1
|
Use of Shotgun Metagenomics to Assess the Microbial Diversity and Hydrocarbons Degrading Functions of Auto-Mechanic Workshops Soils Polluted with Gasoline and Diesel Fuel. Microorganisms 2023; 11:microorganisms11030722. [PMID: 36985295 PMCID: PMC10059880 DOI: 10.3390/microorganisms11030722] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 03/08/2023] [Accepted: 03/08/2023] [Indexed: 03/16/2023] Open
Abstract
Bioaugmentation is a valuable technique for oil recovery. This study investigates the composition and functions of microbial communities in gasoline- and diesel-contaminated soils of garages Matoko (SGM) and Guy et Paul (SGP) originating from auto mechanic workshops as well as the concentration of soil enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase. The work aimed to evaluate the presence of petroleum-hydrocarbon-degrading bacteria for the development of foreseen bioremediation of oil-contaminated soils. Microbial diversity, as given by shotgun metagenomics, indicated the presence of 16 classes, among which Actinobacteria and Gammaproteobacteria dominated, as well as more than 50 families, including the dominant Gordoniaceae (26.63%) in SGM and Pseudomonadaceae (57.89%) in SGP. The dominant bacterial genera in the two soils were, respectively, Gordonia (26.7%) and Pseudomonas (57.9%). The exploration of the bacterial metabolic abilities using HUMANn2 allowed to detect genes and pathways involved in alkanes and aromatic hydrocarbons in the two contaminated soils. Furthermore, enzymes β-glucosidase, β-glucosaminidase, and acid phosphatase were found in high concentrations ranging between 90.27 ± 5.3 and 804.17 ± 20.5 µg pN/g soil/h, which indicated active microbial metabolism. The high diversity of microorganisms with a hydrocarbon degradation genetic package revealed that the bacteria inhabiting the two soils are likely good candidates for the bioaugmentation of oil-contaminated soils.
Collapse
|
2
|
Pápai M, Benedek T, Táncsics A, Bornemann TLV, Plewka J, Probst AJ, Hussein D, Maróti G, Menashe O, Kriszt B. Selective enrichment, identification, and isolation of diclofenac, ibuprofen, and carbamazepine degrading bacteria from a groundwater biofilm. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44518-44535. [PMID: 36690856 PMCID: PMC10076411 DOI: 10.1007/s11356-022-24975-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are three of the most widely detected and most concerning pharmaceutical residues in aquatic ecosystems. The aim of this study was to identify bacteria that may be involved in their degradation from a bacterial biofilm. Selective enrichment cultures in mineral salt solution containing pharmaceutical compounds as sole source of carbon and energy were set up, and population dynamics were monitored using shotgun metagenome sequencing. Bacterial genomes were reconstructed using genome-resolved metagenomics. Thirty bacterial isolates were obtained, identified at species level, and tested regarding pharmaceutical biodegradation at an initial concentration of 1.5 mg l-1. The results indicated that most probably diclofenac biodegrading cultures consisted of members of genera Ferrovibrio, Hydrocarboniphaga, Zavarzinia, and Sphingopyxis, while in ibuprofen biodegradation Nocardioides and Starkeya, and in carbamazepine biodegradation Nocardioides, Pseudonocardia, and Sphingopyxis might be involved. During the enrichments, compared to the initial state the percentage relative abundance of these genera increased up to three orders of magnitude. Except Starkeya, the genomes of these bacteria were reconstructed and annotated. Metabolic analyses of the annotated genomes indicated that these bacteria harbored genes associated with pharmaceutical biodegradation. Stenotrophomonas humi DIC_5 and Rhizobium daejeonense IBU_18 isolates eliminated diclofenac and ibuprofen during the tests in the presence of either glucose (3 g l-1) or in R2A broth. Higher than 90% concentration reduction was observed in the case of both compounds.
Collapse
Affiliation(s)
- Márton Pápai
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Tibor Benedek
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary.
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Till L V Bornemann
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Julia Plewka
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Alexander J Probst
- Group for Environmental Metagenomics, Research Center One Health Ruhr of the University Alliance Ruhr, Faculty of Chemistry, University of Duisburg-Essen, Essen, Universitäts Str. 5, 45141, Essen, Germany
| | - Daood Hussein
- Institute of Horticultural Sciences, Laboratories of Food Analysis, Hungarian University of Agriculture and Life Sciences, Páter K. U. 1, 2100, Gödöllő, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Center, Temesvári Krt. 62., Szeged, Hungary
- Seqomics Biotechnology Ltd, Vállalkozók 7, 6782, Mórahalom, Hungary
| | - Ofir Menashe
- Water Industry Engineering Department, The Engineering Faculty, Kinneret Academic College On the Sea of Galilee, D.N. Emek Ha, 15132, Yarden, Israel
- BioCastle Water Technologies Ltd, Tzemah, Israel
| | - Balázs Kriszt
- Department of Environmental Safety, Hungarian University of Agriculture and Life Sciences, Institute of Aquaculture and Environmental Safety, Páter K. U. 1, 2100, Gödöllő, Hungary
| |
Collapse
|
3
|
The structure-function relationship of bacterial transcriptional regulators as a target for enhanced biodegradation of aromatic hydrocarbons. Microbiol Res 2022; 262:127087. [DOI: 10.1016/j.micres.2022.127087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/20/2022]
|
4
|
Banerjee S, Bedics A, Harkai P, Kriszt B, Alpula N, Táncsics A. Evaluating the aerobic xylene-degrading potential of the intrinsic microbial community of a legacy BTEX-contaminated aquifer by enrichment culturing coupled with multi-omics analysis: uncovering the role of Hydrogenophaga strains in xylene degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28431-28445. [PMID: 34989990 PMCID: PMC8993774 DOI: 10.1007/s11356-021-18300-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
To develop effective bioremediation strategies, it is always important to explore autochthonous microbial community diversity using substrate-specific enrichment. The primary objective of this present study was to reveal the diversity of aerobic xylene-degrading bacteria at a legacy BTEX-contaminated site where xylene is the predominant contaminant, as well as to identify potential indigenous strains that could effectively degrade xylenes, in order to better understand the underlying facts about xylene degradation using a multi-omics approach. Henceforward, parallel aerobic microcosms were set up using different xylene isomers as the sole carbon source to investigate evolved bacterial communities using both culture-dependent and independent methods. Research outcome showed that the autochthonous community of this legacy BTEX-contaminated site has the capability to remove all of the xylene isomers from the environment aerobically employing different bacterial groups for different xylene isomers. Interestingly, polyphasic analysis of the enrichments disclose that the community composition of the o-xylene-degrading enrichment community was utterly distinct from that of the m- and p-xylene-degrading enrichments. Although in each of the enrichments Pseudomonas and Acidovorax were the dominant genera, in the case of o-xylene-degrading enrichment Rhodococcus was the main player. Among the isolates, two Hydogenophaga strains, belonging to the same genomic species, were obtained from p-xylene-degrading enrichment, substantially able to degrade aromatic hydrocarbons including xylene isomers aerobically. Comparative whole-genome analysis of the strains revealed different genomic adaptations to aromatic hydrocarbon degradation, providing an explanation on their different xylene isomer-degrading abilities.
Collapse
Affiliation(s)
- Sinchan Banerjee
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Anna Bedics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Péter Harkai
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Nagaraju Alpula
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
- Department of Biotechnology, Microbial Biotechnology Research Unit, Kakatiya University, Warangal, India
| | - András Táncsics
- Department of Molecular Ecology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary.
| |
Collapse
|
5
|
Miri S, Rasooli A, Brar SK, Rouissi T, Martel R. Biodegradation of p-xylene-a comparison of three psychrophilic Pseudomonas strains through the lens of gene expression. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:21465-21479. [PMID: 34762239 DOI: 10.1007/s11356-021-17387-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 11/02/2021] [Indexed: 05/21/2023]
Abstract
p-Xylene is considered a recalcitrant compound despite showing a similar aromatic structure to other BTEXs (benzene, toluene, ethylbenzene, xylene isomers). This study evaluated the p-xylene biodegradation potential of three psychrophilic Pseudomonas strains (Pseudomonas putida S2TR-01, Pseudomonas synxantha S2TR-20, and Pseudomonas azotoformans S2TR-09). The p-xylene metabolism-related catabolic genes (xylM, xylA, and xylE) and the corresponding regulatory genes (xylR and xylS) of the selected strains were investigated. The biodegradation results showed that the P. azotoformans S2TR-09 strain was the only strain that was able to degrade 200 mg/L p-xylene after 60 h at 15 °C. The gene expression study indicated that the xylE (encoding catechol 2,3-dioxygenase) gene represents the bottleneck in p-xylene biodegradation. A lack of xylE expression leads to the accumulation of intermediates and the inhibition of biomass production and complete carbon recovery. The activity of xylene monooxygenase and catechol 2,3-dioxygenase was significantly increased in P. azotoformans S2TR-09 (0.5 and 0.08 U/mg, respectively) in the presence of p-xylene. The expression of the ring cleavage enzyme and its encoding gene (xylE) and activator (xylS) explained the differences in the p-xylene metabolism of the isolated bacteria and can be used as a novel biomarker of efficient p-xylene biodegradation at contaminated sites.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Azadeh Rasooli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON, M3J 1P3, Canada.
