1
|
Moratti CF, Yang SNN, Scott C, Coleman NV. Development of a whole-cell biosensor for ethylene oxide and ethylene. Microb Biotechnol 2024; 17:e14511. [PMID: 38925606 PMCID: PMC11197473 DOI: 10.1111/1751-7915.14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Ethylene and ethylene oxide are widely used in the chemical industry, and ethylene is also important for its role in fruit ripening. Better sensing systems would assist risk management of these chemicals. Here, we characterise the ethylene regulatory system in Mycobacterium strain NBB4 and use these genetic parts to create a biosensor. The regulatory genes etnR1 and etnR2 and cognate promoter Petn were combined with a fluorescent reporter gene (fuGFP) in a Mycobacterium shuttle vector to create plasmid pUS301-EtnR12P. Cultures of M. smegmatis mc2-155(pUS301-EtnR12P) gave a fluorescent signal in response to ethylene oxide with a detection limit of 0.2 μM (9 ppb). By combining the epoxide biosensor cells with another culture expressing the ethylene monooxygenase, the system was converted into an ethylene biosensor. The co-culture was capable of detecting ethylene emission from banana fruit. These are the first examples of whole-cell biosensors for epoxides or aliphatic alkenes. This work also resolves long-standing questions concerning the regulation of ethylene catabolism in bacteria.
Collapse
Affiliation(s)
- Claudia F. Moratti
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Sui Nin Nicholas Yang
- School of Life and Environmental SciencesUniversity of SydneyCamperdownNew South WalesAustralia
| | - Colin Scott
- CSIRO Advanced Engineering Biology Future Science Platform, Black Mountain Research & Innovation ParkCanberraAustralian Capital TerritoryAustralia
| | - Nicholas V. Coleman
- School of Natural Sciences and ARC Centre of Excellence in Synthetic BiologyMacquarie UniversityNorth RydeNew South WalesAustralia
| |
Collapse
|
2
|
Huang CW, Lin C, Nguyen MK, Hussain A, Bui XT, Ngo HH. A review of biosensor for environmental monitoring: principle, application, and corresponding achievement of sustainable development goals. Bioengineered 2023; 14:58-80. [PMID: 37377408 DOI: 10.1080/21655979.2022.2095089] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 06/29/2023] Open
Abstract
Human health/socioeconomic development is closely correlated to environmental pollution, highlighting the need to monitor contaminants in the real environment with reliable devices such as biosensors. Recently, variety of biosensors gained high attention and employed as in-situ application, in real-time, and cost-effective analytical tools for healthy environment. For continuous environmental monitoring, it is necessary for portable, cost-effective, quick, and flexible biosensing devices. These benefits of the biosensor strategy are related to the Sustainable Development Goals (SDGs) established by the United Nations (UN), especially with reference to clean water and sources of energy. However, the relationship between SDGs and biosensor application for environmental monitoring is not well understood. In addition, some limitations and challenges might hinder the biosensor application on environmental monitoring. Herein, we reviewed the different types of biosensors, principle and applications, and their correlation with SDG 6, 12, 13, 14, and 15 as a reference for related authorities and administrators to consider. In this review, biosensors for different pollutants such as heavy metals and organics were documented. The present study highlights the application of biosensor for achieving SDGs. Current advantages and future research aspects are summarized in this paper.Abbreviations: ATP: Adenosine triphosphate; BOD: Biological oxygen demand; COD: Chemical oxygen demand; Cu-TCPP: Cu-porphyrin; DNA: Deoxyribonucleic acid; EDCs: Endocrine disrupting chemicals; EPA: U.S. Environmental Protection Agency; Fc-HPNs: Ferrocene (Fc)-based hollow polymeric nanospheres; Fe3O4@3D-GO: Fe3O4@three-dimensional graphene oxide; GC: Gas chromatography; GCE: Glassy carbon electrode; GFP: Green fluorescent protein; GHGs: Greenhouse gases; HPLC: High performance liquid chromatography; ICP-MS: Inductively coupled plasma mass spectrometry; ITO: Indium tin oxide; LAS: Linear alkylbenzene sulfonate; LIG: Laser-induced graphene; LOD: Limit of detection; ME: Magnetoelastic; MFC: Microbial fuel cell; MIP: Molecular imprinting polymers; MWCNT: Multi-walled carbon nanotube; MXC: Microbial electrochemical cell-based; NA: Nucleic acid; OBP: Odorant binding protein; OPs: Organophosphorus; PAHs: Polycyclic aromatic hydrocarbons; PBBs: Polybrominated biphenyls; PBDEs: Polybrominated diphenyl ethers; PCBs: Polychlorinated biphenyls; PGE: Polycrystalline gold electrode; photoMFC: photosynthetic MFC; POPs: Persistent organic pollutants; rGO: Reduced graphene oxide; RNA: Ribonucleic acid; SDGs: Sustainable Development Goals; SERS: Surface enhancement Raman spectrum; SPGE: Screen-printed gold electrode; SPR: Surface plasmon resonance; SWCNTs: single-walled carbon nanotubes; TCPP: Tetrakis (4-carboxyphenyl) porphyrin; TIRF: Total internal reflection fluorescence; TIRF: Total internal reflection fluorescence; TOL: Toluene-catabolic; TPHs: Total petroleum hydrocarbons; UN: United Nations; VOCs: Volatile organic compounds.
Collapse
Affiliation(s)
- Chi-Wei Huang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Chitsan Lin
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Minh Ky Nguyen
- Ph.D. Program in Maritime Science and Technology, College of Maritime, National Kaohsiung University of Science and TechnologyPh.D. Program in Maritime Science and Technology, Kaohsiung, Taiwan
| | - Adnan Hussain
- Ph. D. Program of Aquatic Science and Technology, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| | - Xuan-Thanh Bui
- Department Water Science & Technology, Key Laboratory of Advanced Waste Treatment Technology, Ho Chi Minh City University of Technology (HCMUT), Vietnam National University Ho Chi Minh (VNU-HCM), Ho Chi Minh City, Vietnam
- Department Water Science & Technology, Faculty of Environment & Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
| | - Huu Hao Ngo
- Department Water Science & Technology, Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
3
|
Zhou X, Zhang X, Peng Y, Douka AI, You F, Yao J, Jiang X, Hu R, Yang H. Electroactive Microorganisms in Advanced Energy Technologies. Molecules 2023; 28:molecules28114372. [PMID: 37298848 DOI: 10.3390/molecules28114372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Large-scale production of green and pollution-free materials is crucial for deploying sustainable clean energy. Currently, the fabrication of traditional energy materials involves complex technological conditions and high costs, which significantly limits their broad application in the industry. Microorganisms involved in energy production have the advantages of inexpensive production and safe process and can minimize the problem of chemical reagents in environmental pollution. This paper reviews the mechanisms of electron transport, redox, metabolism, structure, and composition of electroactive microorganisms in synthesizing energy materials. It then discusses and summarizes the applications of microbial energy materials in electrocatalytic systems, sensors, and power generation devices. Lastly, the research progress and existing challenges for electroactive microorganisms in the energy and environment sectors described herein provide a theoretical basis for exploring the future application of electroactive microorganisms in energy materials.
Collapse
Affiliation(s)
- Xingchen Zhou
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xianzheng Zhang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Yujie Peng
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Abdoulkader Ibro Douka
- State Key Laboratory of Fine Chemicals, Zhang Dayu School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Feng You
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Junlong Yao
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Xueliang Jiang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| | - Ruofei Hu
- Department of Food Science and Chemical Engineering, Hubei University of Arts and Science, Xiangyang 441053, China
| | - Huan Yang
- Hubei Key Laboratory of Plasma Chemistry and Advanced Materials, School of Materials Science and Engineering, Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Wuhan Institute of Technology, No. 206 Guanggu 1st Road, Wuhan 430205, China
| |
Collapse
|
4
|
Miller CA, Ho JML, Bennett MR. Strategies for Improving Small-Molecule Biosensors in Bacteria. BIOSENSORS 2022; 12:bios12020064. [PMID: 35200325 PMCID: PMC8869690 DOI: 10.3390/bios12020064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/18/2022] [Indexed: 05/03/2023]
Abstract
In recent years, small-molecule biosensors have become increasingly important in synthetic biology and biochemistry, with numerous new applications continuing to be developed throughout the field. For many biosensors, however, their utility is hindered by poor functionality. Here, we review the known types of mechanisms of biosensors within bacterial cells, and the types of approaches for optimizing different biosensor functional parameters. Discussed approaches for improving biosensor functionality include methods of directly engineering biosensor genes, considerations for choosing genetic reporters, approaches for tuning gene expression, and strategies for incorporating additional genetic modules.
