1
|
Wong N, Jantama K. Engineering Escherichia coli for a high yield of 1,3-propanediol near the theoretical maximum through chromosomal integration and gene deletion. Appl Microbiol Biotechnol 2022; 106:2937-2951. [PMID: 35416488 DOI: 10.1007/s00253-022-11898-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/15/2022] [Accepted: 03/26/2022] [Indexed: 11/02/2022]
Abstract
Glycerol dehydratase (gdrAB-dhaB123) operon from Klebsiella pneumoniae and NADPH-dependent 1,3-propanediol oxidoreductase (yqhD) from Escherichia coli were stably integrated on the chromosomal DNA of E. coli under the control of the native-host ldhA and pflB constitutive promoters, respectively. The developed E. coli NSK015 (∆ldhA::gdrAB-dhaB123 ∆ackA::FRT ∆pflB::yqhD ∆frdABCD::cat-sacB) produced 1,3-propanediol (1,3-PDO) at the level of 36.8 g/L with a yield of 0.99 mol/mol of glycerol consumed when glucose was used as a co-substrate with glycerol. Co-substrate of glycerol and cassava starch was also utilized for 1,3-PDO production with the concentration and yield of 31.9 g/L and 0.84 mol/mol of glycerol respectively. This represents a work for efficient 1,3-PDO production in which the overexpression of heterologous genes on the E. coli host genome devoid of plasmid expression systems. Plasmids, antibiotics, IPTG, and rich nutrients were omitted during 1,3-PDO production. This may allow a further application of E. coli NSK015 for the efficient 1,3-PDO production in an economically industrial scale. KEY POINTS: • gdrAB-dhaB123 and yqhD were overexpressed in E. coli devoid of a plasmid system • E. coli NSK015 produced a high yield of 1,3-PDO at 99% theoretical maximum • Cassava starch was alternatively used as substrate for economical 1,3-PDO production.
Collapse
Affiliation(s)
- Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree Sub-District, Suranaree University of Technology, 111 University Avenue, Muang district, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
2
|
Yun J, Zabed HM, Zhang Y, Parvez A, Zhang G, Qi X. Co-fermentation of glycerol and glucose by a co-culture system of engineered Escherichia coli strains for 1,3-propanediol production without vitamin B 12 supplementation. BIORESOURCE TECHNOLOGY 2021; 319:124218. [PMID: 33049440 DOI: 10.1016/j.biortech.2020.124218] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/29/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
The necessity of costly co-enzyme B12 for the activity of glycerol dehydratase (GDHt) is considered as a major bottleneck in sustainable bioproduction of 1,3-propanediol (1,3-PD) from glycerol. Here, an E. coil Rosetta-dhaB1-dhaB2 strain was constructed by overexpressing a B12-independent GDHt (dhaB1) and its activating factor (dhaB2) from Clostridium butyricum. Subsequently, it was used in designing a co-culture with E. coli BL21-dhaT that overexpressed 1,3-PD oxidoreductase (dhaT), to produce 1,3-PD during co-fermentation of glycerol and glucose. The optimum initial ratio of BL21-dhaT to Rosetta-dhaB1-dhaB2 strains in the co-culture was 1.5. Compared to the fermentation of glycerol alone, co-fermentation approach provided 1.3-folds higher 1,3-PD. Finally, co-fermentation was done in a 10 L bioreactor that produced 41.65 g/L 1,3-PD, which corresponded to 0.69 g/L/h productivity and 0.67 mol/mol yield of 1,3-PD. Hence, the developed co-culture could produce 1,3-PD cost-effectively without requiring vitamin B12.
Collapse
Affiliation(s)
- Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Amreesh Parvez
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang 212013, Jiangsu, China.
| |
Collapse
|
3
|
Westbrook AW, Miscevic D, Kilpatrick S, Bruder MR, Moo-Young M, Chou CP. Strain engineering for microbial production of value-added chemicals and fuels from glycerol. Biotechnol Adv 2019; 37:538-568. [DOI: 10.1016/j.biotechadv.2018.10.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 10/03/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022]
|
4
|
l-Rhamnose Metabolism in Clostridium beijerinckii Strain DSM 6423. Appl Environ Microbiol 2019; 85:AEM.02656-18. [PMID: 30578270 PMCID: PMC6384099 DOI: 10.1128/aem.02656-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 12/17/2018] [Indexed: 01/17/2023] Open
Abstract
A prerequisite for a successful biobased economy is the efficient conversion of biomass resources into useful products, such as biofuels and bulk and specialty chemicals. In contrast to other industrial microorganisms, natural solvent-producing clostridia utilize a wide range of sugars, including C5, C6, and deoxy-sugars, for production of long-chain alcohols (butanol and 2,3-butanediol), isopropanol, acetone, n-propanol, and organic acids. Butanol production by clostridia from first-generation sugars is already a commercial process, but for the expansion and diversification of the acetone, butanol, and ethanol (ABE)/IBE process to other substrates, more knowledge is needed on the regulation and physiology of fermentation of sugar mixtures. Green macroalgae, produced in aquaculture systems, harvested from the sea or from tides, can be processed into hydrolysates containing mixtures of d-glucose and l-rhamnose, which can be fermented. The knowledge generated in this study will contribute to the development of more efficient processes for macroalga fermentation and of mixed-sugar fermentation in general. Macroalgae (or seaweeds) are considered potential biomass feedstocks for the production of renewable fuels and chemicals. Their sugar composition is different from that of lignocellulosic biomasses, and in green species, including Ulva lactuca, the major sugars are l-rhamnose and d-glucose. C. beijerinckii DSM 6423 utilized these sugars in a U. lactuca hydrolysate to produce acetic acid, butyric acid, isopropanol, butanol, and ethanol (IBE), and 1,2-propanediol. d-Glucose was almost completely consumed in diluted hydrolysates, while l-rhamnose or d-xylose was only partially utilized. In this study, the metabolism of l-rhamnose by C. beijerinckii DSM 6423 was investigated to improve its utilization from natural resources. Fermentations on d-glucose, l-rhamnose, and a mixture of d-glucose and l-rhamnose were performed. On l-rhamnose, the cultures showed low growth and sugar consumption and produced 1,2-propanediol, propionic acid, and n-propanol in addition to acetic and butyric acids, whereas on d-glucose, IBE was the major product. On a d-glucose–l-rhamnose mixture, both sugars were converted simultaneously and l-rhamnose consumption was higher, leading to high levels of 1,2-propanediol (78.4 mM), in addition to 59.4 mM butanol and 31.9 mM isopropanol. Genome and transcriptomics analysis of d-glucose- and l-rhamnose-grown cells revealed the presence and transcription of genes involved in l-rhamnose utilization and in bacterial microcompartment (BMC) formation. These data provide useful insights into the metabolic pathways involved in l-rhamnose utilization and the effects on the general metabolism (glycolysis, early sporulation, and stress response) induced by growth on l-rhamnose. IMPORTANCE A prerequisite for a successful biobased economy is the efficient conversion of biomass resources into useful products, such as biofuels and bulk and specialty chemicals. In contrast to other industrial microorganisms, natural solvent-producing clostridia utilize a wide range of sugars, including C5, C6, and deoxy-sugars, for production of long-chain alcohols (butanol and 2,3-butanediol), isopropanol, acetone, n-propanol, and organic acids. Butanol production by clostridia from first-generation sugars is already a commercial process, but for the expansion and diversification of the acetone, butanol, and ethanol (ABE)/IBE process to other substrates, more knowledge is needed on the regulation and physiology of fermentation of sugar mixtures. Green macroalgae, produced in aquaculture systems, harvested from the sea or from tides, can be processed into hydrolysates containing mixtures of d-glucose and l-rhamnose, which can be fermented. The knowledge generated in this study will contribute to the development of more efficient processes for macroalga fermentation and of mixed-sugar fermentation in general.