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
6
|
Miri S, Davoodi SM, Robert T, Brar SK, Martel R, Rouissi T. Enzymatic biodegradation of highly p-xylene contaminated soil using cold-active enzymes: A soil column study. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127099. [PMID: 34523486 DOI: 10.1016/j.jhazmat.2021.127099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/24/2021] [Accepted: 08/29/2021] [Indexed: 06/13/2023]
Abstract
Enzymatic bioremediation is a sustainable and environment-friendly method for the clean-up of contaminated soil and water. In the present study, enzymatic bioremediation was designed using cold-active enzymes (psychrozymes) which catalyze oxidation steps of p-xylene biodegradation in highly contaminated soil (initial concentration of 13,000 mg/kg). The enzymes were obtained via co-culture of two psychrophilic Pseudomonas strains and characterized by kinetic studies and tandem LC-MS/MS. To mimic in situ application of enzyme mixture, bioremediation of p-xylene contaminated soil was carried out in soil column (140 mL) tests with the injection (3 pore volume) of different concentrations of enzyme cocktails (X, X/5, and X/10). Enzyme cocktail in X concentration contained about 10 U/mL of xylene monooxygenase (XMO) and 20 U/mL of catechol 2, 3 dioxygenases (C2,3D). X/5 and X/10 correspond to 5x and 10x dilution of enzyme cocktail respectively. The results showed that around 92-94% p-xylene removal was achieved in the treated soil column with enzyme concentration X, X/5 after second enzyme injection. While the p-xylene removal rate obtained by X/10 concentration of enzyme was less than 30% and near to untreated soil column (22.2%). The analysis of microbial diversity and biotoxicity assay (root elongation and seed germination) confirmed the advantage of using enzymes as a green and environmentally friendly approach for decontamination of pollutants with minimal or even positive effects on microbial community and also enrichment of soil after treatment.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Thomas Robert
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
7
|
Priyanka U, Lens PN. Enhanced removal of hydrocarbons BTX by light-driven Aspergillus niger ZnS nanobiohybrids. Enzyme Microb Technol 2022; 157:110020. [DOI: 10.1016/j.enzmictec.2022.110020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/31/2022] [Accepted: 02/18/2022] [Indexed: 12/22/2022]
|
8
|
Szentgyörgyi F, Benedek T, Fekete D, Táncsics A, Harkai P, Kriszt B. Development of a bacterial consortium from Variovorax paradoxus and Pseudomonas veronii isolates applicable in the removal of BTEX. AMB Express 2022; 12:4. [PMID: 35075552 PMCID: PMC8787013 DOI: 10.1186/s13568-022-01349-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 01/16/2022] [Indexed: 12/07/2022] Open
Abstract
In this study, we report on the development of a novel bacterial consortium, consisting of Variovorax paradoxus and Pseudomonas veronii isolates, applicable in the biodegradation of all six BTEX compounds (benzene, toluene, ethylbenzene, o-, m- and p-xylene) and the bioremediation of contaminated sites. The co-cultivability of the selected bacterial isolates was determined in nutrient-rich medium, as well as in BTEX amended mineral salts solution using Terminal Restriction Fragment Length Polymorphism (T-RFLP) and CFU determinations. BTEX biodegradation capacity of the two-strain consortium was assessed in mineral salts solution, where a series of BTEX depletions and supplementations occurred, as well as in a real, BTEX polluted environmental sample (contaminated groundwater) in the presence of the autochthonous bacterial community. The obtained results indicated that the developed bacterial consortium is very efficient in BTEX biodegradation. Under laboratory conditions, the acclimatized bacterial consortium completely degraded the BTEX mixture with a concentration as high as 20 mg l-1 in a mineral salt medium within a short span of 6 h. Close to in situ groundwater conditions (incubated at 15 °C under static conditions in the absence of light), groundwater microcosms containing the autochthonous bacterial community inoculated with the developed bacterial consortium showed more efficient toluene, o-, m-and p-xylene biodegradation capacity than microcosms containing solely the native microbial population originally found in the groundwater. In the inoculated microcosms, after 115 h of incubation the concentration (~ 1.7 mg l-1 each) of o-, m- and p-xylene decreased to zero, whereas in the non-inoculated microcosms the concentration of xylene isomers was still 0.2, 0.3 and 0.3 mg l-1, respectively. The allochthonous bioaugmentation of the contaminated groundwater with the obtained inoculant was successful and manifested in a better BTEX degradation rate. Our results suggest that the obtained bacterial consortium can be a new, stable and efficient bioremediation agent applicable in the synergistic elimination of BTEX compounds from contaminated sites.
Collapse
|
9
|
Miri S, Perez JAE, Brar SK, Rouissi T, Martel R. Sustainable production and co-immobilization of cold-active enzymes from Pseudomonas sp. for BTEX biodegradation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117678. [PMID: 34380234 DOI: 10.1016/j.envpol.2021.117678] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/13/2021] [Accepted: 06/27/2021] [Indexed: 05/09/2023]
Abstract
Toluene/o-Xylene Monooxygenase (ToMO) is equipped with a broad spectrum of aromatic substrate specificity (such as BTEX; benzene, toluene, ethylbenzene, and isomers of xylenes). TOMO has can hydroxylate more than a single position of aromatic rings in two consecutive monooxygenation reactions. Catechol 1,2-dioxygenase (C1,2D) is an iron-containing enzyme able to cleave the ring of catechol (the converted product from ToMO) for complete detoxification of BTEX. In this study, cold-active ToMO and C1,2D were produced using newly isolated psychrophilic Pseudomonas S2TR-14 in the minimal salt medium supplemented with crustacean waste and different concentrations of used motor oil (0.2-2% (v/v)). Crude ToMO and C1,2D were immobilized into micro/nano biochar-chitosan matrices and used for BTEX biodegradation. The results showed that the highest enzyme production (12 U/mg for ToMO and 22 U/mg for C1,2D) was achieved at the presence of 0.5% v/v used motor oil compared to the control group without motor oil (0.07 and 0.06 U/mg). High immobilization yield was achieved due to covalent bonding of ToMO (92.26% for micro matrix and 77.20% for nano matrix) and C1,2D (87.57% for micro matrix and 74.79% for nano matrix) with matrices. FTIR spectra confirmed the immobilization of enzymes on the surface of microbiochar and nanobiochar-chitosan matrices as proper support. The immobilization increased the storage stability of the enzymes with more than 50% residual activity after 30 days at 4 ± 1 °C, while the free form of enzymes had less than 10% of its activity. Immobilized enzymes degraded more than 80% of BTEX (~200 mg/L in groundwater and ~10,000 mg/kg in soil) at 10 ± 1 °C in groundwater and soil. Therefore, integrated use of microbiochar and nanobiochar with chitosan for co-immobilization of ToMO and C1,2D can be a potential way to remove petroleum hydrocarbons with higher efficiency from contaminated groundwater and soil.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Jose Alberto Espejel Perez
- Department of Chemical Sciences, University La Salle Mexico, 45 Benjamin Franklin Cuauthmoc, Mexico City, ZP 06140, Mexico
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada; Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada.
| | - Tarek Rouissi
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| | - Richard Martel
- Institut National de La Recherche Scientifique, Centre-Eau, Terre et Environnement, 490, Rue de La Couronne, Québec, G1K 9A9, Canada
| |
Collapse
|
10
|
Miri S, Davoodi SM, Karimi Darvanjooghi MH, Brar SK, Rouissi T, Martel R. Precision modelling of co-metabolic biodegradation of recalcitrant aromatic hydrocarbons in conjunction with experimental data. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Roy R, Ray S, Chowdhury A, Anand R. Tunable Multiplexed Whole-Cell Biosensors as Environmental Diagnostics for ppb-Level Detection of Aromatic Pollutants. ACS Sens 2021; 6:1933-1939. [PMID: 33973468 DOI: 10.1021/acssensors.1c00329] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Aromatics such as phenols, benzene, and toluene are carcinogenic xenobiotics which are known to pollute water resources. By employing synthetic biology approaches combined with a structure-guided design, we created a tunable array of whole-cell biosensors (WCBs). The MopR genetic system that has the natural ability to sense and degrade phenol was adapted to detect phenol down to ∼1 ppb, making this sensor capable of directly detecting phenol in permissible limits in drinking water. Importantly, by using a single WCB design, we engineered mutations into the MopR gene that enabled generation of a battery of sensors for a wide array of pollutants. The engineered WCBs were able to sense inert compounds like benzene and xylene which lack active functional groups, without any loss in sensitivity. Overall, this universal programmable biosensor platform can be used to create WCBs that can be deployed on field for rapid testing and screening of suitable drinking water sources.
Collapse
Affiliation(s)
- Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Shamayeeta Ray
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Arindam Chowdhury
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay Powai, Mumbai 400076, India
- DBT-Welcome Trust India Alliance Senior Fellow, Mumbai 400076, India
| |
Collapse
|
12
|
Miri S, Davoodi SM, Brar SK, Rouissi T, Sheng Y, Martel R. Psychrozymes as novel tools to biodegrade p-xylene and potential use for contaminated groundwater in the cold climate. BIORESOURCE TECHNOLOGY 2021; 321:124464. [PMID: 33302008 DOI: 10.1016/j.biortech.2020.124464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 11/24/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Sites contaminated by petroleum hydrocarbons in cold-climate regions have recently received significant attention due to their sensitive ecosystem and human health impacts. Two cold-adapted pseudomonas strains were isolated from contaminated groundwater and soil. As xylene monooxygenase from Pseudomonas synxantha S2TR-26 and catechol 2,3-dioxygenase from Pseudomonas mandelii S2TR-08, have a matching end product, they acted in symphony to degrade p-xylene. Their unique thermodynamic and kinetic behavior permits them to achieve rapid degradation of p-xylene at low temperatures (<15 °C). The results showed that the sequential action led to the conversion of 200 mg/l of p-xylene within 72 h and complete degradation after 120 h. The cocktail of these enzymes with a ratio of 1:1.5 (xylene monooxygenase: catechol 2, 3-dioxygenase) confirmed the complete degradation of p-xylene within 48 h at 15 °C. This approach will allow efficient biodegradation of p-xylene to minimize the bioremediation duration in cold-climate regions.
