1
|
Xu Y, Liang X, Hyun CG. Isolation, Characterization, Genome Annotation, and Evaluation of Hyaluronidase Inhibitory Activity in Secondary Metabolites of Brevibacillus sp. JNUCC 41: A Comprehensive Analysis through Molecular Docking and Molecular Dynamics Simulation. Int J Mol Sci 2024; 25:4611. [PMID: 38731830 PMCID: PMC11083829 DOI: 10.3390/ijms25094611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Brevibacillus sp. JNUCC 41, characterized as a plant-growth-promoting rhizobacterium (PGPR), actively participates in lipid metabolism and biocontrol based on gene analysis. This study aimed to investigate the crucial secondary metabolites in biological metabolism; fermentation, extraction, and isolation were performed, revealing that methyl indole-3-acetate showed the best hyaluronidase (HAase) inhibitory activity (IC50: 343.9 μM). Molecular docking results further revealed that the compound forms hydrogen bonds with the residues Tyr-75 and Tyr-247 of HAase (binding energy: -6.4 kcal/mol). Molecular dynamics (MD) simulations demonstrated that the compound predominantly binds to HAase via hydrogen bonding (MM-PBSA binding energy: -24.9 kcal/mol) and exhibits good stability. The residues Tyr-247 and Tyr-202, pivotal for binding in docking, were also confirmed via MD simulations. This study suggests that methyl indole-3-acetate holds potential applications in anti-inflammatory and anti-aging treatments.
Collapse
Affiliation(s)
| | | | - Chang-Gu Hyun
- Department of Beauty and Cosmetology, Jeju Inside Agency and Cosmetic Science Center, Jeju National University, Jeju 63243, Republic of Korea; (Y.X.); (X.L.)
| |
Collapse
|
2
|
Tripathi A, Khan A, Kiran P, Shetty H, Srivastava R. Screening of AS101 analog, organotellurolate (IV) compound 2 for its in vitro biocompatibility, anticancer, and antibacterial activities. Amino Acids 2023:10.1007/s00726-023-03280-7. [PMID: 37227510 DOI: 10.1007/s00726-023-03280-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 05/10/2023] [Indexed: 05/26/2023]
Abstract
Organotellurium compounds are being well researched as potential candidates for their functional roles in therapeutic and clinical biology. Here, we report the in vitro anticancer and antibacterial activities of an AS101 analog, cyclic zwitterionic organotellurolate (IV) compound 2 [Te-{CH2CH(NH3+)COO}(Cl)3]. Different concentrations of compound 2 were exposed to fibroblast L929 and breast cancer MCF-7 cell lines to study its effect on cell viability. The fibroblast cells with good viability confirmed the biocompatibility, and compound 2 also was less hemolytic on RBCs. A cytotoxic effect on MCF-7 breast cancer cell line investigated compound 2 to be anti-cancerous with IC50 value of 2.86 ± 0.02 µg/mL. The apoptosis was confirmed through the cell cycle phase arrest of the organotellurolate (IV) compound 2. Examination of the antibacterial potency compound 2 was done based on the agar disk diffusion, minimum inhibitory concentration, and time-dependent assay for the Gram-positive Bacillus subtilis and Gram-negative Pseudomonas putida. For both bacterial strains, tests were performed with the concentration range of 3.9-500 μg/mL, and the minimum inhibition concentration value was found to be 125 μg/mL. The time-dependent assay suggested the bactericidal activity of organotellurolate (IV) compound, 2 against the bacterial strains.
Collapse
Affiliation(s)
- Abhishek Tripathi
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Amreen Khan
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
- Center for Research in Nanotechnology and Science, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Pallavi Kiran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Harsha Shetty
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Rohit Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India.
| |
Collapse
|
3
|
Tavoosi N, Akhavan Sepahi A, Amoozegar MA, Kiarostami V. Toxic heavy metal/oxyanion tolerance in haloarchaea from some saline and hypersaline ecosystems. J Basic Microbiol 2023; 63:558-569. [PMID: 36892092 DOI: 10.1002/jobm.202200465] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 01/25/2023] [Accepted: 02/18/2023] [Indexed: 03/10/2023]
Abstract
Toxic heavy metal/oxyanion contamination has increased severely through the last decades. In this study, 169 native haloarchaeal strains were isolated from different saline and hypersaline econiches of Iran. After providing pure culture and performing morphological, physiological, and biochemical tests, haloarchaea resistance toward arsenate, selenite, chromate, cadmium, zinc, lead, copper, and mercury were surveyed using an agar dilution method. On the basis of minimum inhibitory concentrations (MICs), the least toxicities were found with selenite and arsenate, while the haloarchaeal strains revealed the highest sensitivity for mercury. On the other hand, the majority of haloarchaeal strains exhibited similar responses to chromate and zinc, whereas the resistance level of the isolates to lead, cadmium, and copper was very heterogeneous. 16 S ribosomal RNA (rRNA) gene sequence analysis revealed that most haloarchaeal strains belong to the Halorubrum and Natrinema genera. The obtained results from this study showed that among the identified isolates, Halococcus morrhuae strain 498 had an exceptional resistance toward selenite and cadmium (64 and 16 mM, respectively). Also, Halovarius luteus strain DA5 exhibited a remarkable tolerance against copper (32 mM). Moreover, strain Salt5, identified as Haloarcula sp., was the only strain that could tolerate all eight tested heavy metals/oxyanions and had a significant tolerance of mercury (1.5 mM).
