1
|
Li H, Luo YF, Wang YS, Xiao YL, Cai HR, Xie CM. Pseudomonas aeruginosa induces cellular senescence in lung tissue at the early stage of two-hit septic mice. Pathog Dis 2018; 76:5289408. [PMID: 30649401 DOI: 10.1093/femspd/ftz001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 01/11/2019] [Indexed: 02/07/2023] Open
Abstract
We presume that severe secondary Pseudomonas aeruginosa (PA) infection can lead to cellular senescence in lung tissue and thus contribute to high mortality. We established a two-hit mouse model using cecal ligation and puncture (CLP) followed by sublethal PA lung infection. In lung tissue, increased infiltration of inflammatory cells, elevated lung injury and augmented cellular senescence was shown in mice with CLP followed by sublethal PA infection, and these observations reached a higher rank when higher (H) loads PA (PAO1) were administered to CLP mice (CLP + PAO1-H). Accordingly, oxidative stress-related element gp91phox and inflammation regulator NF-κB were greatly activated in CLP + PAO1-H mice compared to others. There was no obvious inflammation or cellular senescence in sham control, PAO1-infected mice. Consequently, CLP + PAO1-H mice had the highest expression levels of inflammatory cytokines IL-6, TNFα and iNOS among those groups. There was lower bacterial clearance ability in CLP + PAO1-H mice than in other mice. CLP + PAO1-H only had approximately 10% survival after 7 days of investigation and was much lower than others. In conclusion, higher mortality due to increased lung inflammation and cellular senescence are observed in mice with increased loads of PA infection secondary to CLP.
Collapse
Affiliation(s)
- Hui Li
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yi-Feng Luo
- Department of Respiratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| | - Yong-Sheng Wang
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Yong-Long Xiao
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Hou-Rong Cai
- Department of Respiratory Medicine, the Affiliated Drum Tower Hospital, Nanjing University Medical School, Nanjing 210008, China
| | - Can-Mao Xie
- Department of Respiratory Medicine, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510080, China
| |
Collapse
|
2
|
Fisher ML, Sun W, Curtiss R. The route less taken: pulmonary models of enteric Gram-negative infection. Pathog Dis 2013; 70:99-109. [PMID: 24259516 DOI: 10.1111/2049-632x.12109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/16/2013] [Indexed: 11/29/2022] Open
Abstract
Many pathogens are capable of causing a fulminant infection in pulmonary tissues of mammals. Animal models have provided an extensive understanding of the genetic and molecular mechanisms of bacterial pathogenesis as well as host immune response in the lungs. Many clinically relevant Gram-negative bacteria are host-restricted. Thus, the powerful, informative tools of mouse models are not available for study with these organisms. However, over the past 30 years, enterprising work has demonstrated the utility of pulmonary infection with enteric pathogens. Such infection models have increased our understanding host-pathogen interactions in these organisms. Here, we provide a review and comparison of lung models of infection with enteric, Gram-negative bacteria relative to naturally occurring lung pathogens.
Collapse
Affiliation(s)
- Michael L Fisher
- Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
3
|
Rouf R, Karaba SM, Dao J, Cianciotto NP. Stenotrophomonas maltophilia strains replicate and persist in the murine lung, but to significantly different degrees. MICROBIOLOGY-SGM 2011; 157:2133-2142. [PMID: 21546584 DOI: 10.1099/mic.0.048157-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The environmental bacterium Stenotrophomonas maltophilia is increasingly described as a multidrug-resistant pathogen of humans, being associated with pneumonia, among other diseases. But the degree to which S. maltophilia is capable of replicating in a mammalian host has been an issue of controversy. Using a model of intranasal inoculation into adult A/J mice, we now document that S. maltophilia strain K279a, the clinical isolate of S. maltophilia whose complete genome sequence was recently determined, is in fact capable of replicating in lungs, displaying as much as a 10-fold increase in c.f.u. in the first 8 h of infection. Importantly, as few as 10(4) c.f.u. deposited into the A/J lung was sufficient to promote bacterial outgrowth. Bacterial replication in the lungs of the A/J mice was followed by elevations in pro-inflammatory cytokines and also promoted resistance to subsequent challenge. We also found that DBA/2 mice were permissive for S. maltophilia K279a replication, although the level of growth and persistence in these animals was less than it was in the A/J mice. In contrast, the BALB/c and C57BL/6 mouse strains were non-permissive for S. maltophilia K279a growth. Interestingly, when five additional clinical isolates were introduced into the A/J lung, marked differences in survival were observed, with some strains being much less infective than K279a and others being appreciably more infective. These data suggest that the presence of major virulence determinants is variable among clinical isolates. Overall, this study confirms the infectivity of S. maltophilia for the mammalian host, and illustrates how both host and bacterial factors affect the outcome of Stenotrophomonas infection.