Collapse
|
5
|
Zhang L, Bao W, Wei R, Fu S, Gong H. Inactivating NADH:quinone oxidoreductases affects the growth and metabolism of Klebsiella pneumoniae. Biotechnol Appl Biochem 2018; 65:857-864. [PMID: 30063071 DOI: 10.1002/bab.1684] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 07/22/2018] [Indexed: 11/10/2022]
Abstract
NADH:quinone oxidoreductases (NQOs) act as the electron entry sites in bacterial respiration and oxidize intracellular NADH that is essential for the synthesis of numerous molecules. Klebsiella pneumoniae contains three NQOs (NDH-1, NDH-2, and NQR). The effects of inactivating these NQOs, separately and together, on cell metabolism were investigated under different culture conditions. Defective growth was evident in NDH-1-NDH-2 double and NDH-1-NDH-2-NQR triple deficient mutants, which was probably due to damage to the respiratory chain. The results also showed that K. pneumoniae can flexibly use NQOs to maintain normal growth in single NQO-deficient mutants. And more interestingly, under aerobic conditions, inactivating NDH-1 resulted in a high intracellular NADH:NAD+ ratio, which was proven to be beneficial for 2,3-butanediol production. Compared with the parent strain, 2,3-butanediol production by the NDH-1-deficient mutant was increased by 46% and 62% in glycerol- and glucose-based media, respectively. Thus, our findings provide a practical strategy for metabolic engineering of respiratory chains to promote the biosynthesis of 2,3-butanediol in K. pneumoniae.
Collapse
Affiliation(s)
- Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Wenjing Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Renquan Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
6
|
Oh BR, Lee SM, Heo SY, Seo JW, Kim CH. Efficient production of 1,3-propanediol from crude glycerol by repeated fed-batch fermentation strategy of a lactate and 2,3-butanediol deficient mutant of Klebsiella pneumoniae. Microb Cell Fact 2018; 17:92. [PMID: 29907119 PMCID: PMC6003044 DOI: 10.1186/s12934-018-0921-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 05/05/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND 1,3-Propanediol (1,3-PDO) is important building blocks for the bio-based chemical industry, Klebsiella pneumoniae can be an attractive candidate for their production. However, 1,3-PDO production is high but productivity is generally low by K. pneumoniae. In this study, repeated fed-batch cultivation by a lactate and 2,3-butanediol (2,3-BDO) deficient mutant of K. pneumoniae were investigated for efficient 1,3-PDO production from industrial by-products such as crude glycerol. RESULTS First, optimal conditions for repeated fed-batch fermentation of a ΔldhA mutant defective for lactate formation due to deletion of the lactate dehydrogenase gene (ldhA) were determined. Maximal 1,3-PDO production level and productivity obtained by repeated fed-batch fermentation under optimized conditions were 81.1 g/L and 3.38 g/L/h, respectively, and these values were successfully maintained for five cycles of fermentation without any loss of fermentation capacity. This results were much higher than that of the normal fed-batch fermentation. The levels of 2,3-BDO, which is a major by-product, reaching up to ~ 50% of the level of 1,3-PDO, were reduced using a mutant strain [Δ(ldhA als)] containing an additional mutation in the biosynthetic pathway of 2,3-BDO (deletion of the acetolactate synthase gene). The levels of 2,3-BDO were reduced to about 20% of 1,3-PDO levels by repeated fed-batch fermentation of Δ(ldhA als), although maximal 1,3-PDO production and productivity also decreased owing to a defect in the growth of the 2,3-BDO-defective mutant strain. CONCLUSION This repeated fed-batch fermentation may be useful for reducing the cost of 1,3-PDO production and may be promising industrialization prospect for the 1,3-PDO production.
Collapse
Affiliation(s)
- Baek-Rock Oh
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Jeongeup, 580-185, Republic of Korea
| | - Sung-Mok Lee
- Korea Institute of Ocean Science and Technology, Busan, 49111, Republic of Korea
| | - Sun-Yeon Heo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Jeongeup, 580-185, Republic of Korea
| | - Jeong-Woo Seo
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Jeongeup, 580-185, Republic of Korea.
| | - Chul Ho Kim
- Microbial Biotechnology Research Center, Jeonbuk Branch Institute, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeonbuk, Jeongeup, 580-185, Republic of Korea.
| |
Collapse
|
7
|
Wang J, Zhao P, Li Y, Xu L, Tian P. Engineering CRISPR interference system in Klebsiella pneumoniae for attenuating lactic acid synthesis. Microb Cell Fact 2018; 17:56. [PMID: 29622042 PMCID: PMC5887262 DOI: 10.1186/s12934-018-0903-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/31/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Klebsiella pneumoniae is a promising industrial species for bioproduction of bulk chemicals such as 1,3-propanediol, 2,3-butanediol and 3-hydroxypropionic acid (3-HP). However, lactic acid is a troublesome by-product when optimizing for 3-HP production. Therefore, it is highly desirable to minimize lactic acid. RESULTS Here, we show that lactic acid synthesis can be largely blocked by an engineered CRISPR interference (CRISPRi) system in K. pneumoniae. EGFP was recruited as a reporter of this CRISPRi system. Fluorescence assay of this CRISPRi system showed that enhanced green fluorescent protein (EGFP) expression level was repressed by 85-90%. To further test this CRISPRi system, guide RNAs were designed to individually or simultaneously target four lactate-producing enzyme genes. Results showed that all lactate-producing enzyme genes were significantly repressed. Notably, D-lactate dehydrogenase (ldhA) was shown to be the most influential enzyme for lactic acid formation in micro-aerobic conditions, as inhibiting ldhA alone led to lactic acid level similar to simultaneously repressing four genes. In shake flask cultivation, the strain coexpressing puuC (an aldehyde dehydrogenase catalyzing 3-hydroxypropionaldehyde to 3-HP) and dCas9-sgRNA inhibiting ldhA produced 1.37-fold 3-HP relative to the reference strain. Furthermore, in bioreactor cultivation, this CRISPRi strain inhibiting ldhA produced 36.7 g/L 3-HP, but only generated 1 g/L lactic acid. Clearly, this engineered CRISPRi system largely simplified downstream separation of 3-HP from its isomer lactic acid, an extreme challenge for 3-HP bioprocess. CONCLUSIONS This study offers a deep understanding of lactic acid metabolism in diverse species, and we believe that this CRISPRi system will facilitate biomanufacturing and functional genome studies of K. pneumoniae or beyond.
Collapse
Affiliation(s)
- Jingxuan Wang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Peng Zhao
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Ying Li
- College of Biochemical Engineering, Beijing Union University, Beijing, 100023 People’s Republic of China
| | - Lida Xu
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| | - Pingfang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029 People’s Republic of China
| |
Collapse
|
8
|
Matsubara M, Urano N, Yamada S, Narutaki A, Fujii M, Kataoka M. Fermentative production of 1-propanol from d-glucose, l-rhamnose and glycerol using recombinant Escherichia coli. J Biosci Bioeng 2016; 122:421-6. [DOI: 10.1016/j.jbiosc.2016.03.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 10/22/2022]
|
9
|
Johnson EE, Rehmann L. The role of 1,3-propanediol production in fermentation of glycerol by Clostridium pasteurianum. BIORESOURCE TECHNOLOGY 2016; 209:1-7. [PMID: 26946434 DOI: 10.1016/j.biortech.2016.02.088] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/18/2016] [Accepted: 02/20/2016] [Indexed: 06/05/2023]
Abstract
Waste crude glycerol from biodiesel production can be used to produce biobutanol using Clostridium pasteurianum with the main products being n-butanol, 1,3-propanediol (PDO) and ethanol. There has been much discrepancy and mystery around the cause and effect of process parameters on the product distribution, thus a better understanding of the pathway regulation is required. This study shows that as process pH decreased, the rate of cell growth and CO2 production also decreased, resulting in slower fermentations, increased duration of butanol production and higher butanol concentrations and yields. The production rate of PDO was multi-modal and the role of PDO appears to function in redox homeostasis. The results also showed that C. pasteurianum displayed little biphasic behavior when compared to Clostridia spp. typically used in ABE fermentation due to the alternative glycolysis-independent reductive pathway of PDO production, rendering it suitable for a continuous fermentation process.
