1
|
Altered Nasal Microbiome in Atrophic Rhinitis: A Novel Theory of Etiopathogenesis and Therapy. Microorganisms 2022; 10:microorganisms10112092. [PMID: 36363684 PMCID: PMC9694142 DOI: 10.3390/microorganisms10112092] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 09/28/2022] [Accepted: 09/30/2022] [Indexed: 11/05/2022] Open
Abstract
Background: Atrophic rhinitis (AtR) is a chronic nasal condition with polygenic and polybacterial etiology. We investigated the clinical outcomes of honey therapy and the associated nasal microbiome in AtR. Methods: For eight weeks, a nonrandomized control trial using a nasal spray of 10% manuka honey and saline on the right and left sides of the nose was conducted on 19 primary AtR patients. A nasal endoscopy was performed and a mucosal biopsy were taken before and after the intervention. Five of the nineteen patients were selected for microbiome and GPR43 expression studies. Results: We used manuka honey to describe an effective prebiotic treatment for atrophic rhinitis. There were nine males and ten females with an average (±SD) age of 33.8 (±10.7) years. Endoscopic scores and clinical symptoms improved in honey-treated nasal cavities (p < 0.003). There was a significant decrease in inflammation, restoration of mucus glands, and increased expression of GPR43 in the nasal cavities with honey therapy. The nasal microbiome composition before and after treatment was documented. Particularly, short chain fatty acid (SCFA) producers were positively enriched after honey therapy and correlated with improved clinical outcomes like nasal crusting, congestion, and discharge. Conclusion: Our approach to treating AtR patients with manuka honey illustrated effective clinical outcomes such as (1) decreased fetid smell, (2) thickening of the mucosa, (3) decreased inflammation with healed mucosal ulcers, (4) increased concentration of the mucosal glands, (5) altered nasal microbiome, and (6) increased expression of SCFA receptors. These changes are consequent to resetting the nasal microbiome due to honey therapy.
Collapse
|
2
|
Mohd Din ARJ, Suzuki K, Honjo M, Amano K, Nishimura T, Moriuchi R, Dohra H, Ishizawa H, Kimura M, Tashiro Y, Futamata H. Imbalance in Carbon and Nitrogen Metabolism in Comamonas testosteroni R2 Is Caused by Negative Feedback and Rescued by L-arginine. Microbes Environ 2021; 36. [PMID: 34645730 PMCID: PMC8674442 DOI: 10.1264/jsme2.me21050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The collapse of Comamonas testosteroni R2 under chemostat conditions and the aerobic growth of strain R2 under batch conditions with phenol as the sole carbon source were investigated using physiological and transcriptomic techniques. Phenol-/catechol-degrading activities under chemostat conditions gradually decreased, suggesting that metabolites produced from strain R2 accumulated in the culture, which caused negative feedback. The competitive inhibition of phenol hydroxylase and catechol dioxygenase was observed in a crude extract of the supernatant collected from the collapsed culture. Transcriptomic analyses showed that genes related to nitrogen transport were up-regulated; the ammonium transporter amtB was up-regulated approximately 190-fold in the collapsed status, suggesting an increase in the concentration of ammonium in cells. The transcriptional levels of most of the genes related to gluconeogenesis, glycolysis, the pentose phosphate pathway, and the TCA and urea cycles decreased by ~0.7-fold in the stable status, whereas the activities of glutamate synthase and glutamine synthetase increased by ~2-fold. These results suggest that ammonium was assimilated into glutamate and glutamine via 2-oxoglutarate under the limited supply of carbon skeletons, whereas the synthesis of other amino acids and nucleotides was repressed by 0.6-fold. Furthermore, negative feedback appeared to cause an imbalance between carbon and nitrogen metabolism, resulting in collapse. The effects of amino acids on negative feedback were investigated. L-arginine allowed strain R2 to grow normally, even under growth-inhibiting conditions, suggesting that the imbalance was corrected by the stimulation of the urea cycle, resulting in the rescue of strain R2.
Collapse
Affiliation(s)
- Abd Rahman Jabir Mohd Din
- Graduate School of Science and Technology, Shizuoka University.,Innovation Centre in Agritechnology for Advanced Bioprocess, UTM Pagoh Research Center
| | - Kenshi Suzuki
- Microbial Ecotechnology (Social Cooperation Laboratory), Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Masahiro Honjo
- Graduate School of Science and Technology, Shizuoka University
| | - Koki Amano
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University
| | - Tomoka Nishimura
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University
| | - Ryota Moriuchi
- Research Institution of Green Science and Technology, Shizuoka University
| | - Hideo Dohra
- Research Institution of Green Science and Technology, Shizuoka University
| | - Hidehiro Ishizawa
- Research Institution of Green Science and Technology, Shizuoka University
| | - Motohiko Kimura
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University
| | - Yosuke Tashiro
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University
| | - Hiroyuki Futamata
- Graduate School of Science and Technology, Shizuoka University.,Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University.,Research Institution of Green Science and Technology, Shizuoka University
| |
Collapse
|
3
|
Jia W, Ye Q, Shen D, Yu K, Zheng Y, Liu M, Jiang J, Wang W. Enhanced mineralization of chlorpyrifos bound residues in soil through inoculation of two synergistic degrading strains. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125116. [PMID: 33540267 DOI: 10.1016/j.jhazmat.2021.125116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 06/12/2023]
Abstract
Bioaugmentation methods are frequently employed for pesticide pollution remediation; however, it is not clear whether the introduced bacteria affect the pesticide bound residue (BRs) composition and whether the BRs can be catabolized by the introduced strains. This study aimed at answering these questions by using 14C-chlorpyrifos (14C-CPF) and two CPF-degrading strains (Pseudomonas sp. DSP-1 and Cupriavidus sp. P2). The results showed that the BRs can be up to 83.0%, and that the CPF-BRs formed can be further transformed into 14CO2 by the strains. Indeed, the microbial inoculation can increase the CPF mineralization by 1.0-22.1 times and can decrease the BRs by up to ~50% of the control (on day 20). Compared with the control without bioaugmentation, microbial inoculation enhanced the release of BRs by 2.2-18.0 times. Adding biochar to the soil can greatly inhibit CPF mineralization and maintain the BR content at a relatively stable level. The CPF residue can affect the composition of the indigenous soil microbial community, but the introduction of bacteria for remediation did not have a significant effect. The results indicate that Pseudomonas sp. DSP-1 and Cupriavidus sp. P2 are useful for remediating both CPF extractable and bound residues.
Collapse
Affiliation(s)
- Weibin Jia
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China; Department of Microbiology, Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingfu Ye
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dahang Shen
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Kaixiang Yu
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yaoying Zheng
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Mengdi Liu
- Department of Microbiology, Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiandong Jiang
- Department of Microbiology, Key Laboratory of Microbiology for Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Wei Wang
- Institute of Nuclear Agricultural Sciences, Key Laboratory of Nuclear Agricultural Sciences of Ministry of Agriculture of PRC and Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Sun X, Qiu S, Luo X, Jin P, Zhao J, Wu X, Yang J, Wang X, Song J, Xiang W. Micromonospora rubida sp. nov., a novel actinobacterium isolated from soil of Harbin. Antonie Van Leeuwenhoek 2021; 114:697-708. [PMID: 33666807 DOI: 10.1007/s10482-021-01550-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/20/2021] [Indexed: 11/28/2022]
Abstract
A novel actinobacterium, designated strain NEAU-HG-1T, was isolated from soil collected from Harbin, Heilongjiang Province, Northeast China and characterised using a polyphasic approach. On the basis of 16S rRNA gene sequence analysis, strain NEAU-HG-1T belonged to the genus Micromonospora, and shared high sequence similarities with Micromonospora auratinigra DSM 44815T (98.9%) and Micromonospora coerulea DSM 43143T (98.7%). Morphological and chemotaxonomic characteristics of the strain also supported its assignment to the genus Micromonospora. Cell wall contained meso-diaminopimelic acid and the whole-cell sugars were arabinose and xylose. The polar lipid contained diphosphatidylglycerol, phosphatidylethanolamine, glycolipid and phosphatidylinositol. The predominant menaquinones were MK-10(H2), MK-10(H4) and MK-10(H6). The major fatty acids were C17:0 cycle, iso-C15:0, and iso-C16:0. Furthermore, strain NEAU-HG-1T displayed a DNA-DNA relatedness of 33.8 ± 2.2% with M. coerulea DSM 43143T. The level of digital DNA-DNA hybridization between strain NEAU-HG-1T and M. auratinigra DSM 44815T was 27.2% (24.8-29.7%). The value was well below the criteria for species delineation of 70% for dDDH. Whole-genome average nucleotide identity analyses result also indicated that the isolate should be assigned to a new species under the genus Micromonospora. Therefore, it is concluded that strain NEAU-HG-1T represents a novel species of the genus Micromonospora, for which the name Micromonospora rubida sp. nov. is proposed, with NEAU-HG-1T (= CGMCC 4.7479T = JCM 32386T) as the type strain.
Collapse
Affiliation(s)
- Xiujun Sun
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Shiwen Qiu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xianxian Luo
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Pinjiao Jin
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Junwei Zhao
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xianyao Wu
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Jize Yang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Xiangjing Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China
| | - Jia Song
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China. .,State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
5
|
Draft Genome Sequence of Phenol-Degrading Variovorax boronicumulans Strain c24. Microbiol Resour Announc 2020; 9:9/37/e00597-20. [PMID: 32912906 PMCID: PMC7484065 DOI: 10.1128/mra.00597-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We report the draft genome sequence of Variovorax boronicumulans strain c24, which was isolated from a soil-inoculated chemostat culture amended with phenol as a sole carbon and energy source. The genome data will provide insights into phenol and other xenobiotic compound degradation mechanisms for bioremediation applications. We report the draft genome sequence of Variovorax boronicumulans strain c24, which was isolated from a soil-inoculated chemostat culture amended with phenol as a sole carbon and energy source. The genome data will provide insights into phenol and other xenobiotic compound degradation mechanisms for bioremediation applications.