Collapse
Affiliation(s)
- Ruella Rouf
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Sara M Karaba
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Jenny Dao
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
4
|
George SE, Kohan MJ, Nelson GM, Schlundt J. Determination of Potential Health Effects in the Mouse Comparing Intranasal and Peroral Exposure toPseudomonas aeruginosaandEscherichia coli. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.3109/08910609609166455] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- S. E. George
- National Health and Environmental Effects Research Laboratory, Mail Drop 68, US Environmental Protection Agency, Research Triangle ParkNC, 27711, USA
| | - M. J. Kohan
- National Health and Environmental Effects Research Laboratory, Mail Drop 68, US Environmental Protection Agency, Research Triangle ParkNC, 27711, USA
| | - G. M. Nelson
- National Health and Environmental Effects Research Laboratory, Mail Drop 68, US Environmental Protection Agency, Research Triangle ParkNC, 27711, USA
| | - J. Schlundt
- National Food Agency of Denmark, Mørkhøj Bygade 19, DK-286, Søborg, Denmark
| |
Collapse
|
5
|
Gail M. Nelson, S. Elizabeth George. Colonization Capabilities of Environmental Pseudomonads and anEscherichia coliIntestinal Isolate in Two Different Continuous-Flow Models of the Murine Intestinal Tract. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2009. [DOI: 10.1080/089106098435340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
6
|
RICK promotes inflammation and lethality after gram-negative bacterial infection in mice stimulated with lipopolysaccharide. Infect Immun 2009; 77:1569-78. [PMID: 19188356 DOI: 10.1128/iai.01505-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
RICK (receptor-interacting protein-like interacting caspase-like apoptosis regulatory protein kinase), a serine-threonine kinase, functions downstream of the pattern recognition receptors Nod1 and Nod2 to mediate NF-kappaB and mitogen-activated protein kinase (MAPK) activation in response to specific microbial stimuli. However, the function of RICK in the recognition and host defense of gram-negative bacteria remains poorly understood. We report here that infection of wild-type and RICK-deficient macrophages with Pseudomonas aeruginosa and Escherichia coli elicited comparable activation of NF-kappaB and MAPKs as well as secretion of proinflammatory cytokines. However, production of interleukin 6 (IL-6) and IL-1beta induced by these gram-negative bacteria was impaired in RICK-deficient macrophages when the cells had previously been stimulated with lipopolysaccharide (LPS) or E. coli. The diminished proinflammatory response of RICK-deficient macrophages to bacteria was associated with reduced activation of NF-kappaB and MAPKs. Importantly, mutant mice deficient in RICK were less susceptible than wild-type mice to P. aeruginosa infection when the animals had previously been stimulated with LPS. The reduced lethality of RICK-deficient mice infected with P. aeruginosa was independent of pathogen clearance but was associated with diminished production of proinflammatory molecules in vivo. These results demonstrate that RICK contributes to the induction of proinflammatory responses and susceptibility to gram-negative bacteria after exposure to LPS, a condition that is associated with reduced Toll-like receptor signaling.
