1
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
2
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
3
|
Lu W, Wang M, Wu J, Jiang Q, Jin J, Jin Q, Yang W, Chen J, Wang Y, Xiao M. Spread of chloramphenicol and tetracycline resistance genes by plasmid mobilization in agricultural soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113998. [PMID: 31991360 DOI: 10.1016/j.envpol.2020.113998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Spread of antibiotic resistance genes (ARGs) poses a worldwide threat to public health and food safety. However, ARG spread by plasmid mobilization, a broad host range transfer system, in agricultural soil has received little attention. Here, we investigated the spread of chloramphenicol resistance gene (CRG) and tetracycline resistance gene (TRG) in agricultural soil by mobilization of pSUP106 under different conditions, including different concentrations of nutrients, temperatures, soil depths, rhizosphere soils, and soil types. The number of resistant bacteria isolated in non-sterilized soil from the experiments was approximately 104 to 107 per gram of soil, belonging to 5-10 species from four genera, including nonpathogen, opportunistic pathogen, pathogen bacteria, and gram-positive and gram-negative bacteria, depending on the experiment conditions. In sterilized soil, higher levels of nutrients and higher temperatures promoted plasmid mobilization and ARG expression. Topsoil and deep soil might not support the spread of antibiotic resistance, while ARG dissemination by plasmid mobilization was better supported by maize rhizosphere and loam soils. All these factors might change bacterial growth and the activity of bacteria and lead to the above influence. Introduction of only the donor and helper, or the donor alone also resulted in the transfer of ARGs and large numbers of antibiotic resistant bacteria (ARB), indicating that some indigenous bacteria contain the elements necessary for plasmid mobilization. Our results showed that plasmid mobilization facilitated dissemination of ARGs and ARB in soil, which led to the disturbance of indigenous bacterial communities. It is important to clear ARG dissemination routes and inhibit the spread of ARGs.
Collapse
Affiliation(s)
- Wenwei Lu
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Min Wang
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Jianqiang Wu
- Shanghai Academy of Environmental Sciences, Shanghai, 200233, China
| | - Qiuyan Jiang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jieren Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing Jin
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Wenwu Yang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Jun Chen
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Yujing Wang
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Ming Xiao
- Development Center of Plant Germplasm, College of Life Sciences, Shanghai Normal University, Shanghai, 200234, China; Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 200240, China.
| |
Collapse
|
4
|
Cheng X, Delanka-Pedige HMK, Munasinghe-Arachchige SP, Abeysiriwardana-Arachchige ISA, Smith GB, Nirmalakhandan N, Zhang Y. Removal of antibiotic resistance genes in an algal-based wastewater treatment system employing Galdieria sulphuraria: A comparative study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 711:134435. [PMID: 31810689 PMCID: PMC6992497 DOI: 10.1016/j.scitotenv.2019.134435] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 05/04/2023]
Abstract
In this study, we compared removal of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARGs) in two wastewater treatment systems fed with the same primary effluent: a conventional wastewater treatment system (consisting of a trickling filter followed by an activated sludge process) versus an algal-based system, employing an extremophilic alga, Galdieria sulphuraria. Our results demonstrated that the algal system can reduce concentrations of erythromycin- and sulfamethoxazole-resistant bacteria in the effluent more effectively than the conventional treatment system. A decreasing trend of total bacteria and ARGs was observed in both the treatment systems. However, the relative ratio of most ARGs (qnrA, qnrB, qnrS, sul1) and intI1 in the surviving bacteria increased in the conventional system; whereas, the algal system reduced more of the relative abundance of qnrA, qnrS, tetW and intⅠ1 in the surviving bacteria. The role of bacteriophages in horizontal gene transfer (HGT) of ARGs in the two systems was indicated by a positive correlation between ARG absolute abundance in bacteriophage and ARG relative abundance in the bacteria. Four of the five detectable genes (qnrS, tetW, sul1 and intI1) were significantly reduced in the algal system in bacteriophage phase which signified a decrease in phage-mediated ARG transfer in the algal system. Results of this study demonstrate the feasibility of the algal-based wastewater treatment system in decreasing ARGs and ARB and in minimizing the spread of antibiotic resistance to the environment.