Collapse
Affiliation(s)
- Nazanin Tavoosi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Abbas Akhavan Sepahi
- Department of Microbiology, Faculty of Biological Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Vahid Kiarostami
- Department of Chemistry, Faculty of Basic Sciences, Islamic Azad University, North Tehran Branch, Tehran, Iran
| |
Collapse
|
4
|
Shi LD, Wang M, Li ZY, Lai CY, Zhao HP. Dissolved oxygen has no inhibition on methane oxidation coupled to selenate reduction in a membrane biofilm reactor. CHEMOSPHERE 2019; 234:855-863. [PMID: 31252357 DOI: 10.1016/j.chemosphere.2019.06.138] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 06/02/2019] [Accepted: 06/18/2019] [Indexed: 06/09/2023]
Abstract
Methane oxidation coupled to selenate reduction has been suggested as a promising technology to bio-remediate selenium contaminated environments. However, the effect of dissolved oxygen (DO) on this process remained unclear. Here, we investigate the feasibility of selenate removal at two distinct DO concentrations. A membrane biofilm reactor (MBfR) was initially fed with ∼5 mg Se/L and then lowered to ∼1 mg Se/L of selenate, under anoxic condition containing ∼0.2 mg/L of influent DO. Selenate removal reached approximately 90% without selenite accumulation after one-month operation. Then 6-7 mg/L of DO was introduced and showed no apparent effect on selenate reduction in the subsequent operation. Electron microscopy suggested elevated oxygen exposure did not affect microbial shapes. 16S rDNA sequencing showed the aerobic methanotroph Methylocystis increased, while possible selenate reducers, Ignavibacterium and Bradyrhizobium, maintained stable after oxygen boost. Gene analysis indicated that nitrate/nitrite reductases positively correlated with selenate removal flux and were not remarkably affected by oxygen addition. Reversely, enzymes related with aerobic methane oxidation were obviously improved. This study provides a potential technology for selenate removal from oxygenated environments in a methane-based MBfR.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China
| | - Zi-Yan Li
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Chun-Yu Lai
- Advanced Water Management Centre, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
5
|
Zhang H, Zhou H, Bai J, Li Y, Yang J, Ma Q, Qu Y. Biosynthesis of selenium nanoparticles mediated by fungus Mariannaea sp. HJ and their characterization. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.02.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
6
|
Biosynthesis of selenium nanoparticles and effects of selenite, selenate, and selenomethionine on cell growth and morphology in Rahnella aquatilis HX2. Appl Microbiol Biotechnol 2018; 102:6191-6205. [PMID: 29806064 DOI: 10.1007/s00253-018-9060-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/23/2018] [Accepted: 04/27/2018] [Indexed: 01/13/2023]
Abstract
Rahnella aquatilis HX2 (proteobacteria) shows tolerance to selenium (Se). The minimum inhibitory concentrations of selenomethionine (Se-Met), selenite [Se (IV)], and selenate [Se (VI)] to HX2 are 4.0, 85.0, and 590.0 mM, respectively. HX2 shows the ability to reduce Se (IV) and Se (VI) to elemental Se nanoparticles (SeNPs). The maximum production of SeNPs by HX2 strain is 1.99 and 3.85 mM in Luria-Bertani (LB) broth with 5 mM Se (IV) and 10 mM Se (VI), respectively. The morphology of SeNPs and cells were observed by transmission electron microscope, environmental scanning electron microscope, and selected area electric diffraction detector. Spherical SeNPs with amorphous structure were found in the cytoplasm, membrane, and exterior of cells. Morphological variations of the cell membrane were further confirmed by the release of cellular materials absorbed at 260 nm. Flagella were inhibited and cell sizes were 1.8-, 1.6-, and 1.2-fold increases with the Se-Met, Se (VI), and Se (IV) treatments, respectively. The real-time quantitative PCR analysis indicated that some of the genes controlling Se metabolism or cell morphology, including cysA, cysP, rodA, ZntA, and ada, were significantly upregulated, while grxA, fliO, flgE, and fliC genes were significantly downregulated in those Se treatments. This study provided novel valuable information concerning the cell morphology along with biological synthesis process of SeNPs in R. aquatilis and demonstrated that the strain HX2 could be applied in both biosynthesis of SeNPs and in management of environmental Se pollution.
