1
|
Tsuboi S, Hoshino YT, Yamamoto-Tamura K, Uenishi H, Omae N, Morita T, Sameshima-Yamashita Y, Kitamoto H, Kishimoto-Mo AW. Enhanced biodegradable polyester film degradation in soil by sequential cooperation of yeast-derived esterase and microbial community. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13941-13953. [PMID: 38265596 DOI: 10.1007/s11356-024-31994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/09/2024] [Indexed: 01/25/2024]
Abstract
The degradation of biodegradable plastics poses a significant environmental challenge and requires effective solutions. In this study, an esterase derived from a phyllosphere yeast Pseudozyma antarctica (PaE) enhanced the degradation and mineralization of poly(butylene succinate-co-adipate) (PBSA) film in soil. PaE was found to substitute for esterases from initial degraders and activate sequential esterase production from soil microbes. The PBSA film pretreated with PaE (PBSA-E) rapidly diminished and was mineralized in soil until day 55 with high CO2 production. Soil with PBSA-E maintained higher esterase activities with enhancement of microbial abundance, whereas soil with inactivated PaE-treated PBSA film (PBSA-inact E) showed gradual degradation and time-lagged esterase activity increases. The fungal genera Arthrobotrys and Tetracladium, as possible contributors to PBSA-film degradation, increased in abundance in soil with PBSA-inact E but were less abundant in soil with PBSA-E. The dominance of the fungal genus Fusarium and the bacterial genera Arthrobacter and Azotobacter in soil with PBSA-E further supported PBSA degradation. Our study highlights the potential of PaE in addressing concerns associated with biodegradable plastic persistence in agricultural and environmental contexts.
Collapse
Affiliation(s)
- Shun Tsuboi
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Yuko Takada Hoshino
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan.
| | - Kimiko Yamamoto-Tamura
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hirohide Uenishi
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki, 305-8634, Japan
| | - Natsuki Omae
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Tomotake Morita
- Research Institute for Sustainable Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8565, Japan
| | - Yuka Sameshima-Yamashita
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Hiroko Kitamoto
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| | - Ayaka W Kishimoto-Mo
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), 3-1-3 Kannondai, Tsukuba, Ibaraki, 305-8604, Japan
| |
Collapse
|
2
|
Abstract
Microbial lipases represent one of the most important groups of biotechnological biocatalysts. However, the high-level production of lipases requires an understanding of the molecular mechanisms of gene expression, folding, and secretion processes. Stable, selective, and productive lipase is essential for modern chemical industries, as most lipases cannot work in different process conditions. However, the screening and isolation of a new lipase with desired and specific properties would be time consuming, and costly, so researchers typically modify an available lipase with a certain potential for minimizing cost. Improving enzyme properties is associated with altering the enzymatic structure by changing one or several amino acids in the protein sequence. This review detailed the main sources, classification, structural properties, and mutagenic approaches, such as rational design (site direct mutagenesis, iterative saturation mutagenesis) and direct evolution (error prone PCR, DNA shuffling), for achieving modification goals. Here, both techniques were reviewed, with different results for lipase engineering, with a particular focus on improving or changing lipase specificity. Changing the amino acid sequences of the binding pocket or lid region of the lipase led to remarkable enzyme substrate specificity and enantioselectivity improvement. Site-directed mutagenesis is one of the appropriate methods to alter the enzyme sequence, as compared to random mutagenesis, such as error-prone PCR. This contribution has summarized and evaluated several experimental studies on modifying the substrate specificity of lipases.
Collapse
|
3
|
Characterization of Organic Solvent-Tolerant Lipolytic Enzyme from Marinobacter lipolyticus Isolated from the Antarctic Ocean. Appl Biochem Biotechnol 2018; 187:1046-1060. [PMID: 30151635 DOI: 10.1007/s12010-018-2865-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/17/2018] [Indexed: 01/12/2023]
Abstract
The Antarctic marine environment provides a good source of novel lipolytic enzymes that possess beneficial properties, i.e., resistance to extreme physical and chemical conditions. We found a lipolytic Escherichia coli colony that was transformed using genomic DNA from Marinobacter lipolyticus 27-A9 isolated from the Antarctic Ross Sea. DNA sequence analysis revealed an open reading frame of lipolytic enzyme gene. The gene translates a protein (LipA9) of 404 amino acids with molecular mass of 45,247 Da. Recombinant LipA9 was expressed in E. coli BL21 (DE3) cells and purified by anion exchange and gel filtration chromatography. The kcat/Km of LipA9 was 175 s-1 μM-1, and the optimum temperature and pH were 70 °C and pH 8.0, respectively. LipA9 had quite high organic solvent stability; it was stable toward several common organic solvents up to 50% concentration. Substrate specificity studies showed that LipA9 preferred a short acyl chain length of p-nitrophenyl ester and triglyceride. Sequence analysis showed that LipA9 contained catalytic Ser72 and Lys75 in S-x-x-K motif, like family VIII esterases. Homology modeling and site-directed mutagenesis studies revealed that Tyr141 and Tyr188 residues were located near the conserved motif and played an important role in catalytic activity.
