1
|
Yazdanpanah S, Shafiekhani M, Emami M, Khodadadi H, Pakshir K, Zomorodian K. Exploring the anti-biofilm and gene regulatory effects of anti-inflammatory drugs on Candida albicans. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03727-y. [PMID: 39731595 DOI: 10.1007/s00210-024-03727-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024]
Abstract
Researchers have repurposed several existing anti-inflammatory drugs as potential antifungal agents in recent years. So, this study aimed to investigate the effects of anti-inflammatory drugs on the growth, biofilm formation, and expression of genes related to morphogenesis and pathogenesis in Candida albicans. The minimum inhibitory concentration (MIC) of anti-inflammatory drugs was assessed using the broth microdilution method. Biofilm formation in C. albicans was evaluated using XTT reduction assay following exposure to different concentrations of drugs. Additionally, the expression of adhesin-related genes (ALS1, ALS3), hyphal cell wall specific genes (EAP1, HWP1), secreted aspartyl proteinase (SAP4, SAP6), and morphogenesis pathway regulatory gene (EFG1) was analyzed using quantitative RT-PCR. Betamethasone and dexamethasone markedly inhibited C. albicans biofilm formation by up to 80% at a concentration of 2 mg/mL. Moreover, the inhibition of C. albicans biofilm formation was significant at concentrations ranging from 0.6 to 10 mg/mL for piroxicam and from 0.75 to 12 mg/mL for diclofenac. The expression of key genes involved in biofilm formation including EFG1, HWP1, and ALS3 was all downregulated under hyphae-inducing conditions. Moreover, the expression proteinase genes of C. albicans were upregulated following exposure with corticosteroids. The data obtained provides valuable insights into the antifungal potential of anti-inflammatory drugs. Our novel findings indicate the downregulation of several Candida genes that are crucial for morphogenesis, pathogenesis, and biofilm formation. However, further research is necessary to fully elucidate the clinical applications and effectiveness of anti-inflammatory drugs as alternative or adjunctive therapies for Candida infections.
Collapse
Affiliation(s)
- Somayeh Yazdanpanah
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Shafiekhani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mina Emami
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Hossein Khodadadi
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Keyvan Pakshir
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Kamiar Zomorodian
- Department of Medical Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
2
|
Singh N, Cunnington RH, Bhagirath A, Vaishampayan A, Khan MW, Gupte T, Duan K, Gounni AS, Dakshisnamurti S, Hanrahan JW, Chelikani P. Bitter taste receptor T2R14-Gαi coupling mediates innate immune responses to microbial quorum sensing molecules in cystic fibrosis. iScience 2024; 27:111286. [PMID: 39628561 PMCID: PMC11613190 DOI: 10.1016/j.isci.2024.111286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/30/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Cystic fibrosis (CF) is an autosomal recessive disease characterized by microbial infection and progressive decline in lung function, leading to significant morbidity and mortality. The bitter taste receptor T2R14 is a chemosensory receptor that is significantly expressed in airways. Using a combination of cell-based assays and T2R14 knockdown in bronchial epithelial cells from CF and non-CF individuals, we observed that T2R14 plays a crucial role in the detection of bacterial and fungal signals and enhances host innate immune responses. Expression of Gαi protein is enhanced in CF bronchial epithelial cells and T2R14-Gαi specific signaling leads to increased calcium mobilization. Knockdown of T2R14 leads to reduced innate immune activation by bacterial strains deficient in quorum sensing. The results demonstrate that T2R14 helps protect against microbial infection and thus may play an important role in the innate immune defense of the CF airway epithelium.
