1
|
Liu X, Zhang Y, Du X, Luo X, Tan W, Guan X, Zhang L. Effect of yhfS gene on Bt LLP29 antioxidant and UV ray resistance. PEST MANAGEMENT SCIENCE 2023; 79:2087-2097. [PMID: 36715224 DOI: 10.1002/ps.7385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/18/2023] [Accepted: 01/30/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacillus thuringiensis (Bt) is a widely used microbial insecticide. However, its persistence is limited because of ultraviolet (UV) rays or other environmental factors. The yhfS gene, which encodes acetyl-CoA acyltransferase, plays an important role in lipid transport and metabolism in many organisms. To explore whether it is related to the stress resistance of Bt LLP29, the yhfS gene knockout strain LLP29 Δ-yhfS and the complementary strain LLP29 R-yhfS were generated successfully by homologous recombination technology, and the related phenotypic changes were compared in this study. RESULTS Gene yhfS was found to be functional in response to UV radiation in Bt by comparing the survival rates of Bt LLP29 harboring yhfS or not under UV light. Enzyme activity assays of key enzymes showed the the Embden-Meyerhof-Parnas pathway was enhanced yet the tricarboxylic acid cycle as well as butanoate synthesis were repressed when the gene was deleted. At the same time, the amino acid content was decreased, but reduced nicotinamide adenine dinucleotide (NADH) and reactive oxygen species (ROS) content were increased. Most noteworthy, antioxidase (such as superoxide dismutase and peroxidase) activities and contents of some potent antioxidants (such as pyruvate, carotenoids and NADPH) were lower in LLP29 Δ-yhfS than in LLP29. CONCLUSION These tests revealed that the loss of the yhfS gene led to metabolic disorders and reduction of the antioxidant ability of Bt. Higher ROS level and lower anti-oxidative capacity might be responsible for the reduced UV resistance when the gene was deleted. These results not only greatly enrich understanding of the mechanism of Bt UV resistance, but also provide an important theoretical basis for Bt application. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xihua Liu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, China
| | - Yile Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xi Du
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xingyu Luo
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weilong Tan
- Center for Disease Control and Prevention of Eastern Command, Nanjing, Jiangsu, China
| | - Xiong Guan
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lingling Zhang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops & Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education & Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, College of Plant Protection and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
2
|
Gutierrez-Villagomez JM, Patey G, To TA, Lefebvre-Raine M, Lara-Jacobo LR, Comte J, Klein B, Langlois VS. Frogs Respond to Commercial Formulations of the Biopesticide Bacillus thuringiensis var . israelensis, Especially Their Intestine Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:12504-12516. [PMID: 34460233 DOI: 10.1021/acs.est.1c02322] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
It is generally believed that Bacillus thuringiensis var. israelensis (Bti) biopesticides are harmless to non-target organisms; however, new research shows controversial results. We exposed acutely and chronicallyLithobates sylvaticusandAnaxyrus americanus tadpoles until metamorphic climax to VectoBac 200G (granules) and VectoBac 1200L (aqueous suspension) at 300-20,000 ITU/L covering field-relevant concentrations and higher. The data show that the exposure parameters tested did not affect significantly the survival, total length, total weight, hepatosomatic index, gonadosomatic index, the expression of genes of interest (i.e., related to xenobiotic exposure, oxidative stress, and metamorphosis), and the intestine tissue layer detachment ofL. sylvaticusandA. americanus in a concentration-response pattern. In contrast, VectoBac 200G significantly increased the median time to metamorphosis ofL. sylvaticus tadpoles by up to 3.5 days and decreased the median by up to 1 day inA. americanus. VectoBac 1200L significantly increased the median time to metamorphosis ofL. sylvaticusandA. americanustadpoles by up to 4.5 days. Also, the exposure to VectoBac 200G and 1200L altered the intestine bacterial community composition inA. americanus at application rates recommended by the manufacturer, which led to an increase in the relative abundance of Verrucomicrobia, Firmicutes, Bacteroidetes, and Actinobacteria. Changes in the intestine microbiota might impact the fitness of individuals, including the susceptibility to parasitic infections. Our results indicate that the effect of Bti commercial products is limited; however, we recommend that Bti-spraying activities in amphibian-rich ecosystems should be kept minimal until there is more conclusive research to assess if the changes in the time to metamorphosis and microbiota can lead to negative outcomes in amphibian populations and, eventually, the functioning of ecosystems.
Collapse
Affiliation(s)
| | - Géraldine Patey
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Tuan Anh To
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Molly Lefebvre-Raine
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Linda Ramona Lara-Jacobo
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Jérôme Comte
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| | - Bert Klein
- Service des territoires fauniques et des habitats, Ministère des Forêts, de la Faune et des Parcs (MFFP), Quebec City, Quebec G1S 4X4, Canada
| | - Valerie S Langlois
- Centre Eau Terre Environnement, Institut national de la recherche scientifique (INRS), Québec City, Quebec G1K 9A9, Canada
| |
Collapse
|
3
|
Alheety S, Valenti D, Mujumdar N, Ellis N, Campiglia AD, Harper JK, Heider EC. Characterization of a Bio-sourced, Fluorescent, Ratiometric pH Indicator with Alkaline pK a. Photochem Photobiol 2020; 96:1176-1181. [PMID: 32562274 DOI: 10.1111/php.13299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 06/11/2020] [Indexed: 11/27/2022]
Abstract
Utilizing organisms as sources of fluorophores relieves the demand for petroleum feedstock in organic synthesis of fluorescent products, and endophytic fungi provide a promising vein for natural fluorescent products. We report the characterization of a pH-responsive fluorophore from an endophytic fungus isolated from sand pine. The endogenous fluorescence of the live organism was measured using fluorescence microscopy. Computational interpretation of the spectra was accomplished with time-dependent density functional theory methods. The combined use of experimental and theoretically predicted spectra revealed the pH equilibria and photoexcited tautomerization of the natural product, 5-methylmellein. This product shows promise both as a stand-alone pH-indicating fluorophore, with alkaline pKa , and as "green" feedstock for synthesis of custom fluorophores.
