1
|
Qiu X, Tang X. Metabolic adaptations of Shewanella eurypsychrophilus YLB-09 for survival in the high-pressure environment of the deep sea. Front Microbiol 2024; 15:1467153. [PMID: 39483757 PMCID: PMC11527400 DOI: 10.3389/fmicb.2024.1467153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 10/01/2024] [Indexed: 11/03/2024] Open
Abstract
Elucidation of the adaptation mechanisms and survival strategies of deep-sea microorganisms to extreme environments could provide a theoretical basis for the industrial development of extreme enzymes. There is currently a lack of understanding of the metabolic adaptation mechanisms of deep-sea microorganisms to high-pressure environments. The objective of this study was to investigate the metabolic regulatory mechanisms enabling a strain of the deep-sea bacterium Shewanella eurypsychrophilus to thrive under high-pressure conditions. To achieve this, we used nuclear magnetic resonance-based metabolomic and RNA sequencing-based transcriptomic analyses of S. eurypsychrophilus strain YLB-09, which was previously isolated by our research group and shown to be capable of tolerating high pressure levels and low temperatures. We found that high-pressure conditions had pronounced impacts on the metabolic pattern of YLB-09, as evidenced by alterations in energy, amino acid, and glycerolipid metabolism, among other processes. YLB-09 adapted to the high-pressure conditions of the deep sea by switching from aerobic intracellular energy metabolism to trimethylamine N-oxide respiration, altering the amino acid profile, and regulating the composition and the fluidity of cell membrane. The findings of our study demonstrate the capacity of microorganisms to alter their metabolism in response to elevated pressure, thereby establishing a foundation for a more profound understanding of the survival mechanisms of life in high-pressure environments.
Collapse
Affiliation(s)
- Xu Qiu
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
- Key Laboratory for Chemical Biology of Fujian Province, MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, China
| | - Xixiang Tang
- State Key Laboratory Breeding Base of Marine Genetic Resources, Key Laboratory of Marine Genetic Resources, Fujian Key Laboratory of Marine Genetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China
| |
Collapse
|
2
|
Oliver-Cervelló L, López-Gómez P, Martin-Gómez H, Marion M, Ginebra MP, Mas-Moruno C. Functionalization of Alginate Hydrogels with a Multifunctional Peptide Supports Mesenchymal Stem Cell Adhesion and Reduces Bacterial Colonization. Chemistry 2024; 30:e202400855. [PMID: 39031737 DOI: 10.1002/chem.202400855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Hydrogels with cell adhesive moieties stand out as promising materials to enhance tissue healing and regeneration. Nonetheless, bacterial infections of the implants represent an unmet major concern. In the present work, we developed an alginate hydrogel modified with a multifunctional peptide containing the RGD cell adhesive motif in combination with an antibacterial peptide derived from the 1-11 region of lactoferrin (LF). The RGD-LF branched peptide was successfully anchored to the alginate backbone by carbodiimide chemistry, as demonstrated by 1H NMR and fluorescence measurements. The functionalized hydrogel presented desirable physicochemical properties (porosity, swelling and rheological behavior) to develop biomaterials for tissue engineering. The viability of mesenchymal stem cells (MSCs) on the peptide-functionalized hydrogels was excellent, with values higher than 85 % at day 1, and higher than 95 % after 14 days in culture. Moreover, the biological characterization demonstrated the ability of the hydrogels to significantly enhance ALP activity of MSCs as well as to decrease bacterial colonization of both Gram-positive and Gram-negative models. Such results prove the potential of the functionalized hydrogels as novel biomaterials for tissue engineering, simultaneously displaying cell adhesive activity and the capacity to prevent bacterial contamination, a dual bioactivity commonly not found for these types of hydrogels.
Collapse
Affiliation(s)
- Lluís Oliver-Cervelló
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Patricia López-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Helena Martin-Gómez
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Mahalia Marion
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
| | - Maria-Pau Ginebra
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
- Institute for Bioengineering of Catalonia (IBEC), Barcelona, 08028, Spain
| | - Carlos Mas-Moruno
- Biomaterials, Biomechanics and Tissue Engineering Group, Department of Materials Science and Engineering, Universitat Politècnica de Catalunya (UPC), Barcelona, 08019, Spain
- Barcelona Research Center in Multiscale Science and Engineering, UPC, Barcelona, 08019, Spain
- Centro de Investigación Biomédica en Red, Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, 28029, Spain
| |
Collapse
|
3
|
Carvalho R, Tapia JH, Minsavage GV, Jones JB, Paret ML. Elucidating the Mode of Action of Hybrid Nanoparticles of Cu/Zn Against Copper-Tolerant Xanthomonas euvesicatoria. PHYTOPATHOLOGY 2024; 114:1206-1214. [PMID: 38302452 DOI: 10.1094/phyto-09-23-0339-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
The widespread presence of tolerance to copper in Xanthomonas species has resulted in the need to develop alternative approaches to control plant diseases caused by xanthomonads. In recent years, nanotechnological approaches have resulted in the identification of novel materials to control plant pathogens. With many metal-based nanomaterials having shown promise for disease control, an important question relates to the mode of action of these new materials. In this study, we used several approaches, such as scanning electron microscopy, propidium monoazide quantitative polymerase chain reaction, epifluorescence microscopy, and RNA sequencing to elucidate the mode of action of a Cu/Zn hybrid nanoparticle against copper-tolerant strains of Xanthomonas euvesicatoria. We demonstrate that Cu/Zn did not activate copper resistance genes (i.e., copA and copB) in the copper-tolerant bacterium but functioned by disrupting the bacterial cell structure and perturbing important biological processes such as cell respiration and chemical homeostasis.
Collapse
Affiliation(s)
- Renato Carvalho
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Jose H Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Gerald V Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Jeffrey B Jones
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
| | - Mathews L Paret
- Department of Plant Pathology, University of Florida, Gainesville, FL 32611
- North Florida Research and Education Center, University of Florida, Quincy, FL 32251
| |
Collapse
|
4
|
Haque F, Diba F, Istiaq A, Siddique MA, Mou TJ, Hossain MA, Sultana M. Novel insights into the co-selection of metal-driven antibiotic resistance in bacteria: a study of arsenic and antibiotic co-exposure. Arch Microbiol 2024; 206:194. [PMID: 38538852 DOI: 10.1007/s00203-024-03873-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/21/2024] [Accepted: 01/26/2024] [Indexed: 04/16/2024]
Abstract
The simultaneous development of antibiotic resistance in bacteria due to metal exposure poses a significant threat to the environment and human health. This study explored how exposure to both arsenic and antibiotics affects the ability of an arsenite oxidizer, Achromobacter xylosoxidans CAW4, to transform arsenite and its antibiotic resistance patterns. The bacterium was isolated from arsenic-contaminated groundwater in the Chandpur district of Bangladesh. We determined the minimum inhibitory concentration (MIC) of arsenite, cefotaxime, and tetracycline for A. xylosoxidans CAW4, demonstrating a multidrug resistance (MDR) trait. Following this determination, we aimed to mimic an environment where A. xylosoxidans CAW4 was exposed to both arsenite and antibiotics. We enabled the strain to grow in sub-MIC concentrations of 1 mM arsenite, 40 µg/mL cefotaxime, and 20 µg/mL tetracycline. The expression dynamics of the arsenite oxidase (aioA) gene in the presence or absence of antibiotics were analyzed. The findings indicated that simultaneous exposure to arsenite and antibiotics adversely affected the bacteria's capacity to metabolize arsenic. However, when arsenite was present in antibiotics-containing media, it promoted bacterial growth. The study observed a global downregulation of the aioA gene in arsenic-antibiotic conditions, indicating the possibility of increased susceptibility through co-resistance across the entire bacterial population of the environment. This study interprets that bacterial arsenic-metabolizing ability can rescue the bacteria from antibiotic stress, further disseminating environmental cross-resistance. Therefore, the co-selection of metal-driven antibiotic resistance in bacteria highlights the need for effective measures to address this emerging threat to human health and the environment.
Collapse
Affiliation(s)
- Farhana Haque
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - Farzana Diba
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Institute of Tissue Banking and Biomaterial Research, Atomic Energy Research Establishment, Savar, Dhaka, 1349, Bangladesh
| | - Arif Istiaq
- Department of Stem Cell Biology, Faculty of Arts and Sciences, Kyushu University, Fukuoka, Japan
| | - Mohammad Anwar Siddique
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Northwestern University Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Taslin Jahan Mou
- Department of Microbiology, Jahangirnagar University, Savar, Dhaka, 1342, Bangladesh
| | - M Anwar Hossain
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh
- Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Munawar Sultana
- Department of Microbiology, University of Dhaka, Dhaka, 1000, Bangladesh.
| |
Collapse
|
5
|
Ben Ghorbal S, Werhani R, Abdelwaheb C. Effects of certain physical stresses on the composition of the membrane of bacteria implicated in food and environmental contamination. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:408-418. [PMID: 36455161 DOI: 10.1080/09603123.2022.2151575] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Bacterial membranes are implicated in the adaptation process of bacteria to numerous environmental conditions. In this context, our aim was to explain the consequences of a few physical stressor factors, like UV radiations and magnetic fields underlying the structural adaptation of cellular membranes to physical factors. The goal was also to review the state of the art about the link between membrane composition and bacterial resistance. According to comparative studies between ionizing γ-radiation, non-ionizing UVc radiations and Static Magnetic Field SMF, the response of some Gram negative bacteria appears to be generalized and was manifested by a membrane unsaturation, because of a production peak of unsaturated fatty acids. However, disturbances found inside the membrane, after UVB and Pulsed Electric Field (PEF) exposure were marked by a lower unsaturated fatty acids rate. This result is not concordant to disturbance seen after UVC treatment, even if the treatment is by UV radiation.