Collapse
Affiliation(s)
- Nisha Singh
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Ryan H. Cunnington
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Anjali Bhagirath
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Dalhousie University, Faculty of Dentistry, Halifax, NS, Canada
| | - Ankita Vaishampayan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Mohd Wasif Khan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Tejas Gupte
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Kangmin Duan
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
| | - Abdelilah S. Gounni
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Immunology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Shyamala Dakshisnamurti
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - John W. Hanrahan
- Department of Physiology, McGill University, Montréal, QC, Canada
| | - Prashen Chelikani
- Manitoba Chemosensory Biology (MCSB) research group, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Oral Biology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute of Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Núño K, Jensen AS, O'Connor G, Houston TJ, Dikici E, Zingg JM, Deo S, Daunert S. Insights into Women's health: Exploring the vaginal microbiome, quorum sensing dynamics, and therapeutic potential of quorum sensing quenchers. Mol Aspects Med 2024; 100:101304. [PMID: 39255544 DOI: 10.1016/j.mam.2024.101304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/28/2024] [Indexed: 09/12/2024]
Abstract
The vaginal microbiome is an important aspect of women's health that changes dynamically with various stages of the woman's life. Just like the gut microbiome, the vaginal microbiome can also be affected by pathologies that dramatically change the typical composition of native vaginal microorganisms. However, the mechanism as to how both vaginal endemic and gut endemic opportunistic microbes can express pathogenicity in vaginal polymicrobial biofilms is poorly understood. Quorum sensing is the cellular density-dependent bacterial and fungal communication process in which chemical signaling molecules, known as autoinducers, activate expression for genes responsible for virulence and pathogenicity, such as biofilm formation and virulence factor production. Quorum sensing inhibition, or quorum quenching, has been explored as a potential therapeutic route for both bacterial and fungal infections. By applying these quorum quenchers, one can reduce biofilm formation of opportunistic vaginal microbes and combine them with antibiotics for a synergistic effect. This review aims to display the relationship between the vaginal and gut microbiome, the role of quorum sensing in polymicrobial biofilm formation which cause pathology in the vaginal microbiome, and how quorum quenchers can be utilized to attenuate the severity of bacterial and fungal infections.
Collapse
Affiliation(s)
- Kevin Núño
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Anne Sophie Jensen
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Gregory O'Connor
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Tiffani Janae Houston
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Department of Internal Medicine, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Emre Dikici
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Jean Marc Zingg
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sapna Deo
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA
| | - Sylvia Daunert
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA; Dr. JT Macdonald Biomedical Nanotechnology Institute (BioNIUM), University of Miami, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Rachel R, Anuradha M, Leela K. Evaluating the Antifungal Potential of Cinnamaldehyde: A Study of its Efficacy against Candida Species. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2024; 18:2438-2445. [DOI: 10.22207/jpam.18.4.16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Candida species exist as commensals in nature, colonizing the mucous membranes, gastrointestinal tract, vagina as well as the skin and usually cause infections in immunocompromised patients. C. albicans are known to be the most prevalent Candida species associated with infections, while there has been a significant surge in the incidence of Non-Candida albicans Candida species (NCAC) recently. The recent occurrences of the antifungal resistance in Candida, especially in NCAC species are quite alarming which raises the need for a safe and efficient alternative antimycotic drug. This study analyses the efficacy of cinnamaldehyde against Candida species, which is known to cause the majority of the fungal infections in humans. Cinnamaldehyde is a natural antimicrobial compound derived from cinnamon and has demonstrated significant antimycotic properties. Antifungal susceptibility profiles of cinnamaldehyde against Candida species were studied by disc diffusion as well as by broth microdilution assays. The mean diameter of the inhibition zone (IZ) formed by direct contact and disc volatilization assays were 61.26 mM and 65.20 mM, respectively. Both the minimum inhibitory concentration (MIC) and the minimum fungicidal concentration (MFC) of cinnamaldehyde ranged from 16-256 mg/L with mean MIC of 60.61 mg/L and a mean MFC of 81.94 mg/L. Co-incubation of Candida cells with cinnamaldehyde resulted in the loss of viable cells within 4 hours of incubation. Cinnamaldehyde was found to exhibit both fungistatic and fungicidal properties, making it a potent natural alternative for conventional antifungal agents.
