1
|
Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints. Nat Commun 2022; 13:2969. [PMID: 35624178 PMCID: PMC9142503 DOI: 10.1038/s41467-022-30689-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 05/12/2022] [Indexed: 01/20/2023] Open
Abstract
Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for α-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
Collapse
|
2
|
The Mut+ strain of Komagataella phaffii (Pichia pastoris) expresses PAOX1 5 and 10 times faster than Muts and Mut− strains: evidence that formaldehyde or/and formate are true inducers of PAOX1. Appl Microbiol Biotechnol 2020; 104:7801-7814. [DOI: 10.1007/s00253-020-10793-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 05/14/2020] [Accepted: 07/19/2020] [Indexed: 01/10/2023]
|
3
|
Peebo K, Neubauer P. Application of Continuous Culture Methods to Recombinant Protein Production in Microorganisms. Microorganisms 2018; 6:E56. [PMID: 29933583 PMCID: PMC6164559 DOI: 10.3390/microorganisms6030056] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/28/2018] [Accepted: 06/19/2018] [Indexed: 11/17/2022] Open
Abstract
Depending on the environmental conditions, cells adapt their metabolism and specific growth rate. Rearrangements occur on many different levels such as macromolecular composition, gene and protein expression, morphology and metabolic flux patterns. As the interplay of these processes also determines the output of a recombinant protein producing system, having control over specific growth rate of the culture is advantageous. Continuous culture methods were developed to grow cells in a constant environment and have been used for decades to study basic microbial physiology in a controlled and reproducible manner. Our review summarizes the uses of continuous cultures in cell physiology studies and process development, with a focus on recombinant protein-producing microorganisms.
Collapse
Affiliation(s)
- Karl Peebo
- Center of Food and Fermentation Technologies, Akadeemia tee 15a, 12618 Tallinn, Estonia.
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia.
| | - Peter Neubauer
- Department of Bioprocess Engineering, Technische Universität Berlin, Ackerstraβe 76, ACK24, D-13355 Berlin, Germany.
| |
Collapse
|
4
|
Pichia pastoris Exhibits High Viability and a Low Maintenance Energy Requirement at Near-Zero Specific Growth Rates. Appl Environ Microbiol 2016; 82:4570-4583. [PMID: 27208115 PMCID: PMC4984280 DOI: 10.1128/aem.00638-16] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 05/16/2016] [Indexed: 12/16/2022] Open
Abstract
The yeast Pichia pastoris is a widely used host for recombinant protein production. Understanding its physiology at extremely low growth rates is a first step in the direction of decoupling product formation from cellular growth and therefore of biotechnological relevance. Retentostat cultivation is an excellent tool for studying microbes at extremely low specific growth rates but has so far not been implemented for P. pastoris. Retentostat feeding regimes were based on the maintenance energy requirement (mS) and maximum biomass yield on glucose (YX/Smax) estimated from steady-state glucose-limited chemostat cultures. Aerobic retentostat cultivation enabled reproducible, smooth transitions from a specific growth rate (μ) of 0.025 h−1 to near-zero specific growth rates (μ < 0.001 h−1). At these near-zero specific growth rates, viability remained at least 97%. The value of mS at near-zero growth rates was 3.1 ± 0.1 mg glucose per g biomass and h, which was 3-fold lower than the mS estimated from faster-growing chemostat cultures. This difference indicated that P. pastoris reduces its maintenance energy requirement at extremely low μ, a phenomenon not previously observed in eukaryotes. Intracellular levels of glycogen and trehalose increased, while μ progressively declined during retentostat cultivation. Transcriptional reprogramming toward zero growth included the upregulation of many transcription factors as well as stress-related genes and the downregulation of cell cycle genes. This study underlines the relevance of comparative analysis of maintenance energy metabolism, which has an important impact on large-scale industrial processes. IMPORTANCE The yeast Pichia pastoris naturally lives on trees and can utilize different carbon sources, among them glucose, glycerol, and methanol. In biotechnology, it is widely used for the production of recombinant proteins. For both the understanding of life in its natural habitat and optimized production processes, a better understanding of cell physiology at an extremely low growth rate would be of extraordinary value. Therefore, we have grown P. pastoris in a retentostat, which allows the cultivation of metabolically active cells even at zero growth. Here we reached doubling times as long as 38 days and found that P. pastoris decreases its maintenance energy demand 3-fold during very slow growth, which enables it to survive with a much lower substrate supply than baker's yeast.