Collapse
|
4
|
Ramnath L, Sithole B, Govinden R. Classification of lipolytic enzymes and their biotechnological applications in the pulping industry. Can J Microbiol 2017; 63:179-192. [DOI: 10.1139/cjm-2016-0447] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In the pulp and paper industry, during the manufacturing process, the agglomeration of pitch particles (composed of triglycerides, fatty acids, and esters) leads to the formation of black pitch deposits in the pulp and on machinery, which impacts on the process and pulp quality. Traditional methods of pitch prevention and treatment are no longer feasible due to environmental impact and cost. Consequently, there is a need for more efficient and environmentally friendly approaches. The application of lipolytic enzymes, such as lipases and esterases, could be the sustainable solution to this problem. Therefore, an understanding of their structure, mechanism, and sources are essential. In this report, we review the microbial sources for the different groups of lipolytic enzymes, the differences between lipases and esterases, and their potential applications in the pulping industry.
Collapse
Affiliation(s)
- L. Ramnath
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| | - B. Sithole
- Forestry and Forest Products Research Centre, Council for Scientific and Industrial Research, Durban 4000, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban 4000, South Africa
| | - R. Govinden
- Discipline of Microbiology, School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville Campus, P/Bag X54001, Durban 4000, South Africa
| |
Collapse
|
5
|
Ryu BH, Ngo TD, Jang E, Kim S, Ju H, Kim KK, Kim TD. Identification, crystallization and preliminary X-ray diffraction analysis of esterase A from Caulobacter crescentus CB15, a family VIII lipolytic enzyme. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:560-4. [PMID: 22691788 PMCID: PMC3374513 DOI: 10.1107/s1744309112009992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2011] [Accepted: 03/06/2012] [Indexed: 11/10/2022]
Abstract
The structures and functions of family VIII lipolytic enzymes, which have moderate sequence identity to class C β-lactamases and penicillin-binding proteins, are largely unknown. Here, the X-ray crystallographic study of a family VIII esterase from Caulobacter crescentus CB15 (CcEstA) is described. Sequence analysis revealed that CcEstA has a conserved serine residue within the S-X-X-K motif which acts as a catalytic nucleophile. Recombinant protein containing an N-terminal His tag was expressed in Escherichia coli and purified to homogeneity. Functional studies showed that CcEstA acts on α- and β-naphthyl acetate as substrates. In addition, it can catalyze the hydrolysis of ketoprofen ethyl ester, a highly useful product in industrial applications. CcEstA was crystallized using a solution consisting of 1.0 M potassium/sodium tartrate, 0.1 M imidazole pH 8.0, 0.2 M NaCl, and X-ray diffraction data were collected to a resolution of 1.62 Å with an R(merge) of 9.4%. The crystals of CcEstA belonged to space group C222(1), with unit-cell parameters a = 172.23, b = 176.68, c = 47.93 Å. Structure determination is in progress.
Collapse
Affiliation(s)
- Bum Han Ryu
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| | - Tri Duc Ngo
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Eunjin Jang
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| | - Sungsoo Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - Hansol Ju
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| | - Kyeong Kyu Kim
- Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Suwon 440-746, Republic of Korea
| | - T. Doohun Kim
- Department of Molecular Science and Technology, Graduate School of Interdisciplinary Programs, Ajou University, Suwon 443-749, Republic of Korea
| |
Collapse
|
6
|
Elroby SA, Aziz SG. Understanding the decomposition reaction mechanism of chrysanthemic acid: a computational study. Chem Cent J 2011; 5:66. [PMID: 22035035 PMCID: PMC3247183 DOI: 10.1186/1752-153x-5-66] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/30/2011] [Indexed: 11/20/2022] Open
Abstract
Background Chrysanthemic acid (CHA) is a major product from the photodecomposition of pyrethrin which is an important class of pesticide compounds. In the following paper, Hybrid density functional theory (DFT) calculations of the potential energy surface (PES) for three possible channels decomposition of chrysanthemic acid (cis-trans isomerization, rearrangement and fragmentation) have been carried at the B3LYP/6-311+G** level of theory. DFT was employed to optimize the geometry parameters of the reactants, transition states, intermediates and products based on detailed potential energy surfaces (PES). Results Our results suggest that all three pathways of CHA are endothermic. DFT calculations revealed that the activation barriers for cis-trans isomerization are low, leading to a thermodynamically favorable process than other two pathways. We also investigated the solvent effect on the PES using the polarizable continuum model (PCM). In addition, time-dependent density functional theory (TDDFT) calculations showed that these reactions occur in the ground state rather than in an excited state. Conclusion The rearrangement process seems to be more favorable than the decomposition of CHA to carbene formation. The solvent effect calculations indicated no changes in the shape of the PES with three continua (water, ethanol and cyclohexane), although the solvents tend to stabilize all of the species.