Collapse
Affiliation(s)
- Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Seyyed Mohammadreza Davoodi
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada; INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Tarek Rouissi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Yi Sheng
- Department of Biology, Life Science, York University, North York, Toronto, Ontario Canada.
| | - Richard Martel
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| |
Collapse
|
13
|
Metagenome Analysis of a Hydrocarbon-Degrading Bacterial Consortium Reveals the Specific Roles of BTEX Biodegraders. Genes (Basel) 2021; 12:genes12010098. [PMID: 33466668 PMCID: PMC7828808 DOI: 10.3390/genes12010098] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/17/2022] Open
Abstract
Environmental contamination by petroleum hydrocarbons is of concern due to the carcinogenicity and neurotoxicity of these compounds. Successful bioremediation of organic contaminants requires bacterial populations with degradative capacity for these contaminants. Through successive enrichment of microorganisms from a petroleum-contaminated soil using diesel fuel as the sole carbon and energy source, we successfully isolated a bacterial consortium that can degrade diesel fuel hydrocarbons. Metagenome analysis revealed the specific roles of different microbial populations involved in the degradation of benzene, toluene, ethylbenzene and xylene (BTEX), and the metabolic pathways involved in these reactions. One hundred and five putative coding DNA sequences were identified as responsible for both the activation of BTEX and central metabolism (ring-cleavage) of catechol and alkylcatechols during BTEX degradation. The majority of the Coding DNA sequences (CDSs) were affiliated to Acidocella, which was also the dominant bacterial genus in the consortium. The inoculation of diesel fuel contaminated soils with the consortium resulted in approximately 70% hydrocarbon biodegradation, indicating the potential of the consortium for environmental remediation of petroleum hydrocarbons.
Collapse
|
14
|
Hocinat A, Boudemagh A, Ali-Khodja H, Medjemadj M. Aerobic degradation of BTEX compounds by Streptomyces species isolated from activated sludge and agricultural soils. Arch Microbiol 2020; 202:2481-2492. [PMID: 32617605 DOI: 10.1007/s00203-020-01970-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 04/28/2020] [Accepted: 06/24/2020] [Indexed: 10/23/2022]
Abstract
In this study, we tested the ability of Streptomyces to use for their growth benzene, toluene, ethylbenzene, and o-, m-, p-xylenes as sole source of carbon and energy. These bacteria were isolated from agricultural soils and activated sludge samples from a wastewater treatment plant. The results show that Streptomyces are capable of degrading at least one of the BTEX compounds. Among them, 3 isolates from activated sludge called (U, F and V) and a single isolate (SA13) isolated from an agricultural soil, can use as the sole source of carbon and energy, all of these BTEX compounds at concentrations of 1500 mg/L. Based on the analysis of the 16S rRNA gene sequence, two active strains were identified as Streptomyces fimicarius, Streptomyces cavourensis, Streptomyces flavogriseus and Streptomyces pratensis. These strains can be excellent candidates for the bioremediation of the telluric and aquatic sites polluted by these xenobiotics.
Collapse
Affiliation(s)
- Amira Hocinat
- Faculté Des Sciences de La Nature Et de La Vie, Département de Microbiologie, Université Frères Mentouri-Constantine 1, 25017, Constantine, Algeria
| | - Allaoueddine Boudemagh
- Faculté Des Sciences de La Nature Et de La Vie, Département de Microbiologie, Université Frères Mentouri-Constantine 1, 25017, Constantine, Algeria
| | - Hocine Ali-Khodja
- Laboratoire de Pollution Et de Traitement Des Eaux, Faculté Des Sciences Exactes, Département de Chimie, Université Frères Mentouri-Constantine 1, Constantine, Algeria.
| | - Meissa Medjemadj
- Faculté Des Sciences de La Nature Et de La Vie, Département de Microbiologie, Université Frères Mentouri-Constantine 1, 25017, Constantine, Algeria
| |
Collapse
|
15
|
Viggor S, Jõesaar M, Soares-Castro P, Ilmjärv T, Santos PM, Kapley A, Kivisaar M. Microbial Metabolic Potential of Phenol Degradation in Wastewater Treatment Plant of Crude Oil Refinery: Analysis of Metagenomes and Characterization of Isolates. Microorganisms 2020; 8:E652. [PMID: 32365784 PMCID: PMC7285258 DOI: 10.3390/microorganisms8050652] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/24/2020] [Accepted: 04/28/2020] [Indexed: 01/30/2023] Open
Abstract
The drilling, processing and transportation of oil are the main sources of pollution in water and soil. The current work analyzes the microbial diversity and aromatic compounds degradation potential in the metagenomes of communities in the wastewater treatment plant (WWTP) of a crude oil refinery. By focusing on the degradation of phenol, we observed the involvement of diverse indigenous microbial communities at different steps of the WWTP. The anaerobic bacterial and archaeal genera were replaced by aerobic and facultative anaerobic bacteria through the biological treatment processes. The phyla Proteobacteria, Bacteroidetes and Planctomycetes were dominating at different stages of the treatment. Most of the established protein sequences of the phenol degradation key enzymes belonged to bacteria from the class Alphaproteobacteria. From 35 isolated strains, 14 were able to grow on aromatic compounds, whereas several phenolic compound-degrading strains also degraded aliphatic hydrocarbons. Two strains, Acinetobacter venetianus ICP1 and Pseudomonas oleovorans ICTN13, were able to degrade various aromatic and aliphatic pollutants and were further characterized by whole genome sequencing and cultivation experiments in the presence of phenol to ascertain their metabolic capacity in phenol degradation. When grown alone, the intermediates of catechol degradation, the meta or ortho pathways, accumulated into the growth environment of these strains. In the mixed cultures of the strains ICP1 and ICTN13, phenol was degraded via cooperation, in which the strain ICP1 was responsible for the adherence of cells and ICTN13 diminished the accumulation of toxic intermediates.
Collapse
Affiliation(s)
- Signe Viggor
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro Soares-Castro
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Tanel Ilmjärv
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| | - Pedro M. Santos
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (P.S.-C.); (P.M.S.)
| | - Atya Kapley
- Director’s Research Division, CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nehru Marg, Nagpur 440 020, India;
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, 23 Riia Street, 51010 Tartu, Estonia; (M.J.); (T.I.); (M.K.)
| |
Collapse
|
16
|
Safari M, Yakhchali B, Shariati J V. Comprehensive genomic analysis of an indigenous Pseudomonas pseudoalcaligenes degrading phenolic compounds. Sci Rep 2019; 9:12736. [PMID: 31484962 PMCID: PMC6726644 DOI: 10.1038/s41598-019-49048-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 08/15/2019] [Indexed: 11/09/2022] Open
Abstract
Environmental contamination with aromatic compounds is a universal challenge. Aromatic-degrading microorganisms isolated from the same or similar polluted environments seem to be more suitable for bioremediation. Moreover, microorganisms adapted to contaminated environments are able to use toxic compounds as the sole sources of carbon and energy. An indigenous strain of Pseudomonas, isolated from the Mahshahr Petrochemical plant in the Khuzestan province, southwest of Iran, was studied genetically. It was characterized as a novel Gram-negative, aerobic, halotolerant, rod-shaped bacterium designated Pseudomonas YKJ, which was resistant to chloramphenicol and ampicillin. Genome of the strain was completely sequenced using Illumina technology to identify its genetic characteristics. MLST analysis revealed that the YKJ strain belongs to the genus Pseudomonas indicating the highest sequence similarity with Pseudomonas pseudoalcaligenes strain CECT 5344 (99% identity). Core- and pan-genome analysis indicated that P. pseudoalcaligenes contains 1,671 core and 3,935 unique genes for coding DNA sequences. The metabolic and degradation pathways for aromatic pollutants were investigated using the NCBI and KEGG databases. Genomic and experimental analyses showed that the YKJ strain is able to degrade certain aromatic compounds including bisphenol A, phenol, benzoate, styrene, xylene, benzene and chlorobenzene. Moreover, antibiotic resistance and chemotaxis properties of the YKJ strain were found to be controlled by two-component regulatory systems.
Collapse
Affiliation(s)
- Maryam Safari
- Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran.,Department of Biology, Faculty of Science, Nour Danesh Institute of Higher Education, Isfahan Province, Meymeh, Danesh Blvd, I. R, Iran
| | - Bagher Yakhchali
- Department of Energy and Environmental Biotechnology, Institute of Industrial and Environmental Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran.
| | - Vahid Shariati J
- Department of Plant Molecular Biotechnology, Institute of Agricultural Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, I. R., Iran
| |
Collapse
|
17
|
Qi W, Long J, Feng C, Feng Y, Cheng D, Liu Y, Xue J, Li Z. Fe 3+ enhanced degradation of oxytetracycline in water by pseudomonas. WATER RESEARCH 2019; 160:361-370. [PMID: 31158618 DOI: 10.1016/j.watres.2019.05.058] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/09/2019] [Accepted: 05/18/2019] [Indexed: 05/26/2023]
Abstract
The application and fate of antibiotics are closely related to human health and the ecological balance, which has gradually aroused the widespread global concerns. Long-term antibiotic residues can easily induce antibiotic resistance and antibiotic resistance genes (ARGs) in the environment. Although many studies have investigated the metabolic pathways of biosynthesis or degradation of oxytetracycline (OTC) and its influencing factors under laboratory or controlled conditions, the understanding of OTC degradation pathways and influencing factors in the environment is still poor. In the present study, the role of Pseudomonas (T4) in OTC biodegradation were investigated with different carbon sources, metal ions, substrate concentrations, temperatures, and pH values, as well as the temporal changes in the relative abundance of OTC ARGs. It was found that OTC could be degraded by T4 as a sole carbon source. Comparison with Cu2+, the addition of Fe3+ could significantly promote the growth of T4, and then increased the OTC degradation percentage to 65.3%. The initial concentration of OTC, temperature, and pH had significant impacts on OTC degradation. At the initial OTC concentration of 50 mg L-1, the percentage degradation of OTC by T4 could reach 81.0% at the presence of Fe3+, and at 40 °C and pH = 7. Common tetracycline ARGs were not found during the OTC degradation by T4 in the present study. The eight main putative OTC degradation byproducts were identified by ultra-high definition accurate-mass quadrupole time-of-flight tandem mass spectrometry (QTOF/MS). Six different reaction types and seven possible degradation pathways were proposed, including enol-ketone conversion, hydroxylation, dehydration, deamination, demethylation and decarbonylation. Under optimal conditions, the OTC degradation percentages by T4 could reach to 88.2%, 91.6% and 92.0% in pond water, fish wastewater and industrial wastewater, respectively. These results demonstrate the high effectiveness of T4 at the presence of Fe3+ for the enhanced biodegradation of OTC in water environment, without resulting in the occurrence of ARGs. This has important implications for the removal of OTC from aquatic environments by the technology proposed from this study.