Collapse
|
7
|
Pier GB. Pseudomonas aeruginosa lipopolysaccharide: a major virulence factor, initiator of inflammation and target for effective immunity. Int J Med Microbiol 2007; 297:277-95. [PMID: 17466590 PMCID: PMC1994162 DOI: 10.1016/j.ijmm.2007.03.012] [Citation(s) in RCA: 172] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas aeruginosa is one of the most important bacterial pathogens encountered by immunocompromised hosts and patients with cystic fibrosis (CF), and the lipopolysaccharide (LPS) elaborated by this organism is a key factor in virulence as well as both innate and acquired host responses to infection. The molecule has a fair degree of heterogeneity in its lipid A and O-antigen structure, and elaborates two different outer-core glycoforms, of which only one is ligated to the O-antigen. A close relatedness between the chemical structures and genes encoding biosynthetic enzymes has been established, with 11 major O-antigen groups identified. The lipid A can be variably penta-, hexa- or hepta-acylated, and these isoforms have differing potencies when activating host innate immunity via binding to Toll-like receptor 4 (TLR4). The O-antigen is a major target for protective immunity as evidenced by numerous animal studies, but attempts, to date, to produce a human vaccine targeting these epitopes have not been successful. Newer strategies employing live attenuated P. aeruginosa, or heterologous attenuated bacteria expressing P. aeruginosa O-antigens are potential means to solve some of the existing problems related to making a P. aeruginosa LPS-specific vaccine. Overall, there is now a large amount of information available about the genes and enzymes needed to produce the P. aeruginosa LPS, detailed chemical structures have been determined for the major O-antigens, and significant biologic and immunologic studies have been conducted to define the role of this molecule in virulence and immunity to P. aeruginosa infection.
Collapse
Affiliation(s)
- Gerald B Pier
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
8
|
Reiniger N, Lee MM, Coleman FT, Ray C, Golan DE, Pier GB. Resistance to Pseudomonas aeruginosa chronic lung infection requires cystic fibrosis transmembrane conductance regulator-modulated interleukin-1 (IL-1) release and signaling through the IL-1 receptor. Infect Immun 2007; 75:1598-608. [PMID: 17283089 PMCID: PMC1865697 DOI: 10.1128/iai.01980-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Innate immunity is critical for clearing Pseudomonas aeruginosa from the lungs. In response to P. aeruginosa infection, a central transcriptional regulator of innate immunity-NF-kappaB-is translocated within 15 min to the nuclei of respiratory epithelial cells expressing wild-type (WT) cystic fibrosis (CF) transmembrane conductance regulator (CFTR). P. aeruginosa clearance from lungs is impaired in CF, and rapid NF-kappaB nuclear translocation is defective in cells with mutant or missing CFTR. We used WT and mutant P. aeruginosa and strains of transgenic mice lacking molecules involved in innate immunity to identify additional mediators required for P. aeruginosa-induced rapid NF-kappaB nuclear translocation in lung epithelia. We found neither Toll-like receptor 2 (TLR2) nor TLR4 nor TLR5 were required for this response. However, both MyD88-deficient mice and interleukin-1 receptor (IL-1R)-deficient mice failed to rapidly translocate NF-kappaB to the nuclei of respiratory epithelial cells in response to P. aeruginosa. Cultured human bronchial epithelial cells rapidly released IL-1beta in response to P. aeruginosa; this process was maximized by expression of WT-CFTR and dramatically muted in cells with DeltaF508-CFTR. The IL-1R antagonist blocked P. aeruginosa-induced NF-kappaB nuclear translocation. Oral inoculation via drinking water of IL-1R knockout mice resulted in higher rates of lung colonization and elevated P. aeruginosa-specific antibody titers in a manner analogous to that of CFTR-deficient mice. Overall, rapid IL-1 release and signaling through IL-1R represent key steps in the innate immune response to P. aeruginosa infection, and this process is deficient in cells lacking functional CFTR.