Collapse
Affiliation(s)
- Erin E Johnson
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada
| | - Lars Rehmann
- Department of Chemical & Biochemical Engineering, The University of Western Ontario, 1151 Richmond St., London, Ontario N6A 3K7, Canada; Department of Biochemical Engineering, AVT - Aachener Verfahrenstechnik, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany.
| |
Collapse
|
10
|
Jiang W, Wang S, Wang Y, Fang B. Key enzymes catalyzing glycerol to 1,3-propanediol. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:57. [PMID: 26966462 PMCID: PMC4785665 DOI: 10.1186/s13068-016-0473-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/24/2016] [Indexed: 05/27/2023]
Abstract
Biodiesel can replace petroleum diesel as it is produced from animal fats and vegetable oils, and it produces about 10 % (w/w) glycerol, which is a promising new industrial microbial carbon, as a major by-product. One of the most potential applications of glycerol is its biotransformation to high value chemicals such as 1,3-propanediol (1,3-PD), dihydroxyacetone (DHA), succinic acid, etc., through microbial fermentation. Glycerol dehydratase, 1,3-propanediol dehydrogenase (1,3-propanediol-oxydoreductase), and glycerol dehydrogenase, which were encoded, respectively, by dhaB, dhaT, and dhaD and with DHA kinase are encompassed by the dha regulon, are the three key enzymes in glycerol bioconversion into 1,3-PD and DHA, and these are discussed in this review article. The summary of the main research direction of these three key enzyme and methods of glycerol bioconversion into 1,3-PD and DHA indicates their potential application in future enzymatic research and industrial production, especially in biodiesel industry.
Collapse
Affiliation(s)
- Wei Jiang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Shizhen Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
| | - Yuanpeng Wang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Baishan Fang
- />Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
- />The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005 China
- />The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005 Fujian China
| |
Collapse
|
11
|
Lin J, Zhang Y, Xu D, Xiang G, Jia Z, Fu S, Gong H. Deletion of poxB, pta, and ackA improves 1,3-propanediol production by Klebsiella pneumoniae. Appl Microbiol Biotechnol 2015; 100:2775-84. [DOI: 10.1007/s00253-015-7237-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/29/2015] [Accepted: 12/07/2015] [Indexed: 12/24/2022]
|
12
|
Improved 1,3-propanediol production by Escherichia coli from glycerol due to Co-expression of glycerol dehydratase reactivation factors and succinate addition. BIOTECHNOL BIOPROC E 2015. [DOI: 10.1007/s12257-015-0293-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
13
|
Przystałowska H, Zeyland J, Szymanowska-Powałowska D, Szalata M, Słomski R, Lipiński D. 1,3-Propanediol production by new recombinant Escherichia coli containing genes from pathogenic bacteria. Microbiol Res 2015; 171:1-7. [DOI: 10.1016/j.micres.2014.12.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 12/09/2014] [Accepted: 12/14/2014] [Indexed: 11/26/2022]
|
14
|
Enhancement of 1,3-propanediol production by expression of pyruvate decarboxylase and aldehyde dehydrogenase from Zymomonas mobilis in the acetolactate-synthase-deficient mutant of Klebsiella pneumoniae. ACTA ACUST UNITED AC 2014; 41:1259-66. [DOI: 10.1007/s10295-014-1456-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/30/2014] [Indexed: 10/25/2022]
Abstract
Abstract
The acetolactate synthase (als)-deficient mutant of Klebsiella pneumoniae fails to produce 1,3-propanediol (1,3-PD) or 2,3-butanediol (2,3-BD), and is defective in glycerol metabolism. In an effort to recover production of the industrially valuable 1,3-PD, we introduced the Zymomonas mobilis pyruvate decarboxylase (pdc) and aldehyde dehydrogenase (aldB) genes into the als-deficient mutant to activate the conversion of pyruvate to ethanol. Heterologous expression of pdc and aldB efficiently recovered glycerol metabolism in the 2,3-BD synthesis-defective mutant, enhancing the production of 1,3-PD by preventing the accumulation of pyruvate. Production of 1,3-PD in the pdc- and aldB-expressing als-deficient mutant was further enhanced by increasing the aeration rate. This system uses metabolic engineering to produce 1,3-PD while minimizing the generation of 2,3-BD, offering a breakthrough for the industrial production of 1,3-PD from crude glycerol.
Collapse
|
15
|
Cui YL, Zhou JJ, Gao LR, Zhu CQ, Jiang X, Fu SL, Gong H. Utilization of excess NADH in 2,3-butanediol-deficient Klebsiella pneumoniae for 1,3-propanediol production. J Appl Microbiol 2014; 117:690-8. [PMID: 24961176 DOI: 10.1111/jam.12588] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/09/2014] [Accepted: 06/19/2014] [Indexed: 11/27/2022]
Abstract
AIMS To utilize excess NADH for 1,3-propanediol production by 2,3-butanediol-deficient mutants, the effect of dhaT overexpression in two distinct 2,3-butanediol-deficient mutants was investigated. METHODS AND RESULTS Two 2,3-butanediol-deficient mutants, KG1-3 (blocking of the 2,3-butanediol pathway only) and KG1-5 (blocking of both of 2,3-butanediol and lactate pathways) were constructed. Our results showed that although the intracellular redox balance (NADH/NAD(+)) was extremely high at the end of fermentation for both mutants, the status of intracellular redox in KG1-5 was maintained at a normal level following the first stage of fermentation. Analysis of cell growth and metabolite formation confirmed the inhibition of excess lactate in 2,3-butanediol pathway-deficient mutants. Furthermore, dhaT was overexpressed in two 2,3-butanediol-deficient mutants (KG1-3T and KG1-5T). In KG1-5T, the intracellular redox balance was restored to normal and 1,3-propanediol production increased. The yield of 1,3-propanediol from glycerol in KG1-5T was also restored to a normal level of 0·6. CONCLUSIONS The excess NADH in both the 2,3-butanediol- and lactate-deficient mutants can be used by overexpresstion of dhaT. SIGNIFICANCE AND IMPACT OF STUDY The metabolic flux tended to increase lactate production by the abolishment of the 2,3-butanediol pathway in Klebsiella pneumoniae, and the high accumulation of lactate prevented the cell from using excess NADH, thereby inhibiting cell growth and 1,3-propanediol production.
Collapse
Affiliation(s)
- Y L Cui
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
16
|
Falls KC, Williams AL, Bryksin AV, Matsumura I. Escherichia coli deletion mutants illuminate trade-offs between growth rate and flux through a foreign anabolic pathway. PLoS One 2014; 9:e88159. [PMID: 24505410 PMCID: PMC3913754 DOI: 10.1371/journal.pone.0088159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 01/04/2014] [Indexed: 11/18/2022] Open
Abstract
Metabolic engineers strive to improve the production yields of microbial fermentations, sometimes by mutating the genomes of production strains. Some mutations are detrimental to the health of the organism, so a quantitative and mechanistic understanding of the trade-offs could inform better designs. We employed the bacterial luciferase operon (luxABCDE), which uses ubiquitous energetic cofactors (NADPH, ATP, FMNH2, acetyl-CoA) from the host cell, as a proxy for a novel anabolic pathway. The strains in the Escherichia coli Keio collection, each of which contains a single deletion of a non-essential gene, represent mutational choices that an engineer might make to optimize fermentation yields. The Keio strains and the parental BW25113 strain were transformed with a luxABCDE expression vector. Each transformant was propagated in defined M9 medium at 37°C for 48 hours; the cell density (optical density at 600 nanometers, OD600) and luminescence were measured every 30 minutes. The trade-offs were visualized by plotting the maximum growth rate and luminescence/OD600 of each transformant across a “production possibility frontier”. Our results show that some loss-of-function mutations enhance growth in vitro or light production, but that improvement in one trait generally comes at the expense of the other.