Collapse
Affiliation(s)
- Corwin A. Miller
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Joanne M. L. Ho
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
| | - Matthew R. Bennett
- Department of Biosciences, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA; (C.A.M.); (J.M.L.H.)
- Department of Bioengineering, Rice University MS-140, 6100 Main St., Houston, TX 77005, USA
- Correspondence:
| |
Collapse
|
5
|
Chen XJ, Wang B, Thompson IP, Huang WE. Rational Design and Characterization of Nitric Oxide Biosensors in E. coli Nissle 1917 and Mini SimCells. ACS Synth Biol 2021; 10:2566-2578. [PMID: 34551261 DOI: 10.1021/acssynbio.1c00223] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nitric oxide (NO) is an important disease biomarker found in many chronic inflammatory diseases and cancers. A well-characterized nitric sensing system is useful to aid the rapid development of bacteria therapy and synthetic biology. In this work, we engineered a set of NO-responsive biosensors based on the PnorV promoter and its NorR regulator in the norRVW operon; the circuits were characterized and optimized in probiotic Escherichia coli Nissle 1917 and mini SimCells (minicells containing designed gene circuits for specific tasks). Interestingly, the expression level of NorR displayed an inverse correlation to the PnorV promoter activation, as a strong expression of the NorR regulator resulted in a low amplitude of NO-inducible gene expression. This could be explained by a competitive binding mechanism where the activated and inactivated NorR competitively bind to the same site on the PnorV promoter. To overcome such issues, the NO induction performance was further improved by making a positive feedback loop that fine-tuned the level of NorR. In addition, by examining two integration host factor (IHF) binding sites of the PnorV promoter, we demonstrated that the deletion of the second IHF site increased the maximum signal output by 25% (500 μM DETA/NO) with no notable increase in the basal expression level. The optimized NO-sensing gene circuit in anucleate mini SimCells exhibited increased robustness against external fluctuation in medium composition. The NO detection limit of the optimized gene circuit pPnorVβ was also improved from 25.6 to 1.3 nM in mini SimCells. Moreover, lyophilized mini SimCells can maintain function for over 2 months. Hence, SimCell-based NO biosensors could be used as safe sensor chassis for synthetic biology.
Collapse
Affiliation(s)
- Xiaoyu J. Chen
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Baojun Wang
- Hangzhou Innovation Center and College of Chemical & Biological Engineering, Zhejiang University, Hangzhou 311200, China
- School of Biological Sciences, University of Edinburgh, G20 Roger Land Building, The Kingʼs Buildings, Edinburgh EH9 3FF, United Kingdom
- ZJU-UoE Joint Research Centre for Engineering Biology, Zhejiang University, Haining 314400, China
| | - Ian P. Thompson
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| | - Wei E. Huang
- Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, United Kingdom
| |
Collapse
|
6
|
Abstract
Biocontainment is a safeguard strategy for preventing uncontrolled proliferation of genetically engineered microorganisms (GEMs) in the environment. Biocontained GEMs are designed to survive only in the presence of a specific molecule. The design of a pollutant-degrading and pollutant-dependent GEM prevents its proliferation after cleaning the environment. In this study, we present a biocontained toluene-degrading bacterium based on Acinetobacter sp. Tol 5. The bamA gene, which encodes an essential outer membrane protein, was deleted from the chromosome of Tol 5 but complemented with a plasmid carrying a bamA gene regulated by the Pu promoter and the regulatory protein XylR. The resultant strain (PuBamA) degraded toluene, similarly to the wild-type Tol 5. Although the cell growth of the PuBamA strain was remarkably inhibited after toluene depletion, escape mutants emerged at a frequency of 1 per 5.3 × 10−7 cells. Analyses of escape mutants revealed that insertion sequences (ISs) carrying promoters were inserted between the Pu promoter and the bamA gene on the complemented plasmid. MinION deep sequencing of the plasmids extracted from the escape mutants enabled the identification of three types of ISs involved in the emergence of escape mutants, suggesting a strategy for reducing it. IMPORTANCE GEMs are beneficial for various applications, including environmental protection. However, the risks of GEM release into the environment have been debated for a long time. If a pollutant is employed as a specific molecule for a biocontainment system, GEMs capable of degrading pollutants are available for environmental protection. Nevertheless, to our knowledge, biocontained degraders for real pollutants have not been reported in academic journals so far. This is possibly due to the difficulty in the expression of enzymes for degrading pollutants in a tractable bacterium such as Escherichia coli. On the other hand, bacteria with enzymes for degrading pollutants are often intractable as a host of GEMs due to the shortage of tools for genetic manipulation. This study reports the feasibility of a biocontainment strategy for a toluene degrader. Our results provide useful insights into the construction of a GEM biocontainment system for environmental protection.
Collapse
|
7
|
Wang GH, Tsai TH, Kui CC, Cheng CY, Huang TL, Chung YC. Analysis of bioavailable toluene by using recombinant luminescent bacterial biosensors with different promoters. J Biol Eng 2021; 15:2. [PMID: 33407661 PMCID: PMC7789755 DOI: 10.1186/s13036-020-00254-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 12/29/2020] [Indexed: 01/24/2023] Open
Abstract
In this study, we constructed recombinant luminescent Escherichia coli with T7, T3, and SP6 promoters inserted between tol and lux genes as toluene biosensors and evaluated their sensitivity, selectivity, and specificity for measuring bioavailable toluene in groundwater and river water. The luminescence intensity of each biosensor depended on temperature, incubation time, ionic strength, and concentrations of toluene and coexisting organic compounds. Toluene induced the highest luminescence intensity in recombinant lux-expressing E. coli with the T7 promoter [T7-lux-E. coli, limit of detection (LOD) = 0.05 μM], followed by that in E. coli with the T3 promoter (T3-lux-E. coli, LOD = 0.2 μM) and SP6 promoter (SP6-lux-E. coli, LOD = 0.5 μM). Luminescence may have been synergistically or antagonistically affected by coexisting organic compounds other than toluene; nevertheless, low concentrations of benzoate and toluene analogs had no such effect. In reproducibility experiments, the biosensors had low relative standard deviation (4.3-5.8%). SP6-lux-E. coli demonstrated high adaptability to environmental interference. T7-lux-E. coli biosensor-with low LOD, wide measurement range (0.05-500 μM), and acceptable deviation (- 14.3 to 9.1%)-is an efficient toluene biosensor. This is the first study evaluating recombinant lux E. coli with different promoters for their potential application in toluene measurement in actual water bodies.
Collapse
Affiliation(s)
- Guey-Horng Wang
- Research Center of Natural Cosmeceuticals Engineering, Xiamen Medical College, Xiamen, 361008, China
| | - Teh-Hua Tsai
- Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Chi Kui
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Chiu-Yu Cheng
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Tzu-Ling Huang
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan
| | - Ying-Chien Chung
- Department of Biological Science and Technology, China University of Science and Technology, Taipei, 11581, Taiwan.
| |
Collapse
|
8
|
Li JW, Zhang XY, Wu H, Bai YP. Transcription Factor Engineering for High-Throughput Strain Evolution and Organic Acid Bioproduction: A Review. Front Bioeng Biotechnol 2020; 8:98. [PMID: 32140463 PMCID: PMC7042172 DOI: 10.3389/fbioe.2020.00098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 02/03/2020] [Indexed: 01/15/2023] Open
Abstract
Metabolic regulation of gene expression for the microbial production of fine chemicals, such as organic acids, is an important research topic in post-genomic metabolic engineering. In particular, the ability of transcription factors (TFs) to respond precisely in time and space to various small molecules, signals and stimuli from the internal and external environment is essential for metabolic pathway engineering and strain development. As a key component, TFs are used to construct many biosensors in vivo using synthetic biology methods, which can be used to monitor the concentration of intracellular metabolites in organic acid production that would otherwise remain “invisible” within the intracellular environment. TF-based biosensors also provide a high-throughput screening method for rapid strain evolution. Furthermore, TFs are important global regulators that control the expression levels of key enzymes in organic acid biosynthesis pathways, therefore determining the outcome of metabolic networks. Here we review recent advances in TF identification, engineering, and applications for metabolic engineering, with an emphasis on metabolite monitoring and high-throughput strain evolution for the organic acid bioproduction.