Collapse
Affiliation(s)
- Shabaan Ak Elroby
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.
| | | |
Collapse
|
7
|
Identification of the Catalytic Residues of Carboxylesterase from Arthrobacter globiformisby Diisopropyl Fluorophosphate-Labeling and Site-Directed Mutagenesis. Biosci Biotechnol Biochem 2011; 75:89-94. [DOI: 10.1271/bbb.100576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
8
|
Abstract
Development of pyrethroids for household use and recent advances in the syntheses of (1R)-trans-chrysanthemic acid, the acid moiety of most of the household pyrethroids, are reviewed. As another important acid moiety, we discovered norchrysanthemic acid to have a significant vapor action at room temperature when esterified with fluorobenzyl alcohols. In particular, 2,3,5,6-tetrafluoro-4-methoxymethylbenzyl (1R)-trans-norchrysanthemate (metofluthrin) exhibits the highest potency in mosquito coil formulations as well as the vapor action at room temperature against various mosquitoes. Structure-activity relationships of norchrysanthemic acid esters and synthetic studies of norchrysanthemic acid are discussed.
Collapse
|
9
|
|
10
|
Mitsukura K, Shimizu M, Matsushita K, Yoshida T, Nagasawa T. Characteristics and function of Alcaligenes sp. NBRC 14130 esterase catalysing the stereo-selective hydrolysis of ethyl chrysanthemate. J Appl Microbiol 2009; 108:1263-70. [PMID: 19778353 DOI: 10.1111/j.1365-2672.2009.04522.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Alcaligenes sp. NBRC 14130 was found as a strain hydrolysing a mixture of (+/-)-trans- and (+/-)-cis ethyl chrysanthemates to (1R,3R)-(+)-trans-chrysanthemic acid. The Alcaligenes cells also have hydrolytic activity for 6-aminohexanoate-cyclic dimer (6-AHCD, 1,8-diazacyclotetradecane-2,9-dione). The correlation of function on the enzyme from the Alcaligenes strain with hydrolysis activities for both ethyl chrysanthemate and 6-AHCD was demonstrated. METHODS AND RESULTS The esterase was purified to homogeneity. The purified esterase hydrolysed 20 mmol l(-1) ester including the four stereoisomers to the corresponding (+)-trans acid with a 37% molar conversion of ethyl (+)-trans chrysanthemate. The esterase showed high hydrolytic activity for various short-chain fatty acid esters, n-hexane amide and 6-AHCD. The amino acid sequence of the Alcaligenes esterase was identical to that of Arthrobacter 6-AHCD hydrolase (EC 3.5.2.12) and similar to that of fatty acid amide hydrolase (EC 3.5.1.4) from Rattus norvegicus, having both serine and lysine residues of the catalytic site and the consensus motif Gly-X-Ser-X-Gly. CONCLUSION The stereo-selective hydrolytic activity was found in Alcaligenes sp. NBRC14130 by screening of ethyl chrysanthemate-hydrolysing activity in micro-organisms, and the purified esterase also acted on fatty acid esters and amides. SIGNIFICANCE AND IMPACT OF THE STUDY This study has demonstrated that there are great differences in the enzymatic properties, amino acid sequence and catalytic motif of esterases in both Alcaligenes and Arthrobacter globiformis with excellent stereo-selectivity for (+)-trans-ethyl chrysanthemate, but the amino acid sequence of Alcaligenes esterase is identical to that of Arthrobacter 6-AHCD hydrolase.
Collapse
Affiliation(s)
- K Mitsukura
- Department of Biomolecular Science, Faculty of Engineering, Gifu University, Gifu, Japan.
| | | | | | | | | |
Collapse
|
11
|
Rashamuse K, Magomani V, Ronneburg T, Brady D. A novel family VIII carboxylesterase derived from a leachate metagenome library exhibits promiscuous beta-lactamase activity on nitrocefin. Appl Microbiol Biotechnol 2009; 83:491-500. [PMID: 19190902 DOI: 10.1007/s00253-009-1895-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 01/14/2009] [Accepted: 01/24/2009] [Indexed: 10/21/2022]
Abstract
The realization that majority of microbes are not amenable to cultivation as isolates under laboratory conditions has led to the culture-independent metagenomic approach as a novel technique for novel biocatalyst discovery. A leachate fosmid shotgun metagenome library was constructed and subsequently screened for esterolytic activities on a tributyrin agar medium. Nucleotide sequencing and translational analysis of an esterase-positive fosmid clone led to the identification of a 1,281 bp esterase gene (estC) encoding a protein (EstC) of 427 aa with translated molecular weight of 46.3 kDa. The EstC primary structure contained a signal leader peptide (29 aa), which could be cleaved to form a mature protein of 398 aa with molecular weight 43.3 kDa. Homology searches revealed that EstC belonged to the family VIII esterases, which exploit a serine residue within the S-x-x-K motif as a catalytic nucleophile. Substrate specificity studies showed that EstC prefers short to medium acyl chain length of p-nitrophenyl esters, a characteristic typical of "true" carboxylesterases. Moreover, EstC represents the first member of the family VIII esterases with a leader peptide and a detectable promiscuous beta-lactam hydrolytic activity. Site-directed mutagenesis studies also revealed that in addition to Ser103 and Lys106 residues, the Tyr219 residue also plays a catalytic role in EstC. The organic solvent stability and the specificity towards esters of tertiary alcohols linalyl acetate (3,7-dimethyl-1,6-octadien-3-yl acetate) make EstC potentially useful in biocatalysis.