Collapse
Affiliation(s)
| | | | | | | | | | - James K Harper
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT
| | | |
Collapse
|
4
|
Liu M, Huang R, Weisman A, Yu X, Lee SH, Chen Y, Huang C, Hu S, Chen X, Tan W, Liu F, Chen H, Shea KJ. Synthetic Polymer Affinity Ligand for Bacillus thuringiensis (Bt) Cry1Ab/Ac Protein: The Use of Biomimicry Based on the Bt Protein–Insect Receptor Binding Mechanism. J Am Chem Soc 2018; 140:6853-6864. [DOI: 10.1021/jacs.8b01710] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Mingming Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Rong Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Adam Weisman
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Xiaoyang Yu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Shih-Hui Lee
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| | - Yalu Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao Huang
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Senhua Hu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuhua Chen
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Wenfeng Tan
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Fan Liu
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtse River), Ministry of Agriculture, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Chen
- College of Science, Huazhong Agricultural University, Wuhan 430070, China
| | - Kenneth J. Shea
- Department of Chemistry, University of California−Irvine, Irvine, California 92697, United States
| |
Collapse
|
5
|
Lozano ER, Neves PMOJ, Alves LFA, Potrich M, Vilas-Bôas GFLT, Monnerat RG. Action of natural phytosanitary products on Bacillus thuringiensis subsp. kurstaki S-1905. BULLETIN OF ENTOMOLOGICAL RESEARCH 2018; 108:223-231. [PMID: 28743317 DOI: 10.1017/s0007485317000670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The objective of this study was to evaluate the effects of natural phytosanitary products (NPs) on spores and crystals of Bacillus thuringiensis subsp. kurstaki S-1905 (Btk S-1905). For the spore assay, NPs and bacteria were applied in combination and individually. For the combined application, Btk S-1905 + NP mixtures were inoculated on nutrient agar (NA), and for the separate applications, the NPs were spread on NA plates, which were later inoculated with the pathogen. The number of colony-forming units (CFU) per milliliter was quantified after 18 h of incubation. For the crystal protein degradation assay, the Btk S-1905 + NP mixtures were added to the diet of Anticarsia gemmatalis (Lepidoptera: Erebidae), and mortality was evaluated at the following time points: 12, 24, 48, and 72 h. Scanning electron microscopy and agarose gel electrophoresis were carried out. Biogermex and Ecolife® reduced the CFU ml-1 in both combined and separate applications. Biogermex, Ecolife®, and Planta Clean were antagonistic to the action of bacterial toxins, and no product affected the morphology or resulted in the degradation of the crystal proteins. The remaining products evaluated did not reduce the CFU ml-1 and had additive effect when combined with the crystal toxin.
Collapse
Affiliation(s)
- E R Lozano
- Technological University Federal of Parana,Câmpus Dois Vizinhos,Brazil
| | - P M O J Neves
- Technological University Federal of Parana,Câmpus Dois Vizinhos,Brazil
| | - L F A Alves
- Technological University Federal of Parana,Câmpus Dois Vizinhos,Brazil
| | - M Potrich
- Technological University Federal of Parana,Câmpus Dois Vizinhos,Brazil
| | | | - R G Monnerat
- Technological University Federal of Parana,Câmpus Dois Vizinhos,Brazil
| |
Collapse
|
6
|
Ndao A, Sellamuthu B, Gnepe JR, Tyagi RD, Valero JR. Pilot-scale biopesticide production by Bacillus thuringiensis subsp. kurstaki using starch industry wastewater as raw material. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2017; 52:623-630. [PMID: 28586277 DOI: 10.1080/03601234.2017.1330071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Pilot-scale Bacillus thuringiensis based biopesticide production (2000 L bioreactor) was conducted using starch industry wastewater (SIW) as a raw material using optimized operational parameters obtained in 15 L and 150 L fermenters. In pilot scale fermentation process the oxygen transfer rate is a major limiting factor for high product yield. Thus, the volumetric mass transfer coefficient (KLa) remains a tool to determine the oxygen transfer capacity [oxygen utilization rate (OUR) and oxygen transfer rate (OTR)] to obtain better bacterial growth rate and entomotoxicity in new bioreactor process optimization and scale-up. This study results demonstrated that the oxygen transfer rate in 2000 L bioreactor was better than 15 L and 150 L fermenters. The better oxygen transfer in 2000 L bioreactor augmented the bacterial growth [total cell (TC) and viable spore count (SC)] and delta-endotoxin yield. Prepared a stable biopesticide formulation for field use and its entomotoxicity was also evaluated. This study result corroborates the feasibility of industrial scale operation of biopesticide production using starch industry wastewater as raw material.
Collapse
Affiliation(s)
- Adama Ndao
- a INRS-ETE, Université du Québec , Québec , Canada
| | | | - Jean R Gnepe
- a INRS-ETE, Université du Québec , Québec , Canada
| | | | | |
Collapse
|
7
|
Senthil Kumar B, Ralte Z, Passari AK, Mishra VK, Chutia BM, Singh BP, Guruswami G, Nachimuthu SK. Characterization of Bacillus thuringiensis Cry1 class proteins in relation to their insecticidal action. Interdiscip Sci 2013; 5:127-35. [PMID: 23740394 DOI: 10.1007/s12539-013-0160-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/27/2012] [Accepted: 11/01/2012] [Indexed: 11/26/2022]
Abstract
Thirty nine Bt Cry1 subgroup protein sequences were retrieved from NCBI and analyzed for physicochemical properties, active site and relationship in relation to their variations in toxicity. Cry1 proteins were found to be hydrophilic and stable. SOSUI server predicted presence of two transmembrane regions in Ag and a single transmembrane region from Aa to Ae. EMBOSS PepWheel tool analysis of the transmembrane regions showed that there were 23 highly conserved residues towards the N terminal which are hydrophobic and more than half of the residues were neutrally charged. No signal peptide was detected which classifies the Cry1 group proteins as non-secretory proteins. Cry1 proteins have very high composition of neutral amino acids and might transform into negative charge after solubilization in alkaline environment (insect midgut). The negatively charged protein might misfold causing difficultly to digest and thereby be toxic to lepidopteran. Active sites of Cry1 proteins with more than 50% neutral amino acids showed wide insecticidal spectrum and further positive correlation (r = 0.7731) was observed between neutral amino acids and insect species affected (Y = -138.21 + 2.907X). Similarity of sequences was found between Cry1 proteins based on their high or low spectrum of insecticidal activity.