Collapse
|
5
|
Purification and characterisation of intracellular alpha-galactosidases from Acinetobacter sp. 3 Biotech 2015; 5:925-932. [PMID: 28324395 PMCID: PMC4624142 DOI: 10.1007/s13205-015-0290-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 02/22/2015] [Indexed: 11/26/2022] Open
Abstract
Two alpha-galactosidases (Ag-I & Ag-II) were purified from Acinetobacter sp. Both the enzymes were monomeric with pH optima
of 7.0 and molecular weight of 65 kDa for Ag-I and 37 kDa for Ag-II. The temperature optima for Ag-I was between 50 and 60 °C and that of Ag-II was 40 °C. Both the enzymes were strongly inhibited by metal ions Ag2+ and Hg+, pCMB and SDS (1 %). The enzymes were found to be active on both natural and synthetic substrates. Artificial substrate, pNPGal, has shown more affinity to enzyme than natural substrate raffinose. The half-life (t1/2) of Ag-I varied from 1.85 h at 90 °C to 7.6 h at 70 °C.
Collapse
|
6
|
Allison SD, Lu L, Kent AG, Martiny AC. Extracellular enzyme production and cheating in Pseudomonas fluorescens depend on diffusion rates. Front Microbiol 2014; 5:169. [PMID: 24782855 PMCID: PMC3990056 DOI: 10.3389/fmicb.2014.00169] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 03/27/2014] [Indexed: 11/13/2022] Open
Abstract
Bacteria produce extracellular enzymes to obtain resources from complex chemical substrates, but this strategy is vulnerable to cheating by cells that take up reaction products without paying the cost of enzyme production. We hypothesized that cheating would suppress enzyme production in co-cultures of cheater and producer bacteria, particularly under well-mixed conditions. To test this hypothesis, we monitored protease expression and frequencies of Pseudomonas fluorescens producer and cheater genotypes over time in mixed liquid cultures and on agar plates. In mixed culture inoculated with equal frequencies of cheaters and producers, enzyme concentration declined to zero after 20 days, consistent with our hypothesis. We observed a similar decline in cultures inoculated with producers only, suggesting that cheater mutants arose de novo and swept the population. DNA sequencing showed that genetic changes most likely occurred outside the protease operon. In one experimental replicate, the population regained the ability to produce protease, likely due to further genetic changes or population dynamics. Under spatially structured conditions on agar plates, cheaters did not sweep the population. Instead, we observed a significant increase in the variation of enzyme activity levels expressed by clones isolated from the population. Together these results suggest that restricted diffusion favors a diversity of enzyme production strategies. In contrast, well-mixed conditions favor population sweeps by cheater strains, consistent with theoretical predictions. Cheater and producer strategies likely coexist in natural environments with the frequency of cheating increasing with diffusion rate.
Collapse
Affiliation(s)
- Steven D Allison
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California-Irvine Irvine, CA, USA ; Department of Earth System Science, School of Physical Sciences, University of California-Irvine Irvine, CA, USA
| | - Lucy Lu
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California-Irvine Irvine, CA, USA
| | - Alyssa G Kent
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California-Irvine Irvine, CA, USA
| | - Adam C Martiny
- Department of Ecology and Evolutionary Biology, School of Biological Sciences, University of California-Irvine Irvine, CA, USA ; Department of Earth System Science, School of Physical Sciences, University of California-Irvine Irvine, CA, USA
| |
Collapse
|
7
|
Fed-batch operational strategies for recombinant Fab production with Pichia pastoris using the constitutive GAP promoter. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.07.013] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
8
|
Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:920759. [PMID: 23424684 PMCID: PMC3568913 DOI: 10.1155/2013/920759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.