Collapse
Affiliation(s)
- SalmaKloula Ben Ghorbal
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, Soliman, Tunisia
| | - Rim Werhani
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, Soliman, Tunisia
| | - Chatti Abdelwaheb
- Laboratoire de Traitement des Eaux Usées, Centre de Recherches et Technologies des Eaux Usées, Technopole Borj Cedria, Soliman, Tunisia
- Unite de Biochimie des lipides et interactions des macromolécules en Biologie, Laboratoire de Biochimie et biologie moléculaire, Faculté des Sciences de Bizerte, Bizerte, Tunisia
| |
Collapse
|
6
|
Shikha S, Kumar V, Jain A, Dutta D, Bhattacharyya MS. Unraveling the mechanistic insights of sophorolipid-capped gold nanoparticle-induced cell death in Vibrio cholerae. Microbiol Spectr 2023; 11:e0017523. [PMID: 37811987 PMCID: PMC10715219 DOI: 10.1128/spectrum.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 08/21/2023] [Indexed: 10/10/2023] Open
Abstract
IMPORTANCE Vibrio cholerae, a Gram-negative bacterium, is the causative agent of a fatal disease, "cholera." Prevention of cholera outbreak is possible by eliminating the bacteria from the environment. However, antimicrobial resistance developed in microorganisms has posed a threat and challenges to its treatment. Application of nanoparticles is a useful and effective option for the elimination of such microorganisms. Metal-based nanopaticles exhibit microbial toxicity through non-specific mechanisms. To prevent resistance development and increase antibacterial efficiency, rational designing of nanoparticles is required. Thus, knowledge on the exact mechanism of action of nanoparticles is highly essential. In this study, we explore the possible mechanisms of antibacterial activity of AuNPs-SL against V. cholerae. We show that the interaction of AuNPs-SL with V. cholerae enhances ROS production and membrane depolarization, change in permeability, and leakage of intracellular content. This action leads to the depletion of cellular ATP level, DNA damage, and subsequent cell death.
Collapse
Affiliation(s)
- Sristy Shikha
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Vineet Kumar
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Ankita Jain
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Dipak Dutta
- Molecular Microbiology Laboratory, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Chandigarh, India
| |
Collapse
|
7
|
Chen H, Moraru C. Synergistic effects of sequential light treatment with 222-nm/405-nm and 280-nm/405-nm wavelengths on inactivation of foodborne pathogens. Appl Environ Microbiol 2023; 89:e0065023. [PMID: 37800967 PMCID: PMC10617431 DOI: 10.1128/aem.00650-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 08/14/2023] [Indexed: 10/07/2023] Open
Abstract
Light-based technologies of different wavelengths can inactivate pathogenic microorganisms, but each wavelength has its limitations. This work explores the potential of sequential treatments with different wavelengths for enhancing the disinfection performance of individual treatments by employing various bactericidal mechanisms. The effectiveness, inactivation kinetics, and bactericidal mechanisms of treatments with 222/405, 280/405, and 405 nm alone against Escherichia coli O157:H7, Listeria monocytogenes, Staphylococcus aureus, Salmonella Typhimurium, and Pseudomonas aeruginosa were evaluated. Inactivation experiments were performed in thin liquid bacterial suspensions that were treated either individually with 48 h of 405-nm light or sequentially with (i) 30 s of 222-nm far-UV-C light, followed by 48 h of 405-nm light, or (ii) 30 s of 280-nm far-UV-C light, followed by 48 h of 405-nm light. Survivors were recovered and enumerated by standard plate counting. All inactivation curves were non-linear and followed the Weibull model (0.99 ≥ R2 ≥ 0.70). Synergistic effects were found for E. coli, L. monocytogenes, and S. Typhimurium, with maximum inactivation level increases of 2.9, 3.3, and 1.1 log CFU after the sequential treatments, respectively. Marginal synergy was found for S. aureus, and an antagonistic effect was found for P. aeruginosa after sequential treatments. Significant differences in reactive oxygen species accumulation were found (P < 0.05) after various treatment combinations, and the performance of sequential treatments was correlated with cellular oxidative damage. The sequential wavelength treatments proposed demonstrate the potential for enhanced disinfection of multiple foodborne pathogens compared with individual wavelength treatments, which can have significant food safety benefits. IMPORTANCE Nonthermal light-based technologies offer a chemical-free method to mitigate microbial contamination in the food and healthcare industries. However, each individual wavelength has different limitations in terms of efficacy and operating conditions, which limits their practical applicability. In this study, bactericidal synergism of sequential treatments with different wavelengths was identified. Pre-treatments with 280 and 222 nm enhanced the disinfection performance of follow-up 405-nm treatments for multiple foodborne pathogens by inducing higher levels of cellular membrane damage and oxidative stress. These findings deliver useful information for light equipment manufacturers, food processors, and healthcare users, who can design and optimize effective light-based systems to realize the full potential of germicidal light technologies. The results from the sequential treatments offer practical solutions to improve the germicidal efficacy of visible light systems, as well as provide inspiration for future hurdle disinfection systems design, with a positive impact on food safety and public health.
Collapse
Affiliation(s)
- Hanyu Chen
- Department of Food Science, Cornell University, Ithaca, New York, USA
| | - Carmen Moraru
- Department of Food Science, Cornell University, Ithaca, New York, USA
| |
Collapse
|
8
|
Oh E, Choi SJ, Han S, Lee KH, Choi HJ. Highly Effective Salt-Activated Alcohol-Based Disinfectants with Enhanced Antimicrobial Activity. ACS NANO 2023; 17:17811-17825. [PMID: 37639494 DOI: 10.1021/acsnano.3c03315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Surfaces contaminated with pathogens raise concerns about the increased risk of disease transmission and infection. To clean biocontaminated surfaces, alcohol-based disinfectants have been predominantly used for disinfecting high-touch areas in diverse settings. However, due to its limited antimicrobial activities and concern over the emergence of alcohol-tolerant strains, much effort has been made to develop highly efficient disinfectant formulations. In this study, we hypothesize that the addition of a physical pathogen inactivation mechanism by salt recrystallization (besides the existing chemical inactivation mechanism by alcohol in such formulations) can improve inactivation efficiency by preventing the emergence of alcohol tolerance. To this end, we employed the drying-induced salt recrystallization process to implement the concept of highly efficient alcohol-based disinfectant formulations. To identify the individual and combined effects of isopropyl alcohol (IPA) and NaCl, time-dependent morphological/structural changes of various IPA solutions containing NaCl have been characterized by optical microscopy/X-ray diffraction analysis. Their antimicrobial activities have been tested on surfaces (glass slide, polystyrene Petri dish, and stainless steel) contaminated with Gram-positive/negative bacteria (methicillin-resistant Staphylococcus aureus, Pseudomonas aeruginosa, and Salmonella enterica subsp. enterica Typhimurium) and viruses (A/PR8/34 H1N1 influenza virus and HCoV-OC43 human coronavirus). We found that additional salt crystallization during the drying of the alcohol solution facilitated stronger biocidal effects than IPA-only formulations, regardless of the types of solid surfaces and pathogens, including alcohol-tolerant strains adapted from wild-type Escherichia coli MG1655. Our findings can be useful in developing highly effective disinfectant formulations by minimizing the use of toxic antimicrobial substances to improve public health and safety.
Collapse
Affiliation(s)
- Euna Oh
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Seung Joon Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sumin Han
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Kyu Hyoung Lee
- Department of Materials Science and Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Hyo-Jick Choi
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
9
|
Sun W, Jing Z, Zhao Z, Yin R, Santoro D, Mao T, Lu Z. Dose-Response Behavior of Pathogens and Surrogate Microorganisms across the Ultraviolet-C Spectrum: Inactivation Efficiencies, Action Spectra, and Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:10891-10900. [PMID: 37343195 DOI: 10.1021/acs.est.3c00518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/23/2023]
Abstract
The dose-response behavior of pathogens and inactivation mechanisms by UV-LEDs and excimer lamps remains unclear. This study used low-pressure (LP) UV lamps, UV-LEDs with different peak wavelengths, and a 222 nm krypton chlorine (KrCl) excimer lamp to inactivate six microorganisms and to investigate their UV sensitivities and electrical energy efficiencies. The 265 nm UV-LED had the highest inactivation rates (0.47-0.61 cm2/mJ) for all tested bacteria. The bacterial sensitivity strongly fitted the absorption curve of nucleic acids at wavelengths of 200-300 nm; however, indirect damage induced by reactive oxygen species (ROS) was the leading cause of bacterial inactivation under 222 nm UV irradiation. In addition, the guanine and cytosine (GC) content and cell wall constituents of bacteria affect inactivation efficiency. The inactivation rate constant of Phi6 (0.13 ± 0.002 cm2/mJ) at 222 nm due to lipid envelope damage was significantly higher than other UVC (0.006-0.035 cm2/mJ). To achieve 2log reduction, the LP UV lamp had the best electrical energy efficiency (required less energy, average 0.02 kWh/m3) followed by 222 nm KrCl excimer lamp (0.14 kWh/m3) and 285 nm UV-LED (0.49 kWh/m3).