Collapse
|
8
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
9
|
Vachon V, Laprade R, Schwartz JL. Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. J Invertebr Pathol 2012; 111:1-12. [DOI: 10.1016/j.jip.2012.05.001] [Citation(s) in RCA: 283] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 05/01/2012] [Accepted: 05/03/2012] [Indexed: 12/29/2022]
|
10
|
Tetreau G, Bayyareddy K, Jones CM, Stalinski R, Riaz MA, Paris M, David JP, Adang MJ, Després L. Larval midgut modifications associated with Bti resistance in the yellow fever mosquito using proteomic and transcriptomic approaches. BMC Genomics 2012; 13:248. [PMID: 22703117 PMCID: PMC3460780 DOI: 10.1186/1471-2164-13-248] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 05/25/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Bacillus thuringiensis var. israelensis (Bti) is a natural larval mosquito pathogen producing pore-forming toxins targeting the midgut of Diptera larvae. It is used worldwide for mosquito control. Resistance mechanisms of an Aedes aegypti laboratory strain selected for 30 generations with field-collected leaf litter containing Bti toxins were investigated in larval midguts at two levels: 1. gene transcription using DNA microarray and RT-qPCR and 2. differential expression of brush border membrane proteins using DIGE (Differential In Gel Electrophoresis). RESULTS Several Bti Cry toxin receptors including alkaline phosphatases and N-aminopeptidases and toxin-binding V-ATPases exhibited altered expression levels in the resistant strain. The under-expression of putative Bti-receptors is consistent with Bt-resistance mechanisms previously described in Lepidoptera. Four soluble metalloproteinases were found under-transcribed together with a drastic decrease of metalloproteinases activity in the resistant strain, suggesting a role in resistance by decreasing the amount of activated Cry toxins in the larval midgut. CONCLUSIONS By combining transcriptomic and proteomic approaches, we detected expression changes at nearly each step of the ingestion-to-infection process, providing a short list of genes and proteins potentially involved in Bti-resistance whose implication needs to be validated. Collectively, these results open the way to further functional analyses to better characterize Bti-resistance mechanisms in mosquitoes.
Collapse
Affiliation(s)
- Guillaume Tetreau
- Laboratoire d'Ecologie Alpine, LECA-UMR 5553, Université de Grenoble 1, BP 53, 38041 Grenoble cedex 09, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Adsorption on montmorillonite prevents oligomerization of Bt Cry1Aa toxin. J Colloid Interface Sci 2011; 356:718-25. [DOI: 10.1016/j.jcis.2011.01.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2010] [Revised: 01/17/2011] [Accepted: 01/20/2011] [Indexed: 11/30/2022]
|
12
|
Midgut juice components affect pore formation by the Bacillus thuringiensis insecticidal toxin Cry9Ca. J Invertebr Pathol 2010; 104:203-8. [DOI: 10.1016/j.jip.2010.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 04/11/2010] [Accepted: 04/14/2010] [Indexed: 11/18/2022]
|
13
|
Brunet JF, Vachon V, Juteau M, Van Rie J, Larouche G, Vincent C, Schwartz JL, Laprade R. Pore-forming properties of the Bacillus thuringiensis toxin Cry9Ca in Manduca sexta brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1798:1111-8. [DOI: 10.1016/j.bbamem.2010.02.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 01/21/2010] [Accepted: 02/04/2010] [Indexed: 11/16/2022]
|
14
|
Biochemical and molecular characterization of delta-endotoxins in Bacillus thuringiensis. Folia Microbiol (Praha) 2010; 54:487-92. [PMID: 20140714 DOI: 10.1007/s12223-009-0069-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2009] [Revised: 06/01/2009] [Indexed: 10/19/2022]
Abstract
The delta-endotoxins (delta-ETX) of four native strains (RT7, RT19, RT25, and RT25), and one reference strain (4L1) of Bacillus thuringiensis were biochemically and molecularly characterized to determine their potential toxic activity against lepidopteran larvae. Crystals of delta-ETX were purified through a two-phase system to determine their morphology, molar mass, solubility, and resistance to proteinases. Toxic activity and cry gene content were also determined. Crystals from native strains exhibited polyhedral, irregular and cuboidal shapes, while those from 4L1 were bipyramidal. Seven proteins with estimated molar mass approximately 30-134 kDa were detected as the main components of the native delta-ETX. Only crystals from 4L1, RT24, and RT25 underwent complete solubilization at pH >12.0. Crystals from all strains produced trypsin-resistant peptides. None of the cry genes associated with toxicity in lepidopterans (cry1, cry2, cry9) was found in the native strains; however, 4L1 strain harbors cry1 and cry2 genes. Strains RT19 and RT25 caused significant mortality against Trichoplusia ni larvae with partial solubilization at pH 10, strain 4L1 caused 100 % mortality. Toxicity of native strains may come from a novel cry gene.
Collapse
|
15
|
Andreev IM, Bulushova NV, Zalunin IA, Chestukhina GG. Effect of entomocidal proteins from Bacillus thuringiensis on ion permeability of apical membranes of Tenebrio molitor larvae gut epithelium. BIOCHEMISTRY (MOSCOW) 2009; 74:1096-103. [PMID: 19916922 DOI: 10.1134/s0006297909100058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Effects of entomocidal Cry-type proteins, delta-endotoxins Cry3A and Cry11A produced by Bacillus thuringiensis, on ion permeability of the apical membranes of intestinal epithelium from Tenebrio molitor larvae midgut were studied. Using potential-sensitive dyes safranine O and oxonol VI and DeltapH indicator acridine orange, it was shown that placing brush border membrane vesicles (BBMV) (loaded with Mg2+ during their preparation) into a salt-free buffer medium resulted in spontaneous generation of transmembrane electric potential on the vesicular membrane (negative inside the vesicles) accompanied by acidification of the aqueous phase inside the vesicles. The generation of transmembrane ion gradients on the vesicular membrane was a result of an electrogenic efflux of Mg2+ from the vesicles as shown by abolishing of the membrane potential by such agents as MgSO4 or CaCl2 in centimolar concentrations, a highly lipophilic cation tetraphenylphosphonium, and some blockers of cell membrane Ca2+-channels in submillimolar concentrations. A passive generation of membrane potential on the vesicular membrane (but positive inside the vesicles) was also observed upon addition of centimolar concentrations of K2SO4. Addition of delta-endotoxins Cry3A and Cry11A to the vesicle suspension in a salt-free buffer medium or in the same medium supplemented with centimolar concentrations of K2SO4 exerted a pronounced hyperpolarization of the vesicular membrane. This hyperpolarization was sensitive to the same agents, which abolished the membrane potential generation in the absence of delta-endotoxin. It is concluded that Cry proteins induced in BBMV from T. molitor opening pores or ion channels, which were considerably more permeable for alkaline- and alkaline-earth metal cations than for the accompanying anions.