Collapse
|
6
|
Li T, Zhang J, Shen C, Li H, Qiu L. 1-Aminocyclopropane-1-Carboxylate: A Novel and Strong Chemoattractant for the Plant Beneficial Rhizobacterium Pseudomonas putida UW4. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:750-759. [PMID: 30640574 DOI: 10.1094/mpmi-11-18-0317-r] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) and fungi-bacterial biofilms are both important biofertilizer inoculants for sustainable agriculture. However, the strongest chemoattractant for bacteria to colonize the rhizosphere and mycelia is not clear. Coincidentally, almost all the PGPRs possess 1-aminocyclopropane-1-carboxylate (ACC) deaminase (AcdS) and can utilize ACC as the sole nitrogen source. Here, we found that ACC was a novel, metabolic dependent and methyl-accepting chemoreceptor-involved chemoattractant for Pseudomonas putida UW4. The chemotactic response of UW4 to ACC is significantly greater than that to the amino acids and organic acids identified in the plant root and fungal hyphal exudates. The colonization counts of the UW4 acdS or cheR deletion mutants in the wheat rhizosphere and on Agaricus bisporus mycelia were reduced one magnitude compared with those of UW4. The colonization counts of UW4 on A. bisporus antisense ACC oxidase mycelia with a high ACC production significantly increased compared with A. bisporus, followed by the UW4 cheR complementary strain and the ethylene chemoreceptor gene-deletion mutant. The colonization counts of the UW4 strains on A. bisporus acdS+ mycelia with a low ACC production decreased significantly compared with A. bisporus wild type. These results suggested that ACC and not ethylene should be the strongest chemoattractant for the PGPR that contain AcdS.
Collapse
Affiliation(s)
- Tao Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Jun Zhang
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Chaohui Shen
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Huiru Li
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| | - Liyou Qiu
- College of Sciences, Henan Agricultural University, Key Laboratory of Enzyme Engineering of Agricultural Microbiology, Ministry of Agriculture, Zhengzhou, 450002, China
| |
Collapse
|
7
|
Kynadi AS, Suchithra TV. Bacterial Degradation of Phenol to Control Environmental Pollution. Microb Biotechnol 2017. [DOI: 10.1007/978-981-10-6847-8_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
8
|
Aziz FAA, Suzuki K, Ohtaki A, Sagegami K, Hirai H, Seno J, Mizuno N, Inuzuka Y, Saito Y, Tashiro Y, Hiraishi A, Futamata H. Interspecies interactions are an integral determinant of microbial community dynamics. Front Microbiol 2015; 6:1148. [PMID: 26539177 PMCID: PMC4611161 DOI: 10.3389/fmicb.2015.01148] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/05/2015] [Indexed: 11/26/2022] Open
Abstract
This study investigated the factors that determine the dynamics of bacterial communities in a complex system using multidisciplinary methods. Since natural and engineered microbial ecosystems are too complex to study, six types of synthetic microbial ecosystems (SMEs) were constructed under chemostat conditions with phenol as the sole carbon and energy source. Two to four phenol-degrading, phylogenetically and physiologically different bacterial strains were used in each SME. Phylogeny was based on the nucleotide sequence of 16S rRNA genes, while physiologic traits were based on kinetic and growth parameters on phenol. Two indices, J parameter and “interspecies interaction,” were compared to predict which strain would become dominant in an SME. The J parameter was calculated from kinetic and growth parameters. On the other hand, “interspecies interaction,” a new index proposed in this study, was evaluated by measuring the specific growth activity, which was determined on the basis of relative growth of a strain with or without the supernatant prepared from other bacterial cultures. Population densities of strains used in SMEs were enumerated by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase and were compared to predictions made from J parameter and interspecies interaction calculations. In 4 of 6 SEMs tested the final dominant strain shown by real-time qPCR analyses coincided with the strain predicted by both the J parameter and the interspecies interaction. However, in SMEII-2 and SMEII-3 the final dominant Variovorax strains coincided with prediction of the interspecies interaction but not the J parameter. These results demonstrate that the effects of interspecies interactions within microbial communities contribute to determining the dynamics of the microbial ecosystem.
Collapse
Affiliation(s)
- Fatma A A Aziz
- Laboratory of Food Crops, Institute of Tropical Agriculture, Universiti Putra Malaysia Serdang, Malaysia ; Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Kenshi Suzuki
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Akihiro Ohtaki
- Department of Environmental and Life Sciences, Toyohashi University of Technology Toyohashi, Japan
| | - Keita Sagegami
- Department of Environmental and Life Sciences, Toyohashi University of Technology Toyohashi, Japan
| | - Hidetaka Hirai
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Jun Seno
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Naoko Mizuno
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Yuma Inuzuka
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Yasuhisa Saito
- Department of Mathematics, Shimane University Matsue, Japan
| | - Yosuke Tashiro
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| | - Akira Hiraishi
- Department of Environmental and Life Sciences, Toyohashi University of Technology Toyohashi, Japan
| | - Hiroyuki Futamata
- Department of Applied Chemistry and Biochemical Engineering, Graduate School of Engineering, Shizuoka University Hamamatsu, Japan
| |
Collapse
|
9
|
Zhao C, Xie H, Mu Y, Xu X, Zhang J, Liu C, Liang S, Ngo HH, Guo W, Xu J, Wang Q. Bioremediation of endosulfan in laboratory-scale constructed wetlands: effect of bioaugmentation and biostimulation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:12827-12835. [PMID: 24969425 DOI: 10.1007/s11356-014-3107-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 05/26/2014] [Indexed: 06/03/2023]
Abstract
Bioremediation is widely used in organic pollutants disposal. However, very little has been known on its application in constructed wetlands contaminated with organochlorine pesticide, endosulfan in particular. To evaluate the effect of bioremediation on endosulfan removal and clarify the fate, bioaugmentation and biostimulation were studied in laboratory-scale vertical-flow constructed wetlands. After 20 days' experiment, endosulfan isomers removal efficiencies were increased to 89.24-97.62 % through bioremediation. In bacteria bioaugmentation (E-in) and sucrose biostimulation (E-C), peak concentrations of endosulfan in sediment were reduced by 31.02-76.77 %, and plant absorption were 347.45-576.65 μg kg(-1). By contrast, plant absorption in KH2PO4 biostimulation (E-P) was increased to 811.64 and 1,067.68 μg kg(-1). Degradation process was probably promoted in E-in and E-C, while plant absorption was enhanced in E-P. Consequently, E-in and E-C were effective for endosulfan removal in constructed wetlands, while adding KH2PO4 had potential to cause air pollution. Additionally, combined bioremediation was not recommended.
Collapse
Affiliation(s)
- Congcong Zhao
- School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Nagarajan K, Loh KC. Molecular biology-based methods for quantification of bacteria in mixed culture: perspectives and limitations. Appl Microbiol Biotechnol 2014; 98:6907-19. [DOI: 10.1007/s00253-014-5870-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Revised: 05/30/2014] [Accepted: 05/31/2014] [Indexed: 02/07/2023]
|
11
|
Streptomyces griseusEnhances Denitrification byRalstonia pickettiiK50, Which Is Possibly Mediated by Histidine Produced during Co-Culture. Biosci Biotechnol Biochem 2014; 72:163-70. [DOI: 10.1271/bbb.70528] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
12
|
Krastanov A, Alexieva Z, Yemendzhiev H. Microbial degradation of phenol and phenolic derivatives. Eng Life Sci 2013. [DOI: 10.1002/elsc.201100227] [Citation(s) in RCA: 144] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Albert Krastanov
- Department of Biotechnology; University of Food Technologies; Plovdiv; Bulgaria
| | - Zlatka Alexieva
- Institute of Microbiology; Bulgarian Academy of Sciences; Sofia; Bulgaria
| | - Husein Yemendzhiev
- Department of Water Technology; University “Prof. Asen Zlatarov”; Burgas; Bulgaria
| |
Collapse
|
13
|
Zhou X, Wu F. p-Coumaric acid influenced cucumber rhizosphere soil microbial communities and the growth of Fusarium oxysporum f.sp. cucumerinum Owen. PLoS One 2012; 7:e48288. [PMID: 23118972 PMCID: PMC3484048 DOI: 10.1371/journal.pone.0048288] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2012] [Accepted: 09/24/2012] [Indexed: 12/03/2022] Open
Abstract
Background Autotoxicity of cucumber root exudates or decaying residues may be the cause of the soil sickness of cucumber. However, how autotoxins affect soil microbial communities is not yet fully understood. Methodology/Principal Findings The aims of this study were to study the effects of an artificially applied autotoxin of cucumber, p-coumaric acid, on cucumber seedling growth, rhizosphere soil microbial communities, and Fusarium oxysporum f.sp. cucumerinum Owen (a soil-borne pathogen of cucumber) growth. Abundance, structure and composition of rhizosphere bacterial and fungal communities were analyzed with real-time PCR, PCR-denaturing gradient gel electrophoresis (DGGE) and clone library methods. Soil dehydrogenase activity and microbial biomass C (MBC) were determined to indicate the activity and size of the soil microflora. Results showed that p-coumaric acid (0.1–1.0 µmol/g soil) decreased cucumber leaf area, and increased soil dehydrogenase activity, MBC and rhizosphere bacterial and fungal community abundances. p-Coumaric acid also changed the structure and composition of rhizosphere bacterial and fungal communities, with increases in the relative abundances of bacterial taxa Firmicutes, Betaproteobacteria, Gammaproteobacteria and fungal taxa Sordariomycete, Zygomycota, and decreases in the relative abundances of bacterial taxa Bacteroidetes, Deltaproteobacteria, Planctomycetes, Verrucomicrobia and fungal taxon Pezizomycete. In addition, p-coumaric acid increased Fusarium oxysporum population densities in soil. Conclusions/Significance These results indicate that p-coumaric acid may play a role in the autotoxicity of cucumber via influencing soil microbial communities.