Collapse
Affiliation(s)
- Jia-Wei Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Xiao-Yan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun-Peng Bai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
9
|
Ma Z, Liu J, Li H, Zhang W, Williams MA, Gao Y, Gudda FO, Lu C, Yang B, Waigi MG. A Fast and Easily Parallelizable Biosensor Method for Measuring Extractable Tetracyclines in Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:758-767. [PMID: 31682442 DOI: 10.1021/acs.est.9b04051] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Quantification of extractable antibiotics in soils is important to assessing their bioavailability and mobility, and ultimately their ecotoxicological and health risks. This study aimed to establish a biosensor method for detecting extractable tetracyclines in soils (Alfisol, Mollisol, and Ultisol) using whole-cell biosensors containing a reporter plasmid (pMTGFP or pMTmCherry) carrying fluorescent protein genes tightly controlled by tetracyclines-responsive control region (tetRO). This whole-cell biosensor method can simultaneously measure 96 or more samples within 6 h and is easily parallelizable, whereas a typical high-performance liquid chromatography (HPLC) method may require 7 times more of analysis time and much greater cost to achieve similar analytical throughput. The biosensor method had a detection limit for each of six tetracyclines between 5.32-10.2 μg/kg soil, which is considered adequate for detecting tetracyclines in ethylenediaminetetraacetic acid (EDTA) extracts of soils. Relative standard deviation was between 19.8-51.2% for the biosensor Escherichia coli DH5α/pMTGFP and 2.98-25.8% for E. coli DH5α/pMTmCherry, respectively, suggesting that E. coli DH5α/pMTmCherry was superior to E. coli DH5α/pMTGFP for detecting extractable tetracyclines in soils. This new, fast, easily parallelizable, and cost-effective biosensor method has the potential for measuring extractable concentrations of tetracyclines for a large number of soil samples in large-scale monitoring studies.
Collapse
Affiliation(s)
- Zhao Ma
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Juan Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Hui Li
- Department of Plant, Soil and Microbial Sciences , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences , Michigan State University , East Lansing , Michigan 48824 , United States
| | - Mark A Williams
- School of Plant and Environmental Sciences , Virginia Polytechnic Institute and State University , Blacksburg , Virginia 24060 , United States
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Chao Lu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Bing Yang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences , Nanjing Agricultural University , Nanjing 210095 , China
| |
Collapse
|
10
|
Thavarajah W, Verosloff MS, Jung JK, Alam KK, Miller JD, Jewett MC, Young SL, Lucks JB. A Primer on Emerging Field-Deployable Synthetic Biology Tools for Global Water Quality Monitoring. NPJ CLEAN WATER 2020; 3:18. [PMID: 34267944 PMCID: PMC8279131 DOI: 10.1038/s41545-020-0064-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 03/09/2020] [Indexed: 05/22/2023]
Abstract
Tracking progress towards Target 6.1 of the United Nations Sustainable Development Goals, "achieving universal and equitable access to safe and affordable drinking water for all", necessitates the development of simple, inexpensive tools to monitor water quality. The rapidly growing field of synthetic biology has the potential to address this need by taking DNA-encoded sensing elements from nature and reassembling them to create field-deployable 'biosensors' that can detect pathogenic or chemical water contaminants. Here we describe water quality monitoring strategies enabled by synthetic biology and compare them to previous approaches used to detect three priority water contaminants: fecal pathogens, arsenic, and fluoride in order to explain the potential for engineered biosensors to simplify and decentralize water quality monitoring. We also briefly discuss expanding biosensors to detect emerging contaminants including metals and pharmaceuticals. We conclude with an outlook on the future of biosensor development, in which we discuss adaptability to emerging contaminants, outline current limitations, and propose steps to overcome the field's outstanding challenges to facilitate global water quality monitoring.
Collapse
Affiliation(s)
- Walter Thavarajah
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Matthew S. Verosloff
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Interdisciplinary Biological Sciences Graduate Program, Northwestern University, 2204 Tech Drive, Evanston, IL, 60208, USA
| | - Jaeyoung K. Jung
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Khalid K. Alam
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Joshua D. Miller
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Anthropology, Northwestern University, 1810 Hinman Ave., Evanston, IL, 60208, USA
| | - Michael C. Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
| | - Sera L. Young
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Department of Anthropology, Northwestern University, 1810 Hinman Ave., Evanston, IL, 60208, USA
- Institute for Policy Research, Northwestern University, 2040 Sheridan Rd, Evanston, IL, 60208 USA
- To whom correspondence should be addressed, ,
| | - Julius B. Lucks
- Department of Chemical and Biological Engineering, Northwestern University, 2145, Sheridan Rd, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Water Research, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- Center for Engineering, Sustainability and Resilience, Northwestern University, 2145 Sheridan Rd, Evanston, IL, 60208, USA
- To whom correspondence should be addressed, ,
| |
Collapse
|
11
|
Deb S, Basu S, Singha A, Dutta TK. Development of a 2-Nitrobenzoate-Sensing Bioreporter Based on an Inducible Gene Cluster. Front Microbiol 2018; 9:254. [PMID: 29491862 PMCID: PMC5817917 DOI: 10.3389/fmicb.2018.00254] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/31/2018] [Indexed: 11/13/2022] Open
Abstract
Based on the sole information of structural genes of the 2-nitrobenzoate (2NBA) utilizing catabolic gene cluster (onbX1X2FCAR1EHJIGDBX3), 2NBA-sensing bioreporters were constructed by incorporating egfp into the onb gene cluster of Cupriavidus sp. strain ST-14. Incorporation of reporter gene in proximal to the hypothesized promoter region in conjunction with the disruption of the gene encoding inducer-metabolizing enzyme was turned out to be advantageous in reporter gene expression at low inducer concentration. The bioreporter strain was capable of expressing EGFP from the very 1st hour of induction and could detect 2NBA at (sub) nanomolar level exhibiting a strict specificity toward 2NBA, displaying no response to EGFP expression from its meta- and para-isomers as well as from a number of structurally related compounds. The present study is a successful demonstration of the development of a 2NBA-sensing bioreporter with respect to ease of construction, inducer specificity, and sensitivity, without prior knowledge of the associated inducer-responsive promoter-regulator elements. The present approach can be used as a model for the development of bioreporters for other environmental pollutants.
Collapse
Affiliation(s)
- Satamita Deb
- Department of Microbiology, Bose Institute, Kolkata, India
| | - Soumik Basu
- Department of Microbiology, Bose Institute, Kolkata, India
| | | | - Tapan K Dutta
- Department of Microbiology, Bose Institute, Kolkata, India
| |
Collapse
|
12
|
Sharifian S, Homaei A, Hemmati R, B Luwor R, Khajeh K. The emerging use of bioluminescence in medical research. Biomed Pharmacother 2018; 101:74-86. [PMID: 29477474 DOI: 10.1016/j.biopha.2018.02.065] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 02/13/2018] [Accepted: 02/15/2018] [Indexed: 01/01/2023] Open
Abstract
Bioluminescence is the light produced by a living organism and is commonly emitted by sea life with Ca2+-regulated photoproteins being the most responsible for bioluminescence emission. Marine coelenterates provide important functions involved in essential purposes such as defense, feeding, and breeding. In this review, the main characteristics of marine photoproteins including aequorin, clytin, obelin, berovin, pholasin and symplectin from different marine organisms will be discussed. We will focused on the recent use of recombinant photoproteins in different biomedical research fields including the measurement of Ca2+ in different intracellular compartments of animal cells, as labels in the design and development of binding assays. This review will also outline how bioluminescent photoproteins have been used in a plethora of analytical methods including ultra-sensitive assays and in vivo imaging of cellular processes. Due to their unique properties including elective intracellular distribution, wide dynamic range, high signal-to-noise ratio and low Ca2+-buffering effect, recombinant photoproteins represent a promising future analytical tool in several in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Sana Sharifian
- Department of Marine Biology, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran
| | - Ahmad Homaei
- Department of Biochemistry, Faculty of Sciences, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| | - Rodney B Luwor
- Department of Surgery, Level 5, Clinical Sciences Building, The University of Melbourne, The Royal Melbourne Hospital, Grattan Street, Parkville, VIC 3050, Australia
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
13
|
Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnol Adv 2017; 35:950-970. [PMID: 28723577 DOI: 10.1016/j.biotechadv.2017.07.005] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field.