Collapse
|
7
|
Zare B, Nami M, Shahverdi AR. Tracing Tellurium and Its Nanostructures in Biology. Biol Trace Elem Res 2017; 180:171-181. [PMID: 28378115 DOI: 10.1007/s12011-017-1006-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 03/28/2017] [Indexed: 12/15/2022]
Abstract
Tellurium (Te) is a semimetal rare element in nature. Together with oxygen, sulfur (S), and selenium (Se), Te is considered a member of chalcogen group. Over recent decades, Te applications continued to emerge in different fields including metallurgy, glass industry, electronics, and applied chemical industries. Along these lines, Te has recently attracted research attention in various fields. Though Te exists in biologic organisms such as microbes, yeast, and human body, its importance and role and some of its potential implications have long been ignored. Some promising applications of Te using its inorganic and organic derivatives including novel Te nanostructures are being introduced. Before discovery and straightforward availability of antibiotics, Te had considered and had been used as an antibacterial element. Antilishmaniasis, antiinflammatory, antiatherosclerotic, and immuno-modulating properties of Te have been described for many years, while the innovative applications of Te have started to emerge along with nanotechnological advances over the recent years. Te quantum dots (QDs) and related nanostructures have proposed novel applications in the biological detection systems such as biosensors. In addition, Te nanostructures are used in labeling, imaging, and targeted drug delivery systems and are tested for antibacterial or antifungal properties. In addition, Te nanoparticles show novel lipid-lowering, antioxidant, and free radical scavenging properties. This review presents an overview on the novel forms of Te, their potential applications, as well as related toxicity profiles.
Collapse
Affiliation(s)
- Bijan Zare
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Lane 29, Ghasrdasht Street, Shiraz, 187918989, Iran.
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Lane 29, Gasrdasht Street, Shiraz, 187918989, Iran
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Lane 29, Gasrdasht Street, Shiraz, 187918989, Iran
| | - Ahmad-Reza Shahverdi
- Department of Pharmaceutical Biotechnology and Recombinant Vaccine Research Center, Tehran University of Medical Sciences, School of Pharmacy, Enghelab Avenue, Tehran, Iran
| |
Collapse
|
8
|
Ghanbarinia F, Kheirbadi M, Mollania N. Comamonas sp. halotolerant bacterium from industrial zone of Jovein of Sabzevar introduced as good candidate to remove industrial pollution. IRANIAN JOURNAL OF MICROBIOLOGY 2015; 7:273-80. [PMID: 26719784 PMCID: PMC4695509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
BACKGROUND AND OBJECTIVES Heavy metals are considered as high risk biocides due to their harmful effects on human health, the environment and other living organisms. Bacterial strains showing resistance to heavy metals has been used for removing such toxic materials from the environment. In this study we isolated and characterized a heavy metals-resistance halophilic bacterial strains from Kal shoor Jovein of Sabzevar, one of the industrial zone of Khorasan-e-Razavi province in Iran and has naturally saline oils. MATERIALS AND METHODS Strain JC-66 is heavy metals-resistance halophilic bacterial strains isolated from Kal shoor Jovein of Sabzevar. The 16S rDNA gene was sequenced to identify this bacterium. The appropriate conditions for its potency to remove the lead were tested in various temprature, pH and agitation speed. The resistance mechanism of JC-66 to lead were investigated. RESULTS JC-66 is a Comamonas sp. according to 16S rDNA sequence analysis. Based on minimum inhibitory concentration (MIC) results, the isolated strain has high resistance to the lead metal. The optimal condition for lead removal was exhibited in neutral medium (pH 7) incubation temperature 37 °C, and shaking rate of 180 rpm for JC-66. X-Ray Diffraction results also are indicative of adsorption mechanism to lead metal uptake. Plasmid extraction was performed to confirm the role of plasmids in bacterial resistance to lead. CONCLUSION It can be concluded that the mechanism of resistance to heavy metals in the studied strain, is the result of an expression plasmid, and adsorption. It was concluded that JC-66 is able to be one of the best candidates to remove industrial pollution because it showed high resistance to lead.
Collapse
Affiliation(s)
- Fahimeh Ghanbarinia
- Basic Science Department, Faculty of Biology, Hakim Sabzevary University, Sabzevar, Iran, Post code:9617976487
| | - Mitra Kheirbadi
- Basic Science Department, Faculty of Biology, Hakim Sabzevary University, Sabzevar, Iran, Post code:9617976487
| | - Nasrin Mollania
- Basic Science Department, Faculty of Biology, Hakim Sabzevary University, Sabzevar, Iran, Post code:9617976487
| |
Collapse
|
9
|
Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L. Plant growth promoting rhizobia: challenges and opportunities. 3 Biotech 2015; 5:355-377. [PMID: 28324544 PMCID: PMC4522733 DOI: 10.1007/s13205-014-0241-x] [Citation(s) in RCA: 149] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 07/19/2014] [Indexed: 11/24/2022] Open
Abstract
Modern agriculture faces challenges, such as loss of soil fertility, fluctuating climatic factors and increasing pathogen and pest attacks. Sustainability and environmental safety of agricultural production relies on eco-friendly approaches like biofertilizers, biopesticides and crop residue return. The multiplicity of beneficial effects of microbial inoculants, particularly plant growth promoters (PGP), emphasizes the need for further strengthening the research and their use in modern agriculture. PGP inhabit the rhizosphere for nutrients from plant root exudates. By reaction, they help in (1) increased plant growth through soil nutrient enrichment by nitrogen fixation, phosphate solubilization, siderophore production and phytohormones production (2) increased plant protection by influencing cellulase, protease, lipase and β-1,3 glucanase productions and enhance plant defense by triggering induced systemic resistance through lipopolysaccharides, flagella, homoserine lactones, acetoin and butanediol against pests and pathogens. In addition, the PGP microbes contain useful variation for tolerating abiotic stresses like extremes of temperature, pH, salinity and drought; heavy metal and pesticide pollution. Seeking such tolerant PGP microbes is expected to offer enhanced plant growth and yield even under a combination of stresses. This review summarizes the PGP related research and its benefits, and highlights the benefits of PGP rhizobia belonging to the family Rhizobiaceae, Phyllobacteriaceae and Bradyrhizobiaceae.
