1
|
Arora PK. Bacilli-Mediated Degradation of Xenobiotic Compounds and Heavy Metals. Front Bioeng Biotechnol 2020; 8:570307. [PMID: 33163478 PMCID: PMC7581956 DOI: 10.3389/fbioe.2020.570307] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/27/2020] [Indexed: 11/13/2022] Open
Abstract
Xenobiotic compounds are man-made compounds and widely used in dyes, drugs, pesticides, herbicides, insecticides, explosives, and other industrial chemicals. These compounds have been released into our soil and water due to anthropogenic activities and improper waste disposal practices and cause serious damage to aquatic and terrestrial ecosystems due to their toxic nature. The United States Environmental Protection Agency (USEPA) has listed several toxic substances as priority pollutants. Bacterial remediation is identified as an emerging technique to remove these substances from the environment. Many bacterial genera are actively involved in the degradation of toxic substances. Among the bacterial genera, the members of the genus Bacillus have a great potential to degrade or transform various toxic substances. Many Bacilli have been isolated and characterized by their ability to degrade or transform a wide range of compounds including both naturally occurring substances and xenobiotic compounds. This review describes the biodegradation potentials of Bacilli toward various toxic substances, including 4-chloro-2-nitrophenol, insecticides, pesticides, herbicides, explosives, drugs, polycyclic aromatic compounds, heavy metals, azo dyes, and aromatic acids. Besides, the advanced technologies used for bioremediation of environmental pollutants using Bacilli are also briefly described. This review will increase our understanding of Bacilli-mediated degradation of xenobiotic compounds and heavy metals.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Microbiology, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| |
Collapse
|
2
|
Ye L, Liu W, Shi Q, Jing C. Arsenic mobilization in spent nZVI waste residue: Effect of Pantoea sp. IMH. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 230:1081-1089. [PMID: 28764124 DOI: 10.1016/j.envpol.2017.07.074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/19/2017] [Accepted: 07/21/2017] [Indexed: 06/07/2023]
Abstract
Nanoscale zero-valent iron (nZVI) is an effective arsenic (As) scavenger. However, spent nZVI may pose a higher environmental risk than our initial thought in the presence of As-reducing bacteria. Therefore, our motivation was to explore the As redox transformation and release in spent nZVI waste residue in contact with Pantoea sp. IMH, an arsC gene container adopting the As detoxification pathway. Our incubation results showed that IMH preferentially reduce soluble As(V), not solid-bound As(V), and was innocent in elevating total dissolved As concentrations. μ-XRF and As μ-XANES spectra clearly revealed the heterogeneity and complexity of the inoculated and control samples. Nevertheless, the surface As local coordination was not affected by the presence of IMH as evidenced by similar As-Fe atomic distance (3.32-3.36 Å) and coordination number (1.9) in control and inoculated samples. The Fe XANES results suggested that magnetite in nZVI residue was partly transformed to ferrihydrite, and the IMH activity slowed down the nZVI aging process. IMH distorted Fe local coordination without change its As adsorption capacity as suggested by Mössbauer spectroscopy. Arsenic retention is not inevitably enhanced by in situ formed secondary Fe minerals, but depends on the relative As affinity between the primary and secondary iron minerals.
Collapse
Affiliation(s)
- Li Ye
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenjing Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiantao Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Wang L, Wang J, Jing C. Comparative Genomic Analysis Reveals Organization, Function and Evolution of ars Genes in Pantoea spp. Front Microbiol 2017; 8:471. [PMID: 28377759 PMCID: PMC5360009 DOI: 10.3389/fmicb.2017.00471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 03/07/2017] [Indexed: 11/21/2022] Open
Abstract
Numerous genes are involved in various strategies to resist toxic arsenic (As). However, the As resistance strategy in genus Pantoea is poorly understood. In this study, a comparative genome analysis of 23 Pantoea genomes was conducted. Two vertical genetic arsC-like genes without any contribution to As resistance were found to exist in the 23 Pantoea strains. Besides the two arsC-like genes, As resistance gene clusters arsRBC or arsRBCH were found in 15 Pantoea genomes. These ars clusters were found to be acquired by horizontal gene transfer (HGT) from sources related to Franconibacter helveticus, Serratia marcescens, and Citrobacter freundii. During the history of evolution, the ars clusters were acquired more than once in some species, and were lost in some strains, producing strains without As resistance capability. This study revealed the organization, distribution and the complex evolutionary history of As resistance genes in Pantoea spp.. The insights gained in this study improved our understanding on the As resistance strategy of Pantoea spp. and its roles in the biogeochemical cycling of As.
Collapse
Affiliation(s)
- Liying Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Jin Wang
- Department of Municipal and Environmental Engineering, School of Civil Engineering, Beijing Jiaotong University Beijing, China
| | - Chuanyong Jing
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of SciencesBeijing, China; College of Resources and Environment, University of Chinese Academy of SciencesBeijing, China
| |
Collapse
|
4
|
Bordeleau G, Martel R, Bamba AN, Blais JF, Ampleman G, Thiboutot S. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 166:52-63. [PMID: 25086776 DOI: 10.1016/j.jconhyd.2014.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities.