Collapse
|
14
|
Gui Q, Lawson T, Shan S, Yan L, Liu Y. The Application of Whole Cell-Based Biosensors for Use in Environmental Analysis and in Medical Diagnostics. SENSORS 2017; 17:s17071623. [PMID: 28703749 PMCID: PMC5539819 DOI: 10.3390/s17071623] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/08/2017] [Indexed: 01/11/2023]
Abstract
Various whole cell-based biosensors have been reported in the literature for the last 20 years and these reports have shown great potential for their use in the areas of pollution detection in environmental and in biomedical diagnostics. Unlike other reviews of this growing field, this mini-review argues that: (1) the selection of reporter genes and their regulatory proteins are directly linked to the performance of celllular biosensors; (2) broad enhancements in microelectronics and information technologies have also led to improvements in the performance of these sensors; (3) their future potential is most apparent in their use in the areas of medical diagnostics and in environmental monitoring; and (4) currently the most promising work is focused on the better integration of cellular sensors with nano and micro scaled integrated chips. With better integration it may become practical to see these cells used as (5) real-time portable devices for diagnostics at the bedside and for remote environmental toxin detection and this in situ application will make the technology commonplace and thus as unremarkable as other ubiquitous technologies.
Collapse
Affiliation(s)
- Qingyuan Gui
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Tom Lawson
- ARC Center of Excellence for Nanoscale BioPhotonics, Macquarie University, Sydney, NSW 2109, Australia.
| | - Suyan Shan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Lu Yan
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| | - Yong Liu
- Laboratory of Nanoscale Biosensing and Bioimaging, Instiute of Advanced Materials for Nano-Bio Applications, School of Ophthalmology and Optometry, Wenzhou Medical University, 270 Xueyuanxi Road, Wenzhou 325027, China.
| |
Collapse
|
15
|
Application of the freeze-dried bioluminescent bioreporter Pseudomonas putida mt-2 KG1206 to the biomonitoring of groundwater samples from monitoring wells near gasoline leakage sites. Appl Microbiol Biotechnol 2016; 101:1709-1716. [PMID: 27853856 DOI: 10.1007/s00253-016-7974-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/21/2016] [Accepted: 10/25/2016] [Indexed: 10/20/2022]
Abstract
This study examined the applicability of a freeze-dried bioluminescent bioreporter, Pseudomonas putida mt-2 KG1206 (called KG1206), to the biomonitoring of groundwater samples. Samples were collected from the monitoring wells of gas station tanks or old pipeline leakage sites in Korea. In general, the freeze-dried strain in the presence of pure inducer chemicals showed low bioluminescence activity and a different activity order compared with that of the subcultured strain. The effects of KNO3 as a bioluminescence stimulant were observed on the pure inducers and groundwater samples. The stimulation rates varied according to the type of inducers and samples, ranging from 2.2 to 20.5 times (for pure inducers) and from 1.1 to 11 times (for groundwater samples) the total bioluminescence of the control. No considerable correlations were observed between the bioluminescence intensity of the freeze-dried strain and the inducer concentrations in the samples (R 2 < 0.1344). However, samples without a high methyl tertiary butyl ether (MTBE) level and those from the gas station leakage site showed reasonable correlations with the bioluminescence activity with R 2 values of 0.3551 and 0.4131, respectively. These results highlight the potential of using freeze-dried bioluminescent bacteria as a rapid, simple, and portable tool for the preliminary biomonitoring of specific pollutants at contaminated sites.
Collapse
|
16
|
Hernández-Sánchez V, Molina L, Ramos JL, Segura A. New family of biosensors for monitoring BTX in aquatic and edaphic environments. Microb Biotechnol 2016; 9:858-867. [PMID: 27484951 PMCID: PMC5072201 DOI: 10.1111/1751-7915.12394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 11/25/2022] Open
Abstract
Benzene, toluene, ethylbenzene and xylenes (BTEX) contamination is a serious threat to public health and the environment, and therefore, there is an urgent need to detect its presence in nature. The use of whole-cell reporters is an efficient, easy-to-use and low-cost approach to detect and follow contaminants outside specialized laboratories; this is especially important in oil spills that are frequent in marine environments. The aim of this study is the construction of a bioreporter system and its comparison and validation for the specific detection of monocyclic aromatic hydrocarbons in different host bacteria and environmental samples. Our bioreporter system is based on the two component regulatory system TodS-TodT of P. putida DOT-T1E, and the PtodX promoter fused to the GFP protein as the reporter protein. For the construction of different biosensors, this bioreporter was transferred into three different bacterial strains isolated from three different environments, and their performance was measured. Validation of the biosensors on water samples spiked with petrol, diesel and crude oil on contaminated waters from oil spills and on contaminated soils demonstrated that they can be used in mapping and monitoring some BTEX compounds (specifically benzene, toluene and two xylene isomers). Validation of biosensors is an important issue for the integration of these devices into pollution-control programmes.
Collapse
Affiliation(s)
| | - Lázaro Molina
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain
| | - Juan Luis Ramos
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain
| | - Ana Segura
- Estación Experimental del Zaidín-CSIC, C/ Profesor Albareda s/n, 18008, Granada, Spain.
| |
Collapse
|
17
|
Teng J, Yuan F, Ye Y, Zheng L, Yao L, Xue F, Chen W, Li B. Aptamer-Based Technologies in Foodborne Pathogen Detection. Front Microbiol 2016; 7:1426. [PMID: 27672383 PMCID: PMC5018482 DOI: 10.3389/fmicb.2016.01426] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 08/29/2016] [Indexed: 11/13/2022] Open
Abstract
Aptamers are single stranded DNA or RNA ligands, which can be selected by a method called systematic evolution of ligands by exponential enrichment (SELEX); and they can specifically recognize and bind to their targets. These unique characteristics of aptamers offer great potentials in applications such as pathogen detection and biomolecular screening. Pathogen detection is the critical means in detecting and identifying the problems related to public health and food safety; and only the rapid, sensitive and efficient detection technologies can enable the users to make the accurate assessments on the risks of infections (humans and animals) or contaminations (foods and other commodities) caused by various pathogens. This article reviews the development in the field of the aptamer-based approaches for pathogen detection, including whole-cell SELEX and Genomic SELEX. Nowadays, a variety of aptamer-based biosensors have been developed for pathogen detection. Thus, in this review, we also cover the development in aptamer-based biosensors including optical biosensors for multiple pathogen detection by multiple-labeling or label-free models such as fluorescence detection and surface plasmon resonance, electrochemical biosensors and lateral chromatography test strips, and their applications in pathogen detection and biomolecular screening. While notable progress has been made in the field in the last decade, challenges or drawbacks in their applications such as pathogen detection and biomolecular screening remain to be overcome.
Collapse
Affiliation(s)
- Jun Teng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Fang Yuan
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Yingwang Ye
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Lei Zheng
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Li Yao
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Feng Xue
- Animal Quarantine Laboratory, Jiangsu Entry-Exit Inspection and Quarantine Bureau, NanjingChina
| | - Wei Chen
- College of Food Science and Engineering, Hefei University of Technology, HefeiChina
| | - Baoguang Li
- Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MDUSA
| |
Collapse
|
18
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review. WATER RESEARCH 2016; 89:330-354. [PMID: 26720196 DOI: 10.1016/j.watres.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | - Yannis Ferro
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | - Claude Durrieu
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| |
Collapse
|
20
|
Application of genetically engineered microbial whole-cell biosensors for combined chemosensing. Appl Microbiol Biotechnol 2015; 100:1109-1119. [PMID: 26615397 DOI: 10.1007/s00253-015-7160-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 01/28/2023]
Abstract
The progress of genetically engineered microbial whole-cell biosensors for chemosensing and monitoring has been developed in the last 20 years. Those biosensors respond to target chemicals and produce output signals, which offer a simple and alternative way of assessment approaches. As actual pollution caused by human activities usually contains a combination of different chemical substances, how to employ those biosensors to accurately detect real contaminant samples and evaluate biological effects of the combined chemicals has become a realistic object of environmental researches. In this review, we outlined different types of the recent method of genetically engineered microbial whole-cell biosensors for combined chemical evaluation, epitomized their detection performance, threshold, specificity, and application progress that have been achieved up to now. We also discussed the applicability and limitations of this biosensor technology and analyzed the optimum conditions for their environmental assessment in a combined way.