Collapse
|
9
|
Folse HJ, Allison SD. Cooperation, competition, and coalitions in enzyme-producing microbes: social evolution and nutrient depolymerization rates. Front Microbiol 2012; 3:338. [PMID: 23060866 PMCID: PMC3459022 DOI: 10.3389/fmicb.2012.00338] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Accepted: 09/01/2012] [Indexed: 11/13/2022] Open
Abstract
Extracellular enzymes represent a public good for microbial communities, as they break down complex molecules into simple molecules that microbes can take up. These communities are vulnerable to cheating by microbes that do not produce enzymes, but benefit from those produced by others. However, extracellular enzymes are ubiquitous and play an important role in the depolymerization of nutrients. We developed a multi-genotype, multi-nutrient model of a community of exoenzyme-producing microbes, in order to investigate the relationship between diversity, social interactions, and nutrient depolymerization. We focused on coalitions between complementary types of microbes and their implications for spatial pattern formation and nutrient depolymerization. The model included polymers containing carbon, nitrogen, or phosphorus, and eight genotypes of bacteria, which produced different subsets of the three enzymes responsible for hydrolyzing these polymers. We allowed social dynamics to emerge from a mechanistic model of enzyme production, action, and diffusion. We found that diversity was maximized at high rates of either diffusion or enzyme production (but not both). Conditions favoring cheating also favored the emergence of coalitions. We characterized the spatial patterns formed by different interactions, showing that same-type cooperation leads to aggregation, but between-type cooperation leads to an interwoven, filamentous pattern. Contrary to expectations based on niche complementarity, we found that nutrient depolymerization declined with increasing diversity due to a negative competitive effect of coalitions on generalist producers, leading to less overall enzyme production. This decline in depolymerization was stronger for non-limiting nutrients in the system. This study shows that social interactions among microbes foraging for complementary resources can influence microbial diversity, microbial spatial distributions, and rates of nutrient depolymerization.
Collapse
Affiliation(s)
- Henry J Folse
- Department of Ecology and Evolutionary Biology, University of California Irvine, CA, USA
| | | |
Collapse
|
10
|
Buchetics M, Dragosits M, Maurer M, Rebnegger C, Porro D, Sauer M, Gasser B, Mattanovich D. Reverse engineering of protein secretion by uncoupling of cell cycle phases from growth. Biotechnol Bioeng 2011; 108:2403-12. [PMID: 21557199 DOI: 10.1002/bit.23198] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Revised: 04/19/2011] [Accepted: 05/02/2011] [Indexed: 12/21/2022]
Abstract
The demand for recombinant proteins both for biopharmaceutical and technical applications is rapidly growing, and therefore the need to establish highly productive expression systems is steadily increasing. Yeasts, such as Pichia pastoris, are among the widely used production platforms with a strong emphasis on secreted proteins. Protein secretion is a limiting factor of productivity. There is strong evidence that secretion is coupled to specific growth rate (µ) in yeast, being higher at higher µ. For maximum productivity and product titer, high specific secretion rates at low µ would be desired. At high secretion rates cultures contain a large fraction of cells in the G2 and M phases of cell cycle. Consequently, the cell design target of a high fraction of cells in G2 + M phase was achieved by constitutive overexpression of the cyclin gene CLB2. Together with predictive process modeling this reverse engineered production strain improved the space time yield (STY) of an antibody Fab fragment by 18% and the product titer by 53%. This concept was verified with another secreted protein, human trypsinogen.