Collapse
Affiliation(s)
- Nina Reiniger
- Channing Laboratory, Brigham and Women's Hospital, Harvard Medical School, 181 Longwood Avenue, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
9
|
Fisher ML, Castillo C, Mecsas J. Intranasal inoculation of mice with Yersinia pseudotuberculosis causes a lethal lung infection that is dependent on Yersinia outer proteins and PhoP. Infect Immun 2006; 75:429-42. [PMID: 17074849 PMCID: PMC1828392 DOI: 10.1128/iai.01287-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Yersinia pseudotuberculosis infects many mammals and birds including humans, livestock, and wild rodents and can be recovered from the lungs of infected animals. To determine the Y. pseudotuberculosis factors important for growth during lung infection, we developed an intranasal model of infection in mice. Following intranasal inoculation, we monitored both bacterial growth in lungs and dissemination to systemic tissues. Intranasal inoculation with as few as 18 CFU of Y. pseudotuberculosis caused a lethal lung infection in some mice. Over the course of 7 days, wild-type Y. pseudotuberculosis replicated to nearly 1 x 10(8) CFU/g of lung in BALB/c mice, induced histopathology in lungs consistent with pneumonia, but disseminated sporadically to other tissues. In contrast, a Delta yopB deletion strain was attenuated in this model, indicating that translocation of Yersinia outer proteins (Yops) is essential for virulence. Additionally, a Delta yopH null mutant failed to grow to wild-type levels by 4 days postintranasal inoculation, but deletions of any other single effector YOP did not attenuate lung colonization 4 days postinfection. Strains with deletions in yopH and any one of the other known effector yop genes were more attenuated that the Delta yopH strain, indicating a unique role for yopH in lungs. In summary, we have characterized the progression of a lung infection with an enteric Yersinia pathogen and shown that YopB and YopH are important in lung colonization and dissemination. Furthermore, this lung infection model with Y. pseudotuberculosis can be used to test potential therapeutics against Yersinia and other gram-negative infections in lungs.
Collapse
Affiliation(s)
- Michael L Fisher
- Department of Microbiology, 136 Harrison Ave., Tufts University, Boston, MA 02111, USA
| | | | | |
Collapse
|
10
|
van Heeckeren AM, Schluchter MD, Xue W, Davis PB. Response to acute lung infection with mucoid Pseudomonas aeruginosa in cystic fibrosis mice. Am J Respir Crit Care Med 2005; 173:288-96. [PMID: 16272448 PMCID: PMC2662931 DOI: 10.1164/rccm.200506-917oc] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
RATIONALE Cystic fibrosis is caused by defects in the cystic fibrosis transmembrane conductance regulator gene, which codes for a chloride channel, but the role of this chloride channel in inflammation induced by lung infection with Pseudomonas aeruginosa remains to be defined. OBJECTIVES We tested the hypothesis that loss of this chloride channel alone is sufficient to cause excessive inflammation in response to inflammatory stimuli. METHODS We investigated the response of cystic fibrosis and wild-type mice to mucoid P. aeruginosa administered by insufflation. MEASUREMENTS The host responses measured included survival, weight change, lung morphometry, bacterial clearance, and inflammatory mediators, and cell counts were assessed in bronchoalveolar lavage fluid. MAIN RESULTS Depending on the dose administered and frequency of dosing, cystic fibrosis mice experienced significantly higher mortality rates, greater weight loss, higher lung pathology scores, and higher inflammatory mediator and neutrophil levels compared with wild-type mice, even after the bacteria had been cleared. Surprisingly, bacteria were cleared just as rapidly in cystic fibrosis mice as in wild-type mice, and sepsis was not observed. Chronic lung infections could not be established with mucoid P. aeruginosa in either cystic fibrosis or wild-type mice. CONCLUSIONS Absence of this chloride channel alone appears sufficient for exaggerated inflammation and excess mortality compared with wild-type controls in the face of mucoid P. aeruginosa lung infection. To establish chronic infection, additional factors such as bacterial trapping or poor clearance may be required.