Collapse
|
21
|
Detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene by an Escherichia coli bioreporter: performance enhancement by directed evolution. Appl Microbiol Biotechnol 2015; 99:7177-88. [DOI: 10.1007/s00253-015-6607-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/02/2015] [Accepted: 04/12/2015] [Indexed: 11/26/2022]
|
22
|
Yagur-Kroll S, Schreuder E, Ingham CJ, Heideman R, Rosen R, Belkin S. A miniature porous aluminum oxide-based flow-cell for online water quality monitoring using bacterial sensor cells. Biosens Bioelectron 2015; 64:625-32. [DOI: 10.1016/j.bios.2014.09.076] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 10/24/2022]
|
23
|
Effects of binary mixtures of inducers (toluene analogs) and of metals on bioluminescence induction of a recombinant bioreporter strain. SENSORS 2014; 14:18993-9006. [PMID: 25313497 PMCID: PMC4239916 DOI: 10.3390/s141018993] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Revised: 09/19/2014] [Accepted: 09/22/2014] [Indexed: 11/17/2022]
Abstract
This paper investigated the effects of binary mixtures of bioluminescence inducers (toluene, xylene isomers, m-toluate) and of metals (Cu, Cd, As(III), As(V), and Cr) on bioluminescence activity of recombinant (Pm-lux) strain KG1206. Different responses and sensitivities were observed depending on the types and concentrations of mixtures of inducers or metals. In the case of inducer mixtures, antagonistic and synergistic modes of action were observed, whereas metal mixtures showed all three modes of action. Antagonistic mode of action was most common for mixtures of indirect inducers, which showed bioluminescence ranging from 29% to 62% of theoretically expected effects (P(E)). On the other hand, synergistic mode of action was observed for mixtures of direct and indirect inducers, which showed bioluminescence between 141% and 243% of P(E). In the case of binary metal mixtures, bioluminescence activities were ranged from 62% to 75% and 113% to 164% of P(E) for antagonistic and synergistic modes of action, respectively (p-values 0.0001-0.038). Therefore, mixture effects could not be generalized since they were dependent on both the types and concentrations of chemicals, suggesting that biomonitoring may constitute a better strategy by investigating types and concentrations of mixture pollutants at contaminated sites.
Collapse
|
24
|
Environmental applications of photoluminescence-based biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014. [PMID: 19475374 DOI: 10.1007/10_2008_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
For monitoring and treatment of soil and water, environmental scientists and engineers require measurements of the concentration of chemical contaminants. Although laboratory-based methods relying on gas or liquid chromatography can yield very accurate measurements, they are also complex, time consuming, expensive, and require sample pretreatment. Furthermore, they are not readily adapted for in situ measurements.Sensors are devices that can provide continuous, in situ measurements, ideally without the addition of reagents. A biosensor incorporates a biological component coupled to a transducer, which translates the interaction between the analyte and the biocomponent into a signal that can be processed and reported. A wide range of transducers have been employed in biosensors, the most common of which are electrochemical and optical. In this contribution, we focus on photoluminescence-based biosensors of potential use in the applications described above.Following a review of photoluminescence and a discussion of the optoelectronic hardware part of these biosensor systems, we provide explanations and examples of optical biosensors for specific chemical groups: hydrocarbons and alcohols, halogenated organics, nitro-, phospho-, sulfo-, and other substituted organics, and metals and other inorganics. We also describe approaches that have been taken to describe chemical mixtures as a whole (biological oxygen demand and toxicity) since most environmental samples contain mixtures of unknown (and changing) composition. Finally, we end with some thoughts on future research directions that are necessary to achieve the full potential of environmental biosensors.
Collapse
|
25
|
Xu T, Close D, Smartt A, Ripp S, Sayler G. Detection of organic compounds with whole-cell bioluminescent bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:111-51. [PMID: 25084996 PMCID: PMC4597909 DOI: 10.1007/978-3-662-43385-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
Collapse
Affiliation(s)
- Tingting Xu
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abby Smartt
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USADepartment of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
26
|
Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. SENSORS 2013; 13:5777-95. [PMID: 23648649 PMCID: PMC3690029 DOI: 10.3390/s130505777] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/10/2023]
Abstract
Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed.
Collapse
Affiliation(s)
- Miso Park
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; E-Mail:
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-302-831-6327; Fax: +1-302-831-1048
| |
Collapse
|
27
|
Xu T, Close DM, Sayler GS, Ripp S. Genetically modified whole-cell bioreporters for environmental assessment. ECOLOGICAL INDICATORS 2013; 28:125-141. [PMID: 26594130 PMCID: PMC4649933 DOI: 10.1016/j.ecolind.2012.01.020] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Living whole-cell bioreporters serve as environmental biosentinels that survey their ecosystems for harmful pollutants and chemical toxicants, and in the process act as human and other higher animal proxies to pre-alert for unfavorable, damaging, or toxic conditions. Endowed with bioluminescent, fluorescent, or colorimetric signaling elements, bioreporters can provide a fast, easily measured link to chemical contaminant presence, bioavailability, and toxicity relative to a living system. Though well tested in the confines of the laboratory, real-world applications of bioreporters are limited. In this review, we will consider bioreporter technologies that have evolved from the laboratory towards true environmental applications, and discuss their merits as well as crucial advancements that still require adoption for more widespread utilization. Although the vast majority of environmental monitoring strategies rely upon bioreporters constructed from bacteria, we will also examine environmental biosensing through the use of less conventional eukaryotic-based bioreporters, whose chemical signaling capacity facilitates a more human-relevant link to toxicity and health-related consequences.
Collapse
Affiliation(s)
- Tingting Xu
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| | - Dan M. Close
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Gary S. Sayler
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
- The Joint Institute for Biological Sciences, Oak Ridge National Laboratory, PO Box 2008, MS6342 Oak Ridge, TN 37831, USA
| | - Steven Ripp
- The University of Tennessee Center for Environmental Biotechnology, 676 Dabney Hall, Knoxville, TN 37996, USA
| |
Collapse
|
28
|
Yagur-Kroll S, Lalush C, Rosen R, Bachar N, Moskovitz Y, Belkin S. Escherichia coli bioreporters for the detection of 2,4-dinitrotoluene and 2,4,6-trinitrotoluene. Appl Microbiol Biotechnol 2013; 98:885-95. [PMID: 23615740 DOI: 10.1007/s00253-013-4888-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 03/17/2013] [Accepted: 03/30/2013] [Indexed: 11/25/2022]
Abstract
The primary explosive found in most land mines, 2,4,6-trinitrotoluene (2,4,6-TNT), is often accompanied by 2,4-dinitrotoluene (2,4-DNT) and 1,3-dinitrobenzene (1,3-DNB) impurities. The latter two compounds, being more volatile, have been reported to slowly leak through land mine covers and permeate the soil under which they are located, thus serving as potential indicators for buried land mines. We report on the construction of genetically engineered Escherichia coli bioreporter strains for the detection of these compounds, based on a genetic fusion between two gene promoters, yqjF and ybiJ, to either the green fluorescent protein gene GFPmut2 or to Photorhabdus luminescens bioluminescence luxCDABE genes. These two gene promoters were identified by exposing to 2,4-DNT a comprehensive library of about 2,000 E. coli reporter strains, each harboring a different E. coli gene promoter controlling a fluorescent protein reporter gene. Both reporter strains detected 2,4-DNT in an aqueous solution as well as in vapor form or when buried in soil. Performance of the yqjF-based sensor was significantly improved in terms of detection threshold, response time, and signal intensity, following two rounds of random mutagenesis in the promoter region. Both yqjF-based and ybiJ-based reporters were also induced by 2,4,6-TNT and 1,3-DNB. It was further demonstrated that both 2,4,6-TNT and 2,4-DNT are metabolized by E. coli and that the actual induction of both yqjF and ybiJ is caused by yet unidentified degradation products. This is the first demonstration of an E. coli whole-cell sensor strain for 2,4-DNT and 2,4,6-TNT, constructed using its own endogenous sensing elements.
Collapse
Affiliation(s)
- Sharon Yagur-Kroll
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | | | | | |
Collapse
|
29
|
Harrison ME, Dunlop MJ. Synthetic feedback loop model for increasing microbial biofuel production using a biosensor. Front Microbiol 2012; 3:360. [PMID: 23112794 PMCID: PMC3481154 DOI: 10.3389/fmicb.2012.00360] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Accepted: 09/24/2012] [Indexed: 11/13/2022] Open
Abstract
Current biofuel production methods use engineered bacteria to break down cellulose and convert it to biofuel. A major challenge in microbial fuel production is that increasing biofuel yields can be limited by the toxicity of the biofuel to the organism that is producing it. Previous research has demonstrated that efflux pumps are effective at increasing tolerance to various biofuels. However, when overexpressed, efflux pumps burden cells, which hinders growth and slows biofuel production. Therefore, the toxicity of the biofuel must be balanced with the toxicity of pump overexpression. We have developed a mathematical model for cell growth and biofuel production that implements a synthetic feedback loop using a biosensor to control efflux pump expression. In this way, the production rate will be maximal when the concentration of biofuel is low because the cell does not expend energy expressing efflux pumps when they are not needed. Additionally, the microbe is able to adapt to toxic conditions by triggering the expression of efflux pumps, which allow it to continue biofuel production. Sensitivity analysis indicates that the feedback sensor model is insensitive to many system parameters, but a few key parameters can influence growth and production. In comparison to systems that express efflux pumps at a constant level, the feedback sensor increases overall biofuel production by delaying pump expression until it is needed. This result is more pronounced when model parameters are variable because the system can use feedback to adjust to the actual rate of biofuel production.