Collapse
Affiliation(s)
- Kelly C. Falls
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Aimee L. Williams
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Anton V. Bryksin
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Ichiro Matsumura
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
17
|
Rujananon R, Prasertsan P, Phongdara A. Biosynthesis of 1,3-propanediol from recombinant E. coli by optimization process using pure and crude glycerol as a sole carbon source under two-phase fermentation system. World J Microbiol Biotechnol 2013; 30:1359-68. [PMID: 24249578 DOI: 10.1007/s11274-013-1556-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
Abstract
The environmental and nutritional condition for 1,3-propanediol (1,3-PD) production by the novel recombinant E. coli BP41Y3 expressing fusion protein were first optimized using conventional approach. The optimum environmental conditions were: initial pH at 8.0, incubation at 37 °C without shaking and agitation. Among ten nutrient variables, fumarate, (NH₄)₂HPO₄ and peptone were selected to study on their interaction effect using the response surface methodology. The optimum medium contained modified Riesenberg medium (containing pure glycerol as a sole carbon source) supplemented with 63.65 mM fumarate, 3.80 g/L (NH₄)₂HPO₄ and 1.12 g/L peptone, giving the maximum 1,3-PD production of 2.43 g/L. This was 3.5-fold higher than the original medium (0.7 g/L). Two-phase cultivation system was conducted and the effect of pH control (at 6.5, 7.0 and 8.0) was investigated under anaerobic condition by comparing with the no pH control condition. The cultivation system without pH control (initial pH of 8.0) gave the maximum values of 1.65 g/L 1,3-PD, the 1,3-PD production rate of 0.13 g/L h and the yield of 0.31 mol 1,3-PD/mol crude glycerol. Hence, using crude glycerol as a sole carbon source resulted in 32 % lower 1,3-PD production from this recombinant strain that may be due to the presence of various impurities in the crude glycerol of biodiesel plant. In addition, succinic acid was found to be a major product during fermentation by giving the maximum concentration of 11.92 g/L after 24 h anaerobic cultivation.
Collapse
Affiliation(s)
- Rosarin Rujananon
- Department of Industrial Biotechnology, Faculty of Agro-Industry, Prince of Songkla University, Songkhla, 90112, Thailand
| | | | | |
Collapse
|
18
|
Srirangan K, Akawi L, Liu X, Westbrook A, Blondeel EJM, Aucoin MG, Moo-Young M, Chou CP. Manipulating the sleeping beauty mutase operon for the production of 1-propanol in engineered Escherichia coli. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:139. [PMID: 24074355 PMCID: PMC3850637 DOI: 10.1186/1754-6834-6-139] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND While most resources in biofuels were directed towards implementing bioethanol programs, 1-propanol has recently received attention as a promising alternative biofuel. Nevertheless, no microorganism has been identified as a natural 1-propanol producer. In this study, we manipulated a novel metabolic pathway for the synthesis of 1-propanol in the genetically tractable bacterium Escherichia coli. RESULTS E. coli strains capable of producing heterologous 1-propanol were engineered by extending the dissimilation of succinate via propionyl-CoA. This was accomplished by expressing a selection of key genes, i.e. (1) three native genes in the sleeping beauty mutase (Sbm) operon, i.e. sbm-ygfD-ygfG from E. coli, (2) the genes encoding bifunctional aldehyde/alcohol dehydrogenases (ADHs) from several microbial sources, and (3) the sucCD gene encoding succinyl-CoA synthetase from E. coli. Using the developed whole-cell biocatalyst under anaerobic conditions, production titers up to 150 mg/L of 1-propanol were obtained. In addition, several genetic and chemical effects on the production of 1-propanol were investigated, indicating that certain host-gene deletions could abolish 1-propanol production as well as that the expression of a putative protein kinase (encoded by ygfD/argK) was crucial for 1-propanol biosynthesis. CONCLUSIONS The study has provided a novel route for 1-propanol production in E. coli, which is subjected to further improvement by identifying limiting conversion steps, shifting major carbon flux to the productive pathway, and optimizing gene expression and culture conditions.
Collapse
Affiliation(s)
- Kajan Srirangan
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Lamees Akawi
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Xuejia Liu
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Adam Westbrook
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Eric JM Blondeel
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - Murray Moo-Young
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| | - C Perry Chou
- Department of Chemical Engineering, University of Waterloo, 200 University Avenue West, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
19
|
Wu Z, Wang Z, Wang G, Tan T. Improved 1,3-propanediol production by engineering the 2,3-butanediol and formic acid pathways in integrative recombinant Klebsiella pneumoniae. J Biotechnol 2013; 168:194-200. [PMID: 23665191 DOI: 10.1016/j.jbiotec.2013.04.022] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Revised: 04/03/2013] [Accepted: 04/26/2013] [Indexed: 11/16/2022]
Abstract
In the biotechnological process, insufficient cofactor NADH and multiple by-products restrain the final titer of 1,3-propanediol (1,3-PD). In this study, 1,3-PD production was improved by engineering the 2,3-butanediol (2,3-BD) and formic acid pathways in integrative recombinant Klebsiella pneumoniae. The formation of 2,3-BD is catalysed by acetoin reductase (AR). An inactivation mutation of the AR in K. pneumoniae CF was generated by insertion of a formate dehydrogenase gene. Inactivation of AR and expression of formate dehydrogenase reduced 2,3-BD formation and improved 1,3-PD production. Fermentation results revealed that intracellular metabolic flux was redistributed pronouncedly. The yield of 1,3-PD reached 0.74 mol/mol glycerol in flask fermentation, which is higher than the theoretical yield. In 5 L fed-batch fermentation, the final titer and 1,3-PD yield of the K. pneumoniae CF strain reached 72.2 g/L and 0.569 mol/mol, respectively, which were 15.9% and 21.7% higher than those of the wild-type strain. The titers of 2,3-BD and formic acid decreased by 52.2% and 73.4%, respectively. By decreasing the concentration of all nonvolatile by-products and by increasing the availability of NADH, this study demonstrates an important strategy in the metabolic engineering of 1,3-PD production by integrative recombinant hosts.
Collapse
Affiliation(s)
- Zhe Wu
- Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | | | | | | |
Collapse
|
20
|
Zhuang K, Bakshi BR, Herrgård MJ. Multi-scale modeling for sustainable chemical production. Biotechnol J 2013; 8:973-84. [PMID: 23520143 DOI: 10.1002/biot.201200272] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Revised: 01/18/2013] [Accepted: 02/11/2013] [Indexed: 11/10/2022]
Abstract
With recent advances in metabolic engineering, it is now technically possible to produce a wide portfolio of existing petrochemical products from biomass feedstock. In recent years, a number of modeling approaches have been developed to support the engineering and decision-making processes associated with the development and implementation of a sustainable biochemical industry. The temporal and spatial scales of modeling approaches for sustainable chemical production vary greatly, ranging from metabolic models that aid the design of fermentative microbial strains to material and monetary flow models that explore the ecological impacts of all economic activities. Research efforts that attempt to connect the models at different scales have been limited. Here, we review a number of existing modeling approaches and their applications at the scales of metabolism, bioreactor, overall process, chemical industry, economy, and ecosystem. In addition, we propose a multi-scale approach for integrating the existing models into a cohesive framework. The major benefit of this proposed framework is that the design and decision-making at each scale can be informed, guided, and constrained by simulations and predictions at every other scale. In addition, the development of this multi-scale framework would promote cohesive collaborations across multiple traditionally disconnected modeling disciplines to achieve sustainable chemical production.