Collapse
Affiliation(s)
- Xingang Zhou
- Department of Horticulture, Northeast Agricultural University, Xiangfang, Harbin, People’s Republic of China
| | - Fengzhi Wu
- Department of Horticulture, Northeast Agricultural University, Xiangfang, Harbin, People’s Republic of China
- * E-mail:
| |
Collapse
|
14
|
Valentín-Vargas A, Toro-Labrador G, Massol-Deyá AA. Bacterial community dynamics in full-scale activated sludge bioreactors: operational and ecological factors driving community assembly and performance. PLoS One 2012; 7:e42524. [PMID: 22880016 PMCID: PMC3411768 DOI: 10.1371/journal.pone.0042524] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 07/10/2012] [Indexed: 11/27/2022] Open
Abstract
The assembling of bacterial communities in conventional activated sludge (CAS) bioreactors was thought, until recently, to be chaotic and mostly unpredictable. Studies done over the last decade have shown that specific, and often, predictable random and non-random factors could be responsible for that process. These studies have also motivated a “structure–function” paradigm that is yet to be resolved. Thus, elucidating the factors that affect community assembly in the bioreactors is necessary for predicting fluctuations in community structure and function. For this study activated sludge samples were collected during a one-year period from two geographically distant CAS bioreactors of different size. Combining community fingerprinting analysis and operational parameters data with a robust statistical analysis, we aimed to identify relevant links between system performance and bacterial community diversity and dynamics. In addition to revealing a significant β-diversity between the bioreactors’ communities, results showed that the largest bioreactor had a less dynamic but more efficient and diverse bacterial community throughout the study. The statistical analysis also suggests that deterministic factors, as opposed to stochastic factors, may have a bigger impact on the community structure in the largest bioreactor. Furthermore, the community seems to rely mainly on mechanisms of resistance and functional redundancy to maintain functional stability. We suggest that the ecological theories behind the Island Biogeography model and the species-area relationship were appropriate to predict the assembly of bacterial communities in these CAS bioreactors. These results are of great importance for engineers and ecologists as they reveal critical aspects of CAS systems that could be applied towards improving bioreactor design and operation.
Collapse
Affiliation(s)
- Alexis Valentín-Vargas
- Department of Biology, University of Puerto Rico at Mayagüez, Mayagüez, Puerto Rico, United States of America.
| | | | | |
Collapse
|
15
|
Winkler J, Kao KC. Computational identification of adaptive mutants using the VERT system. J Biol Eng 2012; 6:3. [PMID: 22472487 PMCID: PMC3351376 DOI: 10.1186/1754-1611-6-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 04/02/2012] [Indexed: 01/16/2023] Open
Affiliation(s)
- James Winkler
- Department of Chemical Engineering, Texas A&M University, College Station, TX, USA.
| | | |
Collapse
|
16
|
Xiang SR, Cook M, Saucier S, Gillespie P, Socha R, Scroggins R, Beaudette LA. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms. Appl Environ Microbiol 2010; 76:7126-35. [PMID: 20817796 PMCID: PMC2976230 DOI: 10.1128/aem.00574-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
Abstract
To augment the information on commercial microbial products, we investigated the persistence patterns of high-priority bacterial strains from the Canadian Domestic Substance List (DSL). Specific DNA markers for each of the 10 DSL bacterial strains were developed using the amplified fragment length polymorphism (AFLP) technique, and the fates of DSL strains introduced in soil were assessed by real-time quantitative PCR (qPCR). The results indicated that all DNA markers had high specificity at the functional strain level and that detection of the target microorganisms was sensitive at a detection limitation range from 1.3 × 10² to 3.25 × 10⁵ CFU/g of dry soil. The results indicated that all introduced strains showed a trend toward a declining persistence in soil and could be categorized into three pattern types. The first type was long-term persistence exemplified by Pseudomonas stutzeri (ATCC 17587) and Pseudomonas denitrificans (ATCC 13867) strains. In the second pattern, represented by Bacillus subtilis (ATCC 6051) and Escherichia hermannii (ATCC 700368), the inoculated strain populations dropped dramatically below the detection threshold after 10 to 21 days, while in the third pattern there was a gradual decrease, with the population falling below the detectable level within the 180-day incubation period. These patterns indicate a selection effect of a microbial community related to the ecological function of microbial strains introduced in soil. As a key finding, the DSL strains can be quantitatively tracked in soil with high sensitivity and specificity at the functional strain level. This provides the basic evidence for further risk assessment of the priority DSL strains.
Collapse
Affiliation(s)
- S.-R. Xiang
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - M. Cook
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - S. Saucier
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - P. Gillespie
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Socha
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Scroggins
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - L. A. Beaudette
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
17
|
Yousaf S, Ripka K, Reichenauer TG, Andria V, Afzal M, Sessitsch A. Hydrocarbon degradation and plant colonization by selected bacterial strains isolated from Italian ryegrass and birdsfoot trefoil. J Appl Microbiol 2010; 109:1389-401. [PMID: 20522148 DOI: 10.1111/j.1365-2672.2010.04768.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To assess the degradation potential and plant colonization capacity of four alkane-degrading strains (ITSI10, ITRI15, ITRH76 and BTRH79) in combination with birdsfoot trefoil and Italian ryegrass and to evaluate the diversity of indigenous alkane-degrading soil bacteria in the rhizo- and endosphere. METHODS AND RESULTS Contaminated soil was prepared by spiking agricultural soil with 10 g diesel fuel per kg soil. Italian ryegrass (Lolium multiflorum var. Taurus) and birdsfoot trefoil (Lotus corniculatus var. Leo) were inoculated with four alkane-degrading strains. Hydrocarbon degradation (up to 57%) was observed in all inoculated treatments of vegetated and unvegetated samples. Italian ryegrass in combination with compost and BTRH79 showed highest degradation, while birdsfoot trefoil performed best with compost and strain ITSI10. Cultivation-based as well as cultivation-independent analysis showed that both strains were competitive colonizers. CONCLUSIONS The combination between vegetation, inoculation with well-performing degrading bacteria and compost amendment was an efficient approach to reduce hydrocarbon contamination. Two Pantoea sp. strains, ITSI10 and BTRH79, established well in the plant environment despite the presence of a variety of other, indigenous alkane-degrading bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY This study suggests that the application of degrading bacterial strains, which are able to compete with the native microflora and to tightly associate with plants, are promising candidates to be used for phytoremediation applications.
Collapse
Affiliation(s)
- S Yousaf
- AIT Austrian Institute of Technology GmbH, Bioresources Unit, Seibersdorf, Austria
| | | | | | | | | | | |
Collapse
|
18
|
Mauchline TH, Mohan S, Davies KG, Schaff JE, Opperman CH, Kerry BR, Hirsch PR. A method for release and multiple strand amplification of small quantities of DNA from endospores of the fastidious bacterium Pasteuria penetrans. Lett Appl Microbiol 2010; 50:515-21. [PMID: 20302597 DOI: 10.1111/j.1472-765x.2010.02830.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS To establish a reliable protocol to extract DNA from Pasteuria penetrans endospores for use as template in multiple strand amplification, thus providing sufficient material for genetic analyses. To develop a highly sensitive PCR-based diagnostic tool for P. penetrans. METHODS AND RESULTS An optimized method to decontaminate endospores, release and purify DNA enabled multiple strand amplification. DNA purity was assessed by cloning and sequencing gyrB and 16S rRNA gene fragments obtained from PCR using generic primers. Samples indicated to be 100%P. penetrans by the gyrB assay were estimated at 46% using the 16S rRNA gene. No bias was detected on cloning and sequencing 12 housekeeping and sporulation gene fragments from amplified DNA. The detection limit by PCR with Pasteuria-specific 16S rRNA gene primers following multiple strand amplification of DNA extracted using the method was a single endospore. CONCLUSIONS Generation of large quantities DNA will facilitate genomic sequencing of P. penetrans. Apparent differences in sample purity are explained by variations in 16S rRNA gene copy number in Eubacteria leading to exaggerated estimations of sample contamination. Detection of single endospores will facilitate investigations of P. penetrans molecular ecology. SIGNIFICANCE AND IMPACT OF THE STUDY These methods will advance studies on P. penetrans and facilitate research on other obligate and fastidious micro-organisms where it is currently impractical to obtain DNA in sufficient quantity and quality.
Collapse
Affiliation(s)
- T H Mauchline
- Nematode Interactions Unit, Department of Plant Pathology and Microbiology, Rothamsted Research, Harpenden, Hertfordshire, UK.
| | | | | | | | | | | | | |
Collapse
|
19
|
Extracting nucleic acids from activated sludge which reflect community population diversity. Antonie van Leeuwenhoek 2009; 96:593-605. [PMID: 19768568 DOI: 10.1007/s10482-009-9374-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Accepted: 08/16/2009] [Indexed: 10/20/2022]
Abstract
Critical to most studies in molecular microbial ecology is the application of DNA/RNA extraction methods which can reveal the true level of population biodiversity present in samples from the community under investigation. Activated sludge communities have been studied extensively using molecular methods, but rarely have the nucleic acid isolation methods applied been assessed for their ability to achieve this. This study compares eight published RNA and DNA extraction protocols and one commercially available DNA isolation kit for their capacity to provide high quality nucleic acids that reflect the community composition. Each method was assessed on the basis of nucleic acid yield, purity and integrity, and the ability to provide PCR amplifiable RNA and DNA from known marker populations that varied in their resistance to nucleic acid extraction. Only three consistently provided DNA from each of the marker populations known to be present in the samples from fluorescence in situ hybridisation analysis. The failure of the other methods emphasises the need to validate all DNA/RNA extraction protocols. It is recommended that several validated extraction methods be used and the extracts pooled to further minimise any risk of bias.