Collapse
Affiliation(s)
- Markus Buchetics
- Department of Biotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 18, 1190 Vienna, Austria; telephone: +43476546569; fax: +4313697615; Austrian Centre of Industrial Biotechnology (ACIB GmbH),Vienna, Austria
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Continuous hydrolysis of raffinose family oligosaccharides in soymilk by fluidized bed reactor. Lebensm Wiss Technol 2010. [DOI: 10.1016/j.lwt.2009.08.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Anisha GS, Prema P. Production of α-galactosidase by a novel actinomycete Streptomyces griseoloalbus and its application in soymilk hydrolysis. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9310-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
13
|
van de Laar T, Visser C, Holster M, López CG, Kreuning D, Sierkstra L, Lindner N, Verrips T. Increased heterologous protein production bySaccharomyces cerevisiae growing on ethanol as sole carbon source. Biotechnol Bioeng 2006; 96:483-94. [PMID: 16948170 DOI: 10.1002/bit.21150] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Saccharomyces cerevisiae is a widely used host organism for the production of heterologous proteins, often cultivated in glucose-based fed-batch processes. This production system however has many factors limiting the productivity, mainly towards the end of the fermentation. For the optimised production of a Camelid antibody fragment this process was evaluated. In shake flask cultivations, it was found that ethanol has a strong effect on productivity increase and therefore glucose and ethanol fed-batch fermentations were compared. It appeared that specific heterologous protein production was up to five times higher in the ethanol cultivation and could be further optimised. Then the key characteristics of ethanol fed-batch fermentations such as growth rate and specific production were determined under ethanol limitation and accumulation and growth limiting conditions in the final phase of the process. It appeared that an optimal production process should have an ethanol accumulation throughout the feed phase of approximately 1% v/v in the broth and that production remains very efficient even in the last phase of the process. This productivity increase on ethanol versus glucose was also proven for several other Camelid antibody fragments some of which were heavily impaired in secretion on glucose, but very well produced on ethanol. This leads to the suggestion that the ethanol effect on improved heterologous protein production is linked to a stress response and folding and secretion efficiency.
Collapse
|
14
|
Thomassen YE, Verkleij AJ, Boonstra J, Verrips CT. Specific production rate of VHH antibody fragments by Saccharomyces cerevisiae is correlated with growth rate, independent of nutrient limitation. J Biotechnol 2005; 118:270-7. [PMID: 15979755 DOI: 10.1016/j.jbiotec.2005.05.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2004] [Revised: 04/27/2005] [Accepted: 05/02/2005] [Indexed: 11/18/2022]
Abstract
Saccharomyces cerevisiae carrying a multicopy integrated expression vector containing the gene encoding a Llama antibody fragment, has been cultivated in continuous cultures both under carbon and nitrogen limiting conditions with galactose as the sole carbon source. VHH-R2 expression was under control of the inducible GAL7 promoter. Induction however, was independent of the galactose consumption rate and maximal at all growth rates. VHH-R2 was secreted with 70% efficiency at all growth rates and under both limitations. The specific production rate increased linear with increasing growth rate in a growth-associated manner. However, when grown under nitrogen limitation at growth rates above 0.09 h(-1), the extracellular VHH-R2 was less active or part of the VHH-R2 was in an inactive form. From our results we conclude that to obtain a maximal amount of VHH per kilogram biomass per hour, VHH production should be done in carbon limited continuous cultures at high specific growth rates.