Collapse
Affiliation(s)
- Geneviève Bordeleau
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Richard Martel
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Abraham N'Valoua Bamba
- Université Laval, Département de Géographie, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Local 3137, Quebec City, QC, Canada, G1V 0A6.
| | - Jean-François Blais
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Guy Ampleman
- Defence Research and Development Canada - Valcartier, 2459 Pie-XI Blvd. North, Quebec City, QC, Canada, G3J 1X5.
| | - Sonia Thiboutot
- Defence Research and Development Canada - Valcartier, 2459 Pie-XI Blvd. North, Quebec City, QC, Canada, G3J 1X5.
| |
Collapse
|
5
|
Bordeleau G, Martel R, Drouin M, Ampleman G, Thiboutot S. Biodegradation of nitroglycerin from propellant residues on military training ranges. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:441-449. [PMID: 25602645 DOI: 10.2134/jeq2013.06.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitroglycerin (NG) is often present in soils and sometimes in pore water at antitank firing positions due to incomplete combustion of propellants. Various degradation processes can contribute to the natural attenuation of NG in soils and pore water, thus reducing the risks of groundwater contamination. However, until now these processes have been sparsely documented. This study aimed at evaluating the ability of microorganisms from a legacy firing position to degrade dissolved NG, as well as NG trapped within propellant particles. Results from the shake-flask experiments showed that the isolated culture is capable of degrading dissolved NG but not the nitrocellulose matrix of propellant particles, so that the deeply embedded NG molecules cannot be degraded. Furthermore, the results from column experiments showed that in a nutrient-poor sand, degradation of dissolved NG may not be sufficiently rapid to prevent groundwater contamination. Therefore, the results from this study indicate that, under favorable soil conditions, biodegradation can be an important natural attenuation process for NG dissolving out of fresh propellant residues. In contrast, biodegradation does not contribute to the long-term attenuation of NG within old, weathered propellant residues. Although NG in these old residues no longer poses a threat to groundwater quality, if soil clean-up of a legacy site is required, active remediation approaches should be sought.
Collapse
|
6
|
Husserl J, Hughes JB. Biodegradation of nitroglycerin in porous media and potential for bioaugmentation with Arthrobacter sp. strain JBH1. CHEMOSPHERE 2013; 92:721-724. [PMID: 23664478 DOI: 10.1016/j.chemosphere.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Nitroglycerin (NG) is a toxic explosive found as a contaminant of soil and groundwater. Several microbial strains are capable of partially reducing the NG molecule to dinitro or mononitroesters. Recently, a strain capable of growing on NG as the sole source of carbon and nitrogen (Arthrobacter sp. strain JBH1) was isolated from contaminated soil. Despite the widespread presence of microbial strains capable of transforming NG in contaminated soils and sediments, the extent of NG biodegradation at contaminated sites is still unknown. In this study column experiments were conducted to investigate the extent of microbial degradation of NG in saturated porous media, specifically after bioaugmentation with JBH1. Initial experiments using sterile, low sorptivity sand, showed mineralization of NG after bioaugmentation with JBH1 in the absence of sources of carbon and nitrogen other than NG. Results could be modeled using a first order degradation rate of 0.14d(-1). Further experiments conducted using contaminated soil with high organic carbon content (highly sorptive) resulted in column effluents that did not contain NG although high dinitroester concentrations were observed. Bioaugmentation with JBH1 in sediments containing strains capable of partial transformation of NG resulted in complete mineralization of NG and faster degradation rates.
Collapse
Affiliation(s)
- Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia.
| | | |
Collapse
|
7
|
Abstract
Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed.
Collapse
|
8
|
Bordeleau G, Martel R, Lévesque R, Ampleman G, Thiboutot S, Marois A. Overestimation of nitrate and nitrite concentrations in water samples due to the presence of nitroglycerin or hexahydro-1,3,5-trinitro-1,3,5-triazine. J Chromatogr A 2012; 1252:130-5. [DOI: 10.1016/j.chroma.2012.06.082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/20/2012] [Accepted: 06/25/2012] [Indexed: 11/29/2022]
|
9
|
Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 2012; 78:3649-55. [PMID: 22427495 DOI: 10.1128/aem.00006-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.
Collapse
|
10
|
Osoata GO, Ito M, Elliot M, Hogg J, Barnes PJ, Ito K. Reduced denitration activity in peripheral lung of chronic obstructive pulmonary disease. TANAFFOS 2012; 11:23-9. [PMID: 25191434 PMCID: PMC4153218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 12/15/2012] [Indexed: 10/25/2022]
Abstract
BACKGROUND Accumulation of nitrated protein is seen in peripheral lung and cells from patients with chronic obstructive pulmonary disease (COPD). Nitrated protein causes abnormal protein function, but the nitration was believed to be an irreversible process. However, there are accumulating evidences that this process is reversible by an active denitration pathway. The aim of this study is to detect denitration activity in protein extracts from peripheral lung tissue of COPD and to compare with those in healthy subjects. MATERIALS AND METHODS Peripheral lung tissue from 4 healthy, 4 smokers without COPD, 4 GOLD stage 1 and 4 GOLD stage 2 were used for denitration assay. Denitration activity was determined as reduction of nitro-tyrosine level of nitrated histone protein after incubation with protein extracts from peripheral lung, which was determined by western blotting. In addition, RNA is extracted from peripheral lung of 8 healthy, 7 smoking control, 8 stage 1 and 2 COPD and 10 stage 3 and 4 COPD and nitrate reductase mRNA expression was determined by real time RT-PCR. RESULTS Peripheral lung protein extracts from healthy subjects reduced nitro-tyrosine level of nitrated histone. Thus, we were able to show denitration activity in peripheral lungs. The denitration activity was slightly reduced in smoking controls, and significantly reduced in COPD patients. We also showed that the expression of the human homologue of nitrate reductase (chytochrome β2 reductase), a potential candidate of denitrase, was significanty reduced in COPD lung. CONCLUSION This study suggests that accumulation of nitrated protein in lung tissue of COPD may, at least in part, be induced by a reduction in denitration activity or nitrate reductase.