Collapse
Affiliation(s)
- Anna M van Heeckeren
- Department of Pediatrics, Rainbow Babies and Children's Hospital, Cleveland, OH, USA.
| | | | | | | |
Collapse
|
11
|
Power MR, Peng Y, Maydanski E, Marshall JS, Lin TJ. The development of early host response to Pseudomonas aeruginosa lung infection is critically dependent on myeloid differentiation factor 88 in mice. J Biol Chem 2004; 279:49315-22. [PMID: 15375173 DOI: 10.1074/jbc.m402111200] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Toll-like receptors (TLR) induce distinct patterns of host responses through myeloid differentiation factor 88 (MyD88)-dependent and/or -independent pathways, depending on the nature of the pathogen. Pseudomonas aeruginosa is a cause of serious lung infection in immunocompromised individuals and cystic fibrosis patients. The role of the TLR-MyD88 pathway in P. aeruginosa-induced lung infection in vivo was examined in this study. MyD88-/- mice demonstrated an impaired clearance of P. aeruginosa from the lung. Little or no neutrophil recruitment was observed in the airways of MyD88-/- mice following P. aeruginosa lung infection. This observation was associated with a reduced production of inflammatory mediators that affect neutrophil recruitment, including macrophage-inflammatory protein-2, tumor necrosis factor, and interleukin-1beta in the airways of MyD88-/- mice. Similarly, MyD88-/- mice showed inhibited NF-kappaB activation in the lung following P. aeruginosa infection. Interestingly, P. aeruginosa infection induced a 7.5-fold increase of TLR2 mRNA expression in the lungs of MyD88+/+ mice. Furthermore, host responses to P. aeruginosa lung infection in TLR2-/- and TLR4 mutant mice were partially inhibited compared with the responses of respective control mice. Taken together, our results indicate that the MyD88-dependent pathway is essential for the development of early host responses to P. aeruginosa infection, leading to the clearance of this bacterium, and that TLR2 and TLR4 are involved in this process.
Collapse
Affiliation(s)
- Melanie R Power
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia B3J 3G9, Canada
| | | | | | | | | |
Collapse
|
12
|
George SE, Nelson GM. Effectiveness of Chromosomal and Plasmid-linked Genes for Enumerating Biotechnology Agents In Vivo. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 2002. [DOI: 10.1080/089106002760002711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- S. Elizabeth George
- From the Of. ce of Research and Development, National Health and Environmental Effects Research Laboratory, Environmental Carcinogenesis Division, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | | |
Collapse
|
13
|
Allewelt M, Coleman FT, Grout M, Priebe GP, Pier GB. Acquisition of expression of the Pseudomonas aeruginosa ExoU cytotoxin leads to increased bacterial virulence in a murine model of acute pneumonia and systemic spread. Infect Immun 2000; 68:3998-4004. [PMID: 10858214 PMCID: PMC101680 DOI: 10.1128/iai.68.7.3998-4004.2000] [Citation(s) in RCA: 139] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa is the nosocomial bacterial pathogen most commonly isolated from the respiratory tract. Animal models of this infection are extremely valuable for studies of virulence and immunity. We thus evaluated the utility of a simple model of acute pneumonia for analyzing P. aeruginosa virulence by characterizing the course of bacterial infection in BALB/c mice following application of bacteria to the nares of anesthetized animals. Bacterial aspiration into the lungs was rapid, and 67 to 100% of the inoculum