Collapse
Affiliation(s)
- I M Andreev
- Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Moscow, 127276, Russia.
| | | | | | | |
Collapse
|
16
|
Mutations in domain I interhelical loops affect the rate of pore formation by the Bacillus thuringiensis Cry1Aa toxin in insect midgut brush border membrane vesicles. Appl Environ Microbiol 2009; 75:3842-50. [PMID: 19376918 DOI: 10.1128/aem.02924-08] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pore formation in the apical membrane of the midgut epithelial cells of susceptible insects constitutes a key step in the mode of action of Bacillus thuringiensis insecticidal toxins. In order to study the mechanism of toxin insertion into the membrane, at least one residue in each of the pore-forming-domain (domain I) interhelical loops of Cry1Aa was replaced individually by cysteine, an amino acid which is normally absent from the activated Cry1Aa toxin, using site-directed mutagenesis. The toxicity of most mutants to Manduca sexta neonate larvae was comparable to that of Cry1Aa. The ability of each of the activated mutant toxins to permeabilize M. sexta midgut brush border membrane vesicles was examined with an osmotic swelling assay. Following a 1-h preincubation, all mutants except the V150C mutant were able to form pores at pH 7.5, although the W182C mutant had a weaker activity than the other toxins. Increasing the pH to 10.5, a procedure which introduces a negative charge on the thiol group of the cysteine residues, caused a significant reduction in the pore-forming abilities of most mutants without affecting those of Cry1Aa or the I88C, T122C, Y153C, or S252C mutant. The rate of pore formation was significantly lower for the F50C, Q151C, Y153C, W182C, and S252C mutants than for Cry1Aa at pH 7.5. At the higher pH, all mutants formed pores significantly more slowly than Cry1Aa, except the I88C mutant, which formed pores significantly faster, and the T122C mutant. These results indicate that domain I interhelical loop residues play an important role in the conformational changes leading to toxin insertion and pore formation.
Collapse
|
17
|
Laflamme E, Badia A, Lafleur M, Schwartz JL, Laprade R. Atomic Force Microscopy Imaging of Bacillus thuringiensis Cry1 Toxins Interacting with Insect Midgut Apical Membranes. J Membr Biol 2008; 222:127-39. [DOI: 10.1007/s00232-008-9106-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2007] [Accepted: 03/23/2008] [Indexed: 11/28/2022]
|
18
|
Cysteine scanning mutagenesis of alpha4, a putative pore-lining helix of the Bacillus thuringiensis insecticidal toxin Cry1Aa. Appl Environ Microbiol 2008; 74:2565-72. [PMID: 18326669 DOI: 10.1128/aem.00094-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Helix alpha4 of Bacillus thuringiensis Cry toxins is thought to line the lumen of the pores they form in the midgut epithelial cells of susceptible insect larvae. To define its functional role in pore formation, most of the alpha4 amino acid residues were replaced individually by a cysteine in the Cry1Aa toxin. The toxicities and pore-forming abilities of the mutated toxins were examined, respectively, by bioassays using neonate Manduca sexta larvae and by a light-scattering assay using midgut brush border membrane vesicles isolated from M. sexta. A majority of these mutants had considerably reduced toxicities and pore-forming abilities. Most mutations causing substantial or complete loss of activity map on the hydrophilic face of the helix, while most of those having little or only relatively minor effects map on its hydrophobic face. The properties of the pores formed by mutants that retain significant activity appear similar to those of the pores formed by the wild-type toxin, suggesting that mutations resulting in a loss of activity interfere mainly with pore formation.
Collapse
|
19
|
Fortier M, Vachon V, Frutos R, Schwartz JL, Laprade R. Effect of insect larval midgut proteases on the activity of Bacillus thuringiensis Cry toxins. Appl Environ Microbiol 2007; 73:6208-13. [PMID: 17693568 PMCID: PMC2075007 DOI: 10.1128/aem.01188-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To test the possibility that proteolytic cleavage by midgut juice enzymes could enhance or inhibit the activity of Bacillus thuringiensis insecticidal toxins, once activated, the effects of different toxins on the membrane potential of the epithelial cells of isolated Manduca sexta midguts in the presence and absence of midgut juice were measured. While midgut juice had little effect on the activity of Cry1Aa, Cry1Ac, Cry1Ca, Cry1Ea, and R233A, a mutant of Cry1Aa from which one of the four salt bridges linking domains I and II of the toxin was eliminated, it greatly increased the activity of Cry1Ab. In addition, when tested in the presence of a cocktail of protease inhibitors or when boiled, midgut juice retained almost completely its capacity to enhance Cry1Ab activity, suggesting that proteases were not responsible for the stimulation. On the other hand, in the absence of midgut juice, the cocktail of protease inhibitors also enhanced the activity of Cry1Ab, suggesting that proteolytic cleavage by membrane proteases could render the toxin less effective. The lower toxicity of R233A, despite a similar in vitro pore-forming ability, compared with Cry1Aa, cannot be accounted for by an increased susceptibility to midgut proteases. Although these assays were performed under conditions approaching those found in the larval midgut, the depolarizing activities of the toxins correlated only partially with their toxicities.