Collapse
Affiliation(s)
- Weining Qi
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jian Long
- Key Laboratory for Information System of Mountainous Areas and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang, 550001, PR China
| | - Changqing Feng
- College of Life Science, Shanxi Normal University, Linfen, 041004, PR China; Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yao Feng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Dengmiao Cheng
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yuanwang Liu
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jianming Xue
- College of Biology and the Environment, Nanjing Forestry University, Nanjing, 210037, PR China; Scion, Private Bag 29237, Christchurch, New Zealand
| | - Zhaojun Li
- Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, China-New Zealand Joint Laboratory for Soil Molecular Ecology, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| |
Collapse
|
18
|
Changes in bacterial diversity and catabolic gene abundance during the removal of dimethylphenol isomers in laboratory-scale constructed wetlands. Appl Microbiol Biotechnol 2018; 103:505-517. [PMID: 30415426 DOI: 10.1007/s00253-018-9479-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 10/19/2018] [Accepted: 10/23/2018] [Indexed: 10/27/2022]
Abstract
Constructed wetlands (CWs) are well-established wastewater treatment technologies and applied for bioremediation of contaminated water. Despite the optimal performance of CWs, the understanding of the bacterial processes in the rhizosphere, where mainly microbial degradation processes take place, is still limited. In the present study, laboratory-scale CWs planted with Juncus effusus and running under controlled conditions were studied in order to evaluate removal efficiency of dimethylphenols (DMPs), also in comparison to an unplanted bed. Next to removal rates, the bacterial community structure, diversity, and distribution, their correlation with physiochemical parameters, and abundance of the phenol hydroxylase gene were determined. As a result, better removal performance of DMP isomers (3,4-, 3,5-, and 2,6-DMP added as singles compounds or in mixtures) and ammonium loads, together with a higher diversity index, bacterial number, and phenol hydroxylase gene abundance in Juncus effusus CW in comparison with the non-planted CW, indicates a clear rhizosphere effect in the experimental CWs. An enhancement in the DMP removal and the recovery of the phenol hydroxylase gene were found during the fed with the DMP mixture. In addition, the shift of bacterial community in CWs was found to be DMP isomer dependent. Positive correlations were found between the bacteria harboring the phenol hydroxylase gene and communities present with 3,4-DMP and 3,5-DMP isomers, but not with the community developed with 2,6-DMP. These results indicate that CWs are highly dynamic ecosystems with rapid changes in bacterial communities harboring functional catabolic genes.
Collapse
|
19
|
Benedek T, Szentgyörgyi F, Szabó I, Kriszt B, Révész F, Radó J, Maróti G, Táncsics A. Aerobic and oxygen-limited enrichment of BTEX-degrading biofilm bacteria: dominance of Malikia versus Acidovorax species. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:32178-32195. [PMID: 30220065 DOI: 10.1007/s11356-018-3096-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/28/2018] [Indexed: 05/14/2023]
Abstract
Due to their high resistance against environmental challenges, bacterial biofilms are ubiquitous and are frequently associated with undesired phenomena in environmental industry (e. g. biofouling). However, because of the high phylogenetic and functional diversity, bacterial biofilms are important sources of biotechnologically relevant microorganisms, e.g. those showing bioremediation potential. In our previous work, the high phylogenetic and metabolic diversity of a clogging biofilm, developed in a simple aromatic hydrocarbon (BTEX)-contaminated groundwater well was uncovered. The determination of relationships between different groups of biofilm bacteria and certain metabolic traits has been omitted so far. Therefore, by setting up new biofilm-based enrichment microcosms, the research goal of the present study was to identify the aerobic/hypoxic BTEX-degrading and/or prolific biofilm-forming bacteria. The initial bacterial community composition as well as temporal dynamics due to the selective enrichment has been determined. The obtained results indicated that the concentration of dissolved oxygen may be a strong selective force on the evolution and final structure of microbial communities, developed in hydrocarbon-contaminated environments. Accordingly, members of the genus Malikia proved to be the most dominant community members of the aerobic BTEX-degrading enrichments. Acidovorax spp. dominated the oxygen-limited/hypoxic setup. During the study, a strain collection of 23 different bacterial species was obtained. Non-pathogenic members of this strain collection, with outstanding biodegradation (e.g. Pseudomonas, Variovorax isolates) and biofilm-forming potential (e.g. Rhizobium), may potentially be applied in the development of biofilm-based semipermeable reactive biobarriers.
Collapse
Affiliation(s)
- Tibor Benedek
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary.
| | - Flóra Szentgyörgyi
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Fruzsina Révész
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Júlia Radó
- Department of Environmental Safety and Ecotoxicology, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| | - Gergely Maróti
- Institute of Plant Biology, Biological Research Centre of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary
- Faculty of Agricultural and Economics Studies, Tessedik Campus, Szent István University, Szabadság u. 1-3, Szarvas, H-5530, Hungary
| | - András Táncsics
- Regional University Centre of Excellence in Environmental Industry, Szent István University, Páter K. u. 1, Gödöllő, H-2100, Hungary
| |
Collapse
|
20
|
Wang J, Shen X, Wang J, Yang Y, Yuan Q, Yan Y. Exploring the Promiscuity of Phenol Hydroxylase from Pseudomonas stutzeri OX1 for the Biosynthesis of Phenolic Compounds. ACS Synth Biol 2018; 7:1238-1243. [PMID: 29659242 DOI: 10.1021/acssynbio.8b00067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Enzyme promiscuity plays an important role in developing biosynthetic pathways for novel target products. Phenol hydroxylase (PH) from Pseudomonas stutzeri OX1 is capable of ortho-hydroxylation of phenol and cresol isomers into counterpart catechols. A small ferredoxin-like protein PHQ was clustered together with the ph gene cluster in the genome of P. stutzeri OX1, and its function was not known. In this study, we found that the existence of PHQ has a promotion effect on the catalytic efficiency of PH. Then, we tested the substrate range of PH using nine different non-natural substrates. We found that PH was a promiscuous hydroxylase that could catalyze ortho-hydroxylation of several non-natural substrates, including catechol, 4-hydroxybenzoic acid and resorcinol. On this basis, linking the catechol biosynthetic pathway with the hydroxylation reaction catalyzed by PH enabled construction of a novel biosynthetic pathway for the synthesis of pyrogallol. This work not only characterized a well-performed PH, but also provided a promising hydroxylation platform for the production of high-value phenolic compounds.
Collapse
Affiliation(s)
- Jia Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jian Wang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Yaping Yang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| | - Qipeng Yuan
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, The University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
21
|
Marchesi M, Alberti L, Shouakar-Stash O, Pietrini I, de Ferra F, Carpani G, Aravena R, Franzetti A, Stella T. 37Cl-compound specific isotope analysis and assessment of functional genes for monitoring monochlorobenzene (MCB) biodegradation under aerobic conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:784-793. [PMID: 29161603 DOI: 10.1016/j.scitotenv.2017.11.150] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 11/13/2017] [Accepted: 11/14/2017] [Indexed: 06/07/2023]
Abstract
A laboratory approach was adopted in this study to explore the potential of 37Cl-CSIA in combination with 13C-CSIA and Biological Molecular Tools (BMTs) to estimate the occurrence of monochloroenzene (MCB) aerobic biodegradation. A new analytical method for 37Cl-CSIA of MCB was developed in this study. This methodology using a GC-IRMS allowed to determine δ37Cl values within an internal error of ±0.3‰. Samples from a heavily MCB contaminated site were collected and MCB aerobic biodegradation microcosms with indigenous cultures in natural and enhanced conditions were set up. The microcosms data show a negligible fractionation for 13C associated to MCB mass decrease of >95% over the incubation time. Conversely, an enrichment factor of -0.6±0.1‰ was estimated for 37Cl, which is a reflection of a secondary isotope effect. Moreover, the dual isotope approach showed a pattern for aerobic degradation which differ from the theoretical trend for reductive dehalogenation. Quantitative Polymerase Chain Reaction (qPCR) results showed a significant increase in todC gene copy number with respect to its initial levels for both natural attenuation and biostimulated microcosms, suggesting its involvement in the MCB aerobic degradation, whereas phe gene copy number increased only in the biostimulated ones. Indeed, 37Cl fractionation in combination with the dual carbon‑chlorine isotope approach and the todC gene copy number represent valuable indicators for a qualitative assessment of MCB aerobic biodegradation in the field.
Collapse
Affiliation(s)
- Massimo Marchesi
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Luca Alberti
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy.
| | - Orfan Shouakar-Stash
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada; Isotope Tracer Technologies Inc., Waterloo N2V 1Z5, Ontario, Canada
| | - Ilaria Pietrini
- Politecnico di Milano, Department of Civil and Environmental Engineering, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Francesca de Ferra
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Giovanna Carpani
- Research Center for Non-Conventional Energy, Istituto Eni Donegani Environmental Technologies, via Maritano 26, 20097 San Donato Milanese, Milan, Italy
| | - Ramon Aravena
- Department of Earth and Environmental Sciences, University of Waterloo, 200 University Ave. West, Waterloo N2L 3G1, Canada
| | - Andrea Franzetti
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| | - Tatiana Stella
- University of Milano-Bicocca, Department of Earth and Environmental Sciences, Piazza della Scienza, 1, 20126 Milan, Italy
| |
Collapse
|
22
|
Omrani R, Spini G, Puglisi E, Saidane D. Modulation of microbial consortia enriched from different polluted environments during petroleum biodegradation. Biodegradation 2018; 29:187-209. [DOI: 10.1007/s10532-018-9823-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/23/2018] [Indexed: 02/06/2023]
|
23
|
Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Int J Biol Macromol 2018; 106:1107-1114. [DOI: 10.1016/j.ijbiomac.2017.08.113] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/17/2017] [Accepted: 08/18/2017] [Indexed: 11/21/2022]
|
24
|
Aerobic degradation of crude oil by microorganisms in soils from four geographic regions of China. Sci Rep 2017; 7:14856. [PMID: 29093536 PMCID: PMC5665864 DOI: 10.1038/s41598-017-14032-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 10/05/2017] [Indexed: 11/13/2022] Open
Abstract
A microcosm experiment was conducted for 112 d by spiking petroleum hydrocarbons into soils from four regions of China. Molecular analyses of soils from microcosms revealed changes in taxonomic diversity and oil catabolic genes of microbial communities. Degradation of total petroleum hydrocarbons (TPHs) in Sand from the Bohai Sea (SS) and Northeast China (NE) exhibited greater microbial mineralization than those of the Dagang Oilfield (DG) and Xiamen (XM). High-throughput sequencing and denaturing gradient gel electrophoresis (DGGE) profiles demonstrated an obvious reconstruction of the bacterial community in all soils. The dominant phylum of the XM with clay soil texture was Firmicutes instead of Proteobacteria in others (DG, SS, and NE) with silty or sandy soil texture. Abundances of alkane monooxygenase gene AlkB increased by 10- to 1000-fold, relative to initial values, and were positively correlated with rates of degradation of TPHs and n-alkanes C13-C30. Abundances of naphthalene dioxygenase gene Nah were positively correlated with degradation of naphthalene and total tricyclic PAHs. Redundancy analysis (RDA) showed that abiotic process derived from geographical heterogeneity was the primary effect on bioremediation of soils contaminated with oil. The optimization of abiotic and biotic factors should be the focus of future bioremediation of oil contaminated soil.