Collapse
Affiliation(s)
- Kai Zhuang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Hørsholm, Denmark.
| | | | | |
Collapse
|
21
|
Elleuche S, Fodor K, Klippel B, von der Heyde A, Wilmanns M, Antranikian G. Structural and biochemical characterisation of a NAD⁺-dependent alcohol dehydrogenase from Oenococcus oeni as a new model molecule for industrial biotechnology applications. Appl Microbiol Biotechnol 2013; 97:8963-75. [PMID: 23385476 DOI: 10.1007/s00253-013-4725-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Revised: 01/14/2013] [Accepted: 01/16/2013] [Indexed: 01/18/2023]
Abstract
Alcohol dehydrogenases are highly diverse enzymes catalysing the interconversion of alcohols and aldehydes or ketones. Due to their versatile specificities, these biocatalysts are of great interest for industrial applications. The adh3-gene encoding a group III alcohol dehydrogenase was isolated from the gram-positive bacterium Oenococcus oeni and was characterised after expression in the heterologous host Escherichia coli. Adh3 has been identified by genome BLASTP analyses using the amino acid sequence of 1,3-propanediol dehydrogenase DhaT from Klebsiella pneumoniae and group III alcohol dehydrogenases with known activity towards 1,3-propanediol as target sequences. The recombinant protein was purified in a two-step column chromatography approach. Crystal structure determination and biochemical characterisation confirmed that Adh3 forms a Ni(2+)-containing homodimer in its active form. Adh3 catalyses the interconversion of ethanol and its corresponding aldehyde acetaldyhyde and is also capable of using other alcoholic compounds as substrates, such as 1,3-propanediol, 1,2-propanediol and 1-propanol. In the presence of Ni(2+), activity increases towards 1,3-propanediol and 1,2-propanediol. Adh3 is strictly dependent on NAD(+)/NADH, whereas no activity has been observed with NADP(+)/NADPH as co-factor. The enzyme exhibits a specific activity of 1.1 U/mg using EtOH as substrate with an optimal pH value of 9.0 for ethanol oxidation and 8.0 for aldehyde reduction. Moreover, Adh3 exhibits tolerance to several metal ions and organic solvents, but is completely inhibited in the presence of Zn(2+). The present study demonstrates that O. oeni is a group III alcohol dehydrogenase with versatile substrate specificity, including Ni(2+)-dependent activity towards 1,3-propanediol.
Collapse
Affiliation(s)
- Skander Elleuche
- Institute of Technical Microbiology, Hamburg University of Technology (TUHH), Kasernenstr. 12, 21073, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
22
|
Novel CAD-like enzymes from Escherichia coli K-12 as additional tools in chemical production. Appl Microbiol Biotechnol 2012; 97:5815-24. [PMID: 23093176 PMCID: PMC3684718 DOI: 10.1007/s00253-012-4474-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 09/21/2012] [Accepted: 09/24/2012] [Indexed: 12/30/2022]
Abstract
In analyzing the reductive power of Escherichia coli K-12 for metabolic engineering approaches, we identified YahK and YjgB, two medium-chain dehydrogenases/reductases subgrouped to the cinnamyl alcohol dehydrogenase family, as being important. Identification was achieved using a stepwise purification protocol starting with crude extract. For exact characterization, the genes were cloned into pET28a vector and expressed with N-terminal His tag. Substrate specificity studies revealed that a large variety of aldehydes but no ketones are converted by both enzymes. YahK and and YjgB strongly preferred NADPH as cofactor. The structure of YjgB was modeled using YahK as template for a comparison of the active center giving a first insight to the different substrate preferences. The enzyme activity for YahK, YjgB, and YqhD was determined on the basis of the temperature. YahK showed a constant increase in activity until 60 °C, whereas YjgB was most active between 37 and 50 °C. YqhD achieved the highest activity at 50 °C. Comparing YjgB and Yahk referring to the catalytic efficiency, YjgB achieved for almost all substrates higher rates (butyraldehyde 221 s−1 mM−1, benzaldehyde 1,305 s−1 mM−1). Exceptions are the two substrates glyceraldehydes (no activity for YjgB) and isobutyraldehyde (YjgB 0.26 s−1 mM−1) which are more efficiently converted by YahK (glyceraldehyde 2.8 s−1 mM−1, isobutyraldehyde 14.6 s−1 mM−1). YahK and even more so YjgB are good candidates for the reduction of aldehydes in metabolic engineering approaches and could replace the currently used YqhD.
Collapse
|
23
|
SUN Y, YE J, MU X, TENG H, FENG E, ZENG A, XIU Z. Nonlinear Mathematical Simulation and Analysis of Dha Regulon for Glycerol Metabolism in Klebsiella pneumoniae. Chin J Chem Eng 2012. [DOI: 10.1016/s1004-9541(12)60424-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
24
|
Ashok S, Mohan Raj S, Ko Y, Sankaranarayanan M, Zhou S, Kumar V, Park S. Effect of puuC overexpression and nitrate addition on glycerol metabolism and anaerobic 3-hydroxypropionic acid production in recombinant Klebsiella pneumoniae ΔglpKΔdhaT. Metab Eng 2012; 15:10-24. [PMID: 23022570 DOI: 10.1016/j.ymben.2012.09.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Revised: 09/11/2012] [Accepted: 09/14/2012] [Indexed: 10/27/2022]
Abstract
3-Hydroxypropionic acid (3-HP), an industrially important platform chemical, is used as a precursor during the production of many commercially important chemicals. Recently, recombinant strains of K. pneumoniae overexpressing an NAD(+)-dependent γ-glutamyl-γ-aminobutyraldehyde dehydrogenase (PuuC) enzyme of K. pneumoniae DSM 2026 were shown to produce 3-HP from glycerol without the addition coenzyme B(12), which is expensive. However, 3-HP production in K. pneumoniae is accompanied with NADH generation, and this always results in large accumulation of 1,3-propanediol (1,3-PDO) and lactic acid. In this study, we investigated the potential use of nitrate as an electron acceptor both to regenerate NAD(+) and to prevent the formation of byproducts during anaerobic production of 3-HP from glycerol. Nitrate addition could improve NAD(+) regeneration, but decreased glycerol flux towards 3-HP production. To divert more glycerol towards 3-HP, a novel recombinant strain K. pneumoniae ΔglpKΔdhaT (puuC) was developed by disrupting the glpK gene, which encodes glycerol kinase, and the dhaT gene, which encodes 1,3-propanediol oxidoreductase. This strain showed improved cellular NAD(+) concentrations and a high carbon flux towards 3-HP production. Through anaerobic cultivation in the presence of nitrate, this recombinant strain produced more than 40±3mM 3-HP with more than 50% yield on glycerol in shake flasks and 250±10mM 3-HP with approximately 30% yield on glycerol in a fed-batch bioreactor.
Collapse
Affiliation(s)
- Somasundar Ashok
- Department of Chemical and Biomolecular Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, South Korea
| | | | | | | | | | | | | |
Collapse
|
25
|
Ganesh I, Ravikumar S, Hong SH. Metabolically engineered Escherichia coli as a tool for the production of bioenergy and biochemicals from glycerol. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0446-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
26
|
Ma Z, Shentu X, Bian Y, Yu X. Effects of NADH availability on the Klebsiella pneumoniae strain with 1,3-propanediol operon over-expression. J Basic Microbiol 2012; 53:348-54. [PMID: 22733684 DOI: 10.1002/jobm.201100580] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2011] [Accepted: 02/03/2012] [Indexed: 11/11/2022]
Abstract
It is generally known that genes dhaB and dhaT are responsible for 1,3-propanediol (1,3-PD) production in the presence of glycerol in Klebsiella pneumoniae and these genes are organized in one operon. In the present study, a genetic means of increasing the enzyme activities of 1,3-PD formation pathway through the over-expression of 1,3-PD opeorn was performed in K. pneumoniae S6. The recombinant strain S6-PD showed 27- and 15-fold increase in enzymatic activities of DhaB and DhaT, respectively with respect to wild-type strain while failed to improve the 1,3-PD yield due to the inadequacy of cofactor NADH. Therefore, in order to increase NADH availability, a NADH regeneration system was constructed by heterologous expression of NAD(+) -dependent formate dehydrogenase gene (fdh1) from Candida boidinii and introduced into S6-PD to investigate its effects on the glycerol utilization and 1,3-PD formation. The results demonstrated that the increase of NADH availability could efficiently improve glycerol metabolism and promote 1,3-PD yield.