Collapse
|
5
|
Phuengmaung P, Chongrak C, Saisorn W, Makjaroen J, Singkham-in U, Leelahavanichkul A. The Coexistence of Klebsiella pneumoniae and Candida albicans Enhanced Biofilm Thickness but Induced Less Severe Neutrophil Responses and Less Inflammation in Pneumonia Mice Than K. pneumoniae Alone. Int J Mol Sci 2024; 25:12157. [PMID: 39596223 PMCID: PMC11594830 DOI: 10.3390/ijms252212157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 10/31/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
Due to the possible coexistence of Klebsiella pneumoniae (KP) and Candida albicans (CA), strains of KP and CA with biofilm production properties clinically isolated from patients were tested. The production of biofilms from the combined organisms (KP+CA) was higher than the biofilms from each organism alone, as indicated by crystal violet and z-stack immunofluorescence. In parallel, the bacterial abundance in KP + CA was similar to KP, but the fungal abundance was higher than CA (culture method), implying that CA grows better in the presence of KP. Proteomic analysis was performed to compare KP + CA biofilm to KP biofilm alone. With isolated mouse neutrophils (thioglycolate induction), KP + CA biofilms induced less prominent responses than KP biofilms, as determined by (i) neutrophilic supernatant cytokines (ELISA) and (ii) neutrophil extracellular traps (NETs), using immunofluorescent images (neutrophil elastase, myeloperoxidase, and citrullinated histone 3), peptidyl arginine deiminase 4 (PAD4) expression, and cell-free DNA. Likewise, intratracheal KP + CA in C57BL/6 mice induces less severe pneumonia than KP alone, as indicated by organ injury (serum creatinine and alanine transaminase) (colorimetric assays), cytokines (ELISA), bronchoalveolar lavage fluid parameters (bacterial culture and neutrophil abundances using a hemocytometer), histology score (H&E stains), and NETs (immunofluorescence on the lung tissue). In conclusion, the biofilm biomass of KP + CA was mostly produced from CA with less potent neutrophil activation and less severe pneumonia than KP alone. Hence, fungi in the respiratory tract might benefit the host in some situations, despite the well-known adverse effects of fungi.
Collapse
Affiliation(s)
- Pornpimol Phuengmaung
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Chiratchaya Chongrak
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Medical Microbiology, Interdisciplinary and International Program, Graduate School, Chulalongkorn University, Bangkok 10330, Thailand
| | - Wilasinee Saisorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| | - Jiradej Makjaroen
- Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Uthaibhorn Singkham-in
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Faculty of Medical Technology, Rangsit University, Pathum Thani 12000, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand; (P.P.); (C.C.); (W.S.)
- Center of Excellence on Translational Research in Inflammation and Immunology (CETRII), Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
- Division of Nephrology, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand
| |
Collapse
|
6
|
Ohsawa S, Schwaiger M, Iesmantavicius V, Hashimoto R, Moriyama H, Matoba H, Hirai G, Sodeoka M, Hashimoto A, Matsuyama A, Yoshida M, Yashiroda Y, Bühler M. Nitrogen signaling factor triggers a respiration-like gene expression program in fission yeast. EMBO J 2024; 43:4604-4624. [PMID: 39256560 PMCID: PMC11480445 DOI: 10.1038/s44318-024-00224-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 08/08/2024] [Accepted: 08/16/2024] [Indexed: 09/12/2024] Open
Abstract
Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood. Here, we show that NSF physically interacts with the mitochondrial sulfide:quinone oxidoreductase Hmt2 and that it prompts a change from a fermentation- to a respiration-like gene expression program without any change in the carbon source. Our results suggest that NSF activity is not restricted to nitrogen metabolism alone and that it could function as a rheostat to prepare a population of S. pombe cells for an imminent shortage of their preferred nutrients.