could be recovered within minutes from the lungs, with 0.1 to 1% of the inoculum found intracellularly shortly after infection. At later time points up to 10% of the bacteria were intracellular, as revealed by gentamicin exclusion assays on single-cell suspensions of infected lungs. Expression of exoenzyme U (ExoU) by P. aeruginosa is associated with a cytotoxic effect on epithelial cells in vitro and virulence in animal models. Insertional mutations in the exoU gene confer a noncytotoxic phenotype on mutant strains and decrease virulence for animals. We used the model of acute pneumonia to determine whether introduction of the exoU gene into noncytotoxic strains of P. aeruginosa lacking this gene affected virulence. Seven phenotypically noncytotoxic P. aeruginosa strains were transformed with pUCP19exoUspcU which carries the exoU gene and its associated chaperone. Three of these strains became cytotoxic to cultured epithelial cells in vitro. These strains all secreted ExoU, as confirmed by detection of the ExoU protein with specific antisera. The 50% lethal dose of exoU-expressing strains was significantly lower for all three P. aeruginosa isolates carrying plasmid pUCP19exoUspcU than for the isogenic exoU-negative strains. mRNA specific for ExoU was readily detected in the lungs of animals infected with the transformed P. aeruginosa strains. Introduction of the exoU gene confers a cytotoxic phenotype on some, but not all, otherwise-noncytotoxic P. aeruginosa strains and, for recombinant strains that could express ExoU, there was markedly increased virulence in a murine model of acute pneumonia and systemic spread.
Collapse
Affiliation(s)
- M Allewelt
- Channing Laboratory, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
14
|
Bals R, Wang X, Meegalla RL, Wattler S, Weiner DJ, Nehls MC, Wilson JM. Mouse beta-defensin 3 is an inducible antimicrobial peptide expressed in the epithelia of multiple organs. Infect Immun 1999; 67:3542-7. [PMID: 10377137 PMCID: PMC116542 DOI: 10.1128/iai.67.7.3542-3547.1999] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One component of host defense at mucosal surfaces is epithelium-derived peptides with antimicrobial activity called defensins. We describe in this report the isolation and characterization of a murine homologue of human beta-defensin 2 (hBD-2) called mouse beta-defensin 3 (mBD-3). The predicted amino acid sequence shows the hallmark features of other known epithelial defensins, including the ordered array of six cysteine residues. Analysis of a genomic clone of mBD-3 revealed two exons separated by a 1.7-kb intron. The mBD-3 gene is localized at the proximal portion of chromosome 8, the site where genes for mouse alpha- and beta-defensins are found. Under basal condition, mBD-3 transcripts were detected at low levels in epithelial cells of surface organs, such as the intestine and lung. After instillation of Pseudomonas aeruginosa PAO1 into mouse airways, mBD-3-specific mRNA was upregulated significantly not only in large airways but also in the small bowel and liver. Recombinant mBD-3 peptide, produced from a baculovirus expression system, showed antimicrobial activity against P. aeruginosa PAO1 (MIC of 8 micrograms/ml) and Escherichia coli D31 (MIC of 16 micrograms/ml) in a salt-dependent manner. This study demonstrates that a murine homologue of hBD-2 is present in the respiratory system and other mucosal surfaces. These similarities between murine and human host defense apparatus provide further impetus to evaluate the mouse as a model for studying the human innate host defense system.