Collapse
Affiliation(s)
- Subramaniam Gopalakrishnan
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Arumugam Sathya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajendran Vijayabharathi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Rajeev Kumar Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - C L Laxmipathi Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, 502 324, Andhra Pradesh, India.
| |
Collapse
|
10
|
Alford ÉR, Lindblom SD, Pittarello M, Freeman JL, Fakra SC, Marcus MA, Broeckling C, Pilon-Smits EAH, Paschke MW. Roles of rhizobial symbionts in selenium hyperaccumulation in Astragalus (Fabaceae). AMERICAN JOURNAL OF BOTANY 2014; 101:1895-905. [PMID: 25366855 DOI: 10.3732/ajb.1400223] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
PREMISE OF THE STUDY Are there dimensions of symbiotic root interactions that are overlooked because plant mineral nutrition is the foundation and, perhaps too often, the sole explanation through which we view these relationships? In this paper we investigate how the root nodule symbiosis in selenium (Se) hyperaccumulator and nonaccumulator Astragalus species influences plant selenium (Se) accumulation. METHODS In greenhouse studies, Se was added to nodulated and nonnodulated hyperaccumulator and nonaccumulator Astragalus plants, followed by investigation of nitrogen (N)-Se relationships. Selenium speciation was also investigated, using x-ray microprobe analysis and liquid chromatography-mass spectrometry (LC-MS). KEY RESULTS Nodulation enhanced biomass production and Se to S ratio in both hyperaccumulator and nonaccumulator plants. The hyperaccumulator contained more Se when nodulated, while the nonaccumulator contained less S when nodulated. Shoot [Se] was positively correlated with shoot N in Se-hyperaccumulator species, but not in nonhyperaccumulator species. The x-ray microprobe analysis showed that hyperaccumulators contain significantly higher amounts of organic Se than nonhyperaccumulators. LC-MS of A. bisulcatus leaves revealed that nodulated plants contained more γ-glutamyl-methylselenocysteine (γ-Glu-MeSeCys) than nonnodulated plants, while MeSeCys levels were similar. CONCLUSIONS Root nodule mutualism positively affects Se hyperaccumulation in Astragalus. The microbial N supply particularly appears to contribute glutamate for the formation of γ-Glu-MeSeCys. Our results provide insight into the significance of symbiotic interactions in plant adaptation to edaphic conditions. Specifically, our findings illustrate that the importance of these relationships are not limited to alleviating macronutrient deficiencies.
Collapse
Affiliation(s)
- Élan R Alford
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Stormy D Lindblom
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Marco Pittarello
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - John L Freeman
- Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Sirine C Fakra
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Matthew A Marcus
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 USA
| | - Corey Broeckling
- Proteomics and Metabolomics Facility, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Elizabeth A H Pilon-Smits
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Biology Department, Colorado State University, Fort Collins, Colorado 80523 USA
| | - Mark W Paschke
- Graduate Degree Program in Ecology, Colorado State University, Fort Collins, Colorado 80523 USA Department of Forest and Rangeland Stewardship, Colorado State University, Fort Collins, Colorado 80523 USA
| |
Collapse
|
11
|
Alavi S, Amoozegar MA, Khajeh K. Enzyme(s) responsible for tellurite reducing activity in a moderately halophilic bacterium, Salinicoccus iranensis strain QW6. Extremophiles 2014; 18:953-61. [PMID: 24984690 DOI: 10.1007/s00792-014-0665-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 06/05/2014] [Indexed: 10/25/2022]
Abstract
Oxyanions of tellurium, like tellurate (TeO4 (2-)) and tellurite (TeO3 (2-)), are highly toxic for most microorganisms. There are a few reports on the bacterial tellurite resistance mechanism(s). Salinicoccus iranensis, a Gram-positive halophilic bacterium, shows high tellurite resistance and NADH-dependent tellurite reduction activity in vitro. Since little is known regarding TeO3 (2-) resistance mechanisms in halophilic microorganisms, here one of the enzymatic reduction activities presented in this microorganism is investigated. To enhance the enzymatic activity during purification, the effect of different parameters including time, inoculation, different pHs, different tellurite concentrations and different salts were optimized. We also examined the tellurite removal rates by diethyldithiocarbamate (DDTC) during optimization. In the culture medium the optimum conditions obtained showed that at 30 h, 2 % inoculum, pH 7.5, without tellurite and with 5 % NaCl (w/v) the highest enzyme activity and tellurite removal were observed. Results of the purification procedure done by hydroxyapatite batch-mode, ammonium sulfate precipitation, followed by phenyl-Sepharose and Sephadex G-100 column chromatography, showed that the enzyme consisted of three subunits with molecular masses of 135, 63 and 57 kDa. In addition to tellurite reduction activity, the enzyme was able to reduce nitrate too. Our study extends the knowledge regarding this process in halophilic microorganisms. Besides, this approach may suggest an application for the organism or the enzyme itself to be used for bioremediation of polluted areas with different contaminants due to its nitrate reductase activity.