Collapse
|
25
|
Liu Q, Tang J, Liu X, Song B, Zhen M, Ashbolt N. Response of microbial community and catabolic genes to simulated petroleum hydrocarbon spills in soils/sediments from different geographic locations. J Appl Microbiol 2017; 123:875-885. [DOI: 10.1111/jam.13549] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/30/2017] [Accepted: 07/12/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Q. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - J. Tang
- College of Environmental Science and Engineering; Nankai University; Tianjin China
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education); Tianjin China
- Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation; Tianjin China
| | - X. Liu
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - B. Song
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - M. Zhen
- College of Environmental Science and Engineering; Nankai University; Tianjin China
| | - N.J. Ashbolt
- School of Public Health; University of Alberta; Edmonton AB Canada
| |
Collapse
|
26
|
Karich A, Ullrich R, Scheibner K, Hofrichter M. Fungal Unspecific Peroxygenases Oxidize the Majority of Organic EPA Priority Pollutants. Front Microbiol 2017; 8:1463. [PMID: 28848501 PMCID: PMC5552789 DOI: 10.3389/fmicb.2017.01463] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 07/20/2017] [Indexed: 11/18/2022] Open
Abstract
Unspecific peroxygenases (UPOs) are secreted fungal enzymes with promiscuity for oxygen transfer and oxidation reactions. Functionally, they represent hybrids of P450 monooxygenases and heme peroxidases; phylogenetically they belong to the family of heme-thiolate peroxidases. Two UPOs from the basidiomycetous fungi Agrocybe aegerita (AaeUPO) and Marasmius rotula (MroUPO) converted 35 out of 40 compounds listed as EPA priority pollutants, including chlorinated benzenes and their derivatives, halogenated biphenyl ethers, nitroaromatic compounds, polycyclic aromatic hydrocarbons (PAHs) and phthalic acid derivatives. These oxygenations and oxidations resulted in diverse products and—if at all—were limited for three reasons: (i) steric hindrance caused by multiple substitutions or bulkiness of the compound as such (e.g., hexachlorobenzene or large PAHs), (ii) strong inactivation of aromatic rings (e.g., nitrobenzene), and (iii) low water solubility (e.g., complex arenes). The general outcome of our study is that UPOs can be considered as extracellular counterparts of intracellular monooxygenases, both with respect to catalyzed reactions and catalytic versatility. Therefore, they should be taken into consideration as a relevant biocatalytic detoxification and biodegradation tool used by fungi when confronted with toxins, xenobiotics and pollutants in their natural environments.
Collapse
Affiliation(s)
- Alexander Karich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - René Ullrich
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| | - Katrin Scheibner
- Enzyme Technology Unit, Brandenburg University of TechnologyCottbus, Germany
| | - Martin Hofrichter
- Department of Bio-and Environmental Sciences, Technische Universität Dresden-International Institute ZittauZittau, Germany
| |
Collapse
|
27
|
Benzene Degradation by a Variovorax Species within a Coal Tar-Contaminated Groundwater Microbial Community. Appl Environ Microbiol 2017; 83:AEM.02658-16. [PMID: 27913419 DOI: 10.1128/aem.02658-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 11/25/2016] [Indexed: 11/20/2022] Open
Abstract
Investigations of environmental microbial communities are crucial for the discovery of populations capable of degrading hazardous compounds and may lead to improved bioremediation strategies. The goal of this study was to identify microorganisms responsible for aerobic benzene degradation in coal tar-contaminated groundwater. Benzene degradation was monitored in laboratory incubations of well waters using gas chromatography mass spectrometry (GC-MS). Stable isotope probing (SIP) experiments using [13C]benzene enabled us to obtain 13C-labled community DNA. From this, 16S rRNA clone libraries identified Gammaproteobacteria and Betaproteobacteria as the active benzene-metabolizing microbial populations. Subsequent cultivation experiments yielded nine bacterial isolates that grew in the presence of benzene; five were confirmed in laboratory cultures to grow on benzene. The isolated benzene-degrading organisms were genotypically similar (>97% 16S rRNA gene nucleotide identities) to the organisms identified in SIP experiments. One isolate, Variovorax MAK3, was further investigated for the expression of a putative aromatic ring-hydroxylating dioxygenase (RHD) hypothesized to be involved in benzene degradation. Microcosm experiments using Variovorax MAK3 revealed a 10-fold increase in RHD (Vapar_5383) expression, establishing a link between this gene and benzene degradation. Furthermore, the addition of Variovorax MAK3 to microcosms prepared from site waters accelerated community benzene degradation and correspondingly increased RHD gene expression. In microcosms using uninoculated groundwater, quantitative (q)PCR assays (with 16S rRNA and RDH genes) showed that Variovorax was present and responsive to added benzene. These data demonstrate how the convergence of cultivation-dependent and -independent techniques can boost understandings of active populations and functional genes in complex benzene-degrading microbial communities. IMPORTANCE Benzene is a human carcinogen whose presence in contaminated groundwater drives environmental cleanup efforts. Although the aerobic biodegradation of benzene has long been established, knowledge of the identity of the microorganisms in complex naturally occurring microbial communities responsible for benzene biodegradation has evaded scientific inquiry for many decades. Here, we applied a molecular biology technique known as stable isotope probing (SIP) to the microbial communities residing in contaminated groundwater samples to identify the community members active in benzene biodegradation. We complemented this approach by isolating and growing in the laboratory a bacterium representative of the bacteria found using SIP. Further characterization of the isolated bacterium enabled us to track the expression of a key gene that attacks benzene both in pure cultures of the bacterium and in the naturally occurring groundwater microbial community. This work advances information regarding the documentation of microbial processes, especially the populations and genes that contribute to bioremediation.
Collapse
|
28
|
Heinaru E, Naanuri E, Grünbach M, Jõesaar M, Heinaru A. Functional redundancy in phenol and toluene degradation in Pseudomonas stutzeri strains isolated from the Baltic Sea. Gene 2016; 589:90-98. [PMID: 27185632 DOI: 10.1016/j.gene.2016.05.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
In the present study we describe functional redundancy of bacterial multicomponent monooxygenases (toluene monooxygenase (TMO) and toluene/xylene monooxygenase (XylAM) of TOL pathway) and cooperative genetic regulation at the expression of the respective catabolic operons by touR and xylR encoded regulatory circuits in five phenol- and toluene-degrading Pseudomonas stutzeri strains. In these strains both toluene degradation pathways (TMO and Xyl) are active and induced by toluene and phenol. The whole genome sequence of the representative strain 2A20 revealed the presence of complete TMO- and Xyl-upper pathway operons together with two sets of lower catechol meta pathway operons, as well as phenol-degrading operon in a single 292,430bp contig. The much lower GC content and analysis of the predicted ORFs refer to the plasmid origin of the approximately 130kb region of this contig, containing the xyl, phe and tou genes. The deduced amino acid sequences of the TMO, XylA and the large subunit of phenol monooxygenase (LmPH) show 98-100% identity with the respective gene products of the strain Pseudomonas sp. OX1. In both strains 2A20 and OX1 the meta-cleavage pathways for catechol degradation are coded by two redundant operons (phe and xyl). We show that in the strain 2A20 TouR and XylR are activated by different effector molecules, phenol and toluene, respectively, and they both control transcription of the xyl upper, tou (TMO) and phe catabolic operons. Although the growth parameters of redundant strains did not show advantage at toluene biodegradation, the functional redundancy could provide better flexibility to the bacteria in environmental conditions.
Collapse
Affiliation(s)
- Eeva Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Eve Naanuri
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia.
| | - Maarja Grünbach
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Merike Jõesaar
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| | - Ain Heinaru
- Institute of Molecular and Cell Biology, Department of Genetics, University of Tartu, 23 Riia Street, Tartu 51010, Estonia
| |
Collapse
|
29
|
El-Sayed WS, Ibrahim MK, Ouf SA. Molecular characterization of the alpha subunit of multicomponent phenol hydroxylase from 4-chlorophenol-degrading Pseudomonas sp. strain PT3. J Microbiol 2014; 52:13-9. [DOI: 10.1007/s12275-014-3250-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 08/06/2013] [Accepted: 08/13/2013] [Indexed: 11/30/2022]
|
30
|
Singh R, Trivedi VD, Phale PS. Metabolic regulation and chromosomal localization of carbaryl degradation pathway in Pseudomonas sp. strains C4, C5 and C6. Arch Microbiol 2013; 195:521-35. [PMID: 23728496 DOI: 10.1007/s00203-013-0903-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Revised: 05/06/2013] [Accepted: 05/15/2013] [Indexed: 11/24/2022]
Abstract
Pseudomonas sp. strains C4, C5 and C6 degrade carbaryl (1-naphthyl N-methylcarbamate) via 1-naphthol, 1,2-dihydroxynaphthalene, salicylate and gentisate. Carbon source-dependent metabolic studies suggest that enzymes responsible for carbaryl degradation are probably organized into 'upper' (carbaryl to salicylate), 'middle' (salicylate to gentisate) and 'lower' (gentisate to TCA cycle) pathway. Carbaryl and 1-naphthol were found to induce all carbaryl pathway enzymes, while salicylate and gentisate induce middle and lower pathway enzymes. The strains were found to harbor plasmid(s), and carbaryl degradation property was found to be stable. Genes encoding enzymes of the degradative pathway such as 1-naphthol 2-hydroxylase, salicylaldehyde dehydrogenase, salicylate 5-hydroxylase and gentisate 1,2-dioxygenase were amplified from chromosomal DNA of these strains. The gene-specific PCR products were sequenced from strain C6, and phylogenetic tree was constructed. Southern hybridization and PCR analysis using gel eluted DNA as template supported the presence of pathway genes onto the chromosome and not on the plasmid(s).