Collapse
Affiliation(s)
- Konanani Rashamuse
- Enzyme Technologies, CSIR Biosciences, Private Bag X2, Modderfontein, Johannesburg 1645, South Africa.
| | | | | | | |
Collapse
|
12
|
Rashamuse KJ, Burton SG, Stafford WHL, Cowan DA. Molecular Characterization of a Novel Family VIII Esterase from Burkholderia multivorans UWC10. J Mol Microbiol Biotechnol 2007; 13:181-8. [PMID: 17693726 DOI: 10.1159/000103610] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
An esterase producing Burkholderia multivorans UWC10 strain was isolated by culture enrichment. A shotgun library of B. multivorans UWC10 genomic DNA was screened for esterase activity and a recombinant clone conferring an esterolytic phenotype was identified. Full-length sequencing of the DNA insert showed that it consisted of a single open reading frame (ORF1) encoding a predicted protein of 398 amino acids. ORF1 (termed EstBL) had a high protein sequence identity to family VIII esterases. The EstBL primary structure showed two putative serine motifs, G-V-S(149)-D-G and S(74)-V-T-K. The estBL gene was successfully over-expressed in E. coli and the encoded protein purified by a combination of ammonium sulphate fractionation, hydrophobic interaction, ion exchange and size exclusion chromatographies. Biochemical assays confirmed EstBL esterase activity and revealed a preference for short-chain p-nitrophenyl and beta-naphthyl esters (C2-C4) with no activity against beta-lactam substrates. Secondary structure predictions indicated that EstBL adopts the alpha/beta fold, which is common to all esterases.
Collapse
|
13
|
Schütte M, Fetzner S. EstA from Arthrobacter nitroguajacolicus Rü61a, a Thermo- and Solvent-Tolerant Carboxylesterase Related to Class C β-Lactamases. Curr Microbiol 2007; 54:230-6. [PMID: 17294326 DOI: 10.1007/s00284-006-0438-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2006] [Accepted: 10/30/2006] [Indexed: 11/30/2022]
Abstract
The estA gene encoding a novel cytoplasmic carboxylesterase from Arthrobacter nitroguajacolicus Rü61a was expressed in Escherichia coli. Sequence analysis and secondary structure predictions suggested that EstA belongs to the family VIII esterases, which are related to class C beta-lactamases. The S-x-x-K motif that in beta-lactamases contains the catalytic nucleophile, and a putative active-site tyrosine residue are conserved in EstA. The native molecular mass of hexahistidine-tagged (His6) EstA, purified by metal chelate affinity chromatography, was estimated to be 95 kDa by gel filtration, whereas the His6EstA peptide has a calculated molecular mass of 42.1 kDa. The enzyme catalyzes the hydrolysis of short-chain phenylacyl esters and triglycerides, and shows weak activity toward 2-hydroxy- and 2-nitroacetanilide. Its catalytic activity was inhibited by the serine-specific effector phenylmethylsulfonyl fluoride, and by Cd2+ and Hg2+ ions. Maximum activity of His6EstA was observed at a pH of 9.5 and a temperature of 50 degrees C to 60 degrees C. The enzyme was fairly thermostable. After 19 days at 50 degrees C and after 24 hours at 60 degrees C, its residual relative esterase activity toward phenylacetate was still 53% and 30%, respectively. Exposure of His6EstA to buffer-solvent mixtures showed that the enzyme was inactivated by several high log P (hydrophobic) solvents, whereas it showed remarkable stability and activity in up to 30% (by volume) of polar (low log P) organic solvents such as dimethylsulfoxide, methanol, acetonitrile, acetone, and propanol.