Collapse
Affiliation(s)
- Mary E Harrison
- School of Engineering, College of Engineering and Mathematical Sciences, University of Vermont VT, USA
| | | |
Collapse
|
30
|
Gupta S, Saxena M, Saini N, Mahmooduzzafar, Kumar R, Kumar A. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS One 2012; 7:e43527. [PMID: 22937060 PMCID: PMC3427379 DOI: 10.1371/journal.pone.0043527] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND RATIONALE The detection of bioavailable phenol is a very important issue in environmental and human hazard assessment. Despite modest developments recently, there is a stern need for development of novel biosensors with high sensitivity for priority phenol pollutants. DmpR (Dimethyl phenol regulatory protein), an NtrC-like regulatory protein for the phenol degradation of Pseudomonas sp. strain CF600, represents an attractive biosensor regimen. Thus, we sought to design a novel biosensor by modifying the phenol detection capacity of DmpR by using mutagenic PCR. METHODS Binding sites of 'A' domain of DmpR were predicted by LIGSITE, and molecular docking was performed by using GOLD to identify the regions where phenol may interact with DmpR. Total five point mutations, one single at position 42 (Phe-to-Leu), two double at 140 (Asp-to-Glu) and 143 (Gln-to-Leu), and two double at L113M (Leu-to- Met) and D116A (Asp-to- Ala) were created in DmpR by site-directed mutagenesis to construct the reporter plasmids pRLuc42R, pRLuc140p143R, and pRLuc113p116R, respectively. Luciferase assays were performed to measure the activity of luc gene in the presence of phenol and its derivatives, while RT-PCR was used to check the expression of luc gene in the presence of phenol. RESULTS Only pRLuc42R and pRLuc113p116R showed positive responses to phenolic effectors. The lowest detectable concentration of phenol was 0.5 µM (0.047 mg/L), 0.1 µM for 2, 4-dimethylphenol and 2-nitrophenol, 10 µM for 2, 4, 6-trichlorophenol and 2-chlorophenol, 100 µM for 2, 4-dichlorophenol, 0.01 µM for 4-nitrophenol, and 1 µM for o-cresol. These concentrations were measured by modified luciferase assay within 3 hrs compared to 6-7 hrs in previous studies. Importantly, increased expression of luciferase gene of pRLuc42R was observed by RT-PCR. CONCLUSIONS The present study offers an effective strategy to design a quick and sensitive biosensor for phenol by constructing recombinant bacteria having DmpR gene.
Collapse
Affiliation(s)
- Saurabh Gupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Mritunjay Saxena
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Neeru Saini
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Mahmooduzzafar
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Rita Kumar
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
31
|
Construction and application of an Escherichia coli bioreporter for aniline and chloroaniline detection. J Ind Microbiol Biotechnol 2012; 39:1801-10. [PMID: 22892886 DOI: 10.1007/s10295-012-1180-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 07/19/2012] [Indexed: 10/28/2022]
Abstract
Aniline and chlorinated anilines (CAs) are classified as priority pollutants; therefore, an effective method for detection and monitoring is required. In this study, a green-fluorescence protein-based bioreporter for the detection of aniline and CAs was constructed in Escherichia coli DH5α, characterized and tested with soil and wastewater. The sensing capability relied on the regulatory control between a two-component regulatory protein, TodS/TodT, and the P( todX ) promoter of Pseudomonas putida T-57 (PpT57), since the gene expression of todS, todT, and todC2 are positively induced with 4-chloroaniline. The bioreporter system (DH5α/pPXGFP-pTODST) is markedly unique with the two co-existing plasmids. The inducibility of the fluorescence response was culture-medium- and time-dependent. Cells grown in M9G medium exhibited a low background fluorescence level and were readily induced by 4CA after 3-h exposure, reaching the maximum induction level at 9 h. When tested with benzene, toluene, ethyl-benzene and xylene, aniline and CAs, the response data were best fit by a sigmoidal dose-response relationship, from which the K(½) value was determined for the positive effectors. 3CA and 4CA were relatively powerful inducers, while some poly-chlorinated anilines could also induce green fluorescence protein expression. The results indicated a broader recognition range of PpT57'sTodST than previously reported for P. putida. The test results with environmental samples were reliable, indicating the potential application of this bioreporter in the ecotoxicology assessment and bioremediation of areas contaminated with aniline- and/or CAs.
Collapse
|
32
|
Arora P, Sindhu A, Dilbaghi N, Chaudhury A. Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 2011; 28:1-12. [DOI: 10.1016/j.bios.2011.06.002] [Citation(s) in RCA: 234] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 11/25/2022]
|
33
|
Yu Q, Li Y, Ma A, Liu W, Wang H, Zhuang G. An efficient design strategy for a whole-cell biosensor based on engineered ribosome binding sequences. Anal Bioanal Chem 2011; 401:2891-8. [PMID: 21947012 DOI: 10.1007/s00216-011-5411-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2011] [Revised: 08/16/2011] [Accepted: 09/06/2011] [Indexed: 10/17/2022]
Abstract
In prokaryotes, the ribosome binding sequence (RBS), located in the 5' untranslated region (5' UTR) of an mRNA, plays a critical role in enhancing mRNA translation and stability. To evaluate the effect of the RBS on the sensitivity and signal intensity of an environmental whole-cell biosensor, three Escherichia coli-based biosensors that respond to benzene, toluene, ethylbenzene, and the xylenes (BTEX) were constructed; the three biosensors have the same Pu promoter and xylR regulator from the Pseudomonas putida TOL plasmid but differ in the engineered RBS in their reporter genes. The results from time and dose-dependent induction of luminescence activity by 2-chlorotoluene showed that the BTEX-SE and BTEX-SD biosensors with engineered RBS had signal intensities approximately 10-35 times higher than the primary BTEX-W biosensor. The limits of detection (LOD) of the BTEX-SE and BTEX-SD biosensors were also significantly lower than the LOD of the BTEX-W biosensor (20 ± 5 μmol L(-1) and 25 ± 5 μmol L(-1) vs. 120 ± 10 μmol L(-1)). Moreover, the BTEX-SE and BTEX-SD biosensors responded three times more rapidly to the analytes. These results suggest that rationally designed RBS in the 5' UTR of a reporter gene may be a promising strategy for increasing the sensitivity, signal intensity, and response speed of whole-cell biosensors.
Collapse
Affiliation(s)
- Qing Yu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
The coming of age of whole‐cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines – the whole‐cell array. In the present review, we highlight the state‐of‐the‐art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high‐performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis and – most importantly – enhanced long‐term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
35
|
Zeinoddini M, Khajeh K, Behzadian F, Hosseinkhani S, Saeedinia AR, Barjesteh H. Design and characterization of an aequorin-based bacterial biosensor for detection of toluene and related compounds. Photochem Photobiol 2011; 86:1071-5. [PMID: 20663082 DOI: 10.1111/j.1751-1097.2010.00775.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An aequorin-based Escherichia coli strain JM109 biosensor was constructed and characterized for its potential to detect toluene and related compounds in aqueous solutions. The biosensor was constructed based on a PGL2 plasmid carrying the lower pathway promoter (Pu) of the xyl operon of Pseudomonas putida mt-2, which was incorporated with transcriptional activator xylR and fused to aequorin cDNA named pGL2-aequorin. Binding of xylR protein to a subset of toluene-like compounds activates transcription at the Pu promoter, thus expression of aequorin is controlled by xylR and Pu. In this work we have compared the effect of Shine-Dalgarno (SD) and T2 rrnβ terminator sequence in the expression of aequorin. According to the sensitivity of aequorin and increase in the signal-to-noise ratio, this reporter enzyme has reasonable sensitivity compared with other reporter systems. The results indicate higher expression of aequorin in the presence of SD and T2 rrnβ. The activity of aequorin in recombinant whole-cell biosensor was linear from 1 to 500 μm of toluene. The bioluminescence response was specific for toluene-like molecules, so this biosensor cells would be able to detect toluene derivative contamination in environmental samples, accurately.