Collapse
Affiliation(s)
- Xiaoxiao Cheng
- Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA
| | | | | | | | - Geoffrey B Smith
- Biology Department, New Mexico State University, Las Cruces, NM 88003, USA
| | | | - Yanyan Zhang
- Civil Engineering Department, New Mexico State University, Las Cruces, NM 88003, USA.
| |
Collapse
|
5
|
Röling WFM, Ortega-Lucach S, Larter SR, Head IM. Acidophilic microbial communities associated with a natural, biodegraded hydrocarbon seepage. J Appl Microbiol 2007; 101:290-9. [PMID: 16882136 DOI: 10.1111/j.1365-2672.2006.02926.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Characterization of microbial communities present in a surface petroleum seep in which hydrocarbons have been biodegraded for thousands of years in order to improve the understanding on natural petroleum biodegradation. DNA was extracted from a natural, surface petroleum seep and subjected to culture independent analysis (rRNA gene-based denaturing gradient gel electrophoresis and phylogenetic analysis of clone libraries). Molecular analysis suggested dominance by acidophilic bacteria, especially Alphaproteobacteria (mainly bacteria related to Acidiphilium and Acidocella). Archaea were not detected, but fungi were present. pH of the samples was around 3.5. Acidophilic microbial communities are associated with an acidic petroleum seep. Microbial community structure analysis gives information on the environmental conditions under which petroleum biodegradation occurs. This knowledge could be applied to define conditions for specific cultivation or activity measurements. The activity of acidophilic micro-organisms deserves more attention with respect to their involvement in natural petroleum degradation. This knowledge will contribute to the design of oil bioremediation strategies for polluted acidic settings.
Collapse
Affiliation(s)
- W F M Röling
- School of Civil Engineering and Geosciences and Institute for Research on the Environment and Sustainability, University of Newcastle, Newcastle upon Tyne, United Kingdom
| | | | | | | |
Collapse
|
6
|
Singh SK, Banerjee PC. High-yielding plasmid extraction method from acidophilic heterotrophic bacteria of the genus Acidiphilium. Anal Biochem 2006; 356:229-34. [PMID: 16859629 DOI: 10.1016/j.ab.2006.06.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2006] [Revised: 06/08/2006] [Accepted: 06/11/2006] [Indexed: 11/18/2022]
Abstract
Plasmid yield from Acidiphilium strains always had been poor following various standard methods. We adopted some simple modifications in the alkaline lysis procedure to get a better yield of plasmid from these bacteria. An approximately 10- to 20-fold increase in the plasmid yield was achieved when harvested Acidiphilium cells were preincubated 16-20 h at pH 6 in nitrogen-free medium. Another independent approach showed that freezing (-18 to -20 degrees C) of the harvested cells initially and at two subsequent steps in the alkaline lysis procedure of plasmid DNA extraction improved the yield further by 1.5- to 3-fold. The combination of these changes yielded at least 15- to 30-fold more plasmid from various Acidiphilium strains as compared with standard methods.
Collapse
|
7
|
Rawlings DE, Tietze E. Comparative biology of IncQ and IncQ-like plasmids. Microbiol Mol Biol Rev 2001; 65:481-96, table of contents. [PMID: 11729261 PMCID: PMC99038 DOI: 10.1128/mmbr.65.4.481-496.2001] [Citation(s) in RCA: 121] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Plasmids belonging to Escherichia coli incompatibility group Q are relatively small (approximately 5 to 15 kb) and able to replicate in a remarkably broad range of bacterial hosts. These include gram-positive bacteria such as Brevibacterium and Mycobacterium and gram-negative bacteria such as Agrobacterium, Desulfovibrio, and cyanobacteria. These plasmids are mobilized by several self-transmissible plasmids into an even more diverse range of organisms including yeasts, plants, and animal cells. IncQ plasmids are thus highly promiscuous. Recently, several IncQ-like plasmids have been isolated from bacteria found in environments as diverse as piggery manure and highly acidic commercial mineral biooxidation plants. These IncQ-like plasmids belong to different incompatibility groups but have similar broad-host-range replicons and mobilization properties to the IncQ plasmids. This review covers the ecology, classification, and evolution of IncQ and IncQ-like plasmids.
Collapse
Affiliation(s)
- D E Rawlings
- Department of Microbiology, University of Stellenbosch, Matieland 7602, South Africa.
| | | |
Collapse
|
8
|
Abstract
The potential for biodegradation of aromatic hydrocarbons was evaluated in soil samples recovered along gradients of both contaminant levels and pH values existing downstream of a long-term coal pile storage basin. pH values for areas greatly impacted by runoff from the storage basin were 2.0. Even at such a reduced pH, the indigenous microbial community was metabolically active, showing the ability to oxidize more than 40% of the parent hydrocarbons, naphthalene and toluene, to carbon dioxide and water. Treatment of the soil samples with cycloheximide inhibited mineralization of the aromatic substrates. DNA hybridization analysis indicated that whole-community nucleic acids recovered from these samples did not hybridize with genes, such as nahA, nahG, nahH, todC1C2, and tomA, that encode common enzymes from neutrophilic bacteria. Since these data suggested that the degradation of aromatic compounds may involve a microbial consortium instead of individual acidophilic bacteria, experiments using microorganisms isolated from these samples were initiated. While no defined mixed cultures were able to evolve 14CO2 from labeled substrates in these mineralization experiments, an undefined mixed culture including a fungus, a yeast, and several bacteria successfully metabolized approximately 27% of supplied naphthalene after 1 week. This study shows that biodegradation of aromatic hydrocarbons can occur in environments with extremely low pH values.