Collapse
Affiliation(s)
- Marcus Schütte
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, D-48149, Münster
| | | |
Collapse
|
14
|
Quyen DT, Dao TT, Thanh Nguyen SL. A novel esterase from Ralstonia sp. M1: gene cloning, sequencing, high-level expression and characterization. Protein Expr Purif 2006; 51:133-40. [PMID: 16893659 DOI: 10.1016/j.pep.2006.06.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2006] [Revised: 06/13/2006] [Accepted: 06/14/2006] [Indexed: 11/24/2022]
Abstract
A newly isolated gene from Ralstonia sp. M1, encoding an esterase, was cloned in Escherichia coli and its nucleotide sequence determined. The 1.6kb insert revealed one complete open reading frame, predicted to encode an esterase (320 aa, 34.1kDa) with a pI of 9.86. EstR contained a putative oxyanion hole H36G37, a conserved pentapeptide G103HSLG107 and a conserved catalytic His265 and Asp237. The EstR sequence shared 64-70 and 44-48% identity with the hydrolases/acyltransferases from Burkholderia strains and from Ralstonia strains, respectively, 44 and 38% identity with the lactone-specific esterase from Pseudomonas fluorescens and Mesorhizobium loti, respectively. The esterase EstR was expressed with a high level of 41mg/g wet cells. The Ni-NTA-purified esterase EstR showed an optimal activity in the temperature range 60-65 degrees C and pH range 7.5-9.0 towards p-nitrophenyl caproate. The enzyme was found to be highly resistant to many organic solvents especially induced by ethanolamine. Metal ions showed slight effect on esterase activity. The inhibitor phenylmethanesulfonyl fluoride inhibited strongly the esterase. Triton X-45 induced the activation of EstR, but other detergents slightly to strongly decreased or completely inhibited. Among tested p-NP esters, caproate was the most preferential substrate of this esterase.
Collapse
Affiliation(s)
- Dinh Thi Quyen
- Institute of Biotechnology, Vietnamese Academy of Science and Technology, 18 Hoang Quoc Viet Road, Distr. Caugiay, 10600 Hanoi, Viet Nam.
| | | | | |
Collapse
|
15
|
Acyl transfer strategy for the biocatalytical characterisation of Candida rugosa lipases in organic solvents. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.06.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Sukumaran J, van Gool J, Hanefeld U. Enzymatic hydrolysis and synthesis of chrysanthemic acid esters. Enzyme Microb Technol 2005. [DOI: 10.1016/j.enzmictec.2005.03.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Ogino H, Mimitsuka T, Muto T, Matsumura M, Yasuda M, Ishimi K, Ishikawa H. Cloning, expression, and characterization of a lipolytic enzyme gene (lip8) from Pseudomonas aeruginosa LST-03. J Mol Microbiol Biotechnol 2004; 7:212-23. [PMID: 15383719 DOI: 10.1159/000079830] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A lipolytic enzyme gene (lip8) was cloned from organic solvent-tolerant Pseudomonas aeruginosa LST-03 and sequenced. In the sequenced nucleotides, an open reading frame consisting of 1,173 nucleotides and encoding 391 amino acids was found. Lip8 is considered to belong to the family VIII of lipolytic enzymes whose serine in the consensus sequence of -Ser-Xaa-Xaa-Lys- acts as catalytic nucleophile. The gene was expressed in Escherichia coli and purified by a combination of ammonium sulfate fractionation and hydrophobic interaction and ion-exchange chromatographies to homogeneity on SDS-PAGE analysis. The optimum temperature and heat stability of Lip8 were not as high as those of Lip3 and LST-03 lipase, two other lipolytic enzymes from the same strain. Addition of glycerol to a solution containing Lip8 stabilized this enzyme. By measuring the activities against various triacylglycerols and fatty acid methyl esters having carbon chains of different lengths, Lip8 was categorized as an esterase which has higher activities against fatty acid methyl esters with short-chain fatty acids.
Collapse
Affiliation(s)
- Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Prefecture University, Osaka, Japan.
| | | | | | | | | | | | | |
Collapse
|
18
|
Parschat K, Hauer B, Kappl R, Kraft R, Huttermann J, Fetzner S. Gene cluster of Arthrobacter ilicis Ru61a involved in the degradation of quinaldine to anthranilate: characterization and functional expression of the quinaldine 4-oxidase qoxLMS genes. J Biol Chem 2003; 278:27483-94. [PMID: 12730200 DOI: 10.1074/jbc.m301330200] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A genetic analysis of the anthranilate pathway of quinaldine degradation was performed. A 23-kb region of DNA from Arthrobacter ilicis Rü61a was cloned into the cosmid pVK100. Although Escherichia coli clones containing the recombinant cosmid did not transform quinaldine, cosmids harboring the 23-kb region, or a 10.8-kb stretch of this region, conferred to Pseudomonas putida KT2440 the ability to cometabolically convert quinaldine to anthranilate. The 10.8-kb fragment thus contains the genes coding for quinaldine 4-oxidase (Qox), 1H-4-oxoquinaldine 3-monooxygenase, 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase, and N-acetylanthranilate amidase. The qoxLMS genes coding for the molybdopterin cytosine dinucleotide-(MCD-), FeSI-, FeSII-, and FAD-containing Qox were inserted into the expression vector pJB653, generating pKP1. Qox is the first MCD-containing enzyme to be synthesized in a catalytically fully competent form by a heterologous host, P. putida KT2440 pKP1; the catalytic properties and the UV-visible and EPR spectra of Qox purified from P. putida KT2440 pKP1 were essentially like those of wild-type Qox. This provides a starting point for the construction of protein variants of Qox by site-directed mutagenesis. Downstream of the qoxLMS genes, a putative gene whose deduced amino acid sequence showed 37% similarity to the cofactor-inserting chaperone XdhC was located. Additional open reading frames identified on the 23-kb segment may encode further enzymes (a glutamyl tRNA synthetase, an esterase, two short-chain dehydrogenases/reductases, an ATPase belonging to the AAA family, a 2-hydroxyhepta-2,4-diene-1,7-dioate isomerase/5-oxopent-3-ene-1,2,5-tricarboxylate decarboxylase-like protein, and an enzyme of the mandelate racemase group) and hypothetical proteins involved in transcriptional regulation, and metabolite transport.