Collapse
|
20
|
Venkata Mohan S, Falkentoft C, Venkata Nancharaiah Y, Sturm BSM, Wattiau P, Wilderer PA, Wuertz S, Hausner M. Bioaugmentation of microbial communities in laboratory and pilot scale sequencing batch biofilm reactors using the TOL plasmid. BIORESOURCE TECHNOLOGY 2009; 100:1746-53. [PMID: 19010662 DOI: 10.1016/j.biortech.2008.09.048] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2008] [Revised: 09/18/2008] [Accepted: 09/22/2008] [Indexed: 05/27/2023]
Abstract
The aim of this study was to investigate the effectiveness of bioaugmentation and transfer of plasmid pWWO (TOL plasmid) to mixed microbial populations in pilot and laboratory scale sequencing batch biofilm reactors (SBBRs) treating synthetic wastewater containing benzyl alcohol (BA) as a model xenobiotic. The plasmid donor was a Pseudomonas putida strain chromosomally tagged with the gene for the red fluorescent protein carrying a green fluorescent protein labeled TOL plasmid, which confers degradation capacity for several compounds including toluene and BA. In the pilot scale SBBR donor cells were disappeared 84 h after inoculation while transconjugants were not detected at all. In contrast, both donor and transconjugant cells were detected in the laboratory scale reactor where the ratio of transconjugants to donors fluctuated between 1.9 x 10(-1) and 8.9 x 10(-1) during an experimental period of 32 days. BA degradation rate was enhanced after donor inoculation from 0.98 mg BA/min prior to inoculation to 1.9 mg BA/min on the seventeenth day of operation. Survival of a bioaugmented strain, conjugative plasmid transfer and enhanced BA degradation was demonstrated in the laboratory scale SBBR but not in the pilot scale SBBR.
Collapse
Affiliation(s)
- S Venkata Mohan
- Institute of Water Quality Control and Waste Management, Technical University of Munich, Am Coulombwall, Garching, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Hao C, Wang H, Liu Q, Li X. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR. J Environ Sci (China) 2009; 21:1557-1561. [PMID: 20108690 DOI: 10.1016/s1001-0742(08)62455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a sequencing batch biofilm reactor (SBBR). A quantitative competitive polymerase chain reaction (QC-PCR) system was successfully developed to detect and quantify ANAMMOX bacteria in environmental samples. For QC-PCR system, PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used. The quantification range of this system was 4 orders of magnitude, from 10(3) to 10(6) copies per PCR, corresponding to the detection limit of 300 target copies per mL. A 312-bp internal standard was constructed, which showed very similar amplification efficiency with the target amxC fragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The linear regressions were obtained with R2 of 0.9824 for 10(3) copies, 0.9882 for 10(4) copies, 0.9857 for 10(5) copies and 0.9899 for 10(6) copies, respectively. Using this method, ANAMMOX bacteria were quantified in a shortcut nitrification/denitrification-anammox system which was set for piggery wastewater treatment.
Collapse
Affiliation(s)
- Chun Hao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | | | | | | |
Collapse
|
22
|
Vílchez R, Pozo C, Gómez MA, Rodelas B, González-López J. Dominance of sphingomonads in a copper-exposed biofilm community for groundwater treatment. MICROBIOLOGY-SGM 2007; 153:325-337. [PMID: 17259604 DOI: 10.1099/mic.0.2006/002139-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The structure, biological activity and microbial biodiversity of a biofilm used for the removal of copper from groundwater were studied and compared with those of a biofilm grown under copper-free conditions. A laboratory-scale submerged fixed biofilter was fed with groundwater (2.3 l h(-1)) artificially polluted with Cu(II) (15 mg l(-1)) and amended with sucrose (150 mg l(-1)) as carbon source. Between 73 and 90 % of the Cu(II) was removed from water during long-term operation (over 200 days). The biofilm was a complex ecosystem, consisting of eukaryotic and prokaryotic micro-organisms. Scanning electron microscopy revealed marked structural changes in the biofilm induced by Cu(II), compared to the biofilm grown in absence of the heavy metal. Analysis of cell-bound extracellular polymeric substances (EPS) demonstrated a significant modification of the composition of cell envelopes in response to Cu(II). Transmission electron microscopy and energy-dispersive X-ray microanalysis (EDX) showed that copper bioaccumulated in the EPS matrix by becoming bound to phosphates and/or silicates, whereas copper accumulated only intracytoplasmically in cells of eukaryotic microbes. Cu(II) also decreased sucrose consumption, ATP content and alkaline phosphatase activity of the biofilm. A detailed study of the bacterial community composition was conducted by 16S rRNA-based temperature gradient gel electrophoresis (TGGE) profiling, which showed spatial and temporal stability of the species diversity of copper-exposed biofilms during biofilter operation. PCR reamplification and sequencing of 14 TGGE bands showed the prevalence of alphaproteobacteria, with most sequences (78 %) affiliated to the Sphingomonadaceae. The major cultivable colony type in plate counts of the copper-exposed biofilm was also identified as that of Sphingomonas sp. These data confirm a major role of these organisms in the composition of the Cu(II)-removing community.
Collapse
Affiliation(s)
- R Vílchez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - C Pozo
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - M A Gómez
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Ingeniería Civil, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - B Rodelas
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| | - J González-López
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Departamento de Microbiología, Facultad de Farmacia, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
- Grupo de Microbiología Ambiental (Environmental Microbiology Research Group), Instituto del Agua, Escuela Superior de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, 18071 Granada, Spain
| |
Collapse
|
23
|
Manefield M, Whiteley A, Curtis T, Watanabe K. Influence of sustainability and immigration in assembling bacterial populations of known size and function. MICROBIAL ECOLOGY 2007; 53:348-54. [PMID: 17264996 DOI: 10.1007/s00248-006-9167-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2006] [Revised: 04/19/2006] [Accepted: 09/13/2006] [Indexed: 05/13/2023]
Abstract
The rational assembly of microbial communities to perform desired functions would be of great practical benefit to society. Broadly speaking, there are two major theoretical foundations for microbial community assembly: one based on island biogeography theory and another based on niche theory. In this study, we compared a parameter from each theory (immigration rate and sustainability, respectively) to ascertain which was more influential in establishing a functional bacterial population in phenol degrading activated sludge over a 30-day period. Two bacterial strains originally isolated from activated sludge, but differing in their ability to sustain a population in this environment, were repeatedly added to activated sludge reactors at different doses. The resulting size of each population was monitored by competitive polymerase chain reaction. Large, unexpected, yet reproducible fluctuations in population sizes were observed. Irrespective of this, difference in the ability to sustain a population in this environment, overshadowed the influence of 100-fold differences in immigration rate.
Collapse
Affiliation(s)
- Mike Manefield
- Biotechnology and Biomolecular Sciences, CMBB, University of New South Wales, Sydney, New South Wales 2052, Australia.
| | | | | | | |
Collapse
|
24
|
Sercu B, Boon N, Beken SV, Verstraete W, Van Langenhove H. Performance and microbial analysis of defined and non-defined inocula for the removal of dimethyl sulfide in a biotrickling filter. Biotechnol Bioeng 2007; 96:661-72. [PMID: 16921530 DOI: 10.1002/bit.21059] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The performance and microbial communities of three differently inoculated biotrickling filters removing dimethyl sulfide (DMS) were compared. The biotrickling filters were inoculated with Thiobacillus thioparus TK-m (THIO), sludge (HANDS) and sludge + T. thioparus TK-m + Hyphomicrobium VS (HANDS++), respectively. The criteria investigated were length of the start-up period, the maximum elimination capacity, and the effects of intermittent loading rates, low pH, peak loading and very low loading rate on the DMS removal efficiency. The HANDS++ reactor exhibited the best performance considering all treatments. HANDS performed almost equally well as HANDS++, except during the determination of the EC(max), while THIO was generally the least efficient. During stable DMS loading at concentrations of 20 ppmv or lower, all reactors exhibited similar and high removal efficiencies (>99%). Denaturing gradient gel electrophoresis (DGGE) analysis showed the establishment of T. thioparus in the biofilm of all reactors, but not of Hyphomicrobium VS. Quantitative monitoring of the introduced bacterial strains was performed with a newly developed real-time PCR protocol. Initially, the inoculated strains were exclusively found in the reactors in which they were added. Afterwards, however, both strains developed in the biofilm of all three reactors, although T. thioparus attained higher cell densities than Hyphomicrobium. The presence of T. thioparus in THIO was related with the DMS loading rates that were applied, in the sense that intermittent DMS loading and very low DMS loading rates (0.5 ppmv) induced a decrease in gene copy numbers. Real-time PCR and DGGE both gave consistent results regarding the presence of Hyphomicrobium VS and Thiobacillus thioparus TK-m in the reactors. Only real-time PCR could be used to detect bacteria comprising of less than 1.4% of the total bacterial community ( approximately 10(5) copies ring(-1)).
Collapse
Affiliation(s)
- B Sercu
- Environmental Organic Chemistry and Technology Research Group (EnVOC), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | | | | | | | | |
Collapse
|
25
|
Jiang J, Zhang R, Li R, Gu JD, Li S. Simultaneous biodegradation of methyl parathion and carbofuran by a genetically engineered microorganism constructed by mini-Tn5 transposon. Biodegradation 2006; 18:403-12. [PMID: 17091349 DOI: 10.1007/s10532-006-9075-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Accepted: 08/01/2006] [Indexed: 10/23/2022]
Abstract
A genetically engineered microorganism (GEM) capable of simultaneous degrading methyl parathion (MP) and carbofuran was successfully constructed by random insertion of a methyl parathion hydrolase gene (mpd) into the chromosome of a carbofuran degrading Sphingomonas sp. CDS-1 with the mini-transposon system. The GEM constructed was relatively stable and cell viability and original degrading characteristic was not affected compared with the original recipient CDS-1. The effects of temperature, initial pH value, inoculum size and alternative carbon source on the biodegradation of MP and carbofuran were investigated. GEM cells could degrade MP and carbofuran efficiently in a relatively broad range of temperatures from 20 to 30 degrees C, initial pH values from 6.0 to 9.0, and with all initial inoculation cell densities (10(5)-10(7) CFU ml(-1)), even if alternative glucose existed. The optimal temperature and initial pH value for GEM cells to simultaneously degrade MP and carbofuran was at 30 degrees C and at pH 7.0. The removal of MP and carbofuran by GEM cells in sterile and non-sterile soil were also studied. In both soil samples, 50 mg kg(-1) MP and 25 mg kg(-1) carbofuran could be degraded to an undetectable level within 25 days even if there were indigenous microbial competition and carbon sources effect. In sterile soil, the biodegradation rates of MP and carbofuran were faster, and the decline of the inoculated GEM cells was slower compared with that in non-sterile soil. The GEM constructed in this study was potential useful for pesticides bioremediation in natural environment.