Collapse
Affiliation(s)
- Grace O. Osoata
- Airway Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Misako Ito
- Airway Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Mark Elliot
- The University of British Columbia, The James Hogg–iCAPTURE Center for Cardiovascular and Pulmonary Research, St. Paul's Hospital, Vancouver, Canada
| | - James Hogg
- The University of British Columbia, The James Hogg–iCAPTURE Center for Cardiovascular and Pulmonary Research, St. Paul's Hospital, Vancouver, Canada
| | - Peter J. Barnes
- Airway Disease, National Heart and Lung Institute, Imperial College, London, UK
| | - Kazuhiro Ito
- Airway Disease, National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
11
|
Rocheleau S, Kuperman RG, Dodard SG, Sarrazin M, Savard K, Paquet L, Hawari J, Checkai RT, Thiboutot S, Ampleman G, Sunahara GI. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5284-5291. [PMID: 21975007 DOI: 10.1016/j.scitotenv.2011.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.
Collapse
Affiliation(s)
- Sylvie Rocheleau
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Podlipná R, Fialová Z, Vaněk T. Degradation of nitroesters by plant tissue cultures. JOURNAL OF HAZARDOUS MATERIALS 2010; 184:591-596. [PMID: 20843601 DOI: 10.1016/j.jhazmat.2010.08.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2010] [Revised: 08/09/2010] [Accepted: 08/18/2010] [Indexed: 05/29/2023]
Abstract
Nitrate esters are widely used as effective explosives, important components of explosive ranges, and energetic plasticizers. The environmental problem arising from the production and use of these compounds can be solved using biotechnology. Phytoremediation appears as an efficient technology for this purpose. The uptake and transformation of nitroglycerine (NG) and ethylene glycol dinitrate (EGDN) from wastewater by plants using in vitro regenerants of Juncus inflexus and Phragmites australis were investigated. The plants were exposed to the NG, (600 mg l(-1)), the parent compound disappeared during 20 days and degradation products as dinitroglycerine (DNG) and mononitroglycerine (MNG) were identified in the medium. During 20 days the starting concentration of 100 mg l(-1) EGDN disappeared in the case of J. inflexus or decreased to 5% in the case of P. australis. Ethylene glycol mononitrate as the degradation product was identified. Using this approach directly to the wastewater from production of explosives, the starting concentration of nitroesters mixture (total concentration 270 mg l(-1)) was decreased by in vitro regenerants of reed (P. australis) during 6 weeks to the water contained only MNG (48 mg l(-1)).
Collapse
Affiliation(s)
- Radka Podlipná
- Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i., and Research Institute of Crop Production, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Zuzana Fialová
- Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i., and Research Institute of Crop Production, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic
| | - Tomáš Vaněk
- Laboratory of Plant Biotechnologies, Joint Laboratory of Institute of Experimental Botany AS CR, v.v.i., and Research Institute of Crop Production, v.v.i., Rozvojová 263, 165 02 Prague 6, Czech Republic.
| |
Collapse
|
13
|
White GF, Snape JR, Nicklin S. Biodegradation of Glycerol Trinitrate and Pentaerythritol Tetranitrate by Agrobacterium radiobacter. Appl Environ Microbiol 2010; 62:637-42. [PMID: 16535244 PMCID: PMC1388782 DOI: 10.1128/aem.62.2.637-642.1996] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacteria capable of metabolizing highly explosive and vasodilatory glycerol trinitrate (GTN) were isolated under aerobic and nitrogen-limiting conditions from soil, river water, and activated sewage sludge. One of these strains (from sewage sludge) chosen for further study was identified as Agrobacterium radiobacter subgroup B. A combination of high-pressure liquid chromatography and nuclear magnetic resonance analyses of the culture medium during the growth of A. radiobacter on basal salts-glycerol-GTN medium showed the sequential conversion of GTN to glycerol dinitrates and glycerol mononitrates. Isomeric glycerol 1,2-dinitrate and glycerol 1,3-dinitrate were produced simultaneously and concomitantly with the disappearance of GTN, with significant regioselectivity for the production of the 1,3-dinitrate. Dinitrates were further degraded to glycerol 1- and 2-mononitrates, but mononitrates were not biodegraded. Cells were also capable of metabolizing pentaerythritol tetranitrate, probably to its trinitrate and dinitrate analogs. Extracts of broth-grown cells contained an enzyme which in the presence of added NADH converted GTN stoichiometrically to nitrite and the mixture of glycerol dinitrates. The specific activity of this enzyme was increased 160-fold by growth on GTN as the sole source of nitrogen.