Collapse
Affiliation(s)
- Sana Alavi
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | | | | |
Collapse
|
12
|
Li B, Liu N, Li Y, Jing W, Fan J, Li D, Zhang L, Zhang X, Zhang Z, Wang L. Reduction of selenite to red elemental selenium by Rhodopseudomonas palustris strain N. PLoS One 2014; 9:e95955. [PMID: 24759917 PMCID: PMC3997485 DOI: 10.1371/journal.pone.0095955] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Accepted: 04/01/2014] [Indexed: 02/03/2023] Open
Abstract
The trace metal selenium is in demand for health supplements to human and animal nutrition. We studied the reduction of selenite (SeO₃⁻²) to red elemental selenium by Rhodopseudomonas palustris strain N. This strain was cultured in a medium containing SeO₃⁻² and the particles obtained from cultures were analyzed using transmission electron microscopy (TEM), energy dispersive microanalysis (EDX) and X ray diffraction analysis (XRD). Our results showed the strain N could reduce SeO₃⁻² to red elemental selenium. The diameters of particles were 80-200 nm. The bacteria exhibited significant tolerance to SeO₃⁻² up to 8.0 m mol/L concentration with an EC₅₀ value of 2.4 m mol/L. After 9 d of cultivation, the presence of SeO₃²⁻ up to 1.0 m mol/L resulted in 99.9% reduction of selenite, whereas 82.0% (p<0.05), 31.7% (p<0.05) and 2.4% (p<0.05) reduction of SeO₃⁻² was observed at 2.0, 4.0 and 8.0 m mol/L SeO₃²⁻ concentrations, respectively. This study indicated that red elemental selenium was synthesized by green technology using Rhodopseudomonas palustris strain N. This strain also indicated a high tolerance to SeO₃⁻². The finding of this work will contribute to the application of selenium to human health.
Collapse
Affiliation(s)
- Baozhen Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Na Liu
- School of Life Science, Shanxi University, Taiyuan, China
| | - Yongquan Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Weixin Jing
- School of Life Science, Shanxi University, Taiyuan, China
| | - Jinhua Fan
- School of Life Science, Shanxi University, Taiyuan, China
| | - Dan Li
- School of Life Science, Shanxi University, Taiyuan, China
| | - Longyan Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | | | - Zhaoming Zhang
- School of Life Science, Shanxi University, Taiyuan, China
| | - Lan Wang
- School of Life Science, Shanxi University, Taiyuan, China
| |
Collapse
|
13
|
Valdez Barillas JR, Quinn CF, Freeman JL, Lindblom SD, Fakra SC, Marcus MA, Gilligan TM, Alford ÉR, Wangeline AL, Pilon-Smits EA. Selenium distribution and speciation in the hyperaccumulator Astragalus bisulcatus and associated ecological partners. PLANT PHYSIOLOGY 2012; 159:1834-44. [PMID: 22645068 PMCID: PMC3425216 DOI: 10.1104/pp.112.199307] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 05/25/2012] [Indexed: 05/07/2023]
Abstract
The goal of this study was to investigate how plant selenium (Se) hyperaccumulation may affect ecological interactions and whether associated partners may affect Se hyperaccumulation. The Se hyperaccumulator Astragalus bisulcatus was collected in its natural seleniferous habitat, and x-ray fluorescence mapping and x-ray absorption near-edge structure spectroscopy were used to characterize Se distribution and speciation in all organs as well as in encountered microbial symbionts and herbivores. Se was present at high levels (704-4,661 mg kg(-1) dry weight) in all organs, mainly as organic C-Se-C compounds (i.e. Se bonded to two carbon atoms, e.g. methylselenocysteine). In nodule, root, and stem, up to 34% of Se was found as elemental Se, which was potentially due to microbial activity. In addition to a nitrogen-fixing symbiont, the plants harbored an endophytic fungus that produced elemental Se. Furthermore, two Se-resistant herbivorous moths were discovered on A. bisulcatus, one of which was parasitized by a wasp. Adult moths, larvae, and wasps all accumulated predominantly C-Se-C compounds. In conclusion, hyperaccumulators live in association with a variety of Se-resistant ecological partners. Among these partners, microbial endosymbionts may affect Se speciation in hyperaccumulators. Hyperaccumulators have been shown earlier to negatively affect Se-sensitive ecological partners while apparently offering a niche for Se-resistant partners. Through their positive and negative effects on different ecological partners, hyperaccumulators may influence species composition and Se cycling in seleniferous ecosystems.