Collapse
Affiliation(s)
- Zheng Ma
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection and Quarantine, College of Life Sciences, China Jiliang University, Hangzhou, Zhejiang Province, China
| | | | | | | |
Collapse
|
27
|
Wargacki AJ, Leonard E, Win MN, Regitsky DD, Santos CNS, Kim PB, Cooper SR, Raisner RM, Herman A, Sivitz AB, Lakshmanaswamy A, Kashiyama Y, Baker D, Yoshikuni Y. An engineered microbial platform for direct biofuel production from brown macroalgae. Science 2012; 335:308-13. [PMID: 22267807 DOI: 10.1126/science.1214547] [Citation(s) in RCA: 392] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).
Collapse
Affiliation(s)
- Adam J Wargacki
- Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Optimization of Culture Conditions for 1,3-Propanediol Production from Glycerol Using a Mutant Strain of Klebsiella pneumoniae. Appl Biochem Biotechnol 2011; 166:127-37. [DOI: 10.1007/s12010-011-9409-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Accepted: 10/18/2011] [Indexed: 10/15/2022]
|
29
|
Celińska E. Klebsiella sppas a 1, 3-propanediol producer – the metabolic engineering approach. Crit Rev Biotechnol 2011; 32:274-88. [DOI: 10.3109/07388551.2011.616859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
30
|
Oh BR, Seo JW, Heo SY, Hong WK, Luo LH, Son JH, Park DH, Kim CH. Fermentation strategies for 1,3-propanediol production from glycerol using a genetically engineered Klebsiella pneumoniae strain to eliminate by-product formation. Bioprocess Biosyst Eng 2011; 35:159-65. [PMID: 21959580 DOI: 10.1007/s00449-011-0603-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2011] [Accepted: 07/17/2011] [Indexed: 11/29/2022]
Abstract
We generated a genetically engineered Klebsiella pneumoniae strain (AK-VOT) to eliminate by-product formation during production of 1,3-propanediol (1,3-PD) from glycerol. In the present study, the glycerol-metabolizing properties of the recombinant strain were examined during fermentation in a 5 L bioreactor. As expected, by-product formation was completely absent (except for acetate) when the AK-VOT strain fermented glycerol. However, 1,3-PD productivity was severely reduced owing to a delay in cell growth attributable to a low rate of glycerol consumption. This problem was solved by establishing a two-stage process separating cell growth from 1,3-PD production. In addition, nutrient co-supplementation, especially with starch, significantly increased 1,3-PD production from glycerol during fed-batch fermentation by AK-VOT in the absence of by-product formation.
Collapse
Affiliation(s)
- Baek-Rock Oh
- Microbe-based Fusion Technology Research Center, Jeonbuk Branch Institute, KRIBB, Jeongeup, Jeonbuk, 580-185, Korea
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Luo LH, Seo JW, Oh BR, Seo PS, Heo SY, Hong WK, Kim DH, Kim CH. Stimulation of reductive glycerol metabolism by overexpression of an aldehyde dehydrogenase in a recombinant Klebsiella pneumoniae strain defective in the oxidative pathway. J Ind Microbiol Biotechnol 2010; 38:991-9. [PMID: 20862513 DOI: 10.1007/s10295-010-0872-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 09/08/2010] [Indexed: 11/30/2022]
Abstract
Previously, we constructed a glycerol oxidative pathway-deficient mutant strain of Klebsiella pneumoniae by inactivation of glycerol dehydrogenase (dhaD) to eliminate by-product synthesis during production of 1,3-propanediol (1,3-PD) from glycerol. Although by-product formation was successfully blocked in the resultant strain, the yield of 1,3-PD was not enhanced, probably because dhaD disruption resulted in insufficient regeneration of the cofactor NADH essential for the activity of 1,3-PD oxidoreductase (DhaT). To improve cofactor regeneration, in the present study we overexpressed an NAD(+)-dependent aldehyde dehydrogenase in the recombinant strain. To this end, an aldehyde dehydrogenase AldHk homologous to E. coli AldH but with NAD(+)-dependent propionaldehyde dehydrogenase activity was identified in K. pneumoniae. Functional analysis revealed that the substrate specificity of AldHk embraced various aldehydes including propionaldehyde, and that NAD(+) was preferred over NADP(+) as a cofactor. Overexpression of AldHk in the glycerol oxidative pathway-deficient mutant AK/pVOTHk resulted in a 3.6-fold increase (0.57 g l(-1) to 2.07 g l(-1)) in the production of 3-hydroxypropionic acid (3-HP), and a 1.1-fold enhancement (8.43 g l(-1) to 9.65 g l(-1)) of 1,3-PD synthesis, when glycerol was provided as the carbon source, compared to the levels synthesized by the control strain (AK/pVOT). Batch fermentation using AK/pVOTHk showed a significant increase (to 70%, w/w) in conversion of glycerol to the reductive metabolites, 1,3-PD and 3-HP, with no production of by-products except acetate.
Collapse
Affiliation(s)
- Lian Hua Luo
- Microbe-Based Fusion Technology Research Center, Jeonbuk Branch Institute, KRIBB, Jeongeup, Jeonbuk, 580-185, South Korea
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Debottlenecking the 1,3-propanediol pathway by metabolic engineering. Biotechnol Adv 2010; 28:519-30. [DOI: 10.1016/j.biotechadv.2010.03.003] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Revised: 03/20/2010] [Accepted: 03/25/2010] [Indexed: 11/20/2022]
|
33
|
Hiremath A, Kannabiran M, Rangaswamy V. 1,3-Propanediol production from crude glycerol from Jatropha biodiesel process. N Biotechnol 2010; 28:19-23. [PMID: 20601262 DOI: 10.1016/j.nbt.2010.06.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Revised: 04/30/2010] [Accepted: 06/13/2010] [Indexed: 10/19/2022]
Abstract
The present report describes production of 1,3-propanediol by Klebsiella pneumoniae ATCC 15380 from crude glycerol from jatropha biodiesel process. Optimization resulted in a yield of up to 56g/L of 1,3-propanediol. A conversion rate of 0.85mol 1,3-propanediol/mol of glycerol has been obtained. Downstream processing to isolate 1,3-propanediol from the fermentation broth resulted in 99.7% pure product with a recovery of 34%. The pure 1,3-propanediol was polymerized with terephthalic acid successfully to yield polytrimethylene terephthalate.