Collapse
Affiliation(s)
- Wenjun Sun
- School of Environment, Tsinghua University, Beijing 100084, China
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
| | - Zibo Jing
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhinan Zhao
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Ran Yin
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong 999066, PR China
| | | | - Ted Mao
- Research Institute for Environmental Innovation (Suzhou) Tsinghua, Suzhou 215163, China
- MW Technologies, Inc., London, Ontario L8N1E, Canada
| | - Zedong Lu
- School of Environment, Tsinghua University, Beijing 100084, China
| |
Collapse
|
10
|
TiO2-based photocatalyst Generated Reactive Oxygen Species cause cell membrane disruption of Staphylococcus aureus and Escherichia coli O157:H7. Food Microbiol 2023; 109:104119. [DOI: 10.1016/j.fm.2022.104119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022]
|
11
|
Cho ER, Kang DH. Combination system of pulsed ohmic heating and 365-nm UVA light-emitting diodes to enhance inactivation of foodborne pathogens in phosphate-buffered saline, milk, and orange juice. INNOV FOOD SCI EMERG 2022. [DOI: 10.1016/j.ifset.2022.103250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Fermentation Wastes from Chrypthecodinium cohnii Lipid Production for Energy Recovery by Anaerobic Digestion. Processes (Basel) 2022. [DOI: 10.3390/pr10112463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Wastes generated during the cultivation of marine microalga Crypthecodinium cohnii and after the lipid extraction process, were energetically valorized into biogas production through anaerobic digestion (AD). The tested wastes were extracted microalgae (Ae) with hexane (AeH) using supercritical extraction methods (AeS) and the supernatant obtained after culture medium centrifugation (M). The digestion of the algae biomass in the admixture with the supernatant medium (AeH+M+I and AeS+M+I) provided a higher methane content and a higher methane yield (582 and 440 L CH4/kg VS) than the substrates Ae and M, individually digested (155 and 96 L CH4/kg VS, respectively). Flow cytometry monitoring processes during AD indicated that the yield of the accumulated biogas was influenced by the operating conditions. The mixture of AeH+M+I was the only assay with a proportion of cells with less damaged membranes after AD, providing the highest methane yield and productivity (582 L CH4/kg VS and 31 L CH4/kg VS.d, respectively) and the highest energetic potential of 5.8 KWh/kg VS of all the substrates. From the results, AD integration to lipid production by C. cohnii to recover energy from the generated wastes enhanced the sustainability of the entire process and promoted the practice of zero waste.
Collapse
|
13
|
Cho ER, Kang DH. Intensified inactivation efficacy of pulsed ohmic heating for pathogens in soybean milk due to sodium lactate. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
14
|
Koutsoumanis K, Alvarez‐Ordóñez A, Bolton D, Bover‐Cid S, Chemaly M, Davies R, De Cesare A, Herman L, Hilbert F, Lindqvist R, Nauta M, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Castle L, Crotta M, Grob K, Milana MR, Petersen A, Roig Sagués AX, Vinagre Silva F, Barthélémy E, Christodoulidou A, Messens W, Allende A. The efficacy and safety of high-pressure processing of food. EFSA J 2022; 20:e07128. [PMID: 35281651 PMCID: PMC8902661 DOI: 10.2903/j.efsa.2022.7128] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
High-pressure processing (HPP) is a non-thermal treatment in which, for microbial inactivation, foods are subjected to isostatic pressures (P) of 400-600 MPa with common holding times (t) from 1.5 to 6 min. The main factors that influence the efficacy (log10 reduction of vegetative microorganisms) of HPP when applied to foodstuffs are intrinsic (e.g. water activity and pH), extrinsic (P and t) and microorganism-related (type, taxonomic unit, strain and physiological state). It was concluded that HPP of food will not present any additional microbial or chemical food safety concerns when compared to other routinely applied treatments (e.g. pasteurisation). Pathogen reductions in milk/colostrum caused by the current HPP conditions applied by the industry are lower than those achieved by the legal requirements for thermal pasteurisation. However, HPP minimum requirements (P/t combinations) could be identified to achieve specific log10 reductions of relevant hazards based on performance criteria (PC) proposed by international standard agencies (5-8 log10 reductions). The most stringent HPP conditions used industrially (600 MPa, 6 min) would achieve the above-mentioned PC, except for Staphylococcus aureus. Alkaline phosphatase (ALP), the endogenous milk enzyme that is widely used to verify adequate thermal pasteurisation of cows' milk, is relatively pressure resistant and its use would be limited to that of an overprocessing indicator. Current data are not robust enough to support the proposal of an appropriate indicator to verify the efficacy of HPP under the current HPP conditions applied by the industry. Minimum HPP requirements to reduce Listeria monocytogenes levels by specific log10 reductions could be identified when HPP is applied to ready-to-eat (RTE) cooked meat products, but not for other types of RTE foods. These identified minimum requirements would result in the inactivation of other relevant pathogens (Salmonella and Escherichia coli) in these RTE foods to a similar or higher extent.
Collapse
|
15
|
Hao J, Lei Y, Gan Z, Zhao W, Shi J, Jia C, Sun A. Synergetic Inactivation Mechanism of Protocatechuic Acid and High Hydrostatic Pressure against Escherichia coli O157:H7. Foods 2021; 10:foods10123053. [PMID: 34945604 PMCID: PMC8701084 DOI: 10.3390/foods10123053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/12/2021] [Accepted: 12/03/2021] [Indexed: 11/16/2022] Open
Abstract
With the wide application of high hydrostatic pressure (HHP) technology in the food industry, safety issues regarding food products, resulting in potential food safety hazards, have arisen. To address such problems, this study explored the synergetic bactericidal effects and mechanisms of protocatechuic acid (PCA) and HHP against Escherichia coli O157:H7. At greater than 200 MPa, PCA (1.25 mg/mL for 60 min) plus HHP treatments had significant synergetic bactericidal effects that positively correlated with pressure. After a combined treatment at 500 MPa for 5 min, an approximate 9.0 log CFU/mL colony decline occurred, whereas the individual HHP and PCA treatments caused 4.48 and 1.06 log CFU/mL colony decreases, respectively. Mechanistically, membrane integrity and morphology were damaged, and the permeability increased when E. coli O157: H7 was exposed to the synergetic stress of PCA plus HHP. Inside cells, the synergetic treatment additionally targeted the activities of enzymes such as superoxide dismutase, catalase and ATPase, which were inhibited significantly (p ≤ 0.05) when exposed to high pressure. Moreover, an analysis of circular dichroism spectra indicated that the synergetic treatment caused a change in DNA structure, which was expressed as the redshift of the characteristic absorption peak. Thus, the synergetic treatment of PCA plus HHP may be used as a decontamination method owing to the good bactericidal effects on multiple targets.
Collapse
Affiliation(s)
- Jingyi Hao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Yuqing Lei
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Zhilin Gan
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Wanbin Zhao
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Junyan Shi
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Chengli Jia
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
| | - Aidong Sun
- College of Biological Sciences and Biotechnology, Beijing Forestry University, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China; (J.H.); (Y.L.); (Z.G.); (W.Z.); (J.S.); (C.J.)
- Beijing Key Laboratory of Food Processing and Safety in Forestry, No. 35 Qinghua East Road, Haidian District, Beijing 100083, China
- Correspondence: ; Tel.: +86-010-62336700
| |
Collapse
|
16
|
Wason S, Verma T, Subbiah J. Validation of process technologies for enhancing the safety of low-moisture foods: A review. Compr Rev Food Sci Food Saf 2021; 20:4950-4992. [PMID: 34323364 DOI: 10.1111/1541-4337.12800] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 06/03/2021] [Accepted: 06/10/2021] [Indexed: 01/03/2023]
Abstract
The outbreaks linked to foodborne illnesses in low-moisture foods are frequently reported due to the occurrence of pathogenic microorganisms such as Salmonella Spp. Bacillus cereus, Clostridium spp., Cronobacter sakazakii, Escherichia coli, and Staphylococcus aureus. The ability of the pathogens to withstand the dry conditions and to develop resistance to heat is regarded as the major concern for the food industry dealing with low-moisture foods. In this regard, the present review is aimed to discuss the importance and the use of novel thermal and nonthermal technologies such as radiofrequency, steam pasteurization, plasma, and gaseous technologies for decontamination of foodborne pathogens in low-moisture foods and their microbial inactivation mechanisms. The review also summarizes the various sources of contamination and the factors influencing the survival and thermal resistance of pathogenic microorganisms in low-moisture foods. The literature survey indicated that the nonthermal techniques such as CO2 , high-pressure processing, and so on, may not offer effective microbial inactivation in low-moisture foods due to their insufficient moisture content. On the other hand, gases can penetrate deep inside the commodities and pores due to their higher diffusion properties and are regarded to have an advantage over thermal and other nonthermal processes. Further research is required to evaluate newer intervention strategies and combination treatments to enhance the microbial inactivation in low-moisture foods without significantly altering their organoleptic and nutritional quality.