Collapse
|
14
|
Halasz A, Thiboutot S, Ampleman G, Hawari J. Microwave-assisted hydrolysis of nitroglycerin (NG) under mild alkaline conditions: new insight into the degradation pathway. CHEMOSPHERE 2010; 79:228-32. [PMID: 20129642 DOI: 10.1016/j.chemosphere.2010.01.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2009] [Revised: 01/11/2010] [Accepted: 01/12/2010] [Indexed: 05/17/2023]
Abstract
Nitroglycerin (NG), a nitrate ester, is widely used in the pharmaceutical industry and as an explosive in dynamite and as propellant. Currently NG is considered as a key environmental contaminant due to the discharge of wastewater tainted with the chemical from the military and pharmaceutical industry. The present study describes hydrolytic degradation of NG (200 microM) at pH 9 using either conventional or microwave-assisted heating at 50 degrees C. We found that hydrolytic degradation of NG inside the microwave chamber was much higher than its degradation using conventional heating. Products distributions in both heating systems were closely related and included nitrite, nitrate, formic acid, and the novel intermediates 2-hydroxypropanedial (OCHCH(OH)HCO) and glycolic acid (CH2(OH)COOH). Two other intermediates glycolaldehyde (CH2(OH)CHO) and glyoxylic acid (CHOCOOH) were only detected in the microwave treated samples. The molar ratio of nitrite to nitrate in the presence and absence of microwave heating was 2.5 and 2.8, respectively. In both microwave assisted and conventional heating a nitrogen mass balance of 96% and 98% and a carbon mass balance of 58% and 78%, respectively, were obtained. The lower C mass recovery might be attributed to further unknown reactions, e.g., polymerization of the aldehydes CH2(OH)CHO, CHOCOOH and OCHCH(OH)HCO. A hydrolytic degradation pathway for NG was proposed involving denitration (loss of 2 NO2(-)) from the two primary carbons and the loss of one nitrate from the secondary carbon to produce 2-hydroxypropanedial.
Collapse
Affiliation(s)
- Annamaria Halasz
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Ave., Montreal, Quebec, Canada H4P2R2
| | | | | | | |
Collapse
|
15
|
Growth of Arthrobacter sp. strain JBH1 on nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 2010; 76:1689-91. [PMID: 20061454 DOI: 10.1128/aem.02400-09] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Arthrobacter sp. strain JBH1 was isolated from nitroglycerin-contaminated soil by selective enrichment. Detection of transient intermediates and simultaneous adaptation studies with potential intermediates indicated that the degradation pathway involves the conversion of nitroglycerin to glycerol via 1,2-dinitroglycerin and 1-mononitroglycerin, with concomitant release of nitrite. Glycerol then serves as the source of carbon and energy.
Collapse
|
16
|
Martel R, Bellavance-Godin A, Lévesque R, Côté S. Determination of Nitroglycerin and Its Degradation Products by Solid-Phase Extraction and LC–UV. Chromatographia 2009. [DOI: 10.1365/s10337-009-1415-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Oh SY, Cha DK, Kim BJ, Chiu PC. Reduction of nitroglycerin with elemental iron: pathway, kinetics, and mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2004; 38:3723-3730. [PMID: 15296326 DOI: 10.1021/es0354667] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Nitroglycerin (NG) is a nitrate ester used in dynamites, propellants, and medicines and is therefore a common constituent in propellant-manufacturing and pharmaceutical wastewaters. In this study we investigated the reduction of NG with cast iron as a potential treatment method. NG was reduced stepwise to glycerol via 1,2- and 1,3-dinitroglycerins (DNGs) and 1- and 2-mononitroglycerins (MNGs). Nitrite was released in each reduction step and was further reduced to NH4+. Adsorption of NG and its reduction products to cast iron was minimal. A reaction pathway and a kinetic model for NG reduction with cast iron were proposed. The estimated surface area-normalized reaction rate constants for NG and NO2- were (1.65 +/- 0.30) x 10(-2) (L x m(-2) x h(-1)) and (0.78 +/- 0.09) x 10(-2) (L x m(-2) x h(-1)), respectively. Experiments using dialysis cell with iron and a graphite sheet showed that reduction of NG to glycerol can be mediated by graphite. However, reduction of NO2- mediated by graphite was very slow. NG and NO2- were also found to reduce to glycerol and NH4+ by Fe2+ in the presence of magnetite but not by aqueous Fe2+ or magnetite alone. These results indicate that in a cast iron-water system NG may be reduced via multiple mechanisms involving different reaction sites, whereas nitrite is reduced mainly by iron and/ or adsorbed Fe2+. The study demonstrates that iron can rapidly reduce NG to innocuous and biodegradable end products and represents a new approach to treat NG-containing wastewaters.