Collapse
Affiliation(s)
- Yvonne E Thomassen
- Department of Molecular Cell Biology and the Institute of Biomembranes, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | | | | | | |
Collapse
|
15
|
Görgens JF, Passoth V, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. Amino acid supplementation, controlled oxygen limitation and sequential double induction improves heterologous xylanase production by Pichia stipitis. FEMS Yeast Res 2005; 5:677-83. [PMID: 15780668 DOI: 10.1016/j.femsyr.2004.12.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2004] [Revised: 11/05/2004] [Accepted: 12/03/2004] [Indexed: 11/26/2022] Open
Abstract
Heterologous endo-beta-1,4-xylanase was produced by Pichia stipitis under control of the hypoxia-inducible PsADH2-promoter in a high-cell-density culture. After promoter induction by a shift to oxygen limitation, different aeration rates (oxygen transfer rates) were applied while maintaining oxygen-limitation. Initially, enzyme production was higher in oxygen-limited cultures with high rates of oxygen transfer, although the maximum xylanase activity was not significantly influenced. Amino acid supplementation increased the production of the heterologous endo-beta-1,4-xylanase significantly in highly aerated oxygen-limited cultures, until glucose was depleted. A slight second induction of the promoter was observed in all cultures after the glucose had been consumed. The second induction was most obvious in amino acid-supplemented cultures with higher oxygen transfer rates during oxygen limitation. When such oxygen-limited cultures were shifted back to fully aerobic conditions, a significant re-induction of heterologous endo-beta-1,4-xylanase production was observed. Re-induction was accompanied by ethanol consumption. A similar protein production pattern was observed when cultures were first grown on ethanol as sole carbon source and subsequently glucose and oxygen limitation were applied. Thus, we present the first expression system in yeast with a sequential double-inducible promoter.
Collapse
Affiliation(s)
- Johann F Görgens
- Department of Applied Microbiology, Lund University, Lund, Sweden
| | | | | | | | | |
Collapse
|
16
|
Allison SD. Cheaters, diffusion and nutrients constrain decomposition by microbial enzymes in spatially structured environments. Ecol Lett 2005. [DOI: 10.1111/j.1461-0248.2005.00756.x] [Citation(s) in RCA: 363] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
17
|
Domingues L, Lima N, Teixeira JA. Aspergillus niger β-galactosidase production by yeast in a continuous high cell density reactor. Process Biochem 2005. [DOI: 10.1016/j.procbio.2004.04.016] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
18
|
Ferreira BS, Calado CRC, van Keulen F, Fonseca LP, Cabral JMS, da Fonseca MMR. Recombinant Saccharomyces cerevisiae strain triggers acetate production to fuel biosynthetic pathways. J Biotechnol 2004; 109:159-67. [PMID: 15063624 DOI: 10.1016/j.jbiotec.2003.10.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2002] [Accepted: 10/14/2003] [Indexed: 10/26/2022]
Abstract
Although the metabolism and physiology of the growth of yeast strains has been extensively studied, many questions remain unanswered when the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. It was observed that whenever the strain needed to activate biosynthetic pathways, either for cutinase synthesis, or for the synthesis of the enzymes required for galactose intake, acetate production occurred. The on-line detection of acetate in the medium might prove useful for the control and the supervision of recombinant protein production processes using yeast. The volumes of acid and base added to control the pH throughout the time course of the cultivations were used to calculate an on-line estimator for acetate concentration.
Collapse
Affiliation(s)
- Bruno S Ferreira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal.
| | | | | | | | | | | |
Collapse
|
19
|
Ferreira BS, Calado CRC, van Keulen F, Fonseca LP, Cabral JMS, da Fonseca MMR. Towards a cost effective strategy for cutinase production by a recombinant Saccharomyces cerevisiae: strain physiological aspects. Appl Microbiol Biotechnol 2003; 61:69-76. [PMID: 12658517 DOI: 10.1007/s00253-002-1196-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2002] [Revised: 11/04/2002] [Accepted: 11/08/2002] [Indexed: 11/29/2022]
Abstract
Although the physiology and metabolism of the growth of yeast strains has been extensively studied, many questions remain unanswered where the induced production of a recombinant protein is concerned. This work addresses the production of a Fusarium solani pisi cutinase by a recombinant Saccharomyces cerevisiae strain induced through the use of a galactose promoter. The strain is able to metabolise the inducer, galactose, which is a much more expensive carbon source than glucose. Both the transport of galactose into the cell-required for the induction of cutinase production-and galactose metabolism are highly repressed by glucose. Different fermentation strategies were tested and the culture behaviour was interpreted in view of the strain metabolism and physiology. A fed-batch fermentation with a mixed feed of glucose and galactose was carried out, during which simultaneous consumption of both hexoses was achieved, as long as the glucose concentration in the medium did not exceed 0.20 g/l. The costs, in terms of hexoses, incurred with this fermentation strategy were reduced to 23% of those resulting from a fermentation carried out using a more conventional strategy, namely a fed-batch fermentation with a feed of galactose.