Collapse
Affiliation(s)
- Surabhi Wason
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA
| | - Tushar Verma
- Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Jeyamkondan Subbiah
- Department of Food Science, University of Arkansas System Division of Agriculture, Fayetteville, Arkansas, USA.,Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
17
|
Ceron-Chafla P, Chang YT, Rabaey K, van Lier JB, Lindeboom REF. Directional Selection of Microbial Community Reduces Propionate Accumulation in Glycerol and Glucose Anaerobic Bioconversion Under Elevated pCO 2. Front Microbiol 2021; 12:675763. [PMID: 34220760 PMCID: PMC8242345 DOI: 10.3389/fmicb.2021.675763] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/24/2021] [Indexed: 11/30/2022] Open
Abstract
Volatile fatty acid accumulation is a sign of digester perturbation. Previous work showed the thermodynamic limitations of hydrogen and CO2 in syntrophic propionate oxidation under elevated partial pressure of CO2 (pCO2). Here we study the effect of directional selection under increasing substrate load as a strategy to restructure the microbial community and induce cross-protection mechanisms to improve glucose and glycerol conversion performance under elevated pCO2. After an adaptive laboratory evolution (ALE) process, viable cell density increased and predominant microbial groups were modified: an increase in Methanosaeta and syntrophic propionate oxidizing bacteria (SPOB) associated with the Smithella genus was found with glycerol as the substrate. A modest increase in SPOB along with a shift in the predominance of Methanobacterium toward Methanosaeta was observed with glucose as the substrate. The evolved inoculum showed affected diversity within archaeal spp. under 5 bar initial pCO2; however, higher CH4 yield resulted from enhanced propionate conversion linked to the community shifts and biomass adaptation during the ALE process. Moreover, the evolved inoculum attained increased cell viability with glucose and a marginal decrease with glycerol as the substrate. Results showed differences in terms of carbon flux distribution using the evolved inoculum under elevated pCO2: glucose conversion resulted in a higher cell density and viability, whereas glycerol conversion led to higher propionate production whose enabled conversion reflected in increased CH4 yield. Our results highlight that limited propionate conversion at elevated pCO2 resulted from decreased cell viability and low abundance of syntrophic partners. This limitation can be mitigated by promoting alternative and more resilient SPOB and building up biomass adaptation to environmental conditions via directional selection of microbial community.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Yu-Ting Chang
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
18
|
Nikparvar B, Subires A, Capellas M, Hernandez-Herrero M, Crauwels P, Riedel CU, Bar N. A Diffusion Model to Quantify Membrane Repair Process in Listeria monocytogenes Exposed to High Pressure Processing Based on Fluorescence Microscopy Data. Front Microbiol 2021; 12:598739. [PMID: 34054742 PMCID: PMC8155719 DOI: 10.3389/fmicb.2021.598739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 04/12/2021] [Indexed: 11/25/2022] Open
Abstract
The effects of environmental stresses on microorganisms have been well-studied, and cellular responses to stresses such as heat, cold, acids, and salts have been extensively discussed. Although high pressure processing (HPP) is becoming more popular as a preservation method in the food industry, the characteristics of the cellular damage caused by high pressure are unclear, and the microbial response to this stress has not yet been well-explored. We exposed the pathogen Listeria monocytogenes to HPP (400 MPa, 8 min, 8°C) and found that the high pressure created plasma membrane pores. Using a common staining technique involving propidium iodide (PI) combined with high-frequency fluorescence microscopy, we monitored the rate of diffusion of PI molecules into hundreds of bacterial cells through these pores on days 0, 1, 2, 3, and 4 after pressurization. We also developed a mathematical dynamic model based on mass transfer and passive diffusion laws, calibrated using our microscopy experiments, to evaluate the response of bacteria to HPP. We found that the rate of diffusion of PI into the cells decreased over the 4 consecutive days after exposure to HPP, indicating repair of the pressure-created membrane pores. The model suggested a temporal change in the size of pores until closure. To the best of our knowledge, this is the first time that pressure-created membrane pores have been quantitatively described and shown to diminish with time. In addition, we found that the membrane repair rate in response to HPP was linear, and growth was temporarily arrested at the population level during the repair period. These results support the existence of a progressive repair process in some of the cells that take up PI, which can therefore be considered as being sub-lethally injured rather than dead. Hence, we showed that a subgroup of bacteria survived HPP and actively repaired their membrane pores.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | - Alicia Subires
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | - Marta Capellas
- Department of Animal and Food Science, Autonomous University of Barcelona, Barcelona, Spain
| | | | - Peter Crauwels
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Christian U Riedel
- Department of Biology, Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
19
|
Nikparvar B, Andreevskaya M, Duru IC, Bucur FI, Grigore-Gurgu L, Borda D, Nicolau AI, Riedel CU, Auvinen P, Bar N. Analysis of temporal gene regulation of Listeria monocytogenes revealed distinct regulatory response modes after exposure to high pressure processing. BMC Genomics 2021; 22:266. [PMID: 33853520 PMCID: PMC8045354 DOI: 10.1186/s12864-021-07461-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/10/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND The pathogen Listeria (L.) monocytogenes is known to survive heat, cold, high pressure, and other extreme conditions. Although the response of this pathogen to pH, osmotic, temperature, and oxidative stress has been studied extensively, its reaction to the stress produced by high pressure processing HPP (which is a preservation method in the food industry), and the activated gene regulatory network (GRN) in response to this stress is still largely unknown. RESULTS We used RNA sequencing transcriptome data of L. monocytogenes (ScottA) treated at 400 MPa and 8∘C, for 8 min and combined it with current information in the literature to create a transcriptional regulation database, depicting the relationship between transcription factors (TFs) and their target genes (TGs) in L. monocytogenes. We then applied network component analysis (NCA), a matrix decomposition method, to reconstruct the activities of the TFs over time. According to our findings, L. monocytogenes responded to the stress applied during HPP by three statistically different gene regulation modes: survival mode during the first 10 min post-treatment, repair mode during 1 h post-treatment, and re-growth mode beyond 6 h after HPP. We identified the TFs and their TGs that were responsible for each of the modes. We developed a plausible model that could explain the regulatory mechanism that L. monocytogenes activated through the well-studied CIRCE operon via the regulator HrcA during the survival mode. CONCLUSIONS Our findings suggest that the timely activation of TFs associated with an immediate stress response, followed by the expression of genes for repair purposes, and then re-growth and metabolism, could be a strategy of L. monocytogenes to survive and recover extreme HPP conditions. We believe that our results give a better understanding of L. monocytogenes behavior after exposure to high pressure that may lead to the design of a specific knock-out process to target the genes or mechanisms. The results can help the food industry select appropriate HPP conditions to prevent L. monocytogenes recovery during food storage.
Collapse
Affiliation(s)
- Bahareh Nikparvar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway
| | | | - Ilhan C Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Florentina I Bucur
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Leontina Grigore-Gurgu
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Daniela Borda
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Anca I Nicolau
- Faculty of Food Science and Engineering, Dunarea de Jos University of Galati, Galati, Romania
| | - Christian U Riedel
- Institute of Microbiology and Biotechnology, Ulm University, Ulm, Germany
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Nadav Bar
- Department of Chemical Engineering, Norwegian University of Science and Technology, Trondheim, Norway.
| |
Collapse
|
20
|
Combined high pressure and heat treatment effectively disintegrates spore membranes and inactivates Alicyclobacillus acidoterrestris spores in acidic fruit juice beverage. INNOV FOOD SCI EMERG 2020. [DOI: 10.1016/j.ifset.2020.102523] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
21
|
Kang JW, Lee HY, Kang DH. Synergistic bactericidal effect of hot water with citric acid against Escherichia coli O157:H7 biofilm formed on stainless steel. Food Microbiol 2020; 95:103676. [PMID: 33397610 DOI: 10.1016/j.fm.2020.103676] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
This study investigated the antimicrobial effect of hot water with citric acid against Escherichia coli O157:H7 biofilm on stainless steel (SS). Hot water (50, 60, or 70 °C) with 2% citric acid exhibited a synergistic bactericidal effect on the pathogen biofilm. It was revealed that hot water and citric acid combination induced sub-lethally injured cells. Additionally, mechanisms of the synergistic bactericidal effects of hot water with citric acid were identified through several approaches. In terms of biofilm matrix, hot water removes exopolysaccharides, a major component of extracellular polymeric substances (EPS), thereby increasing contact between surface cells and citric acid, resulting in a synergistic bactericidal effect. In terms of the cell itself, increased permeability of citric acid through cell membranes destructed by hot water promotes the inactivation of superoxide dismutase (SOD) in E. coli O157:H7, which induce synergistic generation of reactive oxygen species (ROS) which promote inactivation of cell by activating lipid peroxidation, resulting in destruction of the cell membrane. Therefore, it is interpreted that when hot water with citric acid is applied to E. coli O157:H7 biofilm, synergy effects on the biofilm matrix and cell itself have a complex interaction with each other, thus causing a dramatic synergistic bactericidal effect.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Hae-Yeon Lee
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, 25354, Republic of Korea.
| |
Collapse
|
22
|
Palika A, Rahimi A, Bolisetty S, Handschin S, Fischer P, Mezzenga R. Amyloid hybrid membranes for bacterial & genetic material removal from water and their anti-biofouling properties. NANOSCALE ADVANCES 2020; 2:4665-4670. [PMID: 36132927 PMCID: PMC9419293 DOI: 10.1039/d0na00189a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/03/2020] [Indexed: 05/09/2023]
Abstract
Water scarcity and contamination by biological pollutants are global challenges that significantly affect public health. Reverse osmosis, nanofiltration and ultrafiltration technologies are very effective for the elimination of pathogens and most contaminants but associated with considerable capital and operating costs, high energy consumption and the use of chlorinated chemicals to suppress membrane fouling. Additionally, the pressure needed by these techniques may disrupt the pathogenic microbial cell membranes, causing the release of genetic material (fragments of DNA, RNA and plasmids) into the water. Here, we introduce the simultaneous removal of both bacteria and associated genetic material using amyloid hybrid membranes, via a combined adsorption and size exclusion mechanism. Amyloid hybrid membranes can remove upto and beyond 99% of the genetic material by adsorption, where amyloid fibrils act as the primary adsorbing material. When the same membranes are surface-modified using chitosan, the anti-biofouling performance of the membranes improved significantly, with a bacterial removal efficiency exceeding 6 log.
Collapse
Affiliation(s)
- Archana Palika
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Akram Rahimi
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Sreenath Bolisetty
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
- BluAct Technologies GmbH Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Stephan Handschin
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Peter Fischer
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
| | - Raffaele Mezzenga
- ETH Zurich, Department of Health Sciences and Technology Schmelzbergstrasse 9 8092 Zurich Switzerland
- ETH Zurich Department of Materials Wolfgang-Pauli-Strasse 10 8093 Zurich Switzerland +41 44 632 9140 +41 44 632 1603
| |
Collapse
|
23
|
Xie Y, Qu X, Li J, Li D, Wei W, Hui D, Zhang Q, Meng F, Yin H, Xu X, Wang Y, Wang L, Zhou Z. Ultrafast physical bacterial inactivation and photocatalytic self-cleaning of ZnO nanoarrays for rapid and sustainable bactericidal applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:139714. [PMID: 32531587 PMCID: PMC7266591 DOI: 10.1016/j.scitotenv.2020.139714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/07/2020] [Accepted: 05/24/2020] [Indexed: 05/09/2023]
Abstract
Various nanostructured surfaces have been developed recently to physically inactivate bacteria, for reducing the rapidly spreading threat of pathogenic bacteria. However, it generally takes several hours for these surfaces to inactivate most of the bacteria, which greatly limits their application in the fields favoring rapid bactericidal performance. Besides, the accumulated bacteria debris left on these surfaces is rarely discussed in the previous reports. Herein we report the nanotip-engineered ZnO nanoarrays (NAs) with ultrafast physical bactericidal rate and the ability to photocatalytically remove the bacteria debris. Neither chemical (Zn2+ or reactive oxygen species) nor photocatalytic effect leads to the ultrafast bactericidal rate, where 97.5% of E. coli and 94.9% of S. aureus are inactivated within only 1 min. The simulation analysis further supported our proposed mechanism attributing the ultrafast bactericidal activity to the great stress enabled by the uneven topography. Moreover, the re-exposure of the ZnO NAs nanotips can be achieved in only 10 min under a mild UV light source. This study not only presents an ultrafast physical bactericidal activity, but also demonstrates the potential of the recyclable and photocatalytic self-cleaning functions of theses surfaces for applications that desire rapid and sustainable bactericidal performance.