Collapse
Affiliation(s)
- Shin Ohsawa
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Michaela Schwaiger
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
- Swiss Institute of Bioinformatics, 4056, Basel, Switzerland
| | - Vytautas Iesmantavicius
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland
| | - Rio Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiromitsu Moriyama
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, 183-8538, Tokyo, Japan
| | - Hiroaki Matoba
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
| | - Go Hirai
- Graduate School of Pharmaceutical Sciences, Kyushu University, Maidashi Higashi-ku, 812-8582, Fukuoka, Japan
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Atsushi Hashimoto
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Akihisa Matsuyama
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan
- Office of University Professors, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, 113-8657, Tokyo, Japan
| | - Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
- Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, Wako, 351-0198, Saitama, Japan.
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical Research, Fabrikstrasse 24, 4056, Basel, Switzerland.
- University of Basel, Petersplatz 10, 4003, Basel, Switzerland.
| |
Collapse
|
7
|
Basotra SD, Kumari Y, Vij M, Tyagi A, Sharma D, Bhattacharyya MS. ASLdC3: A Derivative of Acidic Sophorolipid Disrupts Mitochondrial Function, Induces ROS Generation, and Inhibits Biofilm Formation in Candida albicans. ACS Infect Dis 2024; 10:3185-3201. [PMID: 39093050 DOI: 10.1021/acsinfecdis.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Fungal infections account for more than 140 million cases of severe and life-threatening conditions each year, causing approximately 1.7 million deaths annually. Candida albicans and related species are the most common human fungal pathogens, causing both superficial (mucosal and cutaneous) and life-threatening invasive infections (candidemia) with a 40-75% mortality rate. Among many virulence factors of Candida albicans, morphological transition from yeast to hyphae, secretion of hydrolytic enzymes, and formation of biofilms are considered to be crucial for pathogenicity. However, the arsenals for the treatment against these pathogens are restricted to only a few classes of approved drugs, the efficacy of which is being compromised by host toxicity, fungistatic activity, and the emergence of drug resistance. In this study, we have described the development of a molecule, exhibiting excellent antifungal activity (MIC 8 μg/mL), by tailoring acidic sophorolipids with aryl alcohols via enzyme catalysis. This novel derivative, ASLdC3, is a surface-active compound that lowers the surface tension of the air-water interface up to 2-fold before reaching the critical micelle concentration of 25 μg/mL. ASLdC3 exhibits excellent antibiofilm properties against Candida albicans and other nonalbicans Candida species. The molecule primarily exhibits its antifungal activity by perturbing mitochondrial function through the alteration of the mitochondrial membrane potential (MMP) and generation of reactive oxygen species (ROS). The ROS damages fungal cell membrane function and cell wall integrity, eventually leading to cell death. ASLdC3 was found to be nontoxic in in vitro assay and nonhemolytic. Besides, it does not cause toxicity in the C. elegans model. Our study provides a valuable foundation for the potential of acidic sophorolipid as a nontoxic, biodegradable precursor for the design and synthesis of novel molecules for use as antimicrobial drugs as well as for other clinical applications.
Collapse
Affiliation(s)
- Sandal Deep Basotra
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Yachna Kumari
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mansi Vij
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Arpit Tyagi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Deepak Sharma
- GN Ramachandran Protein Centre, CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| | - Mani Shankar Bhattacharyya
- Biochemical Engineering Research and Process Development Centre (BERPDC), CSIR-Institute of Microbial Technology (IMTECH), Sector-39A, Chandigarh 160036, India
| |
Collapse
|
8
|
Conte M, Eletto D, Pannetta M, Esposito R, Monti MC, Morretta E, Tessarz P, Morello S, Tosco A, Porta A. H3K56 acetylation affects Candida albicans morphology and secreted soluble factors interacting with the host. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195048. [PMID: 38885737 DOI: 10.1016/j.bbagrm.2024.195048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
In recent years, epigenetics has been revealed as a mechanism able to modulate the expression of virulence traits in diverse pathogens, including Candida albicans. Indeed, epigenetic regulation can sense environmental changes, leading to the rapid and reversible modulation of gene expression with consequent adaptation to novel environments. How epigenetic changes can impact expression and signalling output, including events associated with mechanisms of morphological transition and virulence, is still poorly studied. Here, using nicotinamide as a sirtuin inhibitor, we explored how the accumulation of the H3K56 acetylation, the most prominent histone acetylation in C. albicans, might affect its interaction with the host. Our experiments demonstrate that H3K56 acetylation profoundly affects the production and/or secretion of soluble factors compromising actin remodelling and cytokine production. ChIP- and RNA-seq analyses highlighted a direct impact of H3K56 acetylation on genes related to phenotypic switching, biofilm formation and cell aggregation. Direct and indirect regulation also involves genes related to cell wall protein biosynthesis, β-glucan and mannan exposure, and hydrolytic secreted enzymes, supporting the hypothesis that the fluctuations of H3K56 acetylation in C. albicans might impair the macrophage response to the yeast and thus promote the host-immune escaping.