Collapse
Affiliation(s)
- Katja Parschat
- AG Mikrobiologie, Institut für Chemie und Biologie des Meeres, Carl von Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Wagner UG, Petersen EI, Schwab H, Kratky C. EstB from Burkholderia gladioli: a novel esterase with a beta-lactamase fold reveals steric factors to discriminate between esterolytic and beta-lactam cleaving activity. Protein Sci 2002; 11:467-78. [PMID: 11847270 PMCID: PMC2373480 DOI: 10.1110/ps.33002] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Esterases form a diverse class of enzymes of largely unknown physiological role. Because many drugs and pesticides carry ester functions, the hydrolysis of such compounds forms at least one potential biological function. Carboxylesterases catalyze the hydrolysis of short chain aliphatic and aromatic carboxylic ester compounds. Esterases, D-alanyl-D-alanine-peptidases (DD-peptidases) and beta-lactamases can be grouped into two distinct classes of hydrolases with different folds and topologically unrelated catalytic residues, the one class comprising of esterases, the other one of beta-lactamases and DD-peptidases. The chemical reactivities of esters and beta-lactams towards hydrolysis are quite similar, which raises the question of which factors prevent esterases from displaying beta-lactamase activity and vice versa. Here we describe the crystal structure of EstB, an esterase isolated from Burkholderia gladioli. It shows the protein to belong to a novel class of esterases with homology to Penicillin binding proteins, notably DD-peptidase and class C beta-lactamases. Site-directed mutagenesis and the crystal structure of the complex with diisopropyl-fluorophosphate suggest Ser75 within the "beta-lactamase" Ser-x-x-Lys motif to act as catalytic nucleophile. Despite its structural homology to beta-lactamases, EstB shows no beta-lactamase activity. Although the nature and arrangement of active-site residues is very similar between EstB and homologous beta-lactamases, there are considerable differences in the shape of the active site tunnel. Modeling studies suggest steric factors to account for the enzyme's selectivity for ester hydrolysis versus beta-lactam cleavage.
Collapse
Affiliation(s)
- Ulrike G Wagner
- Institut für Chemie, Strukturbiologie, Karl-Franzens-Universität, A-8010 Graz, Austria.
| | | | | | | |
Collapse
|
20
|
Bornscheuer UT. Microbial carboxyl esterases: classification, properties and application in biocatalysis. FEMS Microbiol Rev 2002; 26:73-81. [PMID: 12007643 DOI: 10.1111/j.1574-6976.2002.tb00599.x] [Citation(s) in RCA: 638] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Esterases (EC 3.1.1.x) represent a diverse group of hydrolases catalyzing the cleavage and formation of ester bonds and are widely distributed in animals, plants and microorganisms. Beside lipases, a considerable number of microbial carboxyl esterases have also been discovered and overexpressed. This review summarizes their properties and classification. Special emphasis is given on their application in organic synthesis for the resolution of racemates and prostereogenic compounds. In addition, recent results for altering their properties by directed evolution are presented.
Collapse
Affiliation(s)
- Uwe T Bornscheuer
- Institute for Chemistry and Biochemistry, Department of Technical Chemistry and Biotechnology, Greifswald University, Soldmannstr. 16, Greifswald, Germany.