Collapse
Affiliation(s)
- Jiandong Jiang
- Department of Microbiology, MOA Key Lab of Microbiological Engineering of Agricultural Environment, Nanjing Agricultural University, Nanjing 210095, P.R. China
| | | | | | | | | |
Collapse
|
26
|
Zhang ZP, Show KY, Tay JH, Liang DT, Lee DJ, Jiang WJ. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.05.021] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Khleifat KM. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Kawabata H, Sakakibara S, Imai Y, Masuzawa T, Fujita H, Tsurumi M, Sato F, Takano A, Nogami S, Kaneda K, Watanabe H. First record of Leptospira borgpetersenii isolation in the Amami Islands, Japan. Microbiol Immunol 2006; 50:429-34. [PMID: 16785714 DOI: 10.1111/j.1348-0421.2006.tb03811.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In 2003, a Leptospira survey was performed on Yoroshima Island of the Amami Islands located in the southwestern part of Japan. Seven Leptospira strains were isolated from the field rat Rattus rattus, which were identified as L. borgpetersenii by flaB sequencing, 16S rDNA sequencing and gyrB sequencing, and serovar Javanica was determined by a microscopic agglutination test. NotI-long restriction fragment analysis indicated that these isolates were genetically indistinguishable from an isolate from the Okinawa Islands. The present results suggest that L. borgpetersenii is migrating into the Amami Islands in Japan.
Collapse
Affiliation(s)
- Hiroki Kawabata
- Department of Bacteriology, National Institute of Infectious Diseases, Toyama, Tokyo, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Kasai Y, Takahata Y, Manefield M, Watanabe K. RNA-based stable isotope probing and isolation of anaerobic benzene-degrading bacteria from gasoline-contaminated groundwater. Appl Environ Microbiol 2006; 72:3586-92. [PMID: 16672506 PMCID: PMC1472354 DOI: 10.1128/aem.72.5.3586-3592.2006] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stable isotope probing (SIP) of benzene-degrading bacteria in gasoline-contaminated groundwater was coupled to denaturing gradient gel electrophoresis (DGGE) of DNA fragments amplified by reverse transcription-PCR from community 16S rRNA molecules. Supplementation of the groundwater with [(13)C(6)]benzene together with an electron acceptor (nitrate, sulfate, or oxygen) showed that a phylotype affiliated with the genus Azoarcus specifically appeared in the (13)C-RNA fraction only when nitrate was supplemented. This phylotype was also observed as the major band in DGGE analysis of bacterial 16S rRNA gene fragments amplified by PCR from the gasoline-contaminated groundwater. In order to isolate the Azoarcus strains, the groundwater sample was streaked on agar plates containing nonselective diluted CGY medium, and the DGGE analysis was used to screen colonies formed on the plates. This procedure identified five bacterial isolates (from 60 colonies) that corresponded to the SIP-identified Azoarcus phylotype, among which two strains (designated DN11 and AN9) degraded benzene under denitrifying conditions. Incubation of these strains with [(14)C]benzene showed that the labeled carbon was mostly incorporated into (14)CO(2) within 14 days. These results indicate that the Azoarcus population was involved in benzene degradation in the gasoline-contaminated groundwater under denitrifying conditions. We suggest that RNA-based SIP identification coupled to phylogenetic screening of nonselective isolates facilitates the isolation of enrichment/isolation-resistant microorganisms with a specific function.
Collapse
MESH Headings
- Azoarcus/classification
- Azoarcus/genetics
- Azoarcus/isolation & purification
- Azoarcus/metabolism
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/genetics
- Bacteria, Anaerobic/isolation & purification
- Bacteria, Anaerobic/metabolism
- Benzene/metabolism
- Biodegradation, Environmental
- Carbon Isotopes/metabolism
- Culture Media
- Electrophoresis, Agar Gel/methods
- Fresh Water/microbiology
- Gasoline
- Molecular Sequence Data
- Nitrates/metabolism
- Phylogeny
- RNA, Bacterial/analysis
- RNA, Bacterial/isolation & purification
- RNA, Bacterial/metabolism
- RNA, Ribosomal, 16S/genetics
- Water Pollution
Collapse
Affiliation(s)
- Yuki Kasai
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | | | | | |
Collapse
|
30
|
Heiss-Blanquet S, Benoit Y, Maréchaux C, Monot F. Assessing the role of alkane hydroxylase genotypes in environmental samples by competitive PCR. J Appl Microbiol 2006; 99:1392-403. [PMID: 16313412 DOI: 10.1111/j.1365-2672.2005.02715.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A molecular tool for extensive detection of prokaryotic alkane hydroxylase genes (alkB) was developed. AlkB genotypes involved in the degradation of short-chain alkanes were quantified in environmental samples in order to assess their occurrence and ecological importance. METHODS AND RESULTS Four primer pairs specific for distinct clusters of alkane hydroxylase genes were designed, allowing amplification of alkB-related genes from all tested alkane-degrading strains and from six of seven microcosms. For the primer pair detecting alkB genes related to the Pseudomonas putida GPo1 alkB gene and the one targeting alkB genes of Gram-positive strains, both involved in short-chain alkane degradation (<C10), a quantitative competitive PCR (cPCR) assay was developed and validated on alkB-containing strains. AlkB genes of the two groups were then quantified in hydrocarbon-contaminated and pristine freshwater and soil samples, and their respective frequency was compared to degradation rates of short-chain n-alkanes. Pseudomonas putida-related alkB genes were prevalent in freshwater samples, but Gram-positive alkB-containing strains were more consistently related to alkane degradation activities. The latter genotype was more abundant in soils, although both genotypes increased in the most contaminated soils studied. CONCLUSIONS Predominance of alkB genotypes depends on the ecosystem and environmental conditions, but alkane exposure generally leads to an increase of both studied genotypes. SIGNIFICANCE AND IMPACT OF THE STUDY The study illustrates the distribution of two different alkB genotypes in two types of ecosystems, and highlights their respective roles in the environment.
Collapse
Affiliation(s)
- S Heiss-Blanquet
- Département de Biotechnologie et Chimie de la Biomasse, Institut Français du Pétrole, Rueil-Malmaison, France.
| | | | | | | |
Collapse
|
31
|
Cortés-Lorenzo C, Molina-Muñoz ML, Gómez-Villalba B, Vilchez R, Ramos A, Rodelas B, Hontoria E, González-López J. Analysis of community composition of biofilms in a submerged filter system for the removal of ammonia and phenol from industrial wastewater. Biochem Soc Trans 2006; 34:165-8. [PMID: 16417512 DOI: 10.1042/bst0340165] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The bacterial diversity of a submerged filter, used for the removal of ammonia and phenol from an industrial wastewater with high salinity, was studied by a cultivation-independent approach based on PCR/TGGE (temperature-gradient gel electrophoresis). The wastewater treatment plant (laboratory scale) combined the nitrification and denitrification processes and consisted of two separated columns (one anoxic and one aerated) connected through a valve. The spatial diversity of bacterial communities in the plant biofilms was analysed by taking samples at four different heights in the system. TGGE profiles of PCR-amplified sequences of the 16 S rRNA gene (V3-hypervariable region) showed significant variations of the bacterial diversity, mainly depending on the concentration of O2 along the system. Several bands separated by TGGE were reamplified and sequenced, in order to explore the composition of the microbial communities in the biofilms. Most of the sequenced bands (10 out of 13) were closely related to the 16 S rRNA gene of marine α-proteobacteria, mainly grouping in the periphery of the genus Roseobacter. Other sequences were related to those of γ-proteobacteria, the nitrite oxidizer Nitrospira marina and anaerobic phenol-degrading bacteria of the Desulfobacteraceae.
Collapse
Affiliation(s)
- C Cortés-Lorenzo
- Grupo de Microbiología Ambiental, Facultad de Farmacia, Universidad de Granada, 18071 Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Gómez-Villalba B, Calvo C, Vilchez R, González-López J, Rodelas B. TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatment of urban wastewater. Appl Microbiol Biotechnol 2006; 72:393-400. [PMID: 16391923 DOI: 10.1007/s00253-005-0272-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2005] [Revised: 11/21/2005] [Accepted: 11/27/2005] [Indexed: 11/28/2022]
Abstract
The spatial and temporal diversity of the bacterial community-forming biofilms in a pilot-scale submerged biofilter used for the treatment of urban wastewater was analyzed by a temperature-gradient gel electrophoresis (TGGE) approach. TGGE profiles based on partial sequence of the 16S rRNA gene showed that the community composition of the biofilms remained fairly stable along the column system and during the whole time of operation of the biofilter (more than 1 year). Community-profiling based on the amplification and separation of partial ammonia monooxygenase (amoA) and nitrous oxide reductase (nosZ) genes demonstrated that ammonia-oxidizing and denitrifying bacteria coexisted in both the anoxic and the aerated parts of the system. Several amoA and nosZ bands separated by TGGE were reamplified and sequenced, in order to further analyze the composition of these microbial communities in the biofilm. Phylogeny inferred from amoA/AmoA revealed the prevalence of Nitrosomonas species with five sequences affiliated to Nitrosomonas oligotropha, six sequences affiliated to Nitrosomonas europaea, and three sequences that showed only 75.7-76.1% identity of the DNA sequence with the closest described species (Nitrosomonas nitrosa). According to literature, this low identity value is indicative of previously undiscovered species. Eighteen new partial nosZ sequences were obtained which were mostly related to nosZ of gamma-proteobacteria (Pseudomonas) or clustered in the periphery of previously known denitrifying alpha-proteobacteria (Bradyrhizobium and Azospirillum).