Collapse
|
9
|
Abstract
Reduced inorganic sulfur compounds are oxidized by members of the domains Archaea and Bacteria. These compounds are used as electron donors for anaerobic phototrophic and aerobic chemotrophic growth, and are mostly oxidized to sulfate. Different enzymes mediate the conversion of various reduced sulfur compounds. Their physiological function in sulfur oxidation is considered (i) mostly from the biochemical characterization of the enzymatic reaction, (ii) rarely from the regulation of their formation, and (iii) only in a few cases from the mutational gene inactivation and characterization of the resulting mutant phenotype. In this review the sulfur-metabolizing reactions of selected phototrophic and of chemotrophic prokaryotes are discussed. These comprise an archaeon, a cyanobacterium, green sulfur bacteria, and selected phototrophic and chemotrophic proteobacteria. The genetic systems are summarized which are presently available for these organisms, and which can be used to study the molecular basis of their dissimilatory sulfur metabolism. Two groups of thiobacteria can be distinguished: those able to grow with tetrathionate and other reduced sulfur compounds, and those unable to do so. This distinction can be made irrespective of their phototrophic or chemotrophic metabolism, neutrophilic or acidophilic nature, and may indicate a mechanism different from that of thiosulfate oxidation. However, the core enzyme for tetrathionate oxidation has not been identified so far. Several phototrophic bacteria utilize hydrogen sulfide, which is considered to be oxidized by flavocytochrome c owing to its in vitro activity. However, the function of flavocytochrome c in vivo may be different, because it is missing in other hydrogen sulfide-oxidizing bacteria, but is present in most thiosulfate-oxidizing bacteria. A possible function of flavocytochrome c is discussed based on biophysical studies, and the identification of a flavocytochrome in the operon encoding enzymes involved in thiosulfate oxidation of Paracoccus denitrificans. Adenosine-5'-phosphosulfate reductase thought to function in the 'reverse' direction in different phototrophic and chemotrophic sulfur-oxidizing bacteria was analysed in Chromatium vinosum. Inactivation of the corresponding gene does not affect the sulfite-oxidizing ability of the mutant. This result questions the concept of its 'reverse' function, generally accepted for over three decades.
Collapse
Affiliation(s)
- C G Friedrich
- Lehrstuhl für Technische Mikrobiologie, Fachbereich Chemietechnik, Universität Dortmund, Germany
| |
Collapse
|
10
|
Ghosh S, Mahapatra NR, Banerjee PC. Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl Environ Microbiol 1997; 63:4523-7. [PMID: 9361438 PMCID: PMC168771 DOI: 10.1128/aem.63.11.4523-4527.1997] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Acidophilic heterotrophic strain GS19h of the genus Acidocella exhibited extremely high resistance to CdSO4 and ZnSO4, with a MIC of 1 M for each. The respective MICs for an Acidocella aminolytica strain were 400 and 600 mM. The MICs of NiSO4 for the above strains were 200 and 175 mM, respectively. These strains were also resistant to CuSO4, the MICs being 20 and 40 mM, respectively. An Acidocella facilis strain showed resistance only to ZnSO4, with a MIC of 150 mM. The metal salts, in general, extended the lag period, log period, and generation time, with decreases in growth rate and optimum growth. A. aminolytica and strain GS19h each contain more than one plasmid, while A. facilis contains none. After transformation by electroporation with the plasmid preparation from strain GS19h, an Acidiphilium multivorum strain became highly resistant to cadmium and zinc, and the plasmid profile of the transformed cells was found to differ from that of the original Acidiphilium multivorum strain. Escherichia coli HB101 and DH5 alpha also exhibited more resistance to these metals, especially zinc, after transformation with the total plasmid preparation of strain GS19h or a 24.0-MDa plasmid of the same strain, although no plasmid was detected in the transformed cells. Thus, the results derived mainly through genetic experiments demonstrate for the first time the plasmid-mediated transfer of metal resistance for an acidophilic bacterium.
Collapse
Affiliation(s)
- S Ghosh
- Indian Institute of Chemical Biology, Calcutta, India
| | | | | |
Collapse
|