| |
Collapse
|
21
|
Musidlowska A, Lange S, Bornscheuer UT. By Overexpression in the YeastPichia pastoris to Enhanced Enantioselectivity: New Aspects in the Application of Pig Liver Esterase. Angew Chem Int Ed Engl 2001; 40:2851-2853. [DOI: 10.1002/1521-3773(20010803)40:15<2851::aid-anie2851>3.0.co;2-v] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2000] [Indexed: 11/09/2022]
|
22
|
Musidlowska A, Lange S, Bornscheuer UT. Durch Überexpression in der HefePichia pastoris zu erhöhter Enantioselektivität: neue Aspekte bei der Anwendung von Schweineleber-Esterase. Angew Chem Int Ed Engl 2001. [DOI: 10.1002/1521-3757(20010803)113:15<2934::aid-ange2934>3.0.co;2-f] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Petersen EI, Valinger G, Sölkner B, Stubenrauch G, Schwab H. A novel esterase from Burkholderia gladioli which shows high deacetylation activity on cephalosporins is related to beta-lactamases and DD-peptidases. J Biotechnol 2001; 89:11-25. [PMID: 11472796 DOI: 10.1016/s0168-1656(01)00284-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The gene (estB) encoding for a novel esterase (EstB) from Burkholderia gladioli (formerly Pseudomonas marginata) NCPPB 1891 was cloned in Escherichia coli. Sequence analysis showed an open reading frame encoding a polypeptide of 392 amino acid residues, with a molecular mass of about 42 kDa. Comparison of the amino acid sequence with those of other homologous enzymes indicated homologies to beta-lactamases, penicillin binding proteins and DD-peptidases. The serine residue (Ser(75)) which is located within a present class A beta-lactamase motif ([F,Y]-X-[L,I,V,M,F,Y]-X-S-[T,V]-X-K-X-X-X-X-[A,G,L]-X-X-[L,C]) was identified by site-directed mutagenesis to represent the active nucleophile. A second serine residue (Ser(149)) which is located within a G-x-S-x-G motif which is typically found in esterases and lipases was demonstrated not to play a significant role in enzyme function. The estB gene was overexpressed in E. coli using a tac promoter-based expression system. Investigation of EstB protein with respect to the ability to hydrolyse beta-lactam substrates clearly demonstrated that this protein has no beta-lactamase activity. The recombinant enzyme is active on triglycerides and on nitrophenyl esters with acyl chain lengths up to C6. The preference for short chain length substrates indicated that EstB is a typical carboxylesterase. As a special feature EstB esterase was found to have high deacetylation activity on cephalosporin derivatives.
Collapse
Affiliation(s)
- E I Petersen
- Institut für Biotechnologie, AG Genetik, SFB Biokatalyse, Technische Universität Graz, Petersgasse 12, A-8010 Graz, Austria
| | | | | | | | | |
Collapse
|
24
|
Separation of the enantiomers of pyrethroic acids and their esters by high-performance liquid chromatography on a polysaccharide-derived chiral stationary phase. Chromatographia 2000. [DOI: 10.1007/bf02491563] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
25
|
Mitsuhashi K, Yamashita M, Hwan YS, Ihara F, Nihira T, Yamada Y. Purification and characterization of a novel extracellular lipase catalyzing hydrolysis of oleyl benzoate from Acinetobacter nov. sp. strain KM109. Biosci Biotechnol Biochem 1999; 63:1959-64. [PMID: 10635559 DOI: 10.1271/bbb.63.1959] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A new lipase (OBase) which efficiently hydrolyzes oleyl benzoate (OB) was found in the culture supernatant of Acinetobacter nov. sp. strain KM109, a new isolate growing in a minimum medium containing OB as the sole carbon source. OBase was purified to homogeneity with 213-fold purification and 0.8% yield. The molecular weight was estimated to be 62,000 +/- 1,000 by SDS-PAGE under denatured-reduced conditions and to be 50,000 +/- 1,000 by gel-filtration HPLC under native conditions; these findings indicate that OBase is a monomeric enzyme. The optimum temperature and pH of OBase were about 45 degrees C and pH 8. Temperature and pH stabilities were at or lower than 35 degrees C and in a range of pH 6-8, respectively. Purified OBase preferentially hydrolyzed p-nitrophenyl benzoate (pNPB) over p-nitrophenyl acetate (pNPA) or p-nitrophenyl caproate (pNPC) [pNPB/pNPA = 20 and pNPB/pNPC = 5.4], indicating that OBase has a high affinity for benzoyl esters. Partial amino-acid sequences of OBase fragments obtained after lysyl endopeptidase treatment showed no similarity with known proteins.
Collapse
Affiliation(s)
- K Mitsuhashi
- Department of Biotechnology, Graduate School of Engineering, Osaka University, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Arpigny JL, Jaeger KE. Bacterial lipolytic enzymes: classification and properties. Biochem J 1999; 343 Pt 1:177-83. [PMID: 10493927 PMCID: PMC1220539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Knowledge of bacterial lipolytic enzymes is increasing at a rapid and exciting rate. To obtain an overview of this industrially very important class of enzymes and their characteristics, we have collected and classified the information available from protein and nucleotide databases. Here we propose an updated and extensive classification of bacterial esterases and lipases based mainly on a comparison of their amino acid sequences and some fundamental biological properties. These new insights result in the identification of eight different families with the largest being further divided into six subfamilies. Moreover, the classification enables us to predict (1) important structural features such as residues forming the catalytic site or the presence of disulphide bonds, (2) types of secretion mechanism and requirement for lipase-specific foldases, and (3) the potential relationship to other enzyme families. This work will therefore contribute to a faster identification and to an easier characterization of novel bacterial lipolytic enzymes.