Collapse
Affiliation(s)
- Yuan Xie
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Xi Qu
- Beijing Space Technology Research and Test Center, China Academy of Space Technology, Beijing 100094, China
| | - Jinyang Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| | - Da Li
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Wei Wei
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - David Hui
- Department of Mechanical Engineering, University of New Orleans, New Orleans, LA 70148, USA
| | - Qiao Zhang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Fanbin Meng
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Hong Yin
- Shenzhou Space Biology Science and Technology (Group) Co., Ltd., Beijing 100190, China
| | - Xiaoling Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Yong Wang
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China
| | - Li Wang
- Qian Xuesen Laboratory of Space Technology, Beijing 100094, China.
| | - Zuowan Zhou
- School of Materials Science and Engineering, Key Laboratory of Advanced Technologies of Materials (Ministry of Education), Southwest Jiaotong University, Chengdu 610031, China.
| |
Collapse
|
24
|
Kang JW, Kim WJ, Kang DH. Synergistic effect of 222-nm krypton-chlorine excilamp and mild heating combined treatment on inactivation of Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice. Int J Food Microbiol 2020; 329:108665. [PMID: 32497789 DOI: 10.1016/j.ijfoodmicro.2020.108665] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 03/20/2020] [Accepted: 05/16/2020] [Indexed: 10/24/2022]
Abstract
Simultaneous treatment with 222-nm KrCl excilamp and mild heating (EX-MH) at 45, 50 and 55 °C showed synergistic bactericidal effects on non-acid and acid adapted cells of Escherichia coli O157:H7 and Salmonella Typhimurium in apple juice. In particular, acid-adapted pathogens exhibited increased resistance to EX-MH compared to pathogenic bacteria that were not acid-adapted. Also, elucidation of the synergistic bactericidal mechanism of EX-MH was performed through several assays and this mechanism was described as follows: (i) when KrCl excilamp (EX) and mild heating (MH) are applied simultaneously, MH reversibly inactivates the antioxidant enzyme, superoxide dismutase (SOD), thereby increasing accumulation of reactive oxygen species (ROS) generated by EX and thus inducing synergistic ROS generation, (ii) ROS production induces lipid peroxidation occurrence in the cell membrane, (iii) this lipid peroxidation occurrence in the cell membrane induces synergistic destruction of cell membrane, resulting in synergistic cell death. While EX-MH of 45, 50, or 55 °C reduced E. coli O157:H7 (the pathogen most resistant to EX-MH) in apple juice by 5-log, the qualities such as color (L*, a*, and b*), total phenolic compounds (TPC), and DPPH free radical scavenging activity of apple juice did not change significantly (P > 0.05). This study not only suggests the applicability of EX-MH to the apple juice industry, but also can be used as baseline data for future relevant research.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Woo-Ju Kim
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe road, Columbus, OH 43210, USA
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
25
|
Podolak R, Whitman D, Black DG. Factors Affecting Microbial Inactivation during High Pressure Processing in Juices and Beverages: A Review. J Food Prot 2020; 83:1561-1575. [PMID: 32866244 DOI: 10.4315/jfp-20-096] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 04/30/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The purpose of this article is to review and discuss the factors affecting high pressure processing (HPP) in juices and beverages. The inactivation of microorganisms by HPP depends on numerous factors, including the magnitude of the pressure and the holding time, process temperature, compression and decompression rates, the microbiota, and the intrinsic properties of juices and beverages. Although extensive HPP research has been performed to characterize many of these factors, a number of issues, such as the rates of compression and decompression, still remain unresolved and need further investigation. In addition, some published results are conflicting and do not provide enough evidence to develop juice HPP "safe-harbor" parameters to achieve a minimum 5-log reduction of the pertinent microorganism and produce safe fruit juices and beverages. HIGHLIGHTS
Collapse
Affiliation(s)
- Richard Podolak
- U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740
| | - David Whitman
- U.S. Food and Drug Administration, 5001 Campus Drive, College Park, Maryland 20740
| | - Darryl Glenn Black
- U.S. Food and Drug Administration, 6502 South Archer Road, Bedford Park, Illinois 60501, USA
| |
Collapse
|
26
|
Zhang R, Ma Y, Wu DI, Fan L, Bai Y, Xiang Q. Synergistic Inactivation Mechanism of Combined Plasma-Activated Water and Mild Heat against Saccharomyces cerevisiae. J Food Prot 2020; 83:1307-1314. [PMID: 32294174 DOI: 10.4315/jfp-20-065] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 04/05/2020] [Indexed: 02/01/2023]
Abstract
ABSTRACT This study aimed to elucidate the mechanism of synergistic inactivation of Saccharomyces cerevisiae by the combined use of plasma-activated water (PAW) and mild heat (40 to 50°C). A reduction of 4.40 log CFU/mL in S. cerevisiae was observed after the synergistic combination of PAW and mild heat at 50°C for 6 min, whereas the individual treatments of PAW at 25°C and mild heat at 50°C for 6 min resulted in a reduction of 0.27 and 1.92 log CFU/mL, respectively. The simultaneous application of PAW and mild heat caused significant increases in membrane permeability, resulting in the leakage of intracellular components (such as nucleic acids and proteins) and increased uptake of propidium iodide. The combined treatment of PAW and mild heat also resulted in significant increases in the intracellular levels of reactive oxygen species and disruption of mitochondrial membrane potential in S. cerevisiae cells. In summary, this study illustrates the potential of PAW treatment combined with mild heat to rapidly inactivate microorganisms in food products. HIGHLIGHTS
Collapse
Affiliation(s)
- Rong Zhang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yunfang Ma
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - D I Wu
- College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Liumin Fan
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Yanhong Bai
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| | - Qisen Xiang
- College of Food and Biological Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, People's Republic of China.,(ORCID: https://orcid.org/0000-0002-3052-0969 [Q.X.]).,Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Zhengzhou 450001, People's Republic of China
| |
Collapse
|
27
|
Reitermayer D, Kafka TA, Lenz CA, Vogel RF. Interaction of fat and aqueous phase parameters during high-hydrostatic pressure inactivation of Lactobacillus plantarum in oil-in-water emulsions. Eur Food Res Technol 2020. [DOI: 10.1007/s00217-020-03487-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
28
|
Evaluation of Mycobacterium smegmatis as indicator of the efficacy of high hydrostatic pressure and ultra-high pressure homogenization treatments for pasteurization-like purposes in milk. J DAIRY RES 2020; 87:94-102. [PMID: 32019613 DOI: 10.1017/s0022029919001043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The objectives of this study were: to assess the efficiency of high hydrostatic pressure or ultra-high pressure homogenization against Mycobacterium smegmatis in milk and to discuss whether M. smegmatis can be considered a suitable surrogate for other Mycobacterium spp. in high pressure inactivation trials using milk. Three strains of this specie (CECT 3017, 3020 and 3032) were independently inoculated into both skimmed (0.2% fat) and whole milk (3.4% fat) at an approximate load of 6.5 Log CFU/ml and submitted to HHP treatments at 300, 400 or 500 MPa for 10 m at 6°C and 20°C. Evolution of the surviving cells of the inoculated strains was evaluated analysing milk immediately after the treatments and after 5 and 8 d of storage at 6°C. HHP treatments at 300 MPa were seldom efficient at inactivating M. smegmatis strains, but lethality increased with pressure applied in all cases. Generation of sub-lethal injured cells was observed only after 400 MPa treatments since inactivation at 500 MPa was shown to be complete. Significant differences were not observed due to either temperature of treatment or fat content of milk, except for strain CECT3032, which was shown to be the most sensitive to HHP treatments. Milk inoculated with strain CECT3017 was submitted to ultra-high pressure homogenization (UHPH) treatments at 200, 300 and 400 MPa. Maximum reductions were obtained after 300 and 400 MPa treatments, although less than 3.50 Log CFU/ml were inactivated. UHPH did not cause significant number of injured cells. The usefulness of this species as a marker for pressure-based processing seems limited since it showed greater sensitivity than some pathogenic species including other Mycobacteria reported in previous studies.
Collapse
|
29
|
Neha N, Anand S. Short communication: Entrapment of Listeria cells within air pockets of ice cream mix matrix may lead to potentially heat-injured cells. J Dairy Sci 2019; 102:9721-9726. [DOI: 10.3168/jds.2018-15575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 07/02/2019] [Indexed: 11/19/2022]
|
30
|
Fedotova MV. Compatible osmolytes - bioprotectants: Is there a common link between their hydration and their protective action under abiotic stresses? J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111339] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
31
|
Zhang H, Dolan HL, Ding Q, Wang S, Tikekar RV. Antimicrobial action of octanoic acid against Escherichia coli O157:H7 during washing of baby spinach and grape tomatoes. Food Res Int 2019; 125:108523. [PMID: 31554067 DOI: 10.1016/j.foodres.2019.108523] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/14/2019] [Accepted: 06/21/2019] [Indexed: 01/04/2023]
Abstract
We investigated the antimicrobial efficacy of octanoic acid (OA) against Escherichia coli O157:H7 inoculated on the surface of baby spinach and grape tomatoes during simulated washing processes. 3 mM OA at 45 °C achieved >6 log CFU/g reduction from the surface of tomatoes within 2 min. However, washing baby spinach with 6 mM OA at 5 °C resulted in <1 log CFU/g reduction, highlighting the role of surface properties in inactivation efficacy. OA significantly (p < 0.05) reduced the risk of cross-contamination during washing of spinach as well as tomatoes. Also, total mold and yeast population on surface of spinach was significantly reduced immediately after OA wash and inhibited during following 14 days. Baby spinach and grape tomatoes washed with OA did not cause significant (p > 0.05) difference in color compared to the control and no residual OA was detected in most cases following rinsing of produce in water. OA at the concentrations above 2 mM and temperature higher than 25 °C induced severe membrane damage along with release of ATP and other intracellular constituents resulting in bacterial death. OA can be an attractive natural decontamination agent for washing fresh produce.