Collapse
Affiliation(s)
- Mélanie Fortier
- Groupe d'Etude des Protéines Membranaires, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
20
|
Stumpff F, Bondzio A, Einspanier R, Martens H. Effects of the Bacillus thuringiensis Toxin Cry1Ab on Membrane Currents of Isolated Cells of the Ruminal Epithelium. J Membr Biol 2007; 219:37-47. [PMID: 17676405 DOI: 10.1007/s00232-007-9059-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Accepted: 06/18/2007] [Indexed: 10/23/2022]
Abstract
A previous study has shown that Cry1Ab, a lepidopteran-specific toxin derived from Bacillus thuringiensis, does not affect the vitality of cultured cells of the ruminal epithelium of the sheep. While this may be due to lack of specific receptors for toxin action, other mechanisms of resistance should also be considered. In order to directly assess the pore-forming potential of Cry1Ab, we studied the interaction of this toxin with isolated, perfused cells of the ruminal epithelium using the whole-cell and single-channel configurations of the patch-clamp technique. At concentrations found in vivo in the rumen of cows (<10 ng/ml) and at a temperature of 37 degrees C, no significant effects of Cry1Ab could be observed. At 100 ng/ml, exposure of ruminal cells to Cry1Ab induced a significant rise in outward current in 16 of 34 cells, with a fourfold increase in the conductance for potassium. The cell membrane remained selective for potassium over sodium (p(K)/p(Na) = 1.8 + or - 0.3), with a considerable additional chloride conductance. In outside-out patches, exposure to high Cry1Ab concentrations induced channel-like events that reached levels of over 500 pS. We conclude that the unchanged vitality of intact ruminal epithelial cells exposed to Cry1Ab in vitro at high concentrations may be related to other factors besides the proposed absence of a specific receptor for the membrane insertion of this toxin.
Collapse
Affiliation(s)
- Friederike Stumpff
- Department of Veterinary Physiology, Free University of Berlin, Oertzenweg 19b, 14163, Berlin, Germany.
| | | | | | | |
Collapse
|
21
|
Jones GW, Nielsen-Leroux C, Yang Y, Yuan Z, Dumas VF, Monnerat RG, Berry C. A new Cry toxin with a unique two-component dependency from Bacillus sphaericus. FASEB J 2007; 21:4112-20. [PMID: 17646596 DOI: 10.1096/fj.07-8913com] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Highly pathogenic strains of Bacillus sphaericus produce the mosquitocidal Bin proteins, but resistance to this toxin can be produced under laboratory and field conditions. Analysis of strains able to overcome this resistance revealed the presence of a previously undescribed type of two-component toxin. One subunit, Cry48Aa1, is related to the 3-domain crystal toxins of Bacillus thuringiensis. Uniquely for this type of protein, insect toxicity is only achieved in the presence of a second, accessory protein, Cry49Aa1. This protein is itself related to both the binary toxin of B. sphaericus and to Cry35 and Cry36 of B. thuringiensis, none of which require interaction with Cry48Aa1-like proteins for their activity. The necessity for both Cry48Aa1 and Cry49Aa1 components for pathogenicity, therefore, indicates an unprecedented interaction to generate toxicity. Despite high potency for purified Cry48Aa1/Cry49Aa1 proteins (LC50 for third instar Culex quinquefasciatus larvae: 15.9 ng/ml and 6.3 ng/ml respectively), bacteria producing them show suboptimal mosquitocidal activity due to low-level Cry48Aa1 production. This new toxin combination may indicate a fortuitous combination of members of the gene families that encode 3-domain Cry toxins and Binary-like toxins, permitting the "mix-and-match" evolution of a new component in the mosquitocidal armoury.
Collapse
Affiliation(s)
- Gareth W Jones
- Cardiff School of Biosciences, Cardiff University, Museum Ave., Cardiff CF10 3US, UK
| | | | | | | | | | | | | |
Collapse
|
22
|
Fortier M, Vachon V, Marceau L, Schwartz JL, Laprade R. Kinetics of pore formation by the Bacillus thuringiensis toxin Cry1Ac. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1291-8. [PMID: 17382289 DOI: 10.1016/j.bbamem.2007.02.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2006] [Revised: 02/12/2007] [Accepted: 02/12/2007] [Indexed: 10/23/2022]
Abstract
After binding to specific receptors, Cry toxins form pores in the midgut apical membrane of susceptible insects. The receptors could form part of the pore structure or simply catalyze pore formation and consequently be recycled. To discriminate between these possibilities, the kinetics of pore formation in brush border membrane vesicles isolated from Manduca sexta was studied with an osmotic swelling assay. Pore formation, as deduced from changes in membrane permeability induced by Cry1Ac during a 60-min incubation period, was strongly dose-dependent, but rapidly reached a maximum as toxin concentration was increased. Following exposure of the vesicles to the toxin, the osmotic swelling rate reached a maximum shortly after a delay period. Under these conditions, at relatively high toxin concentrations, the maximal osmotic swelling rate increased linearly with toxin concentration. When vesicles were incubated for a short time with the toxin and then rapidly cooled to prevent the formation of new pores before and during the osmotic swelling experiment, a plateau in the rate of pore formation was observed as toxin concentration was increased. Taken together, these results suggest that the receptors do not act as simple catalysts of pore formation, but remain associated with the pores once they are formed.
Collapse
Affiliation(s)
- Mélanie Fortier
- Groupe d'étude des protéines membranaires, Université de Montréal, PO Box 6128, Centre Ville Station, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | |
Collapse
|
23
|
Muñoz-Garay C, Sánchez J, Darszon A, de Maagd RA, Bakker P, Soberón M, Bravo A. Permeability changes of Manduca sexta midgut brush border membranes induced by oligomeric structures of different cry toxins. J Membr Biol 2007; 212:61-8. [PMID: 17206518 DOI: 10.1007/s00232-006-0003-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2006] [Accepted: 06/09/2006] [Indexed: 10/23/2022]
Abstract
The pore-formation activity of monomeric and oligomeric forms of different Cry1 toxins (from Cry1A to Cry1G) was analyzed by monitoring ionic permeability across Manduca sexta brush border membrane vesicles. The membrane vesicles were isolated from microvilli structures, showing a high enrichment of apical membrane markers and low intrinsic K(+) permeability. A fluorometric assay performed with 3,3'-dipropylthiodicarbocyanine fluorescent probe, sensitive to changes in membrane potential, was used. Previously, it was suggested that fluorescence determinations with this dye could be strongly influenced by the pH, osmolarity and ionic strength of the medium. Therefore, we evaluated these parameters in control experiments using the K(+)-selective ionophore valinomycin. We show here that under specific ionic conditions changes in fluorescence can be correlated with ionic permeability without effects on osmolarity or ionic strength of the medium. It is extremely important to attenuate the background response due to surface membrane potential and the participation of the endogenous permeability of the membrane vesicles. Under these conditions, we analyzed the pore-formation activity induced by monomeric and oligomeric structures of different Cry1 toxins. The Cry1 toxin samples containing oligomeric structures correlated with high pore activity, in contrast to monomeric samples that showed marginal pore-formation activity, supporting the hypothesis that oligomer formation is a necessary step in the mechanism of action of Cry toxins.