Collapse
Affiliation(s)
| | | | | | - Stormy D. Lindblom
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Sirine C. Fakra
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Matthew A. Marcus
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Todd M. Gilligan
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Élan R. Alford
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Ami L. Wangeline
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| | - Elizabeth A.H. Pilon-Smits
- Department of Biology (J.R.V.B., C.F.Q., S.D.L., E.A.H.P.S.), Department of Bioagricultural Sciences and Pest Management (T.M.G.), and Department of Forest and Rangeland Stewardship (E.R.A.), Colorado State University, Fort Collins, Colorado 80523; Department of Biology, Texas A&M University, San Antonio, Texas 78224 (J.R.V.B.); Department of Biology California State University, Fresno, California 93740 (J.L.F.); Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720 (S.C.F., M.A.M.); and Department of Biology, Laramie County Community College, Cheyenne, Wyoming 82007 (A.L.W.)
| |
Collapse
|
14
|
Ruiz-Lozano JM, Azcón R. Brevibacillus, Arbuscular Mycorrhizae and Remediation of Metal Toxicity in Agricultural Soils. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19577-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
15
|
Osman O, Tanguichi H, Ikeda K, Park P, Tanabe-Hosoi S, Nagata S. Copper-resistant halophilic bacterium isolated from the polluted Maruit Lake, Egypt. J Appl Microbiol 2010; 108:1459-70. [DOI: 10.1111/j.1365-2672.2009.04574.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Arora NK, Khare E, Singh S, Maheshwari DK. Effect of Al and heavy metals on enzymes of nitrogen metabolism of fast and slow growing rhizobia under explanta conditions. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0237-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Hunter WJ, Manter DK. Reduction of Selenite to Elemental Red Selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 2009; 58:493-8. [DOI: 10.1007/s00284-009-9358-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Revised: 12/23/2008] [Accepted: 12/25/2008] [Indexed: 11/28/2022]
|
18
|
Hunter WJ, Kuykendall LD, Manter DK. Rhizobium selenireducens sp. nov.: a selenite-reducing alpha-Proteobacteria isolated from a bioreactor. Curr Microbiol 2007; 55:455-60. [PMID: 17805926 DOI: 10.1007/s00284-007-9020-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2007] [Accepted: 06/21/2007] [Indexed: 10/22/2022]
Abstract
A Gram-negative, nonpigmented bacterium designated strain B1 was isolated from a laboratory bioreactor that reduced selenate to elemental red selenium (Se(0)). 16S rRNA gene-sequence alignment identified the isolate as a Rhizobium sp. belonging to the Rhizobium clade, which includes R. daejeonense, R. giardinii, R. undicola, R. larrymoorei, R. radiobacter, R. rubi, and R. vitis. R. radiobacter and R. rubi are its closest relatives as indicated by 16S rRNA gene-sequence alignments, which differ from strain B1 by 2.6% and 2.8%, respectively. Within this group, strains that show variances > 0.8% to 2.2% have been classified as different species. The major cellular fatty acids present in the B1 strain were C16:0 (1.8%), C18:0 (3.38%), 18:0 3-OH (1.6%), 18:1 omega7c (86.8%), 19:0 cycloomega8c (1.5%), and summed features 2 (3.8%) and 3 (1.2%). The large amount of 18:1 omega7c present is constant with members of this group of bacteria, but the small amounts of 16:0, 19:0 cycloomega8c, and summed feature 3 shows variance from R. radiobacter and R. rubi. The strain's phenotypic and biochemical characteristics are consistent with its placement in this genus.
Collapse
Affiliation(s)
- W J Hunter
- United States Department of Agriculture-Agricultural Research Service, 2150-D Centre Avenue, Fort Collins, CO 80526-8119, USA.
| | | | | |
Collapse
|
19
|
Asad S, Amoozegar MA, Pourbabaee AA, Sarbolouki MN, Dastgheib SMM. Decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. BIORESOURCE TECHNOLOGY 2007; 98:2082-8. [PMID: 17055263 DOI: 10.1016/j.biortech.2006.08.020] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2006] [Revised: 08/14/2006] [Accepted: 08/17/2006] [Indexed: 05/12/2023]
Abstract
Studies were carried out on the decolorization of textile azo dyes by newly isolated halophilic and halotolerant bacteria. Among the 27 strains of halophilic and halotolerant bacteria isolated from effluents of textile industries, three showed remarkable ability in decolorizing the widely utilized azo dyes. Phenotypic characterization and phylogenetic analysis based on 16S rDNA sequence comparisons indicate that these strains belonged to the genus Halomonas. The three strains were able to decolorize azo dyes in a wide range of NaCl concentration (up to 20%w/v), temperature (25-40 degrees C), and pH (5-11) after 4 days of incubation in static culture. They could decolorize the mixture of dyes as well as pure dyes. These strains also readily grew in and decolorized the high concentrations of dye (5000 ppm) and could tolerate up to 10,000 ppm of the dye. UV-Vis analyses before and after decolorization and the colorless bacterial biomass after decolorization suggested that decolorization was due to biodegradation, rather than inactive surface adsorption. Analytical studies based on HPLC showed that the principal decolorization was reduction of the azo bond, followed by cleavage of the reduced bond.