Collapse
Affiliation(s)
- Seok-Young Oh
- Department of Civil and Environmental Engineering, University of Delaware, Newark, Delaware 19716, USA
| | | | | | | |
Collapse
|
18
|
Marshall SJ, Krause D, Blencowe DK, White GF. Characterization of glycerol trinitrate reductase (NerA) and the catalytic role of active-site residues. J Bacteriol 2004; 186:1802-10. [PMID: 14996811 PMCID: PMC355970 DOI: 10.1128/jb.186.6.1802-1810.2004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glycerol trinitrate reductase (NerA) from Agrobacterium radiobacter, a member of the old yellow enzyme (OYE) family of oxidoreductases, was expressed in and purified from Escherichia coli. Denaturation of pure enzyme liberated flavin mononucleotide (FMN), and spectra of NerA during reduction and reoxidation confirmed its catalytic involvement. Binding of FMN to apoenzyme to form the holoenzyme occurred with a dissociation constant of ca. 10(-7) M and with restoration of activity. The NerA-dependent reduction of glycerol trinitrate (GTN; nitroglycerin) by NADH followed ping-pong kinetics. A structural model of NerA based on the known coordinates of OYE showed that His-178, Asn-181, and Tyr-183 were close to FMN in the active site. The NerA mutation H178A produced mutant protein with bound FMN but no activity toward GTN. The N181A mutation produced protein that did not bind FMN and was isolated in partly degraded form. The mutation Y183F produced active protein with the same k(cat) as that of wild-type enzyme but with altered K(m) values for GTN and NADH, indicating a role for this residue in substrate binding. Correlation of the ratio of K(m)(GTN) to K(m)(NAD(P)H), with sequence differences for NerA and several other members of the OYE family of oxidoreductases that reduce GTN, indicated that Asn-181 and a second Asn-238 that lies close to Tyr-183 in the NerA model structure may influence substrate specificity.
Collapse
|
19
|
Coleman NV, Spain JC, Duxbury T. Evidence that RDX biodegradation by Rhodococcus strain DN22 is plasmid-borne and involves a cytochrome p-450. J Appl Microbiol 2002; 93:463-72. [PMID: 12174045 DOI: 10.1046/j.1365-2672.2002.01713.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS To investigate the biodegradation of the explosive compound RDX in Rhodococcus strain DN22, a bacterium previously isolated for its ability to grow on RDX as sole nitrogen source. METHODS AND RESULTS Analysis of the rates of RDX degradation and nitrite production indicated that 2 mol nitrite were produced per mole RDX degraded. Cells of strain DN22 had the highest activity against RDX during the exponential phase and low activity in the stationary phase. Nitrite production from RDX was inhibited by metyrapone, menadione, piperonyl butoxide, n-octylamine and carbon monoxide and inducible by pyrrolidine, pyridine and atrazine. Acridine orange treatment yielded RDX-minus derivatives of strain DN22 at a curing rate of 1.5% and all of the cured derivatives had lost a large plasmid. CONCLUSIONS RDX biodegradation in strain DN22 appears to involve a plasmid-encoded cytochrome p-450 enzyme. SIGNIFICANCE AND IMPACT OF THE STUDY Plasmid-borne RDX degradation genes could potentially be transferred between bacteria. Our research into RDX metabolism in strain DN22 will facilitate future applications of this bacterium for bioremediation.
Collapse
Affiliation(s)
- N V Coleman
- Department of Microbiology, University of Sydney, Sydney, Australia.
| | | | | |
Collapse
|
20
|
Rosser SJ, Basran A, Travis ER, French CE, Bruce NC. Microbial transformations of explosives. ADVANCES IN APPLIED MICROBIOLOGY 2002; 49:1-35. [PMID: 11757347 DOI: 10.1016/s0065-2164(01)49008-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- S J Rosser
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QT, United Kingdom
| | | | | | | | | |
Collapse
|
21
|
Affiliation(s)
- C E French
- Institute of Cell and Molecular Biology, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, UK.
| | | | | |
Collapse
|
22
|
Marshall SJ, White GF. Complete denitration of nitroglycerin by bacteria isolated from a washwater soakaway. Appl Environ Microbiol 2001; 67:2622-6. [PMID: 11375172 PMCID: PMC92916 DOI: 10.1128/aem.67.6.2622-2626.2001] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Four axenic bacterial species capable of biodegrading nitroglycerin (glycerol trinitrate [GTN]) were isolated from soil samples taken from a washwater soakaway at a disused GTN manufacturing plant. The isolates were identified by 16S rRNA gene sequence homology as Pseudomonas putida, an Arthrobacter species, a Klebsiella species, and a Rhodococcus species. Each of the isolates utilized GTN as its sole nitrogen source and removed nitro groups sequentially from GTN to produce glycerol dinitrates and mononitrates (GMN), with the exception of the Arthrobacter strain, which achieved removal of only the first nitro group within the time course of the experiment. The Klebsiella strain exhibited a distinct preference for removal of the central nitro group from GTN, while the other five strains exhibited no such regioselectivity. All strains which removed a second nitro group from glycerol 1,2-dinitrate showed regiospecific removal of the end nitro group, thereby producing glycerol 2-mononitrate. Most significant was the finding that the Rhodococcus species was capable of removing the final nitro group from GMN and thus achieved complete biodegradation of GTN. Such complete denitration of GTN has previously been shown only in mixed bacterial populations and in cultures of Penicillium corylophilum Dierckx supplemented with an additional carbon and nitrogen source. Hence, to the best of our knowledge, this is the first report of a microorganism that can achieve complete denitration of GTN.