Collapse
Affiliation(s)
- B S Ferreira
- Centro de Engenharia Biológica e Química, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal. bsf@ ist.utl.pt
| | | | | | | | | | | |
Collapse
|
20
|
Calado CR, Almeida C, Cabral JM, Fonseca LP. Development of a Fed-Batch Cultivation Strategy for the Enhanced production and Secretion of Cutinase by a Recombinant Saccharomyces cerevisiae SU50 Strain. J Biosci Bioeng 2003. [DOI: 10.1016/s1389-1723(03)90116-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Görgens JF, van Zyl WH, Knoetze JH, Hahn-Hägerdal B. The metabolic burden of the PGK1 and ADH2 promoter systems for heterologous xylanase production by Saccharomyces cerevisiae in defined medium. Biotechnol Bioeng 2001; 73:238-45. [PMID: 11257606 DOI: 10.1002/bit.1056] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Five recombinant S. cerevisiae strains were cultivated under identical conditions to quantify the molecular basis of the metabolic burden of heterologous gene expression, and to evaluate mechanisms for the metabolic burden. Two recombinant S. cerevisiae strains, producing Trichoderma reesei xylanase II under control of either the PGK1 or ADH2 promoters, were compared quantitatively with three references strains, where either the heterologous xylanase II (XYN2) gene, or the heterologous gene and the promoter and terminator were omitted from the recombinant plasmid. Neither the replication of multiple copies of the 2-microm-based YEp352 plasmid nor the replication the foreign XYN2 gene represented a metabolic burden to the cell, as the growth of the host organism was not affected. The inclusion of a glycolytic promoter on the recombinant plasmid, however, reduced the maximum specific growth rate (12% to 15%), biomass yield on glucose (8% to 11%), and specific glucose consumption rate (6% to 10%) of the recombinant strains. The presence of the heterologous XYN2 gene on the recombinant plasmid caused a further reduction in the maximum specific growth rate (11% to 14%), biomass yield (4%), and specific glucose consumption rate (12%) of the host strain during active gene expression, which was dictated by the regulatory characteristics of the promoter utilized. The metabolic effect of foreign gene expression was disproportionally large, with respect to on the amount of heterologous protein produced. This was most likely due to an increased energetic demand for the expression of a foreign gene and/or a competition for limiting amounts of transcription or translation factors, biosynthetic precursors or metabolic energy.
Collapse
Affiliation(s)
- J F Görgens
- Department of Applied Microbiology, Lund University, Box 124, S-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
22
|
Abstract
In the mid-1970s, information technology and recombinant DNA technology were considered as the breakthrough technologies of the final quarter of the 20th century. Now, about 25 years later, information technology has penetrated deeply into our society and nearly everyone uses this technology. Compared to the formidable success of information technology, the progress in the commercialization of recombinant DNA technology is moderate, even when taking into account that all that is related to the technological application of biological sciences needs extensive safety testing. However, there are signs that the speed of this commercialization will increase in the first decade of the 21st century. Moreover, new breakthroughs in our understanding of the complete genetic make up of eukaryotes will contribute to this increase in speed. An important aspect of the commercialization of this technology is the development of cells as factories for the production of valuable and/or useful molecules. Lower eukaryotes, such as yeasts and molds, are the most promising candidates to become the factories of the future, but at present these factories still contains a lot of process lines that may be superfluous under the well controlled conditions in fermentors. On the other hand, the speed and yield of these cellular production lines can be increased by eliminating the rate-determining steps of these process lines. In this contribution to the European Union symposium from Cell to Factory, some steps in the improvement of S. cerevisiae as cell factories for (heterologous) hydrophobic molecules are presented.