Collapse
Affiliation(s)
- R Bals
- Institute for Human Gene Therapy, Department of Medicine and Molecular and Cellular Engineering, The Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Cressman VL, Hicks EM, Funkhouser WK, Backlund DC, Koller BH. The relationship of chronic mucin secretion to airway disease in normal and CFTR-deficient mice. Am J Respir Cell Mol Biol 1998; 19:853-66. [PMID: 9843919 DOI: 10.1165/ajrcmb.19.6.3194] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In the cystic fibrosis (CF) patient, lung function decreases throughout life as a result of continuous cycles of infection, particularly with Pseudomonas aeruginosa and Staphylococcus aureus. The mechanism underlying the pathophysiology of the disease in humans has not been established. However, it has been suggested that abnormal, tenacious mucus, resulting perhaps from improper hydration from loss of Cl- secretion via the cystic fibrosis transmembrane conductance regulator (CFTR) protein, impairs clearance of bacteria from the CF airway and provides an environment favorable to bacterial growth. If this hypothesis is correct, it could explain the absence of respiratory disease in CFTR-deficient mice, since mice have only a single submucosal gland and display few goblet cells in their lower airways, even when exposed to bacteria. To test this hypothesis further, we induced allergic airway disease in CFTR-deficient mice. We found that induction of allergic airway disease in mice, unlike bacterial infection, results in an inflammatory response characterized by goblet cell hyperplasia, increased mucin gene expression, and increased production of mucus. However, we also found that disease progression and resolution is identical in Cftr-/- mice and control animals. Furthermore, we show that the presence of mucus in the Cftr-/- airway does not lead to chronic airway disease, even upon direct inoculation with S. aureus and P. aeruginosa. Therefore, factors in addition to the absence of high levels of mucus secretion protect the mouse from the airway disease seen in human CF patients.
Collapse
Affiliation(s)
- V L Cressman
- Curriculum in Genetics and Molecular Biology, Department of Medicine, and Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | | |
Collapse
|
16
|
Zhou X, George SE, Frank DW, Utley M, Gilmour I, Krogfelt KA, Claxton LD, Laux DC, Cohen PS. Isolation and characterization of an attenuated strain of Pseudomonas aeruginosa AC869, a 3,5-dichlorobenzoate degrader. Appl Environ Microbiol 1997; 63:1389-95. [PMID: 9097436 PMCID: PMC168433 DOI: 10.1128/aem.63.4.1389-1395.1997] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Pseudomonas aeruginosa AC869, a 3,5-dichlorobenzoate degrader, is a mouse pathogen and has a reported 50% lethal dose (LD50) of 1.05 x 10(7) CFU when given intranasally to C3H/HeJ mice (S.E. George, M.J. Kohan, M.I. Gilmour, M.S. Taylor, H.G. Brooks, J.P. Creason, and L.D. Claxton, Appl. Environ, Microbiol. 59:3585-3591, 1993). AC869 was serotyped as O6 when grown in CD-1 mouse cecal and lung mucus but could not be assigned an O serotype when grown in Luria broth (LB). After growth in mouse cecal mucus, a less virulent mutant, AC869-11, was isolated from AC869 by using bacteriophage E79, which adsorbs to the O side chain of lipopolysaccharide (LPS). AC869-11 produced significantly less O antigen on its LPS than AC869 when grown in mouse lung and cecal mucus. The mutant also produced half the amount of exoenzyme S and 16-fold less extracellular protease than AC869 and was more sensitive than its parent to a number of antibiotics when grown either in LB or in mouse lung mucus. AC869-11 had ninefold higher LD50 than AC869 in CD-1 mice when administered intranasally. AC869-11 was found in the lungs, small intestine, cecum, and large intestine in numbers at least 100-fold below AC869, 3 h after intranasal exposure of mice to a sublethal dose of the two strains. Moreover, AC869-11 induced a decreased pulmonary inflammatory response relative to AC869. In contrast to AC869, AC869-11 did not translocate to the mesenteric lymph nodes, liver, and spleen following a sublethal dose. Despite attenuation, AC869-11 grew as well as AC869 with 3,5-dichlorobenzoate as the sole carbon and energy source. However, although AC869-11 survived in 3,5-dichlorobenzoate-contaminated soil as well as AC869 for 1 week, it failed to survive as well thereafter. These results suggest the possibility that mutations that lead to pulmonary attenuation of P. aeruginosa in mice also lead to weakness in the environment, despite such mutants maintaining the ability to degrade toxic substances under laboratory conditions.