Collapse
Affiliation(s)
- S Asad
- Department of Biotechnology, School of Biology, University College of Science, University of Tehran, Tehran, Iran
| | | | | | | | | |
Collapse
|
20
|
Amoozegar MA, Hamedi J, Dadashipour M, Shariatpanahi S. Effect of Salinity on the Tolerance to Toxic Metals and Oxyanions in Native Moderately Halophilic Spore-forming Bacilli. World J Microbiol Biotechnol 2005. [DOI: 10.1007/s11274-005-1804-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Mehmannavaz R, Prasher SO, Markarian N, Ahmad D. Biofiltration of residual fertilizer nitrate and atrazine by Rhizobium meliloti in saturated and unsaturated sterile soil columns. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2001; 35:1610-1615. [PMID: 11329710 DOI: 10.1021/es0015693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This study was undertaken to investigate whether microbial bioaugmentation of subsurface soil with subsurface irrigation could be used as a biofiltration/biocontrol technology for agricultural pollutants. Nine Plexiglas columns, 458 mm long x 139 mm in diameter, were packed with a sterilized sandy loam soil. Subsurface irrigation, through a controlled water table management system, was used to deliver bacteria, Rhizobium meliloti A-025, to the soil and to maintain aerobic (unsaturated) or anaerobic (saturated) conditions in the columns. Nitrate and atrazine, a fertilizer and a corn herbicide, were applied to the soil surface, and leaching was affected by simulated rainfall events. The soil and drainage waters were analyzed for nitrate and atrazine residues after each rainfall simulation throughout the experimental period during which the soil was kept saturated for a total of 80 days and unsaturated for a total of 70 days. The monitoring of transport and survival of the implanted bacterial strain (A-025) showed that subsurface irrigation was successful in introducing and transporting the bacteria throughout the soil columns. During the saturated period, significantly more (95% probability) nitrate-N leached into the drainage waters from the control columns than from the bioaugmented columns; the increase being 450% or more for the abiotic control columns. The amount of atrazine that leached into the drainage waters during the unsaturated period was also significantly more from control columns as opposed to bioaugmented columns, with the increase being 262%.
Collapse
Affiliation(s)
- R Mehmannavaz
- Department of Agricultural and Biosystems Engineering, Macdonald Campus, McGill University, 21111 Lakeshore Road, Ste. Anne-de-Bellvue, Quebec, H9X 3V9 Canada
| | | | | | | |
Collapse
|
22
|
Mougel C, Cournoyer B, Nesme X. Novel tellurite-amended media and specific chromosomal and Ti plasmid probes for direct analysis of soil populations of Agrobacterium biovars 1 and 2. Appl Environ Microbiol 2001; 67:65-74. [PMID: 11133429 PMCID: PMC92517 DOI: 10.1128/aem.67.1.65-74.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ecology and biodiversity studies of Agrobacterium spp. require tools such as selective media and DNA probes. Tellurite was tested as a selective agent and a supplement of previously described media for agrobacteria. The known biodiversity within the genus was taken into account when the selectivity of K(2)TeO(3) was analyzed and its potential for isolating Agrobacterium spp. directly from soil was evaluated. A K(2)TeO(3) concentration of 60 ppm was found to favor the growth of agrobacteria and restrict the development of other bacteria. Morphotypic analyses were used to define agrobacterial colony types, which were readily distinguished from other colonies. The typical agrobacterial morphotype allowed direct determination of the densities of agrobacterial populations from various environments on K(2)TeO(3)-amended medium. The bona fide agrobacterium colonies growing on media amended with K(2)TeO(3) were confirmed to be Agrobacterium colonies by using 16S ribosomal DNA (rDNA) probes. Specific 16S rDNA probes were designed for Agrobacterium biovar 1 and related species (Agrobacterium rubi and Agrobacterium fici) and for Agrobacterium biovar 2. Specific pathogenic probes from different Ti plasmid regions were used to determine the pathogenic status of agrobacterial colonies. Various morphotype colonies from bulk soil suspensions were characterized by colony blot hybridization with 16S rDNA and pathogenic probes. All the Agrobacterium-like colonies obtained from soil suspensions on amended media were found to be bona fide agrobacteria. Direct colony counting of agrobacterial populations could be done. We found 10(3) to 10(4) agrobacteria. g of dry soil(-1) in a silt loam bulk soil cultivated with maize. All of the strains isolated were nonpathogenic bona fide Agrobacterium biovar 1 strains.
Collapse
Affiliation(s)
- C Mougel
- Microbial Ecology, UMR-CNRS 5557, Université Claude Bernard-Lyon I, F-69622 Villeurbanne cedex, France
| | | | | |
Collapse
|
23
|
Liu M, Turner RJ, Winstone TL, Saetre A, Dyllick-Brenzinger M, Jickling G, Tari LW, Weiner JH, Taylor DE. Escherichia coli TehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J Bacteriol 2000; 182:6509-13. [PMID: 11053398 PMCID: PMC94800 DOI: 10.1128/jb.182.22.6509-6513.2000] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2000] [Accepted: 09/01/2000] [Indexed: 11/20/2022] Open
Abstract
The Escherichia coli chromosomal determinant for tellurite resistance consists of two genes (tehA and tehB) which, when expressed on a multicopy plasmid, confer resistance to K(2)TeO(3) at 128 microg/ml, compared to the MIC of 2 microg/ml for the wild type. TehB is a cytoplasmic protein which possesses three conserved motifs (I, II, and III) found in S-adenosyl-L-methionine (SAM)-dependent non-nucleic acid methyltransferases. Replacement of the conserved aspartate residue in motif I by asparagine or alanine, or of the conserved phenylalanine in motif II by tyrosine or alanine, decreased resistance to background levels. Our results are consistent with motifs I and II in TehB being involved in SAM binding. Additionally, conformational changes in TehB are observed upon binding of both tellurite and SAM. The hydrodynamic radius of TehB measured by dynamic light scattering showed a approximately 20% decrease upon binding of both tellurite and SAM. These data suggest that TehB utilizes a methyltransferase activity in the detoxification of tellurite.