Collapse
Affiliation(s)
- Marisa Conte
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Daniela Eletto
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Martina Pannetta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Ph.D. Program in Drug Discovery and Development, University of Salerno, Fisciano (SA), Italy
| | - Roberta Esposito
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Maria Chiara Monti
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy; Department of Pharmacy, University of Naples "Federico II", Italy
| | - Elva Morretta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Peter Tessarz
- Max Planck Research Group "Chromatin and Ageing", Max Planck Institute for Biology of Ageing, University of Cologne, Germany; Cologne Excellence Cluster on Stress Responses in ageing-associated Diseases (CECAD), University of Cologne, Germany; Dept. Of Human Biology, Radboud Institute for Molecular Life Sciences, Faculty of Science, Radboud University, Nijmegen, the Netherlands
| | - Silvana Morello
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy
| | - Alessandra Tosco
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| | - Amalia Porta
- Department of Pharmacy, University of Salerno, Fisciano (SA), Italy.
| |
Collapse
|
9
|
Pärnänen P, Räisänen IT, Sorsa T. Oral Anti-Inflammatory and Symbiotic Effects of Fermented Lingonberry Juice-Potential Benefits in IBD. Nutrients 2024; 16:2896. [PMID: 39275212 PMCID: PMC11397234 DOI: 10.3390/nu16172896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/16/2024] Open
Abstract
Microbial dysbiosis may manifest as inflammation both orally and in the gastrointestinal tract. Altered oral and gut microbiota composition and decreased diversity have been shown in inflammatory bowel disease (IBD) and periodontal disease (PD). Recent studies have verified transmission of oral opportunistic microbes to the gut. Prebiotics, probiotics, or dietary interventions are suggested to alleviate IBD symptoms in addition to medicinal treatment. Lingonberries contain multiple bioactive molecules, phenolics, which have a broad spectrum of effects, including antimicrobial, anti-inflammatory, antioxidant, anti-proteolytic, and anti-cancer properties. An all-natural product, fermented lingonberry juice (FLJ), is discussed as a potential natural anti-inflammatory substance. FLJ has been shown in clinical human trials to promote the growth of oral lactobacilli, and inhibit growth of the opportunistic oral pathogens Candida, Streptococcus mutans, and periodontopathogens, and decrease inflammation, oral destructive proteolysis (aMMP-8), and dental microbial plaque load. Lactobacilli are probiotic and considered also beneficial for gut health. Considering the positive outcome of these oral studies and the fact that FLJ may be swallowed safely, it might be beneficial also for the gut mucosa by balancing the microbiota and reducing proteolytic inflammation.