Collapse
Affiliation(s)
- Hongchao Zhang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Heather Leigh Dolan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Qiao Ding
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Siyuan Wang
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States
| | - Rohan V Tikekar
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20770, United States.
| |
Collapse
|
32
|
The Copy Number of the spoVA 2mob Operon Determines Pressure Resistance of Bacillus Endospores. Appl Environ Microbiol 2019; 85:AEM.01596-19. [PMID: 31375487 DOI: 10.1128/aem.01596-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 07/27/2019] [Indexed: 12/27/2022] Open
Abstract
The spoVA 2mob operon confers heat resistance to Bacillus spp., and the resistance correlates to the copy number of the operon. Bacillus endospores also exhibit a strong variation in resistance to pressure, but the underlying mechanisms of endospore resistance to pressure are not fully understood. We determined the effects of multiple spoVA 2mob operons on high-pressure resistance in Bacillus endospores. The copy numbers of the spoVA 2mob operon in 17 strains of Bacillus subtilis, Bacillus amyloliquefaciens, Bacillus cereus, Bacillus velezensis, and Bacillus pumilus were determined via droplet digital PCR (ddPCR) and genome sequencing. These strains contained between 0 and 3 copies of the spoVA 2mob operon; the quantification of the gene copy number by ddPCR was as accurate as whole-genome sequencing. We further tested the pressure resistance of 17 Bacillus endospores at 600 MPa and 80°C. Strains with one or no spoVA 2mob operon had significantly lower pressure resistance than strains with two or three copies of the operons (P < 0.001), indicating that redundant spoVA 2mob operons in Bacillus contributed to higher pressure resistance of endospores. The copy number of the spoVA 2mob operon was not related to the dipicolinic acid (DPA) content of endospores. Overall, the copy number of the spoVA 2mob operon contributes to pressure resistance of Bacillus endospores. This improves our understanding of the pressure resistance mechanisms in Bacillus spp. and may inform the development of high-pressure sterilization in food processing.IMPORTANCE Bacillus spp. are considered pressure-resistant microorganisms, but the resistance mechanisms remain unknown. The spoVA 2mob operon is a mobile genetic element, and it can transfer to pathogenic or spoilage organisms by horizontal gene transfer. Results in this study indicate that multiple copies of the spoVA 2mob operon mediate high-pressure resistance of Bacillus endospores, and it might contribute to the identification of the source of pressure-resistant pathogens and spoilage organisms that may contaminate the food supply. The droplet digital PCR (ddPCR) system is well suited for analysis in some human diseases due to its high efficiency and capability to provide high precision; however, no relevant studies in food microbiology have been reported so far. This study demonstrates a novel application of ddPCR in food microbiology.
Collapse
|
33
|
BONFIM RC, OLIVEIRA FAD, GODOY RLDO, ROSENTHAL A. A review on high hydrostatic pressure for bivalve mollusk processing: relevant aspects concerning safety and quality. FOOD SCIENCE AND TECHNOLOGY 2019. [DOI: 10.1590/fst.26918] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
34
|
Pokhrel PR, Toniazzo T, Boulet C, Oner ME, Sablani SS, Tang J, Barbosa-Cánovas GV. Inactivation of Listeria innocua and Escherichia coli in carrot juice by combining high pressure processing, nisin, and mild thermal treatments. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2019.03.007] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Kang JW, Kang DH. Increased Resistance of Salmonella enterica Serovar Typhimurium and Escherichia coli O157:H7 to 222-Nanometer Krypton-Chlorine Excilamp Treatment by Acid Adaptation. Appl Environ Microbiol 2019; 85:e02221-18. [PMID: 30610077 PMCID: PMC6414383 DOI: 10.1128/aem.02221-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 12/24/2018] [Indexed: 11/20/2022] Open
Abstract
In this study, we examined the change in resistance of Salmonella enterica serovar Typhimurium and Escherichia coli O157:H7 to 222-nm krypton-chlorine (KrCl) excilamp treatment as influenced by acid adaptation and identified a mechanism of resistance change. In addition, we measured changes in apple juice quality indicators, such as color, total phenols, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity, during treatment. Non-acid-adapted and acid-adapted pathogens were induced by growing the cells in tryptic soy broth without dextrose (TSB w/o D) at pH 7.3 and in TSB w/o D at pH 5.0 (adjusted with HCl), respectively. For the KrCl excilamp treatment, acid-adapted pathogens exhibited significantly (P < 0.05) higher D5d values, which indicate dosages required to achieve a 5-log reduction, than those for non-acid-adapted pathogens in both commercially clarified apple juice and phosphate-buffered saline (PBS), and the pathogens in the juice showed significantly (P < 0.05) higher D5d values than those for pathogens in PBS because of the UV-absorbing characteristics of apple juice. Through mechanism identification, it was found that the generation of lipid peroxidation in the cell membrane, inducing cell membrane destruction, was significantly (P < 0.05) lower in acid-adapted cells than in non-acid-adapted cells for the same amount of reactive oxygen species (ROS) generated at the same dose because the ratio of unsaturated to saturated fatty acids (USFA/SFA) in the cell membrane was significantly (P < 0.05) decreased as a result of acid adaptation. Treated apple juice showed no significant (P > 0.05) difference in quality indicators compared to those of untreated controls during treatment at 1,773 mJ/cm2IMPORTANCE There is a need for novel, mercury-free UV lamp technology to replace germicidal lamps containing harmful mercury, which are routinely utilized for UV pasteurization of apple juice. In addition, consideration of the changes in response to antimicrobial treatments that may occur when pathogens are adapted to the acid in an apple juice matrix is critical to the practical application of this technology. Based on this, an investigation using 222-nm KrCl excilamp technology, an attractive alternative to mercury lamps, was conducted. Our study demonstrated increased resistance to 222-nm KrCl excilamp treatment as pathogens adapted to acids, and this was due to changes in reactivity to ROS with changes in the fatty acid composition of the cell membrane. Despite increased resistance, the 222-nm KrCl excilamp achieved pathogen reductions of 5 log or more at laboratory scale without affecting apple juice quality. These results provide valuable baseline data for application of 222-nm KrCl excilamps in the apple juice industry.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Dong-Hyun Kang
- Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green-bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
36
|
Morimatsu K, Inaoka T, Nakaura Y, Yamamoto K. Injury and Recovery of Escherichia coli Cells in Phosphate-buffered Saline after High Hydrostatic Pressure Treatment. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2019. [DOI: 10.3136/fstr.25.479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Kazuya Morimatsu
- Department of Food Production Science, Graduate School of Agriculture, Ehime University
| | - Takashi Inaoka
- Food Research Institute, National Agriculture and Food Research Organization
| | - Yoshiko Nakaura
- Food Research Institute, National Agriculture and Food Research Organization
| | - Kazutaka Yamamoto
- Food Research Institute, National Agriculture and Food Research Organization
| |
Collapse
|
37
|
Nikparvar B, Subires A, Capellas M, Hernandez M, Bar N. A Dynamic Model of Membrane Recovery Mechanisms in Bacteria following High Pressure Processing. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.ifacol.2019.06.069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
38
|
Kang JW, Kang DH. The Synergistic Bactericidal Mechanism of Simultaneous Treatment with a 222-Nanometer Krypton-Chlorine Excilamp and a 254-Nanometer Low-Pressure Mercury Lamp. Appl Environ Microbiol 2019; 85:e01952-18. [PMID: 30315076 PMCID: PMC6293110 DOI: 10.1128/aem.01952-18] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/01/2018] [Indexed: 11/20/2022] Open
Abstract
The purpose of this study was to investigate the synergistic bactericidal effect of 222-nm KrCl excilamp and 254-nm low-pressure (LP) Hg lamp simultaneous treatment against Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Typhimurium, and Listeria monocytogenes in tap water and to identify the synergistic bactericidal mechanism. Sterilized tap water inoculated with pathogens was treated individually or simultaneously with a 254-nm LP Hg lamp or 222-nm KrCl excilamp. Overall, for all pathogens, an additional reduction was found compared to the sum of the log unit reductions of the individual treatments resulting from synergy in the simultaneous treatment with both kinds of lamps. In order to identify the mechanism of this synergistic bactericidal action, the form and cause of membrane damage were analyzed. Total reactive oxygen species (ROS) and superoxide generation as well as the activity of ROS defense enzymes then were measured, and the overall mechanism was described as follows. When the 222-nm KrCl excilamp and the 254-nm LP Hg lamp were treated simultaneously, inactivation of ROS defense enzymes by the 222-nm KrCl excilamp induced additional ROS generation following exposure to 254-nm LP Hg lamp (synergistic) generation, resulting in synergistic lipid peroxidation in the cell membrane. As a result, there was a synergistic increase in cell membrane permeability leading to a synergistic bactericidal effect. This identification of the fundamental mechanism of the combined disinfection system of the 222-nm KrCl excilamp and 254-nm LP Hg lamp, which exhibited a synergistic bactericidal effect, can provide important baseline data for further related studies or industrial applications in the future.IMPORTANCE Contamination of pathogenic microorganisms in water plays an important role in inducing outbreaks of food-borne illness by causing cross-contamination in foods. Thus, proper disinfection of water before use in food production is essential to prevent outbreaks of food-borne illness. As technologies capable of selecting UV radiation wavelengths (such as UV-LEDs and excilamps) have been developed, wavelength combination treatment with UV radiation, which is widely used in water disinfection systems, is actively being studied. In this regard, we have confirmed synergistic bactericidal effects in combination with 222-nm and 254-nm wavelengths and have identified mechanisms for this. This study clearly analyzed the mechanism of synergistic bactericidal effect by wavelength combination treatment, which has not been attempted in other studies. Therefore, it is also expected that these results will play an important role as baseline data for future research on, as well as industrial applications for, the disinfection strategy of effective wavelength combinations.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence and Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul, Republic of Korea
- Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do, Republic of Korea
| |
Collapse
|
39
|
Howlader MS, Rai N, Todd French W. Improving the lipid recovery from wet oleaginous microorganisms using different pretreatment techniques. BIORESOURCE TECHNOLOGY 2018; 267:743-755. [PMID: 30064900 DOI: 10.1016/j.biortech.2018.07.092] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
Lipid extraction directly from the wet oleaginous microorganisms for biodiesel production is preferred as it reduces the energy input for traditional processes which require extensive drying of the biomass prior to the extraction. The high water content (≥80% on cell dry weight) in the wet biomass hinders the extraction efficiency due to the mass transfer limitation. This limitation can be overcome by pretreating wet biomass prior to the lipid extraction using pressurized gas that can be used alone or combined with other pretreatments to disrupt the cell wall. In this review, an extensive discussion on different pretreatments and the subsequent lipid extraction using these pretreatments is presented. Furthermore, a detailed account of the cell disruption using pressurized gas (e.g., CO2) treatment for microbial cell lysing is also presented. Finally, a new technique on lipid extraction directly from wet biomass using the combination of pressurized CO2 and microwave pretreatment is proposed.