Collapse
Affiliation(s)
- S J Marshall
- School of Biosciences, Cardiff University, Cardiff CF10 3US, United Kingdom.
| | | |
Collapse
|
23
|
Blehert DS, Fox BG, Chambliss GH. Cloning and sequence analysis of two Pseudomonas flavoprotein xenobiotic reductases. J Bacteriol 1999; 181:6254-63. [PMID: 10515912 PMCID: PMC103757 DOI: 10.1128/jb.181.20.6254-6263.1999] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The genes encoding flavin mononucleotide-containing oxidoreductases, designated xenobiotic reductases, from Pseudomonas putida II-B and P. fluorescens I-C that removed nitrite from nitroglycerin (NG) by cleavage of the nitroester bond were cloned, sequenced, and characterized. The P. putida gene, xenA, encodes a 39,702-Da monomeric, NAD(P)H-dependent flavoprotein that removes either the terminal or central nitro groups from NG and that reduces 2-cyclohexen-1-one but did not readily reduce 2,4,6-trinitrotoluene (TNT). The P. fluorescens gene, xenB, encodes a 37,441-Da monomeric, NAD(P)H-dependent flavoprotein that exhibits fivefold regioselectivity for removal of the central nitro group from NG and that transforms TNT but did not readily react with 2-cyclohexen-1-one. Heterologous expression of xenA and xenB was demonstrated in Escherichia coli DH5alpha. The transcription initiation sites of both xenA and xenB were identified by primer extension analysis. BLAST analyses conducted with the P. putida xenA and the P. fluorescens xenB sequences demonstrated that these genes are similar to several other bacterial genes that encode broad-specificity flavoprotein reductases. The prokaryotic flavoprotein reductases described herein likely shared a common ancestor with old yellow enzyme of yeast, a broad-specificity enzyme which may serve a detoxification role in antioxidant defense systems.
Collapse
Affiliation(s)
- D S Blehert
- Department of Bacteriology, Graduate School and College of Agricultural and Life Sciences, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | |
Collapse
|
24
|
Accashian JV, Vinopal RT, Kim BJ, Smets BF. Aerobic growth on nitroglycerin as the sole carbon, nitrogen, and energy source by a mixed bacterial culture. Appl Environ Microbiol 1998; 64:3300-4. [PMID: 9726874 PMCID: PMC106724 DOI: 10.1128/aem.64.9.3300-3304.1998] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitroglycerin (glycerol trinitrate [GTN]), an explosive and vasodilatory compound, was metabolized by mixed microbial cultures from aeration tank sludge previously exposed to GTN. Aerobic enrichment cultures removed GTN rapidly in the absence of a supplemental carbon source. Complete denitration of GTN, provided as the sole C and N source, was observed in aerobic batch cultures and proceeded stepwise via the dinitrate and mononitrate isomers, with successive steps occurring at lower rates. The denitration of all glycerol nitrate esters was found to be concomitant, and 1, 2-glycerol dinitrate (1,2-GDN) and 2-glycerol mononitrate (2-GMN) were the primary GDN and GMN isomers observed. Denitration of GTN resulted in release of primarily nitrite-N, indicating a reductive denitration mechanism. Biomass growth at the expense of GTN was verified by optical density and plate count measurements. The kinetics of GTN biotransformation were 10-fold faster than reported for complete GTN denitration under anaerobic conditions. A maximum specific growth rate of 0.048 +/- 0.005 h-1 (mean +/- standard deviation) was estimated for the mixed culture at 25 degreesC. Evidence of GTN toxicity was observed at GTN concentrations above 0. 3 mM. To our knowledge, this is the first report of complete denitration of GTN used as a primary growth substrate by a bacterial culture under aerobic conditions.
Collapse
Affiliation(s)
- J V Accashian
- Environmental Engineering Program, Department of Civil and Environmental Engineering, University of Connecticut, Storrs, Connecticut 06269-2037, USA
| | | | | | | |
Collapse
|
25
|
Snape JR, Walkley NA, Morby AP, Nicklin S, White GF. Purification, properties, and sequence of glycerol trinitrate reductase from Agrobacterium radiobacter. J Bacteriol 1997; 179:7796-802. [PMID: 9401040 PMCID: PMC179744 DOI: 10.1128/jb.179.24.7796-7802.1997] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Glycerol trinitrate (GTN) reductase, which enables Agrobacterium radiobacter to utilize GTN and related explosives as sources of nitrogen for growth, was purified and characterized, and its gene was cloned and sequenced. The enzyme was a 39-kDa monomeric protein which catalyzed the NADH-dependent reductive scission of GTN (Km = 23 microM) to glycerol dinitrates (mainly the 1,3-isomer) with a pH optimum of 6.5, a temperature optimum of 35 degrees C, and no dependence on metal ions for activity. It was also active on pentaerythritol tetranitrate (PETN), on isosorbide dinitrate, and, very weakly, on ethyleneglycol dinitrate, but it was inactive on isopropyl nitrate, hexahydro-1,3,5-trinitro-1,3,5-triazine, 2,4,6-trinitrotoluene, ammonium ions, nitrate, or nitrite. The amino acid sequence deduced from the DNA sequence was homologous (42 to 51% identity and 61 to 69% similarity) to those of PETN reductase from Enterobacter cloacae, N-ethylmaleimide reductase from Escherichia coli, morphinone reductase from Pseudomonas putida, and old yellow enzyme from Saccharomyces cerevisiae, placing the GTN reductase in the alpha/beta barrel flavoprotein group of proteins. GTN reductase and PETN reductase were very similar in many respects except in their distinct preferences for NADH and NADPH cofactors, respectively.