Collapse
Affiliation(s)
- C Muñoz-Garay
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | | | | | | | | | | | | |
Collapse
|
24
|
Kirouac M, Vachon V, Fortier M, Trudel MC, Berteloot A, Schwartz JL, Laprade R. A mechanical force contributes to the "osmotic swelling" of brush-border membrane vesicles. Biophys J 2006; 91:3301-12. [PMID: 16905617 PMCID: PMC1614501 DOI: 10.1529/biophysj.106.088641] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Brush-border membrane vesicles and an osmotic swelling assay have been used extensively to monitor the pore-forming activity of Bacillus thuringiensis toxins. After a hypertonic shock, Manduca sexta midgut brush-border membrane vesicles shrink rapidly and reswell partially to a volume that depends on membrane permeability and toxin concentration rather than regaining their original volume as expected from theoretical models. Because efflux of buffer from the vesicles, as they shrink, could contribute to this phenomenon, vesicles were mixed with a hypertonic solution of the buffer with which they were loaded. Under these conditions, they are not expected to reswell, since the same solute is present on both sides of the membrane. Nevertheless, with several buffers, vesicles reswelled readily, an observation that demonstrates the involvement of an additional restoration force. Reswelling also occurred when, in the absence of toxin, the buffers were replaced by glucose, a solute that diffuses readily across the membrane, but did not occur with rat liver microsomes, despite their permeability to glucose. Unexpected swelling was also observed with rabbit jejunum brush-border membrane vesicles, suggesting that the cytoskeleton, present in brush-border membrane vesicles but absent from microsomes, could be responsible for the restoration force.
Collapse
Affiliation(s)
- Martin Kirouac
- Membrane Protein Research Group, University of Montreal, Montreal, Quebec, Canada
| | | | | | | | | | | | | |
Collapse
|
25
|
Vachon V, Schwartz JL, Laprade R. Influence of the biophysical and biochemical environment on the kinetics of pore formation by Cry toxins. J Invertebr Pathol 2006; 92:160-5. [PMID: 16831627 DOI: 10.1016/j.jip.2006.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2006] [Accepted: 03/07/2006] [Indexed: 11/26/2022]
Abstract
The effect of Bacillus thuringiensis toxins on the permeability of the luminal membrane of Manduca sexta midgut columnar epithelial cells is strongly influenced by several biophysical and biochemical factors, including pH, ionic strength, and divalent cations, suggesting an important role for electrostatic interactions. The influence of these factors can differ greatly, however, depending on the toxin being studied, even for closely related toxins such as Cry1Ac and Cry1Ca. In the present study, the possibility of using temperature changes as a tool for controlling the rate and extent of pore formation in midgut brush border membrane vesicles was evaluated. Lowering temperature gradually decreased the rate of pore formation, but had little effect on the permeability of vesicles previously incubated with toxin at room temperature. The formation of new pores, following incubation of the vesicles with toxin, could thus be almost abolished by rapidly cooling the vesicles to 2 degrees C. Using this approach, changes in the rate of pore formation could be more easily distinguished from alterations in the properties of the pores formed, thus allowing a more detailed analysis of the kinetics and mechanism of pore formation.
Collapse
Affiliation(s)
- Vincent Vachon
- Groupe d'étude des protéines membranaires and Biocontrol Network, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec, Canada H3C 3J7.
| | | | | |
Collapse
|
26
|
Liu W, Ye W, Wang Z, Wang X, Tian S, Cao H, Lian J. Photorhabdus luminescens toxin-induced permeability change in Manduca sexta and Tenebrio molitor midgut brush border membrane and in unilamellar phospholipid vesicle. Environ Microbiol 2006; 8:858-70. [PMID: 16623743 DOI: 10.1111/j.1462-2920.2005.00972.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Photorhabdus luminescens, a Gram-negative bacterium, secretes a protein toxin (PL toxin) that is toxic to insects. In this study, the effects of the PL toxin on large receptor-free unilamellar phospholipid vesicles (LUVs) of Manduca sexta and on brush border membrane vesicles (BBMVs) of M. sexta and Tenebrio molitor were examined. Cry1Ac served as a positive control in our experiments due to its known channel-forming activity on M. sexta. Voltage clamping assays with dissected midguts of M. sexta and T. molitor clearly showed that both Cry1Ac and PL toxin caused channel formation in the midguts, although channel formation was not detected for T. molitor midguts under Cry1Ac and it was less sensitive to PL toxin than to Cry1Ac for M. sexta midguts. Calcein release experiments showed that both toxins made LUVs (unilamellar lipid vesicles) permeable, and at some concentrations of the toxins such permeabilizing effects were pH-dependent. The lowest concentrations of PL toxin were more than 600-fold and 24-fold lower to induce BBMV permeability of T. molitor and M. sexta than those to induce calcein release from LUVs of M. sexta. These further support that PL toxin is responsible for channel formation in the larvae midguts. The lower concentration to induce permeability in BBMV than in LUV is, probably, attributable to that BBMV has PL toxin receptors that facilitate the toxin to induce permeabilization. Furthermore, our results indicate that the effects of PL toxin on BBMV permeability of M. sexta were not significantly influenced by Gal Nac, but those of Cry1Ac were. This implies that PL toxin and Cry1Ac might use different molecular binding sites in BBMV to cause channel formation.
Collapse
Affiliation(s)
- Wei Liu
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | | | | | | | | | | | | |
Collapse
|
27
|
Kirouac M, Vachon V, Quievy D, Schwartz JL, Laprade R. Protease inhibitors fail to prevent pore formation by the activated Bacillus thuringiensis toxin Cry1Aa in insect brush border membrane vesicles. Appl Environ Microbiol 2006; 72:506-15. [PMID: 16391085 PMCID: PMC1352293 DOI: 10.1128/aem.72.1.506-515.2006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
To investigate whether membrane proteases are involved in the activity of Bacillus thuringiensis insecticidal toxins, the rate of pore formation by trypsin-activated Cry1Aa was monitored in the presence of a variety of protease inhibitors with Manduca sexta midgut brush border membrane vesicles and by a light-scattering assay. Most of the inhibitors tested had no effect on the pore-forming ability of the toxin. However, phenylmethylsulfonyl fluoride, a serine protease inhibitor, promoted pore formation, although this stimulation only occurred at higher inhibitor concentrations than those commonly used to inhibit proteases. Among the metalloprotease inhibitors, o-phenanthroline had no significant effect; EDTA and EGTA reduced the rate of pore formation at pH 10.5, but only EDTA was inhibitory at pH 7.5. Neither chelator affected the properties of the pores already formed after incubation of the vesicles with the toxin. Taken together, these results indicate that, once activated, Cry1Aa is completely functional and does not require further proteolysis. The effect of EDTA and EGTA is probably better explained by their ability to chelate divalent cations that could be necessary for the stability of the toxin's receptors or involved elsewhere in the mechanism of pore formation.