Collapse
|
33
|
Watanabe K, Baker PW. Environmentally relevant microorganisms. J Biosci Bioeng 2005; 89:1-11. [PMID: 16232691 DOI: 10.1016/s1389-1723(00)88043-3] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/1999] [Accepted: 12/03/1999] [Indexed: 11/19/2022]
Abstract
The development of molecular microbial ecology in the 1990s has allowed scientists to realize that microbial populations in the natural environment are much more diverse than microorganisms so far isolated in the laboratory. This finding has exerted a significant impact on environmental biotechnology, since knowledge in this field has been largely dependent on studies with pollutant-degrading bacteria isolated by conventional culture methods. Researchers have thus started to use molecular ecological methods to analyze microbial populations relevant to pollutant degradation in the environment (called environmentally relevant microorganisms, ERMs), although further effort is needed to gain practical benefits from these studies. This review highlights the utility and limitations of molecular ecological methods for understanding and advancing environmental biotechnology processes. The importance of the combined use of molecular ecological and physiological methods for identifying ERMs is stressed.
Collapse
Affiliation(s)
- K Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | |
Collapse
|
34
|
Polymenakou PN, Stephanou EG. Effect of temperature and additional carbon sources on phenol degradation by an indigenous soil Pseudomonad. Biodegradation 2005; 16:403-13. [PMID: 15865154 DOI: 10.1007/s10532-004-3333-1] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
A new indigenous soil bacterium Pseudomonas sp. growing on phenol and on a mixture of phenol, toluene, o-cresol, naphthalene and 1,2,3-trimethylbenzene (1,2,3-TMB) was isolated and characterized. Phylogenetic analysis suggested its classification to Pseudomonadaceae family and showed 99.8% DNA sequence identity to Pseudomonas pseudoalcaligenes species. The isolate was psychrotroph, with growth temperatures ranging from ca. 0 to 40 degrees C. The GC-MS structural analysis of metabolic products of phenol degradation by this microorganism indicated a possible ortho cleavage pathway for high concentrations (over 200 mg L(-1)) of phenol. Biodegradation rates by this species were found to be three times more effective than those previously reported by other Pseudomonas strains. The effect of temperature on phenol degradation was studied in batch cultures at temperatures ranging from 10 to 40 degrees C and different initial phenol concentrations (up to 500 mg L(-1)). Above 300 mg L(-1) of initial phenol concentration no considerable depletion was recorded at both 10 and 40 degrees C. Maximum degradation rates for phenol were recorded at 30 degrees C. The biodegradation rate of phenol was studied also in the presence of additional carbon sources (o-cresol, toluene, naphthalene, 1,2,3-TMB) at the optimum growth temperature and was found significantly lower by a factor of eight in respect to the strong competitive inhibition between the substrates and the more available sources of carbon and energy. The Haldane equation mu = mum S/(Ks + S + S2/K1) was found to best fit the experimental data at the optimum temperature of 30 degrees C than the Monod equation with kinetic constants mum = 0.27 h(-1), KS = 56.70 mg L(-1), KI = 249.08 mg L(-1).
Collapse
Affiliation(s)
- Paraskevi N Polymenakou
- Environmental Chemical Processes Laboratory, Department of Chemistry, University of Crete, Knossos Avenue PO Box 1470, 714 09 Heraklion, Greece
| | | |
Collapse
|
35
|
Futamata H, Nagano Y, Watanabe K, Hiraishi A. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 2005; 71:904-11. [PMID: 15691947 PMCID: PMC546690 DOI: 10.1128/aem.71.2.904-911.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities. To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter(-1) day(-1)) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter(-1) day(-1) (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.
Collapse
Affiliation(s)
- Hiroyuki Futamata
- Department of Ecological Engineering, Toyohashi University of Technology, Tenpakutyo 1-1, Toyohashi, Aichi 441-8580, Japan.
| | | | | | | |
Collapse
|
36
|
Kasai Y, Takahata Y, Hoaki T, Watanabe K. Physiological and molecular characterization of a microbial community established in unsaturated, petroleum-contaminated soil. Environ Microbiol 2005; 7:806-18. [PMID: 15892700 DOI: 10.1111/j.1462-2920.2005.00754.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The microbial communities established in soil samples from an unsaturated, petroleum-contaminated zone and from an adjacent uncontaminated site were characterized by physiological and molecular approaches. Possible electron acceptors such as sulfate and nitrate had been completely depleted in these soil samples. Slurries of these soil samples were incubated in bottles in the presence of hydrocarbon indicators (benzene, toluene, xylene and decane), and the degradation of these compounds was examined. Supplementation with electron acceptors stimulated hydrocarbon degradation, although the stimulatory effect was small in the contaminated soil. The initial degradation rates in the contaminated soil under fermentative/methanogenic conditions were comparable to those under aerobic conditions. The microbial populations in the original soil samples were analysed by cloning and sequencing of polymerase chain reaction (PCR)-amplified bacterial and archaeal 16S rRNA gene fragments, showing that the sequences retrieved from these soils were substantially different. For instance, Epsilonproteobacteria, Gammaproteobacteria, Crenarchaeota and Methanosarcinales could only be detected at significant levels in the contaminated soil. Denaturing gradient gel electrophoresis (DGGE) analyses of 16S rRNA gene fragments amplified by PCR from the incubated soil-slurry samples showed that supplementation of the electron acceptors resulted in a shift in the major populations, while the DGGE profiles after incubating the contaminated soil under the fermentative/methanogenic conditions were not substantially changed. These results suggest that petroleum contamination of the unsaturated zone resulted in the establishment of a fermentative/methanogenic community with substantial hydrocarbon-degrading potential.
Collapse
Affiliation(s)
- Yuki Kasai
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | | | | | |
Collapse
|
37
|
Futamata H, Nagano Y, Watanabe K, Hiraishi A. Unique kinetic properties of phenol-degrading variovorax strains responsible for efficient trichloroethylene degradation in a chemostat enrichment culture. Appl Environ Microbiol 2005. [PMID: 15691947 DOI: 10.1128/aem.71.2.904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
A chemostat enrichment of soil bacteria growing on phenol as the sole carbon source has been shown to exhibit quite high trichloroethylene (TCE)-degrading activities. To identify the bacterial populations responsible for the high TCE-degrading activity, a multidisciplinary survey of the chemostat enrichment was conducted by employing molecular-ecological and culture-dependent approaches. Three chemostat enrichment cultures were newly developed under different phenol-loading conditions (0.25, 0.75, and 1.25 g liter(-1) day(-1)) in this study, and the TCE-degrading activities of the enrichments were measured. Among them, the enrichment at 0.75 g liter(-1) day(-1) (enrichment 0.75) expressed the highest activity. Denaturing gradient gel electrophoresis of PCR-amplified 16S rRNA gene fragments detected a Variovorax ribotype as the strongest band in enrichment 0.75; however, it was not a major ribotype in the other samples. Bacteria were isolated from enrichment 0.75 by direct plating, and their 16S rRNA genes and genes encoding the largest subunit of phenol hydroxylase (LmPHs) were analyzed. Among the bacteria isolated, several strains were affiliated with the genus Variovorax and were shown to have high-affinity-type LmPHs. The LmPH of the Variovorax strains was also detected as the major genotype in enrichment 0.75. Kinetic analyses of phenol and TCE degradation revealed, however, that these strains exhibited quite low affinity for phenol compared to other phenol-degrading bacteria, while they showed quite high specific TCE-degrading activities and relatively high affinity for TCE. Owing to these unique kinetic traits, the Variovorax strains can obviate competitive inhibition of TCE degradation by the primary substrate of the catabolic enzyme (i.e., phenol), contributing to the high TCE-degrading activity of the chemostat enrichments. On the basis of physiological information, mechanisms accounting for the way the Variovorax population overgrew the chemostat enrichment are discussed.
Collapse
Affiliation(s)
- Hiroyuki Futamata
- Department of Ecological Engineering, Toyohashi University of Technology, Tenpakutyo 1-1, Toyohashi, Aichi 441-8580, Japan.
| | | | | | | |
Collapse
|
38
|
Sei K, Inoue D, Wada K, Mori K, Ike M, Kohno T, Fujita M. Monitoring behaviour of catabolic genes and change of microbial community structures in seawater microcosms during aromatic compound degradation. WATER RESEARCH 2004; 38:4405-4414. [PMID: 15556215 DOI: 10.1016/j.watres.2004.08.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2004] [Revised: 07/15/2004] [Accepted: 08/18/2004] [Indexed: 05/24/2023]
Abstract
The behaviour of microbial populations responsible for degradation of the aromatic compounds, phenol, benzoate, and salicylate, and changes of microbial community structures in seawater microcosms were analysed quantitatively and qualitatively using MPN-PCR and PCR-DGGE. The purpose of the study was to investigate the ecology of the entire microbial community during bioremediation. Bacterial populations possessing catechol 1,2-dioxygenase (C12O) DNA were evidently the primary degraders of phenol and benzoate, but others possessing catechol 2,3-dioxygenase (C23O) DNA increased to enhance substrate degradation under high-load conditions when the substrates were present for long periods. However, salicylate degradation was evidently facilitated by specific bacterial populations possessing C23O DNA. PCR-DGGE analyses suggested that bacterial populations already relatively dominant in the original microcosm contributed to phenol degradation. Bacteria composing a minor fraction of the original population apparently increased and contributed to benzoate degradation. Bacterial populations possessing C23O DNA were responsible for salicylate degradation, however, and different degrading bacteria were evidently selected for, depending on the initial salicylate concentration. Microbial community structure tended to be simplified by aromatic compound degradation. Thus, microbial monitoring can elucidate the behaviour of bacterial populations responsible for aromatic compound degradation and be used to assess the effects of bioremediation on intact microbial ecosystems.