Collapse
Affiliation(s)
- Mehdi Zeinoddini
- Department of Biochemistry, Faculty of Biological Science, Tarbiat Modares University, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
36
|
Shin D, Moon HS, Lin CC, Barkay T, Nam K. Use of reporter-gene based bacteria to quantify phenanthrene biodegradation and toxicity in soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:509-514. [PMID: 21093134 DOI: 10.1016/j.envpol.2010.10.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 10/07/2010] [Accepted: 10/10/2010] [Indexed: 05/30/2023]
Abstract
A phenanthrene-degrading bacterium, Sphingomonas paucimobilis EPA505 was used to construct two fluorescence-based reporter strains. Strain D harboring gfp gene was constructed to generate green fluorescence when the strain started to biodegrade phenanthrene. Strain S possessing gef gene was designed to die once phenanthrene biodegradation was initiated and thus to lose green fluorescence when visualized by a live/dead cell staining. Confocal laser scanning microscopic observation followed by image analysis demonstrates that the fluorescence intensity generated by strain D increased and the intensity by strain S decreased linearly at the phenanthrene concentration of up to 200 mg/L. Such quantitative increase and decrease of fluorescence intensity in strain D (i.e., from 1 to 11.90 ± 0.72) and strain S (from 1 to 0.40 ± 0.07) were also evident in the presence of Ottawa sand spiked with the phenanthrene up to 1000 mg/kg. The potential use of the reporter strains in quantitatively determining biodegradable or toxic phenanthrene was discussed.
Collapse
Affiliation(s)
- Doyun Shin
- Department of Civil and Environmental Engineering, Seoul National University, Gwanakno 599, Seoul 151-742, Republic of Korea
| | | | | | | | | |
Collapse
|
37
|
In situ detection of aromatic compounds with biosensor Pseudomonas putida cells preserved and delivered to soil in water-soluble gelatin capsules. Anal Bioanal Chem 2010; 400:1093-104. [DOI: 10.1007/s00216-010-4558-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Revised: 11/21/2010] [Accepted: 12/01/2010] [Indexed: 10/18/2022]
|
38
|
|
39
|
Zhong Z, Fritzsche M, Pieper SB, Wood TK, Lear KL, Dandy DS, Reardon KF. Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples. Biosens Bioelectron 2010; 26:2407-12. [PMID: 21081273 DOI: 10.1016/j.bios.2010.10.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/07/2010] [Accepted: 10/11/2010] [Indexed: 11/19/2022]
Abstract
Measurements of pollutants such as toluene are critical for the characterization of contaminated sites and for the monitoring of remediation processes and wastewater treatment effluents. Fiber optic enzymatic biosensors have the potential to provide cost-effective, real time, continuous, in situ measurements. In this study, a fiber optic enzymatic biosensor was constructed and characterized for the measurement of toluene concentrations in aqueous solutions. The biological recognition element was toluene ortho-monooxygenase (TOM), expressed by Escherichia coli TG1 carrying pBS(Kan)TOM, while an optical fiber coated with an oxygen-sensitive ruthenium-based phosphorescent dye served as the transducer. Toluene was detected based on the enzymatic reaction catalyzed by TOM, which resulted in the consumption of oxygen and changes in the phosphorescence intensity. The biosensor was found to have a limit of detection of 3 μM, a linear signal range up to 100 μM, and a response time of 1 h. The performance was reproducible with different biosensors (RSD=7.4%, n=8). The biosensor activity declined with each measurement and with storage time, particularly at elevated temperatures. This activity loss could be partially reversed by exposure to formate, suggesting that NADH consumption was the primary factor limiting lifetime. This is the first report of an enzymatic toluene sensor and of an oxygenase-based biosensor. Since many oxygenases have been reported, the design concept of this oxygenase-based biosensor has the potential to broaden biosensor applications in environmental monitoring.
Collapse
Affiliation(s)
- Zhong Zhong
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| | | | | | | | | | | | | |
Collapse
|
40
|
Construction and characterization of Escherichia coli whole-cell biosensors for toluene and related compounds. Curr Microbiol 2010; 62:690-6. [PMID: 20872219 DOI: 10.1007/s00284-010-9764-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2010] [Accepted: 09/03/2010] [Indexed: 10/19/2022]
Abstract
The XylR regulatory protein is a transcriptional activator from the TOL plasmid of Pseudomonas putida mt-2 that is involved in the toluene and benzene degradation pathway. Here we describe the construction and laboratory characterization of recombinant biosensors (pGLPX plasmids) based on XylR and its cognate promoter (Pu). In the pGLPX plasmid, the reporter luc gene is under the control of the Pu promoter. We evaluated the ability of two distinct nucleotide sequences to function as SD elements and improve sensitivity of bioreporting. We also evaluated the effect of introducing the T₂rrnβ terminator on the specificity of the construct. E. coli transformed with pGLPX plasmids were used to sense toluene and its derivatives. The pattern of induction was different for each derivative. In general, more luciferase activity was induced by toluene and benzene than by TNT and DNT at most tested concentrations. The bioluminescence response of the reporter strains to the nitrotoluenes was significantly stronger at lower concentrations (≥ 50 μmol) than at higher concentrations. Our results show that the SD sequence (taaggagg) is crucially important for biosensor sensitivity. The presence of the T₂rrnβ terminator in the bioreporter plasmid prevents nonspecific responses and also reduces biosensor sensitivity upon exposure to inducers. These data suggest that pGLPX strains can be used as whole-cell biosensors to detect toluene and related compounds. Further investigation will be required to optimize the application of pGLPX biosensors.
Collapse
|
41
|
Gu X, Trybiło M, Ramsay S, Jensen M, Fulton R, Rosser S, Gilbert D. Engineering a novel self-powering electrochemical biosensor. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:203-14. [PMID: 21189841 PMCID: PMC2955201 DOI: 10.1007/s11693-010-9063-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Revised: 07/21/2010] [Accepted: 09/01/2010] [Indexed: 12/01/2022]
Abstract
This paper records the efforts of a multi-disciplinary team of undergraduate students from Glasgow University to collectively design and carry out a 10 week project in Synthetic Biology as part of the international Genetic Engineered Machine competition (iGEM). The aim of the project was to design and build a self-powering electrochemical biosensor called ‘ElectrEcoBlu’. The novelty of this engineered machine lies in coupling a biosensor with a microbial fuel cell to transduce a pollution input into an easily measurable electrical output signal. The device consists of two components; the sensor element which is modular, allowing for customisation to detect a range of input signals as required, and the universal reporter element which is responsible for generating an electrical signal as an output. The genetic components produce pyocyanin, a competitive electron mediator for microbial fuel cells, thus enabling the generation of an electrical current in the presence of target chemical pollutants. The pollutants tested in our implementation were toluene and salicylate. ElectrEcoBlu is expected to drive forward the development of a new generation of biosensors. Our approach exploited a range of state-of-the-art modelling techniques in a unified framework of qualitative, stochastic and continuous approaches to support the design and guide the construction of this novel biological machine. This work shows that integrating engineering techniques with scientific methodologies can provide new insights into genetic regulation and can be considered as a reference framework for the development of biochemical systems in synthetic biology.
Collapse
Affiliation(s)
- X. Gu
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - M. Trybiło
- School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH UK
| | - S. Ramsay
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - M. Jensen
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - R. Fulton
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - S. Rosser
- University of Glasgow, University Avenue, Glasgow, G12 8QQ UK
| | - D. Gilbert
- School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, Middlesex UB8 3PH UK
| |
Collapse
|
42
|
Escherichia coli as a bioreporter in ecotoxicology. Appl Microbiol Biotechnol 2010; 88:1007-25. [PMID: 20803141 DOI: 10.1007/s00253-010-2826-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 01/30/2023]
Abstract
Ecotoxicological assessment relies to a large extent on the information gathered with surrogate species and the extrapolation of test results across species and different levels of biological organisation. Bacteria have long been used as a bioreporter for genotoxic testing and general toxicity. Today, it is clear that bacteria have the potential for screening of other toxicological endpoints. Escherichia coli has been studied for years; in-depth knowledge of its biochemistry and genetics makes it the most proficient prokaryote for the development of new toxicological assays. Several assays have been designed with E. coli as a bioreporter, and the recent trend to develop novel, better advanced reporters makes bioreporter development one of the most dynamic in ecotoxicology. Based on in-depth knowledge of E. coli, new assays are being developed or existing ones redesigned, thanks to the availability of new reporter genes and new or improved substrates. The technological evolution towards easier and more sensitive detection of different gene products is another important aspect. Often, this requires the redesign of the bacterium to make it compatible with the novel measuring tests. Recent advances in surface chemistry and nanoelectronics open the perspective for advanced reporter based on novel measuring platforms and with an online potential. In this article, we will discuss the use of E. coli-based bioreporters in ecotoxicological applications as well as some innovative sensors awaited for the future.