Collapse
Affiliation(s)
- X Zhou
- Department of Biochemistry, Microbiology, and Molecular Genetics, University of Rhode Island, Kingston 02881, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Johansen HK. Potential of preventing Pseudomonas aeruginosa lung infections in cystic fibrosis patients: experimental studies in animals. APMIS. SUPPLEMENTUM 1996; 63:5-42. [PMID: 8944052 DOI: 10.1111/j.1600-0463.1996.tb05581.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In patients with cystic fibrosis (CF), respiratory tract infections caused by Staphylococcus aureus and Haemophilus influenzae are followed by Pseudomonas aeruginosa with increasing age. Chronic endobronchial lung infection with P. aeruginosa is the leading cause of morbidity and mortality. In Danish CF patients we noted that both onset of initial colonization and chronic lung infection with P. aeruginosa peaked during the winter months which is the season for respiratory virus infections. Virus may therefore pave the way for P. aeruginosa. We established a chronic P. aeruginosa lung infection in rats by embedding mucoid bacteria in seaweed alginate and installing the beads intratracheally into the lower part of the left lung. Although the rats did not suffer from CF, the antibody responses and the pathologic changes of the lungs mimicked the findings in CF patients. By using this model in normal and athymic rats we showed that the T-cell response during the "natural" course of the infection played no major role. In a model of acute P. aeruginosa pneumonia we found that the macroscopic inflammatory response of the lungs was immense and that the natural capacity to clear P. aeruginosa was very efficient and could not be improved by immunization, although high serum levels of IgM, IgG and IgA antibodies to P. aeruginosa alginate, LPS, exotoxin A and sonicate were induced. We developed a method for collecting and measuring IgA in saliva and noted that mucosal IgA antibodies were induced by vaccination; they did not significantly prevent inflammation, however. In the chronic rat model we succeeded to improve the survival significantly and to change the inflammatory response subsequent to vaccination from an acute type inflammation dominated by polymorphonuclear leukocytes (PMNs) as in CF patients to a chronic type inflammation dominated by mononuclear leukocytes. Furthermore, we found that rats immunized with an alginate containing vaccine had a significantly earlier cellular shift to a chronic type inflammation as well as a significant reduction in the severity of the macroscopic inflammation compared to two other vaccine groups and to nonimmunized controls. Similar results were obtained in rats treated with the TH1 cytokine, interferon-gamma (IFN-gamma). Several authors have shown that the lung tissue damage during chronic infection in CF patients is caused by a type III hypersensitivity reaction leading to release of elastase by PMNs surrounding the bacterial microcolonies. The cellular shift we have induced by vaccination and by IFN-gamma treatment therefore offers a possible new strategy for improving the clinical course in chronically infected CF patients.
Collapse
|
18
|
Olsen PE, Rice WA, Bordeleau LM, Demidoff AH, Collins MM. Levels and identities of nonrhizobial microorganisms found in commercial legume inoculant made with nonsterile peat carrier. Can J Microbiol 1996; 42:72-5. [PMID: 8595599 DOI: 10.1139/m96-010] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Sixty samples of commercial North American legume inoculants manufactured for sale in 1994 using nonsterile peat as carrier were tested for Rhizobium (or Bradyrhizobium) content and non-Rhizobium biological contaminant load. Products of three major producers of such inoculants for sale in Canada were examined. Viable Rhizobium content varied from 5.6 x 10(5) to 8.1 x 10(9) cells/g, while the contaminant load varied from 1.8 x 10(8) to 5.5 x 10(10) cfu/g. Most of the inoculants contained more nonrhizobial organisms than they did rhizobia. Identifications were made of the most numerous nonrhizobial bacteria occurring in 100 samples of inoculants collected in 1993 and 1994. The most commonly identified contaminant was Xanthomonas maltophilia. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Enterobacter cloacae were also found at high levels in some products. Contaminant organisms capable of inhibiting rhizobial growth in plate culture were found in the products of all three manufacturers.
Collapse
Affiliation(s)
- P E Olsen
- Agriculture and Agri-Food Canada, Northern Agricultural Research Center, Beaverlodge, Alberta
| | | | | | | | | |
Collapse
|