Collapse
Affiliation(s)
- Randhir Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Powai, 400 076 Mumbai, India
| | | | | |
Collapse
|
31
|
Zhou H, Qu Y, Kong C, Shen E, Wang J, Zhang X, Ma Q, Zhou J. The key role of a non-active-site residue Met148 on the catalytic efficiency of meta-cleavage product hydrolase BphD. Appl Microbiol Biotechnol 2013; 97:10399-411. [PMID: 23494625 DOI: 10.1007/s00253-013-4814-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 02/21/2013] [Accepted: 02/26/2013] [Indexed: 11/26/2022]
Abstract
meta-Cleavage product (MCP) hydrolases (EC 3.7.1.9) can catalyze a specific C-C bond fission during the microbial aerobic degradation of aromatics. The previous studies on structure-function relationship of MCP hydrolases mainly focus on the active site residues by site-directed mutagenesis. However, the information about the role of the non-active-site residues is still unclear. In this study, a non-active-site residue Met148 of MCP hydrolase BphD was selected as the mutagenesis site according to the sequence alignments, structure superimpose and the tunnel analysis, which underwent the saturation mutagenesis resulting 19 mutants. The catalytic efficiencies of the mutants on 6-oxo-6-phenylhexa-2,4-dienoic acid (HOPDA) were all decreased compared with the wild-type one except for the M148D mutant. Especially, the M148P mutant exhibited 290-fold lower k cat/K m than that of the wild-type BphD. Transient kinetic analyses of M148P showed the reciprocal relaxation time corresponded to C-C bond cleavage and product release steps (9.6 s(-1)) was 4.08-fold lower than BphD WT (39.2 s(-1)). Tunnel cluster analysis of BphD WT, M148P and M148W demonstrated that only the bulky Trp148 could block tunnel T2 in the BphD WT, but it exhibited slight effects on the catalytic efficiency (0.94-fold of BphD WT). Therefore, product release was not the main reason for the efficiency decrease of M148P. On the other hand, molecular dynamics simulations on the BphD WT and BphD M148P in complex with HOPDA indicated that the dramatic decrease of the catalytic efficiencies of BphD M148P should be due to the unproductive binding of HOPDA. The study demonstrated the catalytic efficiency of MCP hydrolase can be engineered by modification of non-active site residue.
Collapse
Affiliation(s)
- Hao Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Di Gennaro P, Kazandjian LV, Mezzetti F, Sello G. Regulated expression systems for the development of whole-cell biocatalysts expressing oxidative enzymes in a sequential manner. Arch Microbiol 2013; 195:269-78. [PMID: 23430123 DOI: 10.1007/s00203-013-0875-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 01/28/2013] [Accepted: 02/06/2013] [Indexed: 11/28/2022]
Abstract
This work reports the preparation of two recombinant strains each containing two enzymatic activities mutually expressed through regulated systems for production of functionalized epoxides in one-pot reactions. One strain was Pseudomonas putida PaW340, containing the gene coding for styrene monooxygenase (SMO) from Pseudomonas fluorescens ST under the auto-inducing Ptou promoter and the TouR regulator of Pseudomonas sp. OX1 and the gene coding for naphthalene dihydrodiol dehydrogenase (NDDH) from P. fluorescens N3 under the Ptac promoter inducible by IPTG. The second strain was Escherichia coli JM109, in which the expression of SMO was under the control of the Pnah promoter and the NahR regulator of P. fluorescens N3 inducible by salicylate, while the gene expressing NDDH was under the control of the Plac promoter inducible by IPTG. SMO and NDDH activities were tested in bioconversion experiments using cinnamyl alcohol as reference substrate. The application that we selected is one example of the sequential use of the two enzymatic activities which require a temporal control of the expression of both genes.
Collapse
Affiliation(s)
- Patrizia Di Gennaro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milan, Italy.
| | | | | | | |
Collapse
|
33
|
Kaczorek E, Sałek K, Guzik U, Jesionowski T, Cybulski Z. Biodegradation of alkyl derivatives of aromatic hydrocarbons and cell surface properties of a strain of Pseudomonas stutzeri. CHEMOSPHERE 2013; 90:471-8. [PMID: 22925424 DOI: 10.1016/j.chemosphere.2012.07.065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 07/23/2012] [Accepted: 07/27/2012] [Indexed: 05/15/2023]
Abstract
Pseudomonas stutzeri strain 9 was isolated from petroleum-contaminated soil. The main purpose of this study was to investigate how the long-term contact of this strain with diesel oil influences its surface and biodegradation properties. The experiments showed that the tested strain was able to degrade aromatic alkyl derivatives (butylbenzene, sec-butylbenzene, tert-butylbenzene and isobutylbenzene) and that the storage conditions had an influence on the cell surface properties. Also greater agglomeration of the cells was observed in the scanning electron microscope (SEM) micrographs and confirmed in particle size distribution results. The results also indicated that the addition of rhamnolipids to the hydrocarbons led to modification of the surface properties of P. stutzeri strain 9, which could be observed in the zeta potential and hydrophobicity values.
Collapse
Affiliation(s)
- Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, M. Sklodowskiej-Curie 2, 60-965 Poznan, Poland.
| | | | | | | | | |
Collapse
|
34
|
Bertini L, Cafaro V, Proietti S, Caporale C, Capasso P, Caruso C, Di Donato A. Deepening TOL and TOU catabolic pathways of Pseudomonas sp. OX1: cloning, sequencing and characterization of the lower pathways. Biochimie 2012; 95:241-50. [PMID: 23009925 DOI: 10.1016/j.biochi.2012.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Accepted: 09/14/2012] [Indexed: 01/05/2023]
Abstract
Pseudomonas sp. OX1 is able to metabolize toluene and o-xylene through the TOU catabolic pathway, whereas its mutant M1 strain was found to be able to use m- and p-xylene as carbon and energy source, using the TOL catabolic pathway. Here we report the complete nucleotide sequence of the phe lower operon of the TOU catabolic pathway, and the sequence of the last four genes of the xyl-like lower operon of the TOL catabolic pathway. DNA sequence analysis shows the gene order within the operons to be pheCDEFGHI (phe operon) and xyl-likeQKIH (xyl-like operon), identical to the order found for the isofunctional genes of meta operons in the toluene/xylene pathway of TOL plasmid pWW0 from Pseudomonas putida mt-2 and the phenol/methylphenol pathway of pVIl50 from Pseudomonas sp. CF600. The nucleotide and the deduced amino acid sequences are homologous to the equivalent gene and enzyme sequences from other Pseudomonas meta pathways. Recombinant 2-hydroxymuconic semialdehyde dehydrogenase (HMSD) and 2-hydroxymuconic semialdehyde hydrolase (HMSH), coded by pheCD genes, respectively, and ADA and HOA enzymes from both phe and xyl operons were expressed in E. coli and steady-state kinetic analysis was carried out. The analysis of the kinetic parameters of HMSD and HMSH showed that the enzymes from Pseudomonas sp. OX1 are more specialized to channel metabolites into the two branches of the lower pathway than homologous enzymes from other pseudomonads. The kinetics parameters of recombinant ADA from phe and xyl-like operon were found to be similar to those of homologous enzymes from other Pseudomonas strains. In addition, the enzyme from xyl-like operon showed a substrate affinity three times higher than the enzyme from phe operon.
Collapse
Affiliation(s)
- Laura Bertini
- Department of Ecological and Biological Sciences, University of Tuscia, Viterbo, Italy
| | | | | | | | | | | | | |
Collapse
|
35
|
Lefevre GH, Novak PJ, Hozalski RM. Fate of naphthalene in laboratory-scale bioretention cells: implications for sustainable stormwater management. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:995-1002. [PMID: 22175538 DOI: 10.1021/es202266z] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Bioretention cells are increasingly popular in low-impact development as a means to sustainably mitigate the environmental problems associated with stormwater runoff. Yet, much remains to be known regarding the removal and ultimate fate of pollutants such as petroleum hydrocarbons in bioretention cells. In this work, laboratory-scale bioretention cells were constructed inside sealed glass columns. The columns were periodically spiked with (14)C-naphthalene over a 5-month period and the fate of this representative hydrocarbon and the influence of vegetation on naphthalene fate was studied. Three column setups were used: one planted with a legume (Purple Prairie Clover, Dalea purpureum), one planted with grass (Blue-Joint Grass, Calamagrostis canadensis), and one unplanted (i.e., control). Overall naphthalene removal efficiency was 93% for the planted columns and 78% for the control column. Adsorption to soil was the dominant naphthalene removal mechanism (56-73% of added naphthalene), although mineralization (12-18%) and plant uptake (2-23%) were also important. Volatilization was negligible (<0.04%). Significant enrichment of naphthalene-degrading bacteria occurred due to contaminant exposure and plant growth as evidenced by increased biodegradation activity and increased naphthalene dioxygenase gene concentrations in the bioretention media. This research suggests that bioretention is a viable solution for sustainable petroleum hydrocarbon removal from stormwater, and that vegetation can enhance overall performance and stimulate biodegradation.