Collapse
Affiliation(s)
- Pirjo Pärnänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Ismo T Räisänen
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
| | - Timo Sorsa
- Department of Oral and Maxillofacial Diseases, Head and Neck Center, Faculty of Medicine, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| |
Collapse
|
10
|
Tan L, Ma R, Katz AJ, Levi N. Farnesol Emulsion as an Effective Broad-Spectrum Agent against ESKAPE Biofilms. Antibiotics (Basel) 2024; 13:778. [PMID: 39200078 PMCID: PMC11352207 DOI: 10.3390/antibiotics13080778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 09/01/2024] Open
Abstract
The family of ESKAPE pathogens is comprised of Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter. Together they are the main contributors of nosocomial infections and are well established for their ability to "escape" antibiotics. Farnesol is an FDA-approved cosmetic and flavoring agent with significant anti-biofilm properties. In a proprietary emulsion, farnesol has been shown to be capable of disrupting S. aureus, P. aeruginosa, and A. baumannii biofilms. The current work demonstrates that this farnesol emulsion reduces the number of viable bacteria, while also leading to reductions in biomass, of the other three ESKAPE pathogens: Enterococcus faecium, Klebsiella pneumoniae, and Enterobacter, both in vitro and in an ex vivo human skin model. A concentration of 0.5 mg/mL was effective for impeding biofilm development of all three bacteria, while 1 mg/mL for E. faecium and K. pneumoniae, or 0.2 mg/mL for E. cloacae, was able to kill bacteria in established biofilms. Contrary to antibiotics, no resistance to farnesol was observed for E. faecium or K. pneumoniae. The results indicate that farnesol is effective for direct cell killing and also has the ability to induce biofilm detachment from surfaces, as confirmed using Live/Dead image analysis. Our findings confirm that farnesol emulsion is an effective broad-spectrum agent to impede ESKAPE biofilms.
Collapse
Affiliation(s)
| | | | | | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| |
Collapse
|
11
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
12
|
Išljamović M, Bonvin D, Milojević M, Stojanović S, Spasić M, Stojković B, Janošević P, Otašević S, Ebersold MM. Antifungal Effect of Poly(methyl methacrylate) with Farnesol and Undecylenic Acid against Candida albicans Biofilm Formation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3936. [PMID: 39203113 PMCID: PMC11355639 DOI: 10.3390/ma17163936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/21/2024] [Accepted: 08/01/2024] [Indexed: 09/03/2024]
Abstract
The control of Candida albicans biofilm formation on dentures made of poly(methyl methacrylate) (PMMA) is an important challenge due to the high resistance to antifungal drugs. Interestingly, the natural compounds undecylenic acid (UDA) and farnesol (FAR) both prevent C. albicans biofilm formation and could have a synergetic effect. We therefore modified PMMA with a combination of UDA and FAR (UDA+FAR), aiming to obtain the antifungal PMMA_UDA+FAR composites. Equal concentrations of FAR and UDA were added to PMMA to reach 3%, 6%, and 9% in total of both compounds in composites. The physico-chemical properties of the composites were characterized by Fourier-transform infrared spectroscopy and water contact angle measurement. The antifungal activity of the composites was tested on both biofilm and planktonic cells with an XTT test 0 and 6 days after the composites' preparation. The effect of the UDA+FAR combination on C. albicans filamentation was studied in agar containing 0.0125% and 0.4% UDA+FAR after 24 h and 48 h of incubation. The results showed the presence of UDA and FAR on the composite and decreases in the water contact angle and metabolic activity of both the biofilm and planktonic cells at both time points at non-toxic UDA+FAR concentrations. Thus, the modification of PMMA with a combination of UDA+FAR reduces C. albicans biofilm formation on dentures and could be a promising anti-Candida strategy.
