse
|
50
|
Kaddor C, Steinbüchel A. Effects of homologous phosphoenolpyruvate-carbohydrate phosphotransferase system proteins on carbohydrate uptake and poly(3-Hydroxybutyrate) accumulation in Ralstonia eutropha H16. Appl Environ Microbiol 2011; 77:3582-90. [PMID: 21478317 PMCID: PMC3127587 DOI: 10.1128/aem.00218-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/29/2011] [Indexed: 11/20/2022] Open
Abstract
Seven gene loci encoding putative proteins of the phosphoenolpyruvate-carbohydrate phosphotransferase system (PEP-PTS) were identified in the genome of Ralstonia eutropha H16 by in silico analysis. Except the N-acetylglucosamine-specific PEP-PTS, an additional complete PEP-PTS is lacking in strain H16. Based on these findings, we generated single and multiple deletion mutants defective mainly in the PEP-PTS genes to investigate their influence on carbon source utilization, growth behavior, and poly(3-hydroxybutyrate) (PHB) accumulation. As supposed, the H16 ΔfrcACB and H16 ΔnagFEC mutants exhibited no growth when cultivated on fructose and N-acetylglucosamine, respectively. Furthermore, a transposon mutant with a ptsM-ptsH insertion site did not grow on both carbon sources. The observed phenotype was not complemented, suggesting that it results from an interaction of genes or a polar effect caused by the Tn5::mob insertion. ptsM, ptsH, and ptsI single, double, and triple mutants stored much less PHB than the wild type (about 10 to 39% [wt/wt] of cell dry weight) and caused reduced PHB production in mutants lacking the H16_A2203, H16_A0384, frcACB, or nagFEC genes. In contrast, mutant H16 ΔH16_A0384 accumulated 11.5% (wt/wt) more PHB than the wild type when grown on gluconate and suppressed partially the negative effect of the ptsMHI deletion on PHB synthesis. Based on our experimental data, we discussed whether the PEP-PTS homologous proteins in R. eutropha H16 are exclusively involved in the complex sugar transport system or whether they are also involved in cellular regulatory functions of carbon and PHB metabolism.
Collapse
Affiliation(s)
- Chlud Kaddor
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149 Münster, Germany
| |
Collapse
|