Collapse
Affiliation(s)
- Md Shamim Howlader
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States
| | - Neeraj Rai
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States; Center for Advanced Vehicular Systems, Mississippi State University, Mississippi State, MS 39762, United States
| | - William Todd French
- Dave C. Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762, United States.
| |
Collapse
|
40
|
Neha N, Anand S, Djira G, Kraus B, Sutariya S. Listeria cross contamination levels in raw ice cream mix can serve as a predictor of their potential presence as heat-injured cells. J Dairy Sci 2018; 101:9659-9669. [DOI: 10.3168/jds.2018-14486] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 07/10/2018] [Indexed: 11/19/2022]
|
41
|
de Almeida FA, Carneiro DG, de Oliveira Mendes TA, Barros E, Pinto UM, de Oliveira LL, Vanetti MCD. N-dodecanoyl-homoserine lactone influences the levels of thiol and proteins related to oxidation-reduction process in Salmonella. PLoS One 2018; 13:e0204673. [PMID: 30304064 PMCID: PMC6179229 DOI: 10.1371/journal.pone.0204673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 09/12/2018] [Indexed: 01/09/2023] Open
Abstract
Quorum sensing is a cell-cell communication mechanism mediated by chemical signals that leads to differential gene expression in response to high population density. Salmonella is unable to synthesize the autoinducer-1 (AI-1), N-acyl homoserine lactone (AHL), but is able to recognize AHLs produced by other microorganisms through SdiA protein. This study aimed to evaluate the fatty acid and protein profiles of Salmonella enterica serovar Enteritidis PT4 578 throughout time of cultivation in the presence of AHL. The presence of N-dodecanoyl-homoserine lactone (C12-HSL) altered the fatty acid and protein profiles of Salmonella cultivated during 4, 6, 7, 12 and 36 h in anaerobic condition. The profiles of Salmonella Enteritidis at logarithmic phase of growth (4 h of cultivation), in the presence of C12-HSL, were similar to those of cells at late stationary phase (36 h). In addition, there was less variation in both protein and fatty acid profiles along growth, suggesting that this quorum sensing signal anticipated a stationary phase response. The presence of C12-HSL increased the abundance of thiol related proteins such as Tpx, Q7CR42, Q8ZP25, YfgD, AhpC, NfsB, YdhD and TrxA, as well as the levels of free cellular thiol after 6 h of cultivation, suggesting that these cells have greater potential to resist oxidative stress. Additionally, the LuxS protein which synthesizes the AI-2 signaling molecule was differentially abundant in the presence of C12-HSL. The NfsB protein had its abundance increased in the presence of C12-HSL at all evaluated times, which is a suggestion that the cells may be susceptible to the action of nitrofurans or that AHLs present some toxicity. Overall, the presence of C12-HSL altered important pathways related to oxidative stress and stationary phase response in Salmonella.
Collapse
Affiliation(s)
| | | | | | - Edvaldo Barros
- Núcleo de Análise de Biomoléculas, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Uelinton Manoel Pinto
- Food Research Center, Department of Food and Experimental Nutrition, Faculty of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | | | | |
Collapse
|
42
|
Cao JX, Wang F, Li X, Sun YY, Wang Y, Ou CR, Shao XF, Pan DD, Wang DY. The Influence of Microwave Sterilization on the Ultrastructure, Permeability of Cell Membrane and Expression of Proteins of Bacillus Cereus. Front Microbiol 2018; 9:1870. [PMID: 30233502 PMCID: PMC6131623 DOI: 10.3389/fmicb.2018.01870] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/25/2018] [Indexed: 12/02/2022] Open
Abstract
Bacillus cereus was isolated from ready-to-serve brine goose, identified by 16S rRNA gene sequencing analysis and treated with a commercial microwave sterilization condition (a power of 1,800 W at 85°C for 5 min). The influence of microwaves on the morphology, the permeability of membrane and the expression of total bacterial proteins was observed. Microwave induced the clean of bacterial nuclear chromatin, increased the permeability and disrupted the integrity of membrane. Twenty-three proteins including 18 expressed down-regulated proteins and 5 expressed up-regulated proteins were identified by HPLC-MS/MS in the samples treated with microwave. The frequencies of proteins changed after microwaves treatment were labeled as 39.13% (synthesis and metabolism of amino acid or proteins), 21.74% (carbohydrate metabolism), 8.70% (anti-oxidant and acetyl Co-A synthesis), and 4.35% (the catalyst of catabolism of bacterial acetoin, ethanol metabolism, glyoxylate pathway, butyrate synthesis and detoxification activity), respectively. This study indicates that microwaves result in the inactivation of Bacillus cereus by cleaning nuclear chromatin, disrupting cell membrane and disordering the expression of proteins.
Collapse
Affiliation(s)
- Jin-Xuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Fang Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xuan Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yang-Ying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chang-Rong Ou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xing-Feng Shao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Dong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Ying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
43
|
Xu XH, Jiang ZL, Feng FQ, Lu RR. Mechanisms of N α-lauroyl arginate ethyl ester against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2018; 55:3675-3682. [PMID: 30150827 PMCID: PMC6098789 DOI: 10.1007/s13197-018-3296-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/01/2018] [Accepted: 06/17/2018] [Indexed: 12/14/2022]
Abstract
The purpose of this study was to investigate the antimicrobial activity and mechanisms of Nα-lauroyl arginate ethyl ester (LAE) against Penicillium digitatum and Pectobacterium carotovorum subsp. carotovorum. The minim inhibitory concentrations of LAE against P. digitatum and P. carotovorum were found to be 400 and 25 μg/ml, respectively. Loss of intracellular protein and nucleic acid increased significantly, and membrane permeability reached 76.28, 54.29 and 85.20%, respectively, when 400 μg/ml of LAE was applied to the hyphae and spores of P. digitatum and to P. carotovorum. Flow cytometry showed that LAE reduced the membrane potential, and the depolarization ratios of P. digitatum and P. carotovorum were 98.19 and 97.25% (P < 0.05), respectively. Transmission electron microscopy photos revealed that LAE caused a rough surface, irregular cellular organelles, protoplast shrinkage, intracytoplasmic coagulation and empty cavities in all three cell types. These results showed that LAE had notable ability to damage the structure of fungal and bacterial cells, making it a possible alternative chemical for use in the preservation of fruits and vegetables.
Collapse
Affiliation(s)
- Xiao-Hui Xu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu People’s Republic of China
| | - Zeng-Liang Jiang
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Feng-Qin Feng
- Zhejiang Key Laboratory for Agro-Food Processing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058 People’s Republic of China
| | - Rong-Rong Lu
- School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122 Jiangsu People’s Republic of China
| |
Collapse
|
44
|
Ragazzo-Sánchez JA, Gutiérrez-Sánchez Q, Ramírez-de-León JA, Ortiz-Basurto RI, Calderón-Santoyo M. Application of high hydrostatic pressure on Pacific white shrimp (Litopenaeus vannamei) pâté: Microbiological, physicochemical and consumer acceptance. FOOD SCI TECHNOL INT 2018; 24:713-723. [DOI: 10.1177/1082013218792955] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The locally elaborated shrimp pâté is highly susceptible to microbial spoilage and deterioration during storage due to its content in nutrients. These conditions limit its commercialization in a larger scale. High hydrostatic pressure is an alternative to heat treatments technology used to inactivate microorganisms. The aim of this project was to evaluate the effect of high hydrostatic pressure on quality parameters and microbiological stability of Pacific white shrimp ( Litopenaeus vannamei) pâté during storage. Shrimp pâté was pressurized to 400, 500 and 600 MPa for 90 and 180 s. Samples were analysed for physicochemical, microbiological and flavour profile up to 21 days of storage at 4 ℃. A hedonic test was made to evaluate the acceptance of pâté. No microorganisms were detected at 600 MPa for 180 s and a shelf life of 14 days was reached. No relevant changes in pH or colour of pressurized samples were detected; flavour profile did not show any changes after being pressurized or during storage. Shrimp pâté treated with 600 MPa for 180 s presented good sensory acceptance. High hydrostatic pressure treatments could improve microbiological quality of shrimp pâté without a sensible modification of the physicochemical and sensorial qualities of this product.