Collapse
Affiliation(s)
- J L Arpigny
- Lehrstuhl für Biologie der Mikroorganismen, Ruhr-Universität Bochum, Universitätsstrasse 150, D-44780 Bochum, Germany
| | | |
Collapse
|
27
|
Khalameyzer V, Fischer I, Bornscheuer UT, Altenbuchner J. Screening, nucleotide sequence, and biochemical characterization of an esterase from Pseudomonas fluorescens with high activity towards lactones. Appl Environ Microbiol 1999; 65:477-82. [PMID: 9925571 PMCID: PMC91050 DOI: 10.1128/aem.65.2.477-482.1999] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A genomic library of Pseudomonas fluorescens DSM 50106 in a lambdaRESIII phage vector was screened in Escherichia coli K-12 for esterase activity by using alpha-naphthyl acetate and Fast Blue RR. A 3.2-kb DNA fragment was subcloned from an esterase-positive clone and completely sequenced. Esterase EstF1 was encoded by a 999-bp open reading frame (ORF) and exhibited significant amino acid sequence identity with members of the serine hydrolase family. The deduced amino acid sequences of two other C-terminal truncated ORFs exhibited homology to a cyclohexanone monooxygenase and an alkane hydroxylase. However, esterase activity was not induced by growing of P. fluorescens DSM 50106 in the presence of several cyclic ketones. The esterase gene was fused to a His tag and expressed in E. coli. The gene product was purified by zinc ion affinity chromatography and characterized. Detergents had to be added for purification, indicating that the enzyme was membrane bound or membrane associated. The optimum pH of the purified enzyme was 7.5, and the optimum temperature was 43 degreesC. The showed highest purified enzyme activities towards lactones. The activity increased from gamma-butyrolactone (18.1 U/mg) to epsilon-caprolactone (21.8 U/mg) to delta-valerolactone (36.5 U/mg). The activities towards the aliphatic esters were significantly lower; the only exception was the activity toward ethyl caprylate, which was the preferred substrate.
Collapse
Affiliation(s)
- V Khalameyzer
- Institute for Technical Biochemistry, University of Stuttgart, 70569 Stuttgart, Germany
| | | | | | | |
Collapse
|
28
|
Berger R, Hoffmann M, Keller U. Molecular analysis of a gene encoding a cell-bound esterase from Streptomyces chrysomallus. J Bacteriol 1998; 180:6396-9. [PMID: 9829953 PMCID: PMC107730 DOI: 10.1128/jb.180.23.6396-6399.1998] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A gene (estA) encoding a 42-kDa cell-bound esterase, EstA, was found to be located 75 bp upstream of the cyclophilin A gene (cypA) of Streptomyces chrysomallus. Western blot analysis revealed the presence of EstA (42 kDa) in cell extracts of S. chrysomallus X2 and Streptomyces lividans. EstA specifically hydrolyzes short-chain p-nitrophenyl esters. EstA formation starts at the end of growth phase, and its activity level remains constant throughout stationary phase. Expression of estA from the melanin (mel) promoter in plasmid pIJ702 led to a substantial increase of total esterase activity in streptomycetes.
Collapse
Affiliation(s)
- R Berger
- Max-Volmer-Institut für Biophysikalische Chemie und Biochemie, Fachgebiet Biochemie und Molekulare Biologie, Technische Universit at Berlin, D-10587 Berlin, Germany
| | | | | |
Collapse
|
29
|
|
30
|
Characterization and enantioselectivity of a recombinant esterase from Pseudomonas fluorescens. Enzyme Microb Technol 1998. [DOI: 10.1016/s0141-0229(98)00004-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
31
|
Krebsfänger N, Schierholz K, Bornscheuer UT. Enantioselectivity of a recombinant esterase from Pseudomonas fluorescens towards alcohols and carboxylic acids. J Biotechnol 1998; 60:105-11. [PMID: 9571805 DOI: 10.1016/s0168-1656(97)00192-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A recombinant esterase from Pseudomonas fluorescens (PFE) was produced from E. coli cultures and the enantioselectivity towards a series of racemic substrates was investigated. PFE exhibited high rate and enantioselectivity in the acylation of alpha-phenyl ethanol with vinyl acetate in toluene (E > 100) and the hydrolysis of the corresponding acetate in phosphate buffer (E = 58). In sharp contrast, extremely low enantioselectivity (E from 1.1 to 7) was found for the acylation of a series of 1,2-O-protected glycerol derivatives and the hydrolysis of 3-phenylbutyric acid methylester. Almost no reaction occurred with alpha-phenyl propanol and its acetate and 2-phenylbutyric acid ethylester.
Collapse
Affiliation(s)
- N Krebsfänger
- Universität Stuttgart, Institut für Technische Biochemie, Germany
| | | | | |
Collapse
|