Collapse
|
23
|
Frenken LG, Hessing JG, Van den Hondel CA, Verrips CT. Recent advances in the large-scale production of antibody fragments using lower eukaryotic microorganisms. RESEARCH IN IMMUNOLOGY 1998; 149:589-99. [PMID: 9835423 DOI: 10.1016/s0923-2494(98)80011-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- L G Frenken
- Biotechnology Group, Unilever Research Vlaardingen, The Netherlands
| | | | | | | |
Collapse
|
24
|
Verrips CT, van den Berg DJ. Barriers to application of genetically modified lactic acid bacteria. Antonie Van Leeuwenhoek 1996; 70:299-316. [PMID: 8879412 DOI: 10.1007/bf00395938] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
To increase the acceptability of food products containing genetically modified microorganisms it is necessary to provide in an early stage to the consumers that the product is safe and that the product provide a clear benefit to the consumer. To comply with the first requirement a systematic approach to analyze the probability that genetically modified lactic acid bacteria will transform other inhabitants of the gastro- intestinal (G/I) tract or that these lactic acid bacteria will pick up genetic information of these inhabitants has been proposed and worked out to some degree. From this analysis it is clear that reliable data are still missing to carry out complete risk assessment. However, on the basis of present knowledge, lactic acid bacteria containing conjugative plasmids should be avoided. Various studies show that consumers in developed countries will accept these products when they offer to them health or taste benefits or a better keepability. For the developing countries the biggest challenge for scientists is most likely to make indigenous fermented food products with strongly improved microbiological stability due to broad spectra bacteriocins produced by lactic acid bacteria. Moreover, these lactic acid bacteria may contribute to health.
Collapse
Affiliation(s)
- C T Verrips
- Unilever Research Laboratorium Vlaardingen, Vlaardingen The Netherlands
| | | |
Collapse
|
25
|
|
26
|
Hensing MC, Rouwenhorst RJ, Heijnen JJ, van Dijken JP, Pronk JT. Physiological and technological aspects of large-scale heterologous-protein production with yeasts. Antonie Van Leeuwenhoek 1995; 67:261-79. [PMID: 7778895 DOI: 10.1007/bf00873690] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Commercial production of heterologous proteins by yeasts has gained considerable interest. Expression systems have been developed for Saccharomyces cerevisiae and a number of other yeasts. Generally, much attention is paid to the molecular aspects of heterologous-gene expression. The success of this approach is indicated by the high expression levels that have been obtained in shake-flask cultures. For large-scale production however, possibilities and restrictions related to host-strain physiology and fermentation technology also have to be considered. In this review, these physiological and technological aspects have been evaluated with the aid of numerical simulations. Factors that affect the choice of a carbon substrate for large-scale production involve price, purity and solubility. Since oxygen demand and heat production (which are closely linked) limit the attainable growth rate in large-scale processes, the biomass yield on oxygen is also a key parameter. Large-scale processes impose restrictions on the expression system. Many promoter systems that work well in small-scale systems cannot be implemented in industrial environments. Furthermore, large-scale fed-batch fermentations involve a substantial number of generations. Therefore, even low expression-cassette instability has a profound effect on the overall productivity of the system. Multicopy-integration systems may provide highly stable expression systems for industrial processes. Large-scale fed-batch processes are typically performed at a low growth rate. Therefore, effects of a low growth rate on the physiology and product formation rates of yeasts are of key importance. Due to the low growth rates in the industrial process, a substantial part of the substrate carbon is expended to meet maintenance-energy requirements. Factors that reduce maintenance-energy requirements will therefore have a positive effect on product yield. The relationship between specific growth rate and specific product formation rate (kg product.[kg biomass]-1.h-1) is the main factor influencing production levels in large-scale production processes. Expression systems characterized by a high specific rate of product formation at low specific growth rates are highly favourable for large-scale heterologous-protein production.