Collapse
Affiliation(s)
- Martin Kirouac
- Groupe d'Etude des Protéines Membranaires, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec H3C 3J7, Canada.
| | | | | | | | | |
Collapse
|
28
|
Fortier M, Vachon V, Kirouac M, Schwartz JL, Laprade R. Differential Effects of Ionic Strength, Divalent Cations and pH on the Pore-forming Activity of Bacillus thuringiensis Insecticidal Toxins. J Membr Biol 2005; 208:77-87. [PMID: 16596448 DOI: 10.1007/s00232-005-0820-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Revised: 11/30/2005] [Indexed: 10/24/2022]
Abstract
The combined effects of ionic strength, divalent cations, pH and toxin concentration on the pore-forming activity of Cry1Ac and Cry1Ca were studied using membrane potential measurements in isolated midguts of Manduca sexta and a brush border membrane vesicle osmotic swelling assay. The effects of ionic strength and divalent cations were more pronounced at pH 10.5 than at pH 7.5. At the higher pH, lowering ionic strength in isolated midguts enhanced Cry1Ac activity but decreased considerably that of Cry1Ca. In vesicles, Cry1Ac had a stronger pore-forming ability than Cry1Ca at a relatively low ionic strength. Increasing ionic strength, however, decreased the rate of pore formation of Cry1Ac relative to that of Cry1Ca. The activity of Cry1Ca, which was small at the higher pH, was greatly increased by adding calcium or by increasing ionic strength. EDTA inhibited Cry1Ac activity at pH 10.5, but not at pH 7.5, indicating that trace amounts of divalent cations are necessary for Cry1Ac activity at the higher pH. These results, which clearly demonstrate a strong effect of ionic strength, divalent cations and pH on the pore-forming activity of Cry1Ac and Cry1Ca, stress the importance of electrostatic interactions in the mechanism of pore formation by B. thuringiensis toxins.
Collapse
Affiliation(s)
- M Fortier
- Groupe d'Etude des Protéines Membranaires, Université de Montréal and Biocontrol Network, Centre Ville Station, Montreal, P.O. Box 6128, Quebec, H3C 3J7, Canada
| | | | | | | | | |
Collapse
|
29
|
Vachon V, Préfontaine G, Rang C, Coux F, Juteau M, Schwartz JL, Brousseau R, Frutos R, Laprade R, Masson L. Helix 4 mutants of the Bacillus thuringiensis insecticidal toxin Cry1Aa display altered pore-forming abilities. Appl Environ Microbiol 2004; 70:6123-30. [PMID: 15466558 PMCID: PMC522081 DOI: 10.1128/aem.70.10.6123-6130.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The role played by alpha-helix 4 of the Bacillus thuringiensis toxin Cry1Aa in pore formation was investigated by individually replacing each of its charged residues with either a neutral or an oppositely charged amino acid by using site-directed mutagenesis. The majority of the resulting mutant proteins were considerably less toxic to Manduca sexta larvae than Cry1Aa. Most mutants also had a considerably reduced ability to form pores in midgut brush border membrane vesicles isolated from this insect, with the notable exception of those with alterations at amino acid position 127 (R127N and R127E), located near the N-terminal end of the helix. Introducing a negatively charged amino acid near the C-terminal end of the helix (T142D and T143D), a region normally devoid of charged residues, completely abolished pore formation. For each mutant that retained detectable pore-forming activity, reduced membrane permeability to KCl was accompanied by an approximately equivalent reduction in permeability to N-methyl-D-glucamine hydrochloride, potassium gluconate, sucrose, and raffinose and by a reduced rate of pore formation. These results indicate that the main effect of the mutations was to decrease the toxin's ability to form pores. They provide further evidence that alpha-helix 4 plays a crucial role in the mechanism of pore formation.
Collapse
Affiliation(s)
- Vincent Vachon
- Groupe d'étude des protéines membranaires, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec, Canada H3C 3J7.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Peyronnet O, Noulin JF, Laprade R, Schwartz JL. Patch-clamp study of the apical membrane of the midgut of Manduca sexta larvae: direct demonstration of endogenous channels and effect of a Bacillus thuringiensis toxin. JOURNAL OF INSECT PHYSIOLOGY 2004; 50:791-803. [PMID: 15350500 DOI: 10.1016/j.jinsphys.2004.05.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 05/18/2004] [Accepted: 05/19/2004] [Indexed: 05/24/2023]
Abstract
The patch-clamp technique was applied to the apical membrane of epithelial midgut cells of a lepidoptera, Manduca sexta L. Access to the apical membrane, the main target site of Bacillus thuringiensis (Bt) toxins, was achieved by using freshly isolated larval midgut preparations mounted onto holding glass pipettes. The epithelial cells retained their functional integrity, as evidenced by the magnitude of intracellular potentials recorded with microelectrodes. With standard 32 mM K(+) solution in the bath and the patch-clamp pipette, endogenous channel activity was detected in about 50% of experiments, mainly in moulting larvae and larvae that had been kept at reduced temperature for at least two days prior to the experiments. In both cell-attached and inside-out patch-clamp configurations, different types of channel were observed, with conductances varying between about 5 and 50 pS and different conducting properties. Addition of trypsin-activated Cry1Ac Bt toxin in the patch-clamp pipette triggered, after a delay, large conductances of a few nanosiemens. This is the first study allowing exploration, in the intact midgut, of the properties of apical membrane channels and the direct interaction between the apical membrane of epithelial cells and pathogenic agents such as Bt toxins.