Collapse
Affiliation(s)
- Gregory H Lefevre
- Department of Civil Engineering, University of Minnesota, 500 Pillsbury Drive SE, Minneapolis, Minnesota 55455, United States
| | | | | |
Collapse
|
36
|
Do LH, Wang H, Tinberg CE, Dowty E, Yoda Y, Cramer SP, Lippard SJ. Characterization of a synthetic peroxodiiron(III) protein model complex by nuclear resonance vibrational spectroscopy. Chem Commun (Camb) 2011; 47:10945-7. [PMID: 21897991 DOI: 10.1039/c1cc13836g] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The vibrational spectrum of an η(1),η(1)-1,2-peroxodiiron(III) complex was measured by nuclear resonance vibrational spectroscopy and fit using an empirical force field analysis. Isotopic (18)O(2) labelling studies revealed a feature involving motion of the {Fe(2)(O(2))}(4+) core that was not previously observed by resonance Raman spectroscopy.
Collapse
Affiliation(s)
- Loi H Do
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Do LH, Lippard SJ. Toward functional carboxylate-bridged diiron protein mimics: achieving structural stability and conformational flexibility using a macrocylic ligand framework. J Am Chem Soc 2011; 133:10568-81. [PMID: 21682286 PMCID: PMC3149837 DOI: 10.1021/ja2021312] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A dinucleating macrocycle, H(2)PIM, containing phenoxylimine metal-binding units has been prepared. Reaction of H(2)PIM with [Fe(2)(Mes)(4)] (Mes = 2,4,6-trimethylphenyl) and sterically hindered carboxylic acids, Ph(3)CCO(2)H or Ar(Tol)CO(2)H (2,6-bis(p-tolyl)benzoic acid), afforded complexes [Fe(2)(PIM)(Ph(3)CCO(2))(2)] (1) and [Fe(2)(PIM)(Ar(Tol)CO(2))(2)] (2), respectively. X-ray diffraction studies revealed that these diiron(II) complexes closely mimic the active site structures of the hydroxylase components of bacterial multicomponent monooxygenases (BMMs), particularly the syn disposition of the nitrogen donor atoms and the bridging μ-η(1)η(2) and μ-η(1)η(1) modes of the carboxylate ligands at the diiron(II) centers. Cyclic voltammograms of 1 and 2 displayed quasi-reversible redox couples at +16 and +108 mV vs ferrocene/ferrocenium, respectively. Treatment of 2 with silver perchlorate afforded a silver(I)/iron(III) heterodimetallic complex, [Fe(2)(μ-OH)(2)(ClO(4))(2)(PIM)(Ar(Tol)CO(2))Ag] (3), which was structurally and spectroscopically characterized. Complexes 1 and 2 both react rapidly with dioxygen. Oxygenation of 1 afforded a (μ-hydroxo)diiron(III) complex [Fe(2)(μ-OH)(PIM)(Ph(3)CCO(2))(3)] (4), a hexa(μ-hydroxo)tetrairon(III) complex [Fe(4)(μ-OH)(6)(PIM)(2)(Ph(3)CCO(2))(2)] (5), and an unidentified iron(III) species. Oxygenation of 2 exclusively formed di(carboxylato)diiron(III) compounds, a testimony to the role of the macrocylic ligand in preserving the dinuclear iron center under oxidizing conditions. X-ray crystallographic and (57)Fe Mössbauer spectroscopic investigations indicated that 2 reacts with dioxygen to give a mixture of (μ-oxo)diiron(III) [Fe(2)(μ-O)(PIM)(Ar(Tol)CO(2))(2)] (6) and di(μ-hydroxo)diiron(III) [Fe(2)(μ-OH)(2)(PIM)(Ar(Tol)CO(2))(2)] (7) units in the same crystal lattice. Compounds 6 and 7 spontaneously convert to a tetrairon(III) complex, [Fe(4)(μ-OH)(6)(PIM)(2)(Ar(Tol)CO(2))(2)] (8), when treated with excess H(2)O.
Collapse
Affiliation(s)
- Loi H. Do
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
38
|
Tinberg CE, Song WJ, Izzo V, Lippard SJ. Multiple roles of component proteins in bacterial multicomponent monooxygenases: phenol hydroxylase and toluene/o-xylene monooxygenase from Pseudomonas sp. OX1. Biochemistry 2011; 50:1788-98. [PMID: 21366224 PMCID: PMC3059347 DOI: 10.1021/bi200028z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Phenol hydroxylase (PH) and toluene/o-xylene monooxygenase (ToMO) from Pseudomonas sp. OX1 require three or four protein components to activate dioxygen for the oxidation of aromatic substrates at a carboxylate-bridged diiron center. In this study, we investigated the influence of the hydroxylases, regulatory proteins, and electron-transfer components of these systems on substrate (phenol; NADH) consumption and product (catechol; H(2)O(2)) generation. Single-turnover experiments revealed that only complete systems containing all three or four protein components are capable of oxidizing phenol, a major substrate for both enzymes. Under ideal conditions, the hydroxylated product yield was ∼50% of the diiron centers for both systems, suggesting that these enzymes operate by half-sites reactivity mechanisms. Single-turnover studies indicated that the PH and ToMO electron-transfer components exert regulatory effects on substrate oxidation processes taking place at the hydroxylase actives sites, most likely through allostery. Steady state NADH consumption assays showed that the regulatory proteins facilitate the electron-transfer step in the hydrocarbon oxidation cycle in the absence of phenol. Under these conditions, electron consumption is coupled to H(2)O(2) formation in a hydroxylase-dependent manner. Mechanistic implications of these results are discussed.
Collapse
Affiliation(s)
- Christine E. Tinberg
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Woon Ju Song
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Viviana Izzo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Stephen J. Lippard
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
| |
Collapse
|
39
|
Izzo V, Leo G, Scognamiglio R, Troncone L, Birolo L, Di Donato A. PHK from phenol hydroxylase of Pseudomonas sp. OX1. Insight into the role of an accessory protein in bacterial multicomponent monooxygenases. Arch Biochem Biophys 2011; 505:48-59. [DOI: 10.1016/j.abb.2010.09.023] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 09/06/2010] [Accepted: 09/25/2010] [Indexed: 11/30/2022]
|
40
|
Baldwin BR, Nakatsu CH, Nebe J, Wickham GS, Parks C, Nies L. Enumeration of aromatic oxygenase genes to evaluate biodegradation during multi-phase extraction at a gasoline-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2009; 163:524-530. [PMID: 18706759 DOI: 10.1016/j.jhazmat.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Revised: 06/30/2008] [Accepted: 07/01/2008] [Indexed: 05/26/2023]
Abstract
Multi-phase extraction (MPE) is commonly used at petroleum-contaminated sites to volatilize and recover hydrocarbons from the vadose and saturated zones in contaminant source areas. Although primarily a physical treatment technology, the induced subsurface air flow can potentially increase oxygen supply and promote aerobic biodegradation of benzene, toluene, ethylbenzene, and xylenes (BTEX), the contaminants of concern at gasoline-contaminated sites. In this study, real-time PCR enumeration of aromatic oxygenase genes and PCR-DGGE profiles were used to elucidate the impact of MPE operation on the aquifer microbial community structure and function at a gasoline-contaminated site. Prior to system activation, ring-hydroxylating toluene monooxygenase (RMO) and naphthalene dioxygenase (NAH) gene copies were on the order of 10(6) to 10(10)copies L(-1) in groundwater samples obtained from BTEX-impacted wells. Aromatic oxygenase genes were not detected in groundwater samples obtained during continuous MPE indicating decreased populations of BTEX-utilizing bacteria. During periods of pulsed MPE, total aromatic oxygenase gene copies were not significantly different than prior to system activation, however, shifts in aromatic catabolic genotypes were noted. The consistent detection of RMO, NAH, and phenol hydroxylase (PHE), which catabolizes further oxidation of hydroxylated BTEX metabolites indicated the potential for aerobic biodegradation of dissolved BTEX during pulsed MPE.
Collapse
|
41
|
Parales RE, Parales JV, Pelletier DA, Ditty JL. Diversity of microbial toluene degradation pathways. ADVANCES IN APPLIED MICROBIOLOGY 2008; 64:1-73, 2 p following 264. [PMID: 18485280 DOI: 10.1016/s0065-2164(08)00401-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- R E Parales
- Department of Microbiology, University of California, Davis, California 95616, USA
| | | | | | | |
Collapse
|
42
|
Di Gennaro P, Ferrara S, Bestetti G, Sello G, Solera D, Galli E, Renzi F, Bertoni G. Novel auto-inducing expression systems for the development of whole-cell biocatalysts. Appl Microbiol Biotechnol 2008; 79:617-25. [DOI: 10.1007/s00253-008-1460-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2008] [Revised: 03/07/2008] [Accepted: 03/14/2008] [Indexed: 11/29/2022]
|
43
|
Leone S, Lanzetta R, Scognamiglio R, Alfieri F, Izzo V, Di Donato A, Parrilli M, Holst O, Molinaro A. The structure of the O-specific polysaccharide from the lipopolysaccharide of Pseudomonas sp. OX1 cultivated in the presence of the azo dye Orange II. Carbohydr Res 2008; 343:674-84. [DOI: 10.1016/j.carres.2008.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/07/2008] [Accepted: 01/14/2008] [Indexed: 11/26/2022]
|
44
|
Wang L, Qiao N, Sun F, Shao Z. Isolation, gene detection and solvent tolerance of benzene, toluene and xylene degrading bacteria from nearshore surface water and Pacific Ocean sediment. Extremophiles 2008; 12:335-42. [DOI: 10.1007/s00792-007-0136-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Accepted: 12/18/2007] [Indexed: 11/28/2022]
|
45
|
O'Sullivan LA, Weightman AJ, Jones TH, Marchbank AM, Tiedje JM, Mahenthiralingam E. Identifying the genetic basis of ecologically and biotechnologically useful functions of the bacterium Burkholderia vietnamiensis. Environ Microbiol 2007; 9:1017-34. [PMID: 17359273 DOI: 10.1111/j.1462-2920.2006.01228.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Signature-tagged mutagenesis (STM) was used to identify genetic determinants of fitness associated with two key ecological processes mediated by bacteria. Burkholderia vietnamiensis strain G4 was used as a model bacterium to investigate: phenol degradation as a model of bioremediation, and pea rhizosphere colonization as a prerequisite to biological control and phytoremediation. A total of 1900 mutants were screened and 196 putative fitness mutants identified; the genetic basis of 137 of these mutations was determined by correlation to the G4 genome. The phenol-STM screen was more successful at identifying phenol degradation mutations (83 mutants; 4.4% hit rate) than a conventional agar-based phenol screen (49 mutants, 5319 screened, 0.92% hit rate). The combination of both screens completely defined the components of the TOM pathway in strain G4 and also identified novel accessory genes not previously implicated in phenol utilization. The rhizosphere-STM screen identified 113 mutants (5.9% hit rate); 107 had reduced tag signals indicative of poor rhizosphere colonization (Rhiz-), while six mutants produced high hybridization signals suggesting increased rhizosphere competence (Rhiz+). Competition assays confirmed that 69% of Rhiz- mutants tested (24/35) were severely compromised in their rhizosphere fitness. Seventy Rhiz- mutations mapped to genes with the following putative functions: amino acid biosynthesis (25; 36%), general metabolism (18; 26%), hypothetical (9; 13%), regulatory genes (4; 5.7%), transport and stress (2 each; 2.8% respectively). One of the most interesting discoveries mediated by the rhizosphere-STM screen was the identification of three Rhiz+ mutants inactivated within a single virulence-associated autotransporter adhesin gene; this mutation consistently produced a hyper-colonization phenotype suggesting a highly novel role for this surface adhesin during plant interactions. Our study has shown that STM can be successfully applied to ecologically important microbial interactions, defining the underlying genetic systems important for biotechnological fitness of environmental bacteria such those from the Burkholderia cepacia complex.