Collapse
Affiliation(s)
- Anand Hiremath
- Industrial Biotechnology Group, Reliance Life Sciences Pvt. Ltd, Dhirubhai Ambani Life Sciences Centre, R-282, TTC Area of MIDC, Thane-Belapur Road, Rabale, Navi Mumbai 400 701, India
| | | | | |
Collapse
|
34
|
Ma Z, Rao Z, Xu L, Liao X, Fang H, Zhuge B, Zhuge J. Expression of dha operon required for 1,3-PD formation in Escherichia coli and Saccharomyces cerevisiae. Curr Microbiol 2010; 60:191-8. [PMID: 19924483 DOI: 10.1007/s00284-009-9528-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
The 1,3-propanediol (1,3-PD) synthesis operon (dha operon) was mainly composed of four genes: dhaB, dhaT, gdrA, and gdrB, which encoded glycerol dehydratase, 1,3-PD oxidoreductase and reactivating factor for glycerol dehydratase, respectively. In the present study, dha operon was cloned from 1,3-PD producing strain Klebsiella pneumoniae. Heterologous expression of cloned dha operon was carried out in Escherichia coli and Saccharomyces cerevisiae W303-1A, respectively. The results indicated that recombinant E. coli harboring the dha operon can produce 8-9 g/l 1,3-PD from glycerol while the 1,3-PD yield of recombinant strain W303-1A-dha could not be detected. In order to complete the 1,3-PD production from glucose, further, we also constructed the recombinant S. cerevisiae W303-1A-BT harboring plasmid pZ-BT. The 1,3-PD production and enzymatic activities of DhaB and DhaT were found in the engineered strain W303-1A-BT. Our results demonstrated that the recombinant S. cerevisiae strain W303-1A-BT that can produce 1,3-PD at low cost was constructed. This study might open a novel way to a safe and cost-efficient method for microbial production of 1,3-PD.
Collapse
Affiliation(s)
- Zheng Ma
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, School of Biotechnology, Research Center of Industrial Microbiology, Jiangnan University, Wuxi, Jiangsu Province, 214122, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
35
|
Horng YT, Chang KC, Chou TC, Yu CJ, Chien CC, Wei YH, Soo PC. Inactivation of dhaD and dhaK abolishes by-product accumulation during 1,3-propanediol production in Klebsiella pneumoniae. J Ind Microbiol Biotechnol 2010; 37:707-16. [DOI: 10.1007/s10295-010-0714-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
|
36
|
Zhu JG, Ji XJ, Huang H, Du J, Li S, Ding YY. Production of 3-hydroxypropionic acid by recombinant Klebsiella pneumoniae based on aeration and ORP controlled strategy. KOREAN J CHEM ENG 2010. [DOI: 10.1007/s11814-009-0240-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Biofuel production in Escherichia coli: the role of metabolic engineering and synthetic biology. Appl Microbiol Biotechnol 2010; 86:419-34. [DOI: 10.1007/s00253-010-2446-1] [Citation(s) in RCA: 141] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/06/2023]
|
38
|
Saxena R, Anand P, Saran S, Isar J. Microbial production of 1,3-propanediol: Recent developments and emerging opportunities. Biotechnol Adv 2009; 27:895-913. [DOI: 10.1016/j.biotechadv.2009.07.003] [Citation(s) in RCA: 346] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 07/21/2009] [Accepted: 07/25/2009] [Indexed: 11/25/2022]
|
39
|
Rao Z, Ma Z, Shen W, Fang H, Zhuge J, Wang X. Engineered Saccharomyces cerevisiae that produces 1,3-propanediol from D-glucose. J Appl Microbiol 2009; 105:1768-76. [PMID: 19120627 DOI: 10.1111/j.1365-2672.2008.03868.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS Saccharomyces cerevisiae is a safe micro-organism used in fermentation industry. 1,3-Propanediol is an important chemical widely used in polymer production, but its availability is being restricted owing to its expensively chemical synthesis. The aim of this study is to engineer a S. cerevisiae strain that can produce 1,3-propanediol at low cost. METHODS AND RESULTS By using D-glucose as a feedstock, S. cerevisiae could produce glycerol, but not 1,3-propanediol. In this study, we have cloned two genes yqhD and dhaB required for the production of 1,3-propanediol from glycerol, and integrated them into the chromosome of S. cerevisiae W303-1A by Agrobacterium tumefaciens-mediated transformation. Both genes yqhD and dhaB functioned in the engineered S. cerevisiae and led to the production of 1,3-propanediol from D-glucose. CONCLUSION Saccharomyces cerevisiae can be engineered to produce 1,3-propanediol from low-cost feedstock D-glucose. SIGNIFICANCE AND IMPACT OF THE STUDY To our knowledge, this is the first report on developing S. cerevisiae to produce 1,3-propanediol by using A. tumefaciens-mediated transformation. This study might lead to a safe and cost-efficient method for industrial production of 1,3-propanediol.
Collapse
Affiliation(s)
- Z Rao
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Research Center of Industrial Microbiology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province, PR China.
| | | | | | | | | | | |
Collapse
|
40
|
Seo JW, Seo MY, Oh BR, Heo SY, Baek JO, Rairakhwada D, Luo LH, Hong WK, Kim CH. Identification and utilization of a 1,3-propanediol oxidoreductase isoenzyme for production of 1,3-propanediol from glycerol in Klebsiella pneumoniae. Appl Microbiol Biotechnol 2009; 85:659-66. [DOI: 10.1007/s00253-009-2123-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2009] [Revised: 06/23/2009] [Accepted: 07/01/2009] [Indexed: 11/29/2022]
|
41
|
Seo MY, Seo JW, Heo SY, Baek JO, Rairakhwada D, Oh BR, Seo PS, Choi MH, Kim CH. Elimination of by-product formation during production of 1,3-propanediol in Klebsiella pneumoniae by inactivation of glycerol oxidative pathway. Appl Microbiol Biotechnol 2009; 84:527-34. [PMID: 19352645 DOI: 10.1007/s00253-009-1980-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2009] [Revised: 03/03/2009] [Accepted: 03/17/2009] [Indexed: 11/25/2022]
Abstract
The microbial production of 1,3-propanediol (1,3-PD) by Klebsiella pneumoniae involves the formation of various by-products, which are synthesized through the oxidative pathway. To eliminate the by-products synthesis, the oxidative branch of glycerol metabolism was inactivated by constructing two mutant strains. In one of the mutant strains, the structural genes encoding glycerol dehydrogenase and dihydroxyacetone kinase were deleted from the chromosomal DNA, whereas in the second mutant strain dhaR, which is a putative transcription factor that activates, gene expression was deleted from the chromosomal DNA. In the resultant mutant strains lacking the dhaT gene encoding 1,3-PD oxidoreductase, which was simultaneously deleted while replacing the native promoter with the lacZ promoter, the by-product formation except for acetate was eliminated, but it still produced 1,3-PD at a lower level, which might be due to a putative oxidoreductase that catalyzes the production of 1,3-PD. The recombinant strains in which the reductive pathway was recovered produced slightly lower amount of 1,3-PD as compared to the parent strain, which might be due to the reduced activity of DhaB caused by the substitution of the promoter. However, the production yield was higher in the recombinant strain (0.57 mol mol(-1)) than the wild type Cu strain (0.47 mol mol(-1)).
Collapse
Affiliation(s)
- Mi-Young Seo
- Molecular Bioprocess Research Center, Jeonbuk Branch Institute, KRIBB, Jeongeup, Jeonbuk, 580-185, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Enhanced 1,3-propanediol production in recombinant Klebsiella pneumoniae carrying the gene yqhD encoding 1,3-propanediol oxidoreductase isoenzyme. World J Microbiol Biotechnol 2009. [DOI: 10.1007/s11274-009-0005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Microbial conversion of glycerol to 1,3-propanediol by an engineered strain of Escherichia coli. Appl Environ Microbiol 2009; 75:1628-34. [PMID: 19139229 DOI: 10.1128/aem.02376-08] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In an effort to improve industrial production of 1,3-propanediol (1,3-PD), we engineered a novel polycistronic operon under the control of the temperature-sensitive lambda phage P(L)P(R) promoter regulated by the cIts857 repressor and expressed it in Escherichia coli K-12 ER2925. The genes for the production of 1,3-PD in Clostridium butyricum, dhaB1 and dhaB2, which encode the vitamin B(12)-independent glycerol dehydratase DhaB1 and its activating factor, DhaB2, respectively, were tandemly arrayed with the E. coli yqhD gene, which encodes the 1,3-propanediol oxidoreductase isoenzyme YqhD, an NADP-dependent dehydrogenase that can directly convert glycerol to 1,3-PD. The microbial conversion of 1,3-PD from glycerol by this recombinant E. coli strain was studied in a two-stage fermentation process. During the first stage, a novel high-cell-density fermentation step, there was significant cell growth and the majority of the metabolites produced were organic acids, mainly acetate. During the second stage, glycerol from the fresh medium was rapidly converted to 1,3-PD following a temperature shift from 30 degrees C to 42 degrees C. The by-products were mainly pyruvate and acetate. During this two-stage process, the overall 1,3-PD yield and productivity reached 104.4 g/liter and 2.61 g/liter/h, respectively, and the conversion rate of glycerol to 1,3-PD reached 90.2% (g/g). To our knowledge, this is the highest reported yield and productivity efficiency of 1,3-PD with glycerol as the sole source of carbon. Furthermore, the overall fermentation time was only 40 h, shorter than that of any other reports.