Collapse
Affiliation(s)
- M C Hensing
- Department of Microbiology and Enzymology, Kluyver Laboratory of Biotechnology, Delft University of Technology, The Netherlands
| | | | | | | | | |
Collapse
|
27
|
Driedonks RA, Toschka HY, van Almkerk JW, Schäffers IM, Verbakel JM. Expression and secretion of antifreeze peptides in the yeast Saccharomyces cerevisiae. Yeast 1995; 11:849-64. [PMID: 7483849 DOI: 10.1002/yea.320110907] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The antifreeze peptide AFP6 from the polar fish Pseudopleuronectus americanus has been expressed in and secreted by the yeast Saccharomyces cerevisiae as a biologically active molecule. The gene for the 37 amino acid long peptide has been chemically synthesized using yeast preferred codons. Subsequently, the gene has been cloned into an episomal expression vector as well as in a multicopy integration vector, which is mitotically more stable. The expression is under the control of the inducible GAL7 promoter. The enzyme alpha-galactosidase has been investigated as a carrier protein to facilitate expression and secretion of AFP. In order to reach increased expression levels, tandem repeats of the AFP gene (up to eight copies) have been cloned. In most cases the genes are efficiently expressed and the products secreted. The expression level amounts to approximately 100 mg/l in the culture medium. In a number of genetic constructs the genes are directly linked and expressed as AFP multimers. In other constructs linker regions have been inserted between the AFP gene copies, that allow the peptide to be processed by specific proteinases, either from the endogenous yeast proteolytic system or from a non-yeast source. The latter requires a separate processing step after yeast cultivation to obtain mature AFP. In all these cases proteolytic processing is incomplete, generating a heterogeneous mixture of mature AFP, carrier and chimeric protein, and/or a mixture of AFP-oligomers. The antifreeze activity has been demonstrated for such mixtures as well as for AFP multimers.
Collapse
Affiliation(s)
- R A Driedonks
- Unilever Research Laboratorium, Vlaardingen, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Properties of an extracellular glycosidase of Aspergillus niger suitable for removal of oligosaccharides from cowpea meal. Enzyme Microb Technol 1995. [DOI: 10.1016/0141-0229(94)00006-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Use of chemostat data for modelling extracellular-inulinase production by Kluyveromyces marxianus in a high-cell-density fed-batch process. ACTA ACUST UNITED AC 1995. [DOI: 10.1016/0922-338x(95)92743-v] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
30
|
Abstract
Purified coffee bean alpha-galactosidase (alpha Gal) has been used for removing terminal alpha-galactose residues from the glyco-conjugates at the red cell surface, in studies of blood group conversion. Here, we report the isolation and sequence of the full-length clone for coffee bean alpha Gal by using the polymerase chain reaction (PCR) and rapid amplification of cDNA ends (RACE) techniques. The cDNA clone (1.4 kb) contains a single open reading frame which encodes a protein of 378 amino acids (aa). Its authenticity is confirmed by perfect alignment of aa sequences obtained from purified coffee bean alpha Gal, and by immune reaction with the antibody raised against the enzyme. Furthermore, the protein produced in insect cells shows enzymatic activity towards a synthetic alpha Gal substrate, p-nitro-phenyl-alpha-galactopyranoside.
Collapse
Affiliation(s)
- A Zhu
- Lindsley F. Kimball Research Institute, New York Blood Center, New York 10021
| | | |
Collapse
|