Collapse
Affiliation(s)
- Kazunari Sei
- Department of Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | | | | | |
Collapse
|
39
|
Qiu XY, Hurt RA, Wu LY, Chen CH, Tiedje JM, Zhou JZ. Detection and quantification of copper-denitrifying bacteria by quantitative competitive PCR. J Microbiol Methods 2004; 59:199-210. [PMID: 15369856 DOI: 10.1016/j.mimet.2004.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2004] [Revised: 06/30/2004] [Accepted: 07/12/2004] [Indexed: 11/23/2022]
Abstract
We developed a quantitative competitive PCR (QC-PCR) system to detect and quantify copper-denitrifying bacteria in environmental samples. The primers were specific to copper-dependent nitrite reductase gene (nirK). We were able to detect about 200 copeis of nirK in the presence of abundant non-specific target DNA and about 1.2 x 10(3)Pseudomonas sp. G-179 cells from one gram of sterilized soil by PCR amplification. A 312-bp nirK internal standard (IS) was constructed, which showed very similar amplification efficiency with the target nirKfragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The accuracy of this system was evaluated by quantifying various known amount of nirK DNA. The linear regressions were obtained with a R(2) of 0.9867 for 10(3)copies of nirK, 0.9917 for 10(4) copies of nirK, 0.9899 for 10(5) copies of nirK and 0.9846 for 10(6) copies of nirK. A high correlation between measured nirK and calculated nirK (slope of 1.0398, R(2)=0.9992) demonstrated that an accurate measurement could be achieved with this system. Using this method, we quantified nirK in several A-horizon and stream sediment samples from eastern Tennessee. In general, the abundance of nirK was in the range of 10(8)-10(9) copies g soil(-1) dry weight. The nirK content in the soil samples appeared correlated with NH(4)(N) content in the soil. The activities of copper-denitrifying bacteria were evaluated by quantifying cDNA of nirK. In most of sample examined, the content of nirK cDNA was less than 10(5) copies g soil(-1) dry weight. Higher nirK cDNA content (>10(6) copies g soil(-1) dry weight) was detected from both sediment samples at Rattlebox Creek and the Walker Branch West Ridge. Although the stream sediment samples at the Walker Branch West Ridge contained less half of the nirK gene content as compared to A-horizon sample, the activities of copper-denitrifying bacteria were almost 600 times higher than in the A-horizon sample.
Collapse
Affiliation(s)
- X-Y Qiu
- Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN 37831-6038, USA
| | | | | | | | | | | |
Collapse
|
40
|
Hara A, Syutsubo K, Harayama S. Alcanivorax which prevails in oil-contaminated seawater exhibits broad substrate specificity for alkane degradation. Environ Microbiol 2003; 5:746-53. [PMID: 12919410 DOI: 10.1046/j.1468-2920.2003.00468.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alcanivorax is an alkane-degrading marine bacterium which propagates and becomes predominant in crude-oil-containing seawater when nitrogen and phosphorus nutrients are supplemented. In order to understand why Alcanivorax overcomes other bacteria under such cultural conditions, competition experiments between Alcanivorax indigenous to seawater and the exogenous alkane-degrading marine bacterium, Acinetobacter venetianus strain T4, were conducted. When oil-containing seawater supplemented with nitrogen and phosphorus nutrients was inoculated with A. venetianus strain T4, this bacterium was the dominant population at the early stage of culture. However, its density began to decrease after day 6, and Alcanivorax predominated in the culture after day 20. The crude-oil-degrading profiles of both bacteria were therefore investigated. Alcanivorax borkumensis strain ST-T1 isolated from the Sea of Japan exhibited higher ability to degrade branched alkanes (pristane and phytane) than A. venetianus strain T4. It seems that this higher ability of Alcanivorax to degrade branched alkanes allowed this bacterium to predominate in oil-containing seawater. It is known that some marine zooplanktons produce pristane and Alcanivorax may play a major role in the biodegradation of pristane in seawater.
Collapse
MESH Headings
- Alkanes/metabolism
- Biodegradation, Environmental
- Chromatography, Thin Layer
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Flame Ionization
- Gammaproteobacteria/classification
- Gammaproteobacteria/growth & development
- Gammaproteobacteria/metabolism
- Gas Chromatography-Mass Spectrometry
- In Situ Hybridization, Fluorescence
- Petroleum/metabolism
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/chemistry
- Seawater/microbiology
- Sequence Analysis, DNA
- Substrate Specificity
- Terpenes/metabolism
- Water Microbiology
- Water Pollution, Chemical
Collapse
Affiliation(s)
- Akihiro Hara
- Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | | | |
Collapse
|
41
|
Wenderoth DF, Rosenbrock P, Abraham WR, Pieper DH, Höfle MG. Bacterial community dynamics during biostimulation and bioaugmentation experiments aiming at chlorobenzene degradation in groundwater. MICROBIAL ECOLOGY 2003; 46:161-76. [PMID: 14708742 DOI: 10.1007/s00248-003-2005-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A set of microcosm experiments was performed to assess different bioremediation strategies, i.e., biostimulation and bioaugmentation, for groundwater contaminated with chlorobenzenes. The biodegradative potential was stimulated either by the supply of electron acceptors (air, (NO3-), to increase the activity of the indigenous bacterial community, or by the addition of aerobic chlorobenzene-degrading bacteria (Pseudomonas putida GJ31, Pseudomonas aeruginosa RHO1, Pseudomonas putida F1deltaCC). Experiments were performed with natural groundwater of the aquifer of Bitterfeld, which had been contaminated with 1,2-dichlorobenzene (1,2-DCB), 1,4-dichlorobenzene (1,4-DCB), and chlorobenzene (CB). The microcosms consisted of airtight glass bottles with 800 mL of natural groundwater and were incubated under in situ temperature (13 degrees C). Behavior of the introduced strains within the indigenous bacterial community was monitored by fluorescent in situ hybridization (FISH) with species-specific oligonucleotides. Dynamics of the indigenous community and the introduced strains within the microcosms were followed by single-strand conformation polymorphism (SSCP) analysis of 16S rDNA amplicons obtained from total DNA of the microbial community. An indigenous biodegradation potential under aerobic as well as anaerobic denitrifying conditions was observed accompanied by fast and specific changes in the natural bacterial community composition. Augmentation with P. aeruginosa RHO1 did not enhance bio-degradation. In contrast, both P. putida GJ31 as well as P. putida F1deltaCC were capable of growing in groundwater, even in the presence of the natural microbial community, and thereby stimulating chlorobenzene depletion. P. putida GJ31 disappeared when the xenobiotics were depleted and P. putida F1deltaCC persisted even in the absence of CB. Detailed statistical analyses revealed that community dynamics of the groundwater microbiota were highly reproducible but specific to the introduced strain, its inoculum size, and the imposed physicochemical conditions. These findings could contribute to the design of better in situ bioremediation strategies for contaminated groundwater.
Collapse
Affiliation(s)
- D F Wenderoth
- Department for Environmental Microbiology, GBF-German Research Centre for Biotechnology, Mascheroder Weg 1, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
42
|
Purohit HJ, Kapley A, Moharikar AA, Narde G. A novel approach for extraction of PCR-compatible DNA from activated sludge samples collected from different biological effluent treatment plants. J Microbiol Methods 2003; 52:315-23. [PMID: 12531500 DOI: 10.1016/s0167-7012(02)00185-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This paper describes a method that facilitates the extraction of PCR-compatible DNA from different activated sludge samples. The approach involves a novel preprocessing step in DNA extraction, which removes potential PCR inhibitors. The sludge was washed with different ratios of acetone and petroleum ether after pretreatment with 0.01% Tween-20 at 50 degrees C. It was observed that an initial washing step with 50 mM Tris-HCl, pH 9.0, before the detergent-solvent step, improved the quality of the extracted DNA. The extraction protocol resulted in amplifiable amounts of DNA when 10 mg of a sludge sample was used, even in the presence of phenol as a sludge contaminant. The usefulness of the extracted template was demonstrated by carrying out different PCR reactions. The random amplified polymorphic DNA (RAPD) patterns demonstrated the diversity of sludge samples.
Collapse
Affiliation(s)
- Hemant J Purohit
- National Environmental Engineering Research Institute, Nehru Marg, Nagpur 44 0020, India.
| | | | | | | |
Collapse
|
43
|
Kasai Y, Kishira H, Harayama S. Bacteria belonging to the genus cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl Environ Microbiol 2002; 68:5625-33. [PMID: 12406758 PMCID: PMC129893 DOI: 10.1128/aem.68.11.5625-5633.2002] [Citation(s) in RCA: 135] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To identify the bacteria that play a major role in the aerobic degradation of petroleum polynuclear aromatic hydrocarbons (PAHs) in a marine environment, bacteria were enriched from seawater by using 2-methylnaphthalene, phenanthrene, or anthracene as a carbon and energy source. We found that members of the genus Cycloclasticus became predominant in the enrichment cultures. The Cycloclasticus strains isolated in this study could grow on crude oil and degraded PAH components of crude oil, including unsubstituted and substituted naphthalenes, dibenzothiophenes, phenanthrenes, and fluorenes. To deduce the role of Cycloclasticus strains in a coastal zone oil spill, propagation of this bacterial group on oil-coated grains of gravel immersed in seawater was investigated in beach-simulating tanks that were 1 m wide by 1.5 m long by 1 m high. The tanks were two-thirds filled with gravel, and seawater was continuously introduced into the tanks; the water level was varied between 30 cm above and 30 cm below the surface of the gravel layer to simulate a 12-h tidal cycle. The number of Cycloclasticus cells associated with the grains was on the order of 10(3) cells/g of grains before crude oil was added to the tanks and increased to 3 x 10(6) cells/g of grains after crude oil was added. The number increased further after 14 days to 10(8) cells/g of grains when nitrogen and phosphorus fertilizers were added, while the number remained 3 x 10(6) cells/g of grains when no fertilizers were added. PAH degradation proceeded parallel with the growth of Cycloclasticus cells on the surfaces of the oil-polluted grains of gravel. These observations suggest that bacteria belonging to the genus Cycloclasticus play an important role in the degradation of petroleum PAHs in a marine environment.