Collapse
Affiliation(s)
- Louise A O'Sullivan
- Cardiff School of Biosciences, Cardiff University, Main Building, Park Place, Cardiff CF10 3TL, UK
| | | | | | | | | | | |
Collapse
|
46
|
Leone S, Molinaro A, Alfieri F, Cafaro V, Lanzetta R, Di Donato A, Parrilli M. The biofilm matrix of Pseudomonas sp. OX1 grown on phenol is mainly constituted by alginate oligosaccharides. Carbohydr Res 2006; 341:2456-61. [PMID: 16876147 DOI: 10.1016/j.carres.2006.06.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Revised: 06/09/2006] [Accepted: 06/14/2006] [Indexed: 11/29/2022]
Abstract
The structure of the major constituent of the biofilm matrix produced by Pseudomonas sp. OX1, when grown on phenol as the sole carbon source is described. This investigation, carried out by chemical analysis, NMR spectroscopy and MALDI-TOF MS spectrometry, showed the presence of an oligosaccharide blend with the typical alginate structure, namely (1-->4) substituted beta-D-mannuronic (ManA) and alpha-L-guluronic acid (GulA). GulA residues were non-acetylated whereas ManA was always O-acetylated at C-2 or C-3.
Collapse
Affiliation(s)
- Serena Leone
- Dipartimento di Chimica Organica e Biochimica, Università degli Studi di Napoli Federico II, Via Cintia, 4 I-80126 Napoli, Italy
| | | | | | | | | | | | | |
Collapse
|
47
|
Li H, Liu YH, Luo N, Zhang XY, Luan TG, Hu JM, Wang ZY, Wu PC, Chen MJ, Lu JQ. Biodegradation of benzene and its derivatives by a psychrotolerant and moderately haloalkaliphilic Planococcus sp. strain ZD22. Res Microbiol 2006; 157:629-36. [PMID: 16815683 DOI: 10.1016/j.resmic.2006.01.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Revised: 01/09/2006] [Accepted: 01/19/2006] [Indexed: 11/17/2022]
Abstract
The potential for biodegradation of aromatic hydrocarbons simultaneously at low temperatures and under saline and alkaline conditions is not well understood, but such biodegradation would be useful for remediation of polluted sites. A psychrotolerant, moderately haloalkaliphilic pure culture using benzene as a sole source of carbon and energy was isolated by selective enrichment from alkaline and saline soils in the vicinity of the Daqing oil field in China. An analysis of the 16S rDNA gene sequence and morphological and physiological characteristics showed that this strain is a member of the genus Planococcus, and it was designated as strain ZD22. Strain ZD22 could grow at temperatures between 2 and 36 degrees C (pH 7.5-11) and salt concentrations from 0.5 to 25%. Its optimal conditions for biodegradation of benzene were 20 degrees C (pH 9.5) and 10% salt concentration. Strain ZD22 not only utilized benzene, toluene, ethylbenzene and o-xylene, but also degraded chlorobenzene, bromobenzene, iodobenzene and fluorobenzene. The kinetic model of strain ZD22 for benzene was solved to obtain mumax=0.34 h-1, Ks=0.041 mM, n=1.21, Sm=10.2 mM. To our knowledge, this is the first report of biodegradation of benzene and its derivatives simultaneously under multiple extreme conditions.
Collapse
Affiliation(s)
- He Li
- State Key Laboratory of Biocontrol, School of Life Science, Zhongshan University, Guangzhou 510275, PR China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Siani L, Viggiani A, Notomista E, Pezzella A, Di Donato A. The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1. FEBS J 2006; 273:2963-76. [PMID: 16734718 DOI: 10.1111/j.1742-4658.2006.05307.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Bioremediation strategies use microorganisms to remove hazardous substances, such as aromatic molecules, from polluted sites. The applicability of these techniques would greatly benefit from the expansion of the catabolic ability of these bacteria in transforming a variety of aromatic compounds. Catechol-2,3-dioxygenase (C2,3O) from Pseudomonas stutzeri OX1 is a key enzyme in the catabolic pathway for aromatic molecules. Its specificity and regioselectivity control the range of molecules degraded through the catabolic pathway of the microorganism that is able to use aromatic hydrocarbons as growth substrates. We have used in silico substrate docking procedures to investigate the molecular determinants that direct the enzyme substrate specificity. In particular, we looked for a possible molecular explanation of the inability of catechol-2,3-dioxygenase to cleave 3,5-dimethylcatechol and 3,6-dimethylcatechol and of the efficient cleavage of 3,4-dimethylcatechol. The docking study suggested that reduction in the volume of the side chain of residue 249 could allow the binding of 3,5-dimethylcatechol and 3,6-dimethylcatechol. This information was used to prepare and characterize mutants at position 249. The kinetic and regiospecificity parameters of the mutants confirm the docking predictions, and indicate that this position controls the substrate specificity of catechol-2,3-dioxygenase. Moreover, our results suggest that Thr249 also plays a previously unsuspected role in the catalytic mechanism of substrate cleavage. The hypothesis is advanced that a water molecule bound between one of the hydroxyl groups of the substrate and the side chain of Thr249 favors the deprotonation/protonation of this hydroxyl group, thus assisting the final steps of the cleavage reaction.
Collapse
Affiliation(s)
- Loredana Siani
- Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Napoli, Italy
| | | | | | | | | |
Collapse
|
49
|
Lalucat J, Bennasar A, Bosch R, García-Valdés E, Palleroni NJ. Biology of Pseudomonas stutzeri. Microbiol Mol Biol Rev 2006; 70:510-47. [PMID: 16760312 PMCID: PMC1489536 DOI: 10.1128/mmbr.00047-05] [Citation(s) in RCA: 325] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Pseudomonas stutzeri is a nonfluorescent denitrifying bacterium widely distributed in the environment, and it has also been isolated as an opportunistic pathogen from humans. Over the past 15 years, much progress has been made in elucidating the taxonomy of this diverse taxonomical group, demonstrating the clonality of its populations. The species has received much attention because of its particular metabolic properties: it has been proposed as a model organism for denitrification studies; many strains have natural transformation properties, making it relevant for study of the transfer of genes in the environment; several strains are able to fix dinitrogen; and others participate in the degradation of pollutants or interact with toxic metals. This review considers the history of the discovery, nomenclatural changes, and early studies, together with the relevant biological and ecological properties, of P. stutzeri.
Collapse
Affiliation(s)
- Jorge Lalucat
- Department de Biologia, Microbiologia, Universitat de les Illes Balears, 07122 Palma de Mallorca, Spain.
| | | | | | | | | |
Collapse
|
50
|
Viggiani A, Olivieri G, Siani L, Di Donato A, Marzocchella A, Salatino P, Barbieri P, Galli E. An airlift biofilm reactor for the biodegradation of phenol by Pseudomonas stutzeri OX1. J Biotechnol 2006; 123:464-77. [PMID: 16490274 DOI: 10.1016/j.jbiotec.2005.12.024] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2005] [Revised: 11/14/2005] [Accepted: 12/15/2005] [Indexed: 11/20/2022]
Abstract
Phenol bioconversion by Pseudomonas stutzeri OX1 using either free or immobilized cells was investigated with the aim of searching for optimal operating conditions of a continuous bioconversion process. The study was developed by analyzing: (a) free-cell growth and products of phenol bioconversion by batch cultures of P. stutzeri; (b) growth of P. stutzeri cells immobilized on carrier particles; (c) bioconversion of phenol-bearing liquid streams and the establishment and growth of an active bacterial biofilm during continuous operation of an internal-loop airlift bioreactor. We have confirmed that free Pseudomonas cultures are able to transform phenol through the classical meta pathway for the degradation of aromatic molecules. Data indicate that bacterial growth is substrate-inhibited, with a limiting phenol concentration of about 600 mg/L. Immobilization tests revealed that a stable bacterial biofilm can be formed on various types of solid carriers (silica sand, tuff, and activated carbon), but not on alumina. Entrapment in alginate beads also proved to be effective for P. stutzeri immobilization. Continuous bioconversion of phenol-bearing liquid streams was successfully obtained in a biofilm reactor operated in the internal-circulation airlift mode. Phenol conversion exceeded 95%. Biofilm formation and growth during continuous operation of the airlift bioreactor were quantitatively and qualitatively assessed.
Collapse
Affiliation(s)
- A Viggiani
- Dipartimento di Biologia Strutturale e Funzionale, Università degli Studi di Napoli, Federico II, Complesso Universitario di Monte S. Angelo, Via Cinthia, 80126 Napoli, Italy
| | | | | | | | | | | | | | | |
Collapse
|