Collapse
Affiliation(s)
- Olivier Peyronnet
- Biocontrol Network and Groupe d'Etude des Protéines Membranaires, Université de Montréal, Montreal, Que. H3C 3J7, Canada
| | | | | | | |
Collapse
|
31
|
Hua G, Jurat-Fuentes JL, Adang MJ. Fluorescent-based assays establish Manduca sexta Bt-R(1a) cadherin as a receptor for multiple Bacillus thuringiensis Cry1A toxins in Drosophila S2 cells. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2004; 34:193-202. [PMID: 14871616 DOI: 10.1016/j.ibmb.2003.10.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2003] [Accepted: 10/14/2003] [Indexed: 05/24/2023]
Abstract
A fluorescence-based approach was developed to analyze in vivo the function of Manduca sexta cadherin (Bt-R(1)) as a Cry1 toxin receptor. We cloned a Bt-R(1a) cDNA that differs from Bt-R(1) by 37 nucleotides and two amino acids and expressed it transiently in Drosophila melanogaster Schneider 2 (S2) cells. Cells expressing Bt-R(1a) bound Cry1Aa, Cry1Ab, and Cry1Ac toxins on ligand blots, and in saturation binding assays. More Cry1Ab was bound relative to Cry1Aa and Cry1Ac, though each Cry1A toxin bound with high-affinity (Kd values from 1.7 to 3.3 nM). Using fluorescent microscopy and flow cytometry assays, we show that Cry1Aa, Cry1Ab and Cry1Ac, but not Cry1Ba, killed S2 cells expressing Bt-R(1a) cadherin. These results demonstrate that M. sexta cadherin Bt-R(1a) functions as a receptor for the Cry1A toxins in vivo and validates our cytotoxicity assay for future receptor studies.
Collapse
Affiliation(s)
- Gang Hua
- Department of Entomology, University of Georgia, Athens, GA 30602-2603, USA
| | | | | |
Collapse
|
32
|
Peyronnet O, Nieman B, Généreux F, Vachon V, Laprade R, Schwartz JL. Estimation of the radius of the pores formed by the Bacillus thuringiensis Cry1C delta-endotoxin in planar lipid bilayers. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1567:113-22. [PMID: 12488044 DOI: 10.1016/s0005-2736(02)00605-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Pore formation constitutes a key step in the mode of action of Bacillus thuringiensis delta-endotoxins and various activated Cry toxins have been shown to form ionic channels in receptor-free planar lipid bilayers at high concentrations. Multiple conductance levels have been observed with several toxins, suggesting that the channels result from the multimeric assembly of a variable number of toxin molecules. To test this possibility, the size of the channels formed by Cry1C was estimated with the non-electrolyte exclusion technique and polyethylene glycols of various molecular weights. In symmetrical 300 mM KCl solutions, Cry1C induced channel activity with 15 distinct conductance levels ranging from 21 to 246 pS and distributed in two main conductance populations. Both the smallest and largest conductance levels and the mean conductance values of both populations were systematically reduced in the presence of polyethylene glycols with hydrated radii of up to 1.05 nm, indicating that these solutes can penetrate the pores formed by the toxin. Larger polyethylene glycols had little effect on the conductance levels, indicating that they were excluded from the pores. Our results indicate that Cry1C forms clusters composed of a variable number of channels having a similar pore radius of between 1.0 and 1.3 nm and gating synchronously.
Collapse
Affiliation(s)
- Olivier Peyronnet
- Groupe de recherche en transport membranaire, Université de Montréal, P.O. Box 6128, Centre Ville Station, Montreal, Quebec, Canada H3C 3J7
| | | | | | | | | | | |
Collapse
|
33
|
Kirouac M, Vachon V, Noël JF, Girard F, Schwartz JL, Laprade R. Amino acid and divalent ion permeability of the pores formed by the Bacillus thuringiensis toxins Cry1Aa and Cry1Ac in insect midgut brush border membrane vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1561:171-9. [PMID: 11997117 DOI: 10.1016/s0005-2736(02)00342-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The pores formed by Bacillus thuringiensis insecticidal toxins have been shown to allow the diffusion of a variety of monovalent cations and anions and neutral solutes. To further characterize their ion selectivity, membrane permeability induced by Cry1Aa and Cry1Ac to amino acids (Asp, Glu, Ser, Leu, His, Lys and Arg) and to divalent cations (Mg(2+), Ca(2+) and Ba(2+)) and anions (SO(4)(2-) and phosphate) was analyzed at pH 7.5 and 10.5 with midgut brush border membrane vesicles isolated from Manduca sexta and an osmotic swelling assay. Shifting pH from 7.5 to 10.5 increases the proportion of the more negatively charged species of amino acids and phosphate ions. All amino acids diffused well across the toxin-induced pores, but, except for aspartate and glutamate, amino acid permeability was lower at the higher pH. In the presence of either toxin, membrane permeability was higher for the chloride salts of divalent cations than for the potassium salts of divalent anions. These results clearly indicate that the pores are cation-selective.
Collapse
Affiliation(s)
- Martin Kirouac
- Groupe de Recherche en Transport Membranaire, Université de Montréal, Montreal, QC, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Guihard G, Laprade R, Schwartz JL. Unfolding affects insect cell permeabilization by Bacillus thuringiensis Cry1C toxin. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1515:110-9. [PMID: 11718667 DOI: 10.1016/s0005-2736(01)00403-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bacillus thuringiensis Cry toxins are efficient, environment-friendly biological insecticides. Their molecular mode of action on target insect cells remains largely unknown. The aim of this study was to investigate the relation between the conformational state of the Cry1C toxin and its ionophoric activity on live Sf9 cells of Spodoptera frugiperda, a target insect for this protein. Potassium ion movement induced by Cry1C across the cell membrane was measured with a fluorescent assay developed previously and the conformation of the toxin was studied using tryptophan spectroscopy. Following treatment with 4 M guanidinium hydrochloride, which resulted in the unfolding of its N-terminal half, the toxin retained its full capacity to permeabilize the cells while the fully unfolded toxin did not induce potassium leakage. Therefore, permeabilization of Sf9 cells by Cry1C requires the integrity of the C-terminal half of the toxin and may depend on an initial unfolding step provided by the acidic environment of the cells.
Collapse
Affiliation(s)
- G Guihard
- INSERM U533, Hôtel-Dieu, Faculté de Médecine, Nantes, France
| | | | | |
Collapse
|