Collapse
Affiliation(s)
- Yuki Kasai
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan.
| | | | | |
Collapse
|
44
|
Watanabe K, Teramoto M, Harayama S. Stable augmentation of activated sludge with foreign catabolic genes harboured by an indigenous dominant bacterium. Environ Microbiol 2002; 4:577-83. [PMID: 12366752 DOI: 10.1046/j.1462-2920.2002.00342.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Comamonas sp. rN7 is a phenol-degrading bacterium that represents the dominant catabolic population in activated sludge. The present study examined the utility of this bacterium for establishing foreign catabolic genes in phenol-digesting activated sludge. The phc genes coding for phenol hydroxylase and its transcriptional regulators of C. testosteroni R5 were integrated into the chromosome of strain rN7. The specific phenol-oxygenating activity of a resultant transformant designated rN7(R503) was three times higher than the activity of strain rN7, and the phc genes were stably inherited by rN7(R503) grown in a non-selective laboratory medium. Inoculation of phenol-acclimatized activated sludge with rN7(R503) resulted in a high phenol-oxygenating activity and improved resistance to phenol-shock loading compared to sludge inoculated with either no cells, rN7 or R5. Quantitative competitive polymerase chain reaction (PCR) showed that the phc genes were retained in the rN7(R503)-inoculated sludge at a density of more than 108 copies per ml of mixed liquor for more than 35 days, whereas those in the R5-inoculated sludge disappeared rapidly. No transfer of the phc genes to other indigenous populations was apparent in the rN7(R503)-harbouring sludge. From these results, we concluded that the phenol treatment of the activated sludge was enhanced by the phc genes harboured by the rN7(R503) population. This study suggests a possible bioaugmentation strategy for stably utilizing foreign catabolic genes in natural ecosystems.
Collapse
Affiliation(s)
- Kazuya Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Kamaishi City, Iwate 026-0001, Japan.
| | | | | |
Collapse
|
45
|
Cavalca L, Colombo M, Larcher S, Gigliotti C, Collina E, Andreoni V. Survival and naphthalene-degrading activity of Rhodococcus sp. strain 1BN in soil microcosms. J Appl Microbiol 2002; 92:1058-65. [PMID: 12010546 DOI: 10.1046/j.1365-2672.2002.01640.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The survival and activity of Rhodococcus sp. strain 1BN, inoculated into naphthalene-contaminated sandy-loam soil microcosms, were studied using classical and molecular methods. METHODS AND RESULTS The naphthalene-degrading activity of 1BN in microcosms was examined through viable counts, CO2 production and naphthalene consumption, while its survival after inoculation was monitored by detecting the contemporary presence of alkane and naphthalene degradative genes and by analysing the 16S rDNA specific restriction profile. The inoculation of 1BN did not significantly enhance naphthalene degradation in the naphthalene-contaminated native soil, where 1BN maintained its catabolic activity also when in the presence of indigenous microflora. Instead the rate of naphthalene degradation by the inoculated 1BN was greater in sterile naphthalene-contaminated soil. The level of 1BN was only slightly higher after inoculation regardless of whether indigenous naphthalene-degrading bacteria were present or not and 1BN remained viable even when the substrate was depleted. CONCLUSIONS This study documents the colonization and growth of 1BN in a non-sterile, naphthalene-added, sandy-loam soil having an active indigenous naphthalene-degrading population. SIGNIFICANCE AND IMPACT OF THE STUDY An active and well-established naphthalene-degrading bacterial population in the native soil did not hamper the survival of the introduced 1BN that, through its activity, enhanced the mineralization rate of naphthalene.
Collapse
Affiliation(s)
- L Cavalca
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano-Bicocca, Milano, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Iwabuchi N, Sunairi M, Urai M, Itoh C, Anzai H, Nakajima M, Harayama S. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl Environ Microbiol 2002; 68:2337-43. [PMID: 11976106 PMCID: PMC127525 DOI: 10.1128/aem.68.5.2337-2343.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhodococcus rhodochrous S-2 produces extracellular polysaccharides (S-2 EPS) containing D-glucose, D-galactose, D-mannose, D-glucuronic acid, and lipids, which is important to the tolerance of this strain to an aromatic fraction of (AF) Arabian light crude oil (N. Iwabuchi, N. Sunairi, H. Anzai, M. Nakajima, and S. Harayama, Appl. Environ. Microbiol. 66:5073-5077, 2000). In the present study, we examined the effects of S-2 EPS on the growth of indigenous marine bacteria on AF. Indigenous bacteria did not grow significantly in seawater containing AF even when nitrogen, phosphorus, and iron nutrients were supplemented. The addition of S-2 EPS to seawater containing nutrients and AF resulted in the emulsification of AF, promotion of the growth of indigenous bacteria, and enhancement of the degradation of AF by the bacteria. PCR-denaturing gradient gel electrophoresis analyses show that addition of S-2 EPS to the seawater containing nutrients and AF changed the composition of the bacterial populations in the seawater and that bacteria closely related to the genus Cycloclasticus became the major population. These results suggest that Cycloclasticus was responsible for the degradation of hydrocarbons in AF. The effects of 15 synthetic surfactants on the degradation of AF by indigenous marine bacteria were also examined, but enhancement of the degradation of AF was not significant. S-2 EPS was hence the most effective of the surfactants tested in promoting the biodegradation of AF and may thus be an attractive agent to use in the bioremediation of oil-contaminated marine environments.
Collapse
Affiliation(s)
- Noriyuki Iwabuchi
- Laboratory of Molecular Microbiology, Department of Applied Biological Science, College of Bioresource Sciences, Nihon University, Fujisawa, Kanagawa 252-8510, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Kasai Y, Kishira H, Sasaki T, Syutsubo K, Watanabe K, Harayama S. Predominant growth of Alcanivorax strains in oil-contaminated and nutrient-supplemented sea water. Environ Microbiol 2002; 4:141-7. [PMID: 12000314 DOI: 10.1046/j.1462-2920.2002.00275.x] [Citation(s) in RCA: 213] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We found that bacteria closely related to Alcanivorax became a dominant bacterial population in petroleum-contaminated sea water when nitrogen and phosphorus nutrients were supplied in adequate quantity. The predominance of Alcanivorax bacteria was demonstrated under three experimental conditions: (i) in batch cultures of sea water containing heavy oil; (ii) in columns packed with oil-coated gravel undergoing a continuous sea water flow; and (iii) in a large-scale tidal flux reactor that mimics a beach undergoing tidal cycles with fresh sea water. These results suggest that bacteria related to Alcanivorax are major players in the bioremediation of oil-contaminated marine environments.
Collapse
Affiliation(s)
- Yuki Kasai
- Marine Biotechnology Institute, 3-75-1 Heita, Kamaishi, Iwate 026-0001, Japan
| | | | | | | | | | | |
Collapse
|
48
|
Abstract
Naturally occurring microbial consortia have been utilized in a variety of bioremediation processes. Recent developments in molecular microbial ecology offer new tools that facilitate molecular analyses of microbial populations at contaminated and bioremediated sites. Information provided by such analyses aids in the evaluation of the effectiveness of bioremediation and the formulation of strategies that might accelerate bioremediation.
Collapse
Affiliation(s)
- K Watanabe
- Marine Biotechnology Institute, Kamaishi Laboratories, 3-75-1 Heita, Iwate 026-0001, Kamaishi, Japan.
| |
Collapse
|
49
|
Kasai Y, Kishira H, Syutsubo K, Harayama S. Molecular detection of marine bacterial populations on beaches contaminated by the Nakhodka tanker oil-spill accident. Environ Microbiol 2001; 3:246-55. [PMID: 11359510 DOI: 10.1046/j.1462-2920.2001.00185.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In January 1997, the tanker Nakhodka sank in the Japan Sea, and more than 5000 tons of heavy oil leaked. The released oil contaminated more than 500 km of the coastline, and some still remained even by June 1999. To investigate the long-term influence of the Nakhodka oil spill on marine bacterial populations, sea water and residual oil were sampled from the oil-contaminated zones 10, 18, 22 and 29 months after the accident, and the bacterial populations in these samples were analysed by denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rDNA fragments. The dominant DGGE bands were sequenced, and the sequences were compared with those in DNA sequence libraries. Most of the bacteria in the sea water samples were classified as the Cytophaga-Flavobacterium-Bacteroides phylum, alpha-Proteobacteria or cyanobacteria. The bacteria detected in the oil paste samples were different from those detected in the sea water samples; they were types related to hydrocarbon degraders, exemplified by strains closely related to Sphingomonas subarctica and Alcanivorax borkumensis. The sizes of the major bacterial populations in the oil paste samples ranged from 3.4 x 10(5) to 1.6 x 10(6) bacteria per gram of oil paste, these low numbers explaining the slow rate of natural attenuation.
Collapse
Affiliation(s)
- Y Kasai
- Marine Biotechnology Institute, Kamaishi Laboratories, Heita, Kamaishi, Iwate, Japan
| | | | | | | |
Collapse
|
50
|
Tay SL, Hemond F, Krumholz L, Cavanaugh C, Polz M. Population Dynamics of Two Toluene Degrading Bacterial Species in a Contaminated Stream. MICROBIAL ECOLOGY 2001; 41:124-131. [PMID: 12032617 DOI: 10.1007/s002480000089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2000] [Accepted: 10/04/2000] [Indexed: 05/23/2023]
Abstract
Toluene uptake by a benthic biofilm community was previously shown to vary seasonally from 0.03 m hr?1 in winter to 0.2 m hr?1 in summer in a solvent-contaminated stream of the Aberjona watershed. We used quantitative PCR to estimate the population dynamics of previously isolated species of toluene-degrading Xanthobacter autotrophicus and Mycobacterium sp. in both toluene-contaminated and uncontaminated reaches of the stream, and to estimate their relative roles in overall biodegradation rate. Quantification using specific 16S rDNA primers forX. autotrophicus and Mycobacterium sp. showed that populations of both species were much larger in the toluene-contaminated than the toluene-free reach, in agreement with earlier culture-based investigations. A relatively brief bloom of X. autotrophicus occurred in the contaminated reach in the summer, while Mycobacterium sp. populations occurred at elevated densities for more than 5 months. Calculations showed that Mycobacterium, previously thought to be less important than Xanthobacter in annual toluene degradation based on single time-point CFU estimates, appears actually more important because of this longer persistence.
Collapse
Affiliation(s)
- S.T.-L. Tay
- Ralph M. Parsons Laboratory, Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|