Collapse
Affiliation(s)
- J R Snape
- School of Molecular and Medical Biosciences, University of Wales Cardiff, United Kingdom
| | | | | | | | | |
Collapse
|
26
|
Blehert DS, Knoke KL, Fox BG, Chambliss GH. Regioselectivity of nitroglycerin denitration by flavoprotein nitroester reductases purified from two Pseudomonas species. J Bacteriol 1997; 179:6912-20. [PMID: 9371434 PMCID: PMC179628 DOI: 10.1128/jb.179.22.6912-6920.1997] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Two species of Pseudomonas capable of utilizing nitroglycerin (NG) as a sole nitrogen source were isolated from NG-contaminated soil and identified as Pseudomonas putida II-B and P. fluorescens I-C. While 9 of 13 laboratory bacterial strains that presumably had no previous exposure to NG could degrade low concentrations of NG (0.44 mM), the natural isolates tolerated concentrations of NG that were toxic to the lab strains (1.76 mM and higher). Whole-cell studies revealed that the two natural isolates produced different mixtures of the isomers of dinitroglycerol (DNG) and mononitroglycerol (MNG). A monomeric, flavin mononucleotide-containing NG reductase was purified from each natural isolate. These enzymes catalyzed the NADPH-dependent denitration of NG, yielding nitrite. Apparent kinetic constants were determined for both reductases. The P. putida enzyme had a Km for NG of 52 +/- 4 microM, a Km for NADPH of 28 +/- 2 microM, and a Vmax of 124 +/- 6 microM x min(-1), while the P. fluorescens enzyme had a Km for NG of 110 +/- 10 microM, a Km for NADPH of 5 +/- 1 microM, and a Vmax of 110 +/- 11 microM x min(-1). Anaerobic titration experiments confirmed the stoichiometry of NADPH consumption, changes in flavin oxidation state, and multiple steps of nitrite removal from NG. The products formed during time-dependent denitration reactions were consistent with a single enzyme being responsible for the in vivo product distributions. Simulation of the product formation kinetics by numerical integration showed that the P. putida enzyme produced an approximately 2-fold molar excess of 1,2-DNG relative to 1,3-DNG. This result could be fortuitous or could possibly be consistent with a random removal of the first nitro group from either the terminal (C-1 and C-3) positions or middle (C-2) position. However, during the denitration of 1,2-DNG, a 1.3-fold selectivity for the C-1 nitro group was determined. Comparable simulations of the product distributions from the P. fluorescens enzyme showed that NG was denitrated with a 4.6-fold selectivity for the C-2 position. Furthermore, a 2.4-fold selectivity for removal of the nitro group from the C-2 position of 1,2-DNG was also determined. The MNG isomers were not effectively denitrated by either purified enzyme, which suggests a reason why NG could not be used as a sole carbon source by the isolated organisms.
Collapse
Affiliation(s)
- D S Blehert
- Department of Bacteriology, College of Agricultural and Life Sciences, University of Wisconsin, Madison 53706, USA
| | | | | | | |
Collapse
|
27
|
Zhang YZ, Sundaram ST, Sharma A, Brodman BW. Biodegradation of glyceryl trinitrate by Penicillium corylophilum Dierckx. Appl Environ Microbiol 1997; 63:1712-4. [PMID: 9143106 PMCID: PMC168466 DOI: 10.1128/aem.63.5.1712-1714.1997] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Penicillium corylophilum Dierckx, isolated from a contaminated water wet, double-base propellant, was able to completely degrade glyceryl trinitrate (GTN) in a buffered medium (pH 7.0) containing glucose and ammonium nitrate. In the presence of 12 mg of initial fungal inoculum, GTN (48.5 to 61.6 mumol) was quantitatively transformed in a stepwise process to glyceryl dinitrate (GDN) and glyceryl mononitrate (GMN) within 48 h followed by a decrease in the GDN content with a concomitant increase in the GMN level. GDN was totally transformed to GMN within 168 h, and the complete degradation of GMN was achieved within 336 h. The presence of glucose and ammonium nitrate in the growth medium was essential for completion of the degradation of GTN and its metabolites. Complete degradation of GTN by a fungal culture has not been previously reported in the literature.