Collapse
|
43
|
Dietrich JA, McKee AE, Keasling JD. High-throughput metabolic engineering: advances in small-molecule screening and selection. Annu Rev Biochem 2010; 79:563-90. [PMID: 20367033 DOI: 10.1146/annurev-biochem-062608-095938] [Citation(s) in RCA: 252] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Metabolic engineering for the overproduction of high-value small molecules is dependent upon techniques in directed evolution to improve production titers. The majority of small molecules targeted for overproduction are inconspicuous and cannot be readily obtained by screening. We provide a review on the development of high-throughput colorimetric, fluorescent, and growth-coupled screening techniques, enabling inconspicuous small-molecule detection. We first outline constraints on throughput imposed during the standard directed evolution workflow (library construction, transformation, and screening) and establish a screening and selection ladder on the basis of small-molecule assay throughput and sensitivity. An in-depth analysis of demonstrated screening and selection approaches for small-molecule detection is provided. Particular focus is placed on in vivo biosensor-based detection methods that reduce or eliminate in vitro assay manipulations and increase throughput. We conclude by providing our prospectus for the future, focusing on transcription factor-based detection systems as a natural microbial mode of small-molecule detection.
Collapse
Affiliation(s)
- Jeffrey A Dietrich
- UCSF-UCB Joint Graduate Group in Bioengineering, Berkeley, California 94720, USA.
| | | | | |
Collapse
|
44
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
45
|
Chalova VI, Froelich CA, Ricke SC. Potential for development of an Escherichia coli-based biosensor for assessing bioavailable methionine: a review. SENSORS (BASEL, SWITZERLAND) 2010; 10:3562-84. [PMID: 22319312 PMCID: PMC3274233 DOI: 10.3390/s100403562] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/08/2010] [Revised: 03/11/2010] [Accepted: 03/26/2010] [Indexed: 11/30/2022]
Abstract
Methionine is an essential amino acid for animals and is typically considered one of the first limiting amino acids in animal feed formulations. Methionine deficiency or excess in animal diets can lead to sub-optimal animal performance and increased environmental pollution, which necessitates its accurate quantification and proper dosage in animal rations. Animal bioassays are the current industry standard to quantify methionine bioavailability. However, animal-based assays are not only time consuming, but expensive and are becoming more scrutinized by governmental regulations. In addition, a variety of artifacts can hinder the variability and time efficacy of these assays. Microbiological assays, which are based on a microbial response to external supplementation of a particular nutrient such as methionine, appear to be attractive potential alternatives to the already established standards. They are rapid and inexpensive in vitro assays which are characterized with relatively accurate and consistent estimation of digestible methionine in feeds and feed ingredients. The current review discusses the potential to develop Escherichia coli-based microbial biosensors for methionine bioavailability quantification. Methionine biosynthesis and regulation pathways are overviewed in relation to genetic manipulation required for the generation of a respective methionine auxotroph that could be practical for a routine bioassay. A prospective utilization of Escherichia coli methionine biosensor would allow for inexpensive and rapid methionine quantification and ultimately enable timely assessment of nutritional profiles of feedstuffs.
Collapse
Affiliation(s)
- Vesela I. Chalova
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| | - Clifford A. Froelich
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
| | - Steven C. Ricke
- Poultry Science Department, Texas A&M University, College Station, TX 77843-2472, USA; E-Mails: (V.I.C.); (C.A.F.)
- Center for Food Safety and Department of Food Science, University of Arkansas, Fayetteville, AR 72704, USA
| |
Collapse
|
46
|
Dunlop MJ, Keasling JD, Mukhopadhyay A. A model for improving microbial biofuel production using a synthetic feedback loop. SYSTEMS AND SYNTHETIC BIOLOGY 2010; 4:95-104. [PMID: 20805930 PMCID: PMC2923299 DOI: 10.1007/s11693-010-9052-5] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2009] [Revised: 01/22/2010] [Accepted: 02/02/2010] [Indexed: 11/29/2022]
Abstract
Cells use feedback to implement a diverse range of regulatory functions. Building synthetic feedback control systems may yield insight into the roles that feedback can play in regulation since it can be introduced independently of native regulation, and alternative control architectures can be compared. We propose a model for microbial biofuel production where a synthetic control system is used to increase cell viability and biofuel yields. Although microbes can be engineered to produce biofuels, the fuels are often toxic to cell growth, creating a negative feedback loop that limits biofuel production. These toxic effects may be mitigated by expressing efflux pumps that export biofuel from the cell. We developed a model for cell growth and biofuel production and used it to compare several genetic control strategies for their ability to improve biofuel yields. We show that controlling efflux pump expression directly with a biofuel-responsive promoter is a straightforward way of improving biofuel production. In addition, a feed forward loop controller is shown to be versatile at dealing with uncertainty in biofuel production rates.
Collapse
Affiliation(s)
- Mary J. Dunlop
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| | - Jay D. Keasling
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
- Department of Chemical Engineering, University of California, Berkeley, CA 94720 USA
| | - Aindrila Mukhopadhyay
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Mail Stop 978-4121, Berkeley, CA 94720 USA
| |
Collapse
|
47
|
Liu X, Germaine KJ, Ryan D, Dowling DN. Whole-cell fluorescent biosensors for bioavailability and biodegradation of polychlorinated biphenyls. SENSORS 2010; 10:1377-98. [PMID: 22205873 PMCID: PMC3244019 DOI: 10.3390/s100201377] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2009] [Revised: 01/14/2010] [Accepted: 01/29/2010] [Indexed: 11/30/2022]
Abstract
Whole-cell microbial biosensors are one of the newest molecular tools used in environmental monitoring. Such biosensors are constructed through fusing a reporter gene such as lux, gfp or lacZ, to a responsive promoter. There have been many reports of the applications of biosensors, particularly their use in assaying pollutant toxicity and bioavailability. This paper reviews the basic concepts behind the construction of whole-cell microbial biosensors for pollutant monitoring, and describes the applications of two such biosensors for detecting the bioavailability and biodegradation of Polychlorinated Biphenyls (PCBs).
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Science and Health, Institute of Technology Carlow, Kilkenny Road, Carlow, Ireland.
| | | | | | | |
Collapse
|
48
|
Elad T, Lee JH, Gu MB, Belkin S. Microbial cell arrays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 117:85-108. [PMID: 20625955 DOI: 10.1007/10_2009_16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The coming of age of whole-cell biosensors, combined with the continuing advances in array technologies, has prepared the ground for the next step in the evolution of both disciplines - the whole cell array. In the present chapter, we highlight the state-of-the-art in the different disciplines essential for a functional bacterial array. These include the genetic engineering of the biological components, their immobilization in different polymers, technologies for live cell deposition and patterning on different types of solid surfaces, and cellular viability maintenance. Also reviewed are the types of signals emitted by the reporter cell arrays, some of the transduction methodologies for reading these signals, and the mathematical approaches proposed for their analysis. Finally, we review some of the potential applications for bacterial cell arrays, and list the future needs for their maturation: a richer arsenal of high-performance reporter strains, better methodologies for their incorporation into hardware platforms, design of appropriate detection circuits, the continuing development of dedicated algorithms for multiplex signal analysis, and - most importantly - enhanced long term maintenance of viability and activity on the fabricated biochips.
Collapse
Affiliation(s)
- Tal Elad
- Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, 91904, Israel
| | | | | | | |
Collapse
|
49
|
Reardon KF, Campbell DW, Müller C. Optical fiber enzymatic biosensor for reagentless measurement of ethylene dibromide. Eng Life Sci 2009. [DOI: 10.1002/elsc.200900014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
50
|
Maehashi K, Matsumoto K. Label-free electrical detection using carbon nanotube-based biosensors. SENSORS 2009; 9:5368-78. [PMID: 22346703 PMCID: PMC3274133 DOI: 10.3390/s90705368] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Revised: 07/02/2009] [Accepted: 07/07/2009] [Indexed: 11/16/2022]
Abstract
Label-free detections of biomolecules have attracted great attention in a lot of life science fields such as genomics, clinical diagnosis and practical pharmacy. In this article, we reviewed amperometric and potentiometric biosensors based on carbon nanotubes (CNTs). In amperometric detections, CNT-modified electrodes were used as working electrodes to significantly enhance electroactive surface area. In contrast, the potentiometric biosensors were based on aptamer-modified CNT field-effect transistors (CNTFETs). Since aptamers are artificial oligonucleotides and thus are smaller than the Debye length, proteins can be detected with high sensitivity. In this review, we discussed on the technology, characteristics and developments for commercialization in label-free CNT-based biosensors.
Collapse
Affiliation(s)
- Kenzo Maehashi
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan; E-Mail:
| | | |
Collapse
|