Collapse
Affiliation(s)
- JA Ragazzo-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| | - Q Gutiérrez-Sánchez
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| | - JA Ramírez-de-León
- Departamento de Ciencia y Tecnología de Alimentos, UAM Reynosa Aztlán, Universidad Autónoma de Tamaulipas, Reynosa, México
| | - RI Ortiz-Basurto
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| | - M Calderón-Santoyo
- Laboratorio Integral de Investigación en Alimentos, Instituto Tecnológico de Tepic, Tepic, México
| |
Collapse
|
45
|
Reitermayer D, Kafka TA, Lenz CA, Vogel RF. Interrelation between Tween and the membrane properties and high pressure tolerance of Lactobacillus plantarum. BMC Microbiol 2018; 18:72. [PMID: 30001697 PMCID: PMC6044075 DOI: 10.1186/s12866-018-1203-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 06/14/2018] [Indexed: 11/16/2022] Open
Abstract
Tween® 80 is a frequently used supplement of media for the cultivation of lactic acid bacteria. We investigated its effect on the cell physiology and stress tolerance of Lactobacillus (L.) plantarum. Data on the transcriptomic response to Tween 80 supplementation and its effects on cellular fatty acid profiles and growth characteristics are compared with data characterizing the effect of Tween 80, other Tween types and free fatty acids on the high hydrostatic pressure (HHP) tolerance of L. plantarum strain TMW 1.708. These include effects on cell viability, sub-lethal injury, metabolic activity, protein release and propidium iodide uptake. Tween 80 caused the downregulation of fatty acid biosynthesis and an increase in oleic acid and cyclopropane fatty acid levels in the cell membrane. Tween 20, Tween 80 and free oleic acid, but not Tween 40, Tween 60 and other free fatty acids, conferred resistance against HHP. Tween 80 diminished pressure-induced loss of metabolic activity, protein release and uptake of propidium iodide. However, loss of cell viability exceeded by far membrane permeabilization, suggesting that membrane permeabilization, which has frequently been postulated as a major factor in HHP inactivation of microbes, is not necessarily required for HHP-induced cell death of Lactobacillus plantarum.
Collapse
Affiliation(s)
| | | | | | - Rudi F Vogel
- Technische Universität München, Freising, Germany.
| |
Collapse
|
46
|
Metabolome analysis of Escherichia coli ATCC25922 cells treated with high hydrostatic pressure at 400 and 600 MPa. J Biosci Bioeng 2018; 126:611-616. [PMID: 29853298 DOI: 10.1016/j.jbiosc.2018.05.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 04/24/2018] [Accepted: 05/08/2018] [Indexed: 11/21/2022]
Abstract
Escherichia coli cells were treated with high hydrostatic pressure (HHP) at 400 and 600 MPa. Metabolites (70-1027 m/z) extracted from HHP-treated cells were analyzed using capillary electrophoresis-time-of-flight mass spectrometry and were compared with those extracted from control cells (not treated with HHP). A total of 133 metabolites were identified and mapped to metabolic pathways, and many of these (42.1%) decreased due to the HHP treatment, including NAD+, NADP+, ATP, and substrates for DNA synthesis. Principal component analysis suggested that the central sugar and nucleic acid metabolic pathways were strongly influenced by HHP. A bottleneck in the central sugar metabolic pathway was observed in HHP-treated cells, which created a metabolic imbalance; metabolites mapped upstream (glucose 6-phosphate, fructose 6-phosphate, and fructose 1,6-diphosphate) were accumulated and those downstream (3-phosphoglycerate, 2-phosphoglycerate, and phosphoenolpyruvate) were depleted. Ribonucleotides were decreased, but the reduction was moderate compared with that of substrates for DNA synthesis; the exception was ATP, which also substantially decreased. The bottleneck in the glycolytic pathway partly explained the exhaustion of ATP. NAD+/NADH ratio of HHP treated cells was comparable with that of untreated control cells.
Collapse
|
47
|
Kang JW, Kim SS, Kang DH. Inactivation dynamics of 222 nm krypton-chlorine excilamp irradiation on Gram-positive and Gram-negative foodborne pathogenic bacteria. Food Res Int 2018; 109:325-333. [PMID: 29803456 DOI: 10.1016/j.foodres.2018.04.018] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/02/2018] [Accepted: 04/12/2018] [Indexed: 11/29/2022]
Abstract
The object of this study was to elucidate the bactericidal mechanism of a 222 nm Krypton Chlorine (KrCl) excilamp compared with that of a 254 nm Low Pressure mercury (LP Hg) lamp. The KrCl excilamp had higher bactericidal capacity against Gram-positive pathogenic bacteria (Staphylococcus aureus and L. monocytogenes) and Gram-negative pathogenic bacteria (S. Typhimurium and E. coli O157:H7) than did the LP Hg lamp when cell suspensions in PBS were irradiated with each type of UV lamp. It was found out that the KrCl excilamp induced cell membrane damage as a form of depolarization. From the study of respiratory chain dehydrogenase activity and the lipid peroxidation assay, it was revealed that cell membrane damage was attributed to inactivation of enzymes related to generation of membrane potential and occurrence of lipid peroxidation. Direct absorption of UV radiation which led to photoreaction through formation of an excited state was one of the causes inducing cell damage. Additionally, generation of ROS and thus occurrence of secondary damage can be another cause. The LP Hg lamp only induced damage to DNA but not to other components such as lipids or proteins. This difference was derived from differences of UV radiation absorption by cellular materials.
Collapse
Affiliation(s)
- Jun-Won Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| | - Sang-Soon Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 25354, Republic of Korea.
| |
Collapse
|
48
|
Cao JX, Wang F, Li X, Sun YY, Wang Y, Ou CR, Shao XF, Pan DD, Wang DY. The Influence of Microwave Sterilization on the Ultrastructure, Permeability of Cell Membrane and Expression of Proteins of Bacillus Cereus. Front Microbiol 2018; 9:1870. [PMID: 30233502 DOI: 10.3389/fmicb.2018.0187010.3389/fmicb.2018.01870.s001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 07/25/2018] [Indexed: 05/20/2023] Open
Abstract
Bacillus cereus was isolated from ready-to-serve brine goose, identified by 16S rRNA gene sequencing analysis and treated with a commercial microwave sterilization condition (a power of 1,800 W at 85°C for 5 min). The influence of microwaves on the morphology, the permeability of membrane and the expression of total bacterial proteins was observed. Microwave induced the clean of bacterial nuclear chromatin, increased the permeability and disrupted the integrity of membrane. Twenty-three proteins including 18 expressed down-regulated proteins and 5 expressed up-regulated proteins were identified by HPLC-MS/MS in the samples treated with microwave. The frequencies of proteins changed after microwaves treatment were labeled as 39.13% (synthesis and metabolism of amino acid or proteins), 21.74% (carbohydrate metabolism), 8.70% (anti-oxidant and acetyl Co-A synthesis), and 4.35% (the catalyst of catabolism of bacterial acetoin, ethanol metabolism, glyoxylate pathway, butyrate synthesis and detoxification activity), respectively. This study indicates that microwaves result in the inactivation of Bacillus cereus by cleaning nuclear chromatin, disrupting cell membrane and disordering the expression of proteins.
Collapse
Affiliation(s)
- Jin-Xuan Cao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Fang Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xuan Li
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Yang-Ying Sun
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Ying Wang
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Chang-Rong Ou
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Xing-Feng Shao
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Dong Pan
- Key Laboratory of Animal Protein Food Processing Technology of Zhejiang Province, Ningbo University, Ningbo, China
| | - Dao-Ying Wang
- Institute of Agricultural Products Processing, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| |
Collapse
|
49
|
Zhao L, Qin X, Wang Y, Ling J, Shi W, Pang S, Liao X. CO 2 -assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus. J CO2 UTIL 2017. [DOI: 10.1016/j.jcou.2017.09.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
50
|
Liu P, Huang D, Hu X, Tang Y, Ma X, Yan R, Han Q, Guo J, Zhang Y, Sun Q, Liu Z. Targeting Inhibition of SmpB by Peptide Aptamer Attenuates the Virulence to Protect Zebrafish against Aeromonas veronii Infection. Front Microbiol 2017; 8:1766. [PMID: 28955325 PMCID: PMC5601406 DOI: 10.3389/fmicb.2017.01766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/31/2017] [Indexed: 11/21/2022] Open
Abstract
Aeromonas veronii is an important pathogen of aquatic animals, wherein Small protein B (SmpB) is required for pathogenesis by functioning as both a component in stalled-ribosome rescue and a transcription factor in upregulation of virulence gene bvgS expression. Here a specific peptide aptamer PA-1 was selected from peptide aptamer library by bacterial two-hybrid system employing pBT-SmpB as bait. The binding affinity between SmpB and PA-1 was evaluated using enzyme-linked immunosorbent assay. The key amino acids of SmpB that interact with PA-1 were identified. After PA-1 was introduced into A. veronii, the engineered strain designated as A. veronii (pN-PA-1) was more sensitive and grew slower under salt stress in comparison with wild type, as the disruption of SmpB by PA-1 resulted in significant transcription reductions of virulence-related genes. Consistent with these observations, A. veronii (pN-PA-1) was severely attenuated in model organism zebrafish, and vaccination of zebrafish with A. veronii (pN-PA-1) induced a strong antibody response. The vaccinated zebrafish were well protected against subsequent lethal challenges with virulent parental strain. Collectively, we propose that targeting inhibition of SmpB by peptide aptamer PA-1 possesses the desired qualities for a live attenuated vaccine against pathogenic A. veronii.
Collapse
Affiliation(s)
- Peng Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Dongyi Huang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Xinwen Hu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Yanqiong Tang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Xiang Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Rihui Yan
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Qian Han
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| | - Jianchun Guo
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural SciencesHaikou, China
| | - Yueling Zhang
- Department of Biology, College of Science, Shantou UniversityShantou, China
| | - Qun Sun
- Department of Biotechnology, College of Life Sciences, Sichuan UniversityChengdu, China
| | - Zhu Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresources, College of Biological Sciences, Hainan UniversityHaikou, China
| |
Collapse
|