Collapse
Affiliation(s)
- M Liu
- Department of Medical Microbiology and Immunology, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zahran HH. Rhizobium-legume symbiosis and nitrogen fixation under severe conditions and in an arid climate. Microbiol Mol Biol Rev 1999; 63:968-89, table of contents. [PMID: 10585971 PMCID: PMC98982 DOI: 10.1128/mmbr.63.4.968-989.1999] [Citation(s) in RCA: 526] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Biological N(2) fixation represents the major source of N input in agricultural soils including those in arid regions. The major N(2)-fixing systems are the symbiotic systems, which can play a significant role in improving the fertility and productivity of low-N soils. The Rhizobium-legume symbioses have received most attention and have been examined extensively. The behavior of some N(2)-fixing systems under severe environmental conditions such as salt stress, drought stress, acidity, alkalinity, nutrient deficiency, fertilizers, heavy metals, and pesticides is reviewed. These major stress factors suppress the growth and symbiotic characteristics of most rhizobia; however, several strains, distributed among various species of rhizobia, are tolerant to stress effects. Some strains of rhizobia form effective (N(2)-fixing) symbioses with their host legumes under salt, heat, and acid stresses, and can sometimes do so under the effect of heavy metals. Reclamation and improvement of the fertility of arid lands by application of organic (manure and sewage sludge) and inorganic (synthetic) fertilizers are expensive and can be a source of pollution. The Rhizobium-legume (herb or tree) symbiosis is suggested to be the ideal solution to the improvement of soil fertility and the rehabilitation of arid lands and is an important direction for future research.
Collapse
Affiliation(s)
- H H Zahran
- Department of Botany, Faculty of Science, Beni-Suef, 62511 Egypt
| |
Collapse
|
25
|
Transformation and tolerance of tellurite by filamentous fungi: accumulation, reduction, and volatilization. ACTA ACUST UNITED AC 1999. [DOI: 10.1017/s0953756298007102] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
26
|
Louvrier P, Laguerre G, Amarger N. Distribution of Symbiotic Genotypes in Rhizobium leguminosarum biovar viciae Populations Isolated Directly from Soils. Appl Environ Microbiol 1996; 62:4202-5. [PMID: 16535447 PMCID: PMC1388985 DOI: 10.1128/aem.62.11.4202-4205.1996] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distribution of symbiotic (Sym) plasmid types across background genotypes was investigated in two field populations of Rhizobium leguminosarum biovar viciae isolated directly from soils. PCR-based methods were used to characterize the background genotypes and the Sym gene types. Identical Sym gene types were associated with a variable range of background genotypes, while the same background genotype could harbor distinct Sym gene types. Random distributions of Sym gene types in the background genotypes were observed in the two soil populations. These results suggest that Sym plasmid transfer is less restricted than previously thought on the basis of the analysis of strains isolated from legume nodules.
Collapse
|
27
|
Sullivan JT, Eardly BD, van Berkum P, Ronson CW. Four unnamed species of nonsymbiotic rhizobia isolated from the rhizosphere of Lotus corniculatus. Appl Environ Microbiol 1996; 62:2818-25. [PMID: 8702274 PMCID: PMC168067 DOI: 10.1128/aem.62.8.2818-2825.1996] [Citation(s) in RCA: 125] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Previously, we found that genetically diverse rhizobia nodulating Lotus corniculatus at a field site devoid of naturalized rhizobia had symbiotic DNA regions identical to those of ICMP3153, the inoculant strain used at the site (J. T. Sullivan, H. N. Patrick, W. L. Lowther, D. B. Scott, and C. W. Ronson, Proc. Natl. Acad. Sci. USA 92:8985-8989, 1995). In this study, we characterized seven nonsymbiotic rhizobial isolates from the rhizosphere of L. corniculatus. These included two from plants at the field site sampled by Sullivan et al. and five from plants at a new field plot adjacent to that site. The isolates did not nodulate Lotus species or hybridize to symbiotic gene probes but did hybridize to genomic DNA probes from Rhizobium loti. Their genetic relationships with symbiotic isolates obtained from the same sites, with inoculant strain ICMP3153, and with R. loti NZP2213T were determined by three methods. Genetic distance estimates based on genomic DNA-DNA hybridization and multilocus enzyme electrophoresis were correlated but were not consistently reflected by 16S rRNA nucleotide sequence divergence. The nonsymbiotic isolates represented four genomic species that were related to R. loti; the diverse symbiotic isolates from the site belonged to one of these species. The inoculant strain ICMP3153 belonged to a fifth genomic species that was more closely related to Rhizobium huakuii. These results support the proposal that nonsymbiotic rhizobia persist in soils in the absence of legumes and acquire symbiotic genes from inoculant strains upon introduction of host legumes.
Collapse
Affiliation(s)
- J T Sullivan
- Department of Microbiology, University of Otago, Dunedin, New Zealand
| | | | | | | |
Collapse
|