Collapse
Affiliation(s)
- Y Z Zhang
- Geo-Centers, Inc., Lake Hopatcong, New Jersey 07849, USA
| | | | | | | |
Collapse
|
28
|
Goel A, Kumar G, Payne GF, Dube SK. Plant cell biodegradation of a xenobiotic nitrate ester, nitroglycerin. Nat Biotechnol 1997; 15:174-7. [PMID: 9035145 DOI: 10.1038/nbt0297-174] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ability of plants to metabolize the xenobiotic nitrate ester, glycerol trinitrate (GTN, nitroglycerin), was examined using cultured plant cells and plant cell extracts. Intact cells rapidly degrade GTN with the initial formation of glycerol dinitrate (GDN) and the later formation of glycerol mononitrate (GMN). A material balance analysis of these intermediates indicates little, if any, formation of reduced, conjugated or cell-bound carbonaceous metabolites. Cell extracts were shown to be capable of degrading GTN with the simultaneous formation of GDN in stoichiometric amounts. The intermediates observed, and the timing of their appearance, are consistent with a sequential denitration pathway that has been reported for the microbial degradation of nitrate esters. The degradative activities of plant cells are only tenfold less than those reported for bacterial GTN degradation. These results suggests that plants may serve a direct degradative function for the phytoremediation of sites contaminated by organic nitrate esters.
Collapse
Affiliation(s)
- A Goel
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, MD 21228, USA
| | | | | | | |
Collapse
|
29
|
Sun WQ, Meng M, Kumar G, Geelhaar LA, Payne GF, Speedie MK, Stacy JR. Biological denitration of propylene glycol dinitrate by Bacillus sp. ATCC 51912. Appl Microbiol Biotechnol 1996; 45:525-9. [PMID: 8785037 DOI: 10.1007/bf00578466] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In previous studies, bacterial cultures were isolated that had the ability to degrade the nitrate ester glyceryl trinitrate (i.e., nitroglycerin). The goal of the present study was to examine the ability of resting cells and cell-free extracts of the isolate Bacillus sp. ATCC 51912 to degrade the more recalcitrant nitrate ester propylene glycol dinitrate (PGDN). It was observed that the PGDN-denitrating activity was expressed during growth even when cells were cultured in the absence of nitrate esters. This indicates that nitrate esters are not required for expression of denitration activity. Using cell-free extracts, PGDN was observed to be sequentially denitrated to propylene glycol mononitrate (PGMN) and propylene glycol with the second denitration step proceeding more slowly than the first. Also it was observed that dialysis of the cell-free extracts did not affect denitration activity indicating that regenerable cofactors [e.g., NAD(P)H or ATP] are not required for denitration.
Collapse
Affiliation(s)
- W Q Sun
- Department of Chemical and Biochemical Engineering, University of Maryland Baltimore County, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Binks PR, French CE, Nicklin S, Bruce NC. Degradation of pentaerythritol tetranitrate by Enterobacter cloacae PB2. Appl Environ Microbiol 1996; 62:1214-9. [PMID: 8919782 PMCID: PMC167887 DOI: 10.1128/aem.62.4.1214-1219.1996] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
A mixed microbial culture capable of metabolizing the explosive pentaerythritol tetranitrate (PETN) was obtained from soil enrichments under aerobic and nitrogen-limiting conditions. A strain of Enterobacter cloacae, designated PB2, was isolated from this culture and was found to use PETN as a sole source of nitrogen for growth. Growth yields suggested that 2 to 3 mol of nitrogen was utilized per mol of PETN. The metabolites pentaerythritol dinitrate, 3-hydroxy-2,2-bis-[(nitrooxy)methyl]propanal, and 2,2-bis-[(nitrooxy)methyl]-propanedial were identified by mass spectrometry and 1H-nuclear magnetic resonance. An NADPH-dependent PETN reductase was isolated from cell extracts and shown to liberate nitrite from PETN, producing pentaerythritol tri- and dinitrates which were identified by mass spectrometry. PETN reductase was purified to apparent homogeneity by ion-exchange and affinity chromatography. The purified enzyme was found to be a monomeric flavoprotein with a M(r) of approximately 40,000, binding flavin mononucleotide noncovalently.
Collapse
Affiliation(s)
- P R Binks
- Institute of Biotechnology, University of Cambridge, United Kingdom
| | | | | | | |
Collapse
|
31
|
Ramos JL, Haïdour A, Duque E, Piñar G, Calvo V, Oliva JM. Metabolism of nitrate esters by a consortium of two bacteria. Nat Biotechnol 1996; 14:320-2. [PMID: 9630893 DOI: 10.1038/nbt0396-320] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The products of condensation of organic alcohols and nitric acid are nitrate esters with the general structure C-O-NO2. These products are widely employed as vasodilators and explosives, and are true xenobiotic compounds, as they do not occur in nature. We have isolated and characterized a consortium of two microorganisms, Arthrobacter ilicis and Agrobacterium radiobacter, that mineralized recalcitrant ethylene glycol dinitrate. The Arthrobacter strain was the actual degrading microorganism, although the second microbe facilitated mineralization. The biodegradation of ethylene glycol dinitrate by A. ilicis involved the progressive elimination of the nitro groups from the organic molecule to generate ethylene glycol, which was then mineralized. Waters polluted with ethylene glycol dinitrate have been shown amenable to biological treatment in a pilot plant with wastewaters generated during the synthesis of the chemical in a factory.
Collapse
Affiliation(s)
- J L Ramos
- Consejo Superior de Investigaciones Científicas, Department of Biochemistry and Molecular and Cellular Biology of Plants.
| | | | | | | | | | | |
Collapse
|