Collapse
|
44
|
Glycerol: A promising and abundant carbon source for industrial microbiology. Biotechnol Adv 2009; 27:30-9. [DOI: 10.1016/j.biotechadv.2008.07.006] [Citation(s) in RCA: 741] [Impact Index Per Article: 49.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2007] [Revised: 05/05/2008] [Accepted: 07/31/2008] [Indexed: 11/18/2022]
|
45
|
Hao J, Wang W, Tian J, Li J, Liu D. Decrease of 3-hydroxypropionaldehyde accumulation in 1,3-propanediol production by over-expressing dhaT gene in Klebsiella pneumoniae TUAC01. J Ind Microbiol Biotechnol 2008; 35:735-41. [DOI: 10.1007/s10295-008-0340-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2007] [Accepted: 03/03/2008] [Indexed: 10/22/2022]
|
46
|
Wang F, Qu H, Zhang D, Tian P, Tan T. Production of 1,3-propanediol from glycerol by recombinant E. coli using incompatible plasmids system. Mol Biotechnol 2008; 37:112-9. [PMID: 17914171 DOI: 10.1007/s12033-007-0041-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 10/23/2022]
Abstract
1,3-Propanediol (1,3-PD) has numerous applications in polymers, cosmetics, foods, lubricants, and medicines as a bifunctional organic compound. The genes for the production of 1,3-PD in Klebsiella pneumoniae, dhaB, which encodes glycerol dehydratase, and dhaT, which encodes 1,3-PD oxidoreductase, and gdrAB, which encodes glycerol dehydratase reactivating factor, are naturally under the control of different promoters and are transcribed in different directions. These genes were coexpressed in E. coli using two incompatible plasmids (pET28a and pET22b) in the presence of selective pressure. The recombinant E. coli coexpressed the glycerol dehydratase, 1,3-propanediol oxidoreductase and reactivating factor for the glycerol dehydratase at high levels. In a fed-batch fermentation of glycerol and glucose, the recombinant E. coli containing these two incompatible plasmids consumed 14.3 g/l glycerol and produced 8.6 g/l 1,3-propanediol. In the substitution case of yqhD (encoding alcohol dehydrogenase from E. coli) for dhaT, the final 1,3-propanediol concentration of the recombinant E. coli could reach 13.2 g/l.
Collapse
Affiliation(s)
- Fenghuan Wang
- Beijing Key Lab of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | | | | | | | | |
Collapse
|
47
|
Zheng P, Wereath K, Sun J, van den Heuvel J, Zeng AP. Overexpression of genes of the dha regulon and its effects on cell growth, glycerol fermentation to 1,3-propanediol and plasmid stability in Klebsiella pneumoniae. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.06.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Yang G, Tian J, Li J. Fermentation of 1,3-propanediol by a lactate deficient mutant of Klebsiella oxytoca under microaerobic conditions. Appl Microbiol Biotechnol 2006; 73:1017-24. [PMID: 16960737 DOI: 10.1007/s00253-006-0563-7] [Citation(s) in RCA: 143] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 06/28/2006] [Accepted: 07/09/2006] [Indexed: 11/28/2022]
Abstract
Klebsiella oxytoca M5al is an excellent 1,3-propanediol (1,3-PD) producer, but too much lactic acid yielded greatly lessened the fermentation efficiency for 1,3-PD. To counteract the disadvantage, four lactate deficient mutants were obtained by knocking out the ldhA gene of lactate dehydrogenase (LDH) of K. oxytoca M5al. The LDH activities of the four mutants were from 3.85 to 6.92% of the parental strain. The fed-batch fermentation of 1,3-PD by mutant LDH3, whose LDH activity is the lowest, was studied. The results showed that higher 1,3-PD concentration, productivity, and molar conversion rate from glycerol to 1,3-PD can be gained than those of the wild type strain and no lactic acid is produced under both anaerobic and microaerobic conditions. Sucrose fed during the fermentation increased the conversion and sucrose added at the beginning increased the productivity. In fed-batch fermentation with sucrose as cosubstrate under microaerobic conditions, the 1,3-PD concentration, conversion, and productivity were improved significantly to 83.56 g l-1, 0.62 mol mol-1, and 1.61 g l(-1) h-1, respectively. Furthermore, 60.11 g l(-1) 2,3-butanediol was also formed as major byproduct in the broth.
Collapse
Affiliation(s)
- Guang Yang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100094, People's Republic of China
| | | | | |
Collapse
|
49
|
Zhang X, Li Y, Zhuge B, Tang X, Shen W, Rao Z, Fang H, Zhuge J. Construction of a novel recombinant Escherichia coli strain capable of producing 1,3–propanediol and optimization of fermentation parameters by statistical design. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9139-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Andres S, Wiezer A, Bendfeldt H, Waschkowitz T, Toeche-Mittler C, Daniel R. Insights into the genome of the enteric bacterium Escherichia blattae: cobalamin (B12) biosynthesis, B12-dependent reactions, and inactivation of the gene region encoding B12-dependent glycerol dehydratase by a new mu-like prophage. J Mol Microbiol Biotechnol 2006; 8:150-68. [PMID: 16088217 DOI: 10.1159/000085788] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The enteric bacterium Escherichia blattae has been analyzed for the presence of cobalamin (B12) biosynthesis and B12-dependent pathways. Biochemical studies revealed that E. blattae synthesizes B12 de novo aerobically and anaerobically. Genes exhibiting high similarity to all genes of Salmonella enterica serovar Typhimurium, which are involved in the oxygen-independent route of B12 biosynthesis, were present in the genome of E. blattae DSM 4481. The dha regulon encodes the key enzymes for the anaerobic conversion of glycerol to 1,3-propanediol, including coenzyme B12-dependent glycerol dehydratase. E. blattae DSM 4481 lacked glycerol dehydratase activity and showed no anaerobic growth with glycerol, but the genome of E. blattae DSM 4481 contained a dha regulon. The E. blattaedha regulon is unusual, since it harbors genes for two types of dihydroxyacetone kinases. The major difference to dha regulons of other enteric bacteria is the inactivation of the dehydratase-encoding gene region by insertion of a 33,339-bp prophage (MuEb). Sequence analysis revealed that MuEb belongs to the Mu family of bacteriophages. The E. blattae strains ATCC 33429 and ATCC 33430 did not contain MuEb. Accordingly, both strains harbored an intact dehydratase-encoding gene region and fermented glycerol. The properties of the glycerol dehydratases and the correlating genes (dhaBCE) of both strains were similar to other B12-dependent glycerol and diol dehydratases, but both dehydratases exhibited the highest affinity for glycerol of all B12-dependent dehydratases characterized so far. In addition to the non-functional genes encoding B12-dependent glycerol dehydratase, the genome of E. blattae DSM 4481 contained the genes for only one other B12-dependent enzyme, the methylcobalamin-dependent methionine synthase.
Collapse
Affiliation(s)
- Sönke Andres
- Abteilung Angewandte Mikrobiologie, Institut für Mikrobiologie und Genetik der Georg-August-Universität, Göttingen, Germany
| | | | | | | | | | | |
Collapse
|