Collapse
Affiliation(s)
- Milica Išljamović
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- Department of Dental Health Care, Health Center Niš, 18000 Niš, Serbia
| | - Debora Bonvin
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Milena Milojević
- Department of Pharmacy, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Simona Stojanović
- Department of Oral Surgery, Faculty of Medicine, University in Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Milan Spasić
- The Niš Dental University Clinic, Blvd. Dr Zoran Djindjić 52, 18000 Niš, Serbia
| | - Branislava Stojković
- Department of Preventive and Pediatric Dentistry, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Predrag Janošević
- Department of Orthodontics, Faculty of Medicine, University of Niš, Blvd. Dr Zoran Djindjić 81, 18000 Niš, Serbia
| | - Suzana Otašević
- Department of Microbiology and Immunology, Faculty of Medicine, University of Niš, Blv. Dr Zoran Djindjić 81, 18000 Niš, Serbia
- Public Health Institute Niš, Blvd. Dr Zoran Djindjić 50, 18000 Niš, Serbia
| | - Marijana Mionić Ebersold
- Powder Technology Laboratory, Institute of Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
13
|
Voshall A, Gutzmann DJ, Verdaguer IB, Crispim M, Boone CH, Atkin AL, Nickerson KW. Absence of farnesol salvage in Candida albicans and probably in other fungi. Appl Environ Microbiol 2024; 90:e0087424. [PMID: 38940563 PMCID: PMC11267938 DOI: 10.1128/aem.00874-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/08/2024] [Indexed: 06/29/2024] Open
Abstract
Farnesol salvage, a two-step pathway converting farnesol to farnesyl pyrophosphate (FPP), occurs in bacteria, plants, and animals. This paper investigates the presence of this pathway in fungi. Through bioinformatics, biochemistry, and physiological analyses, we demonstrate its absence in the yeasts Saccharomyces cerevisiae and Candida albicans, suggesting a likely absence across fungi. We screened 1,053 fungal genomes, including 34 from C. albicans, for potential homologs to four genes (Arabidopsis thaliana AtFOLK, AtVTE5, AtVTE6, and Plasmodium falciparum PfPOLK) known to accomplish farnesol/prenol salvage in other organisms. Additionally, we showed that 3H-farnesol was not converted to FPP or any other phosphorylated prenol, and exogenous farnesol was not metabolized within 90 minutes at any phase of growth and did not rescue cells from the toxic effects of atorvastatin, but it did elevate the levels of intracellular farnesol (Fi). All these experiments were conducted with C. albicans. In sum, we found no evidence for farnesol salvage in fungi. IMPORTANCE The absence of farnesol salvage constitutes a major difference in the metabolic capabilities of fungi. In terms of fungal physiology, the lack of farnesol salvage pathways relates to how farnesol acts as a quorum-sensing molecule in Candida albicans and why farnesol should be investigated for use in combination with other known antifungal antibiotics. Its absence is essential for a model (K. W. Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024), wherein protein farnesylation, protein chaperones, and the unfolded protein response are combined under the unifying umbrella of a cell's intracellular farnesol (Fi). In terms of human health, farnesol should have at least two different modes of action depending on whether those cells have farnesol salvage. Because animals have farnesol salvage, we can now see the importance of dietary prenols as well as the potential importance of farnesol in treating neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and multiple sclerosis.
Collapse
Affiliation(s)
- Adam Voshall
- Division of Genetics and Genomics, Boston Children’s Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Ignasi Bofill Verdaguer
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Marcell Crispim
- Department of Parasitology, Institute of Biomedical Sciences of the University of São Paulo, São Paulo, Brazil
| | - Cory H.T. Boone
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
14
|
Zhou X, Hilk A, Solis NV, Pereira De Sa N, Hogan BM, Bierbaum TA, Del Poeta M, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on sterol composition, azole susceptibility, filamentation, and stress response phenotypes. PLoS Pathog 2024; 20:e1012389. [PMID: 39078851 PMCID: PMC11315318 DOI: 10.1371/journal.ppat.1012389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 08/09/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Homozygous deletions of ERG251 resulted in accumulation of ergosterol intermediates consistent with the fitness defect in rich medium. Dysfunction of ERG251, together with FLC exposure, resulted in decreased accumulation of the toxic sterol (14-ɑ-methylergosta-8,24(28)-dien-3β,6α-diol) and increased accumulation of non-toxic alternative sterols. The altered sterol composition of the ERG251 mutants had pleiotropic effects on transcription, filamentation, and stress responses including cell membrane, osmotic and oxidative stress. Interestingly, while dysfunction of ERG251 resulted in azole tolerance, it also led to transcriptional upregulation of ZRT2, a membrane-bound Zinc transporter, in the presence of FLC, and overexpression of ZRT2 is sufficient to increase azole tolerance in wild-type C. albicans. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study demonstrates that single allele dysfunction of ERG251 is a recurrent and effective mechanism of acquired azole tolerance. We propose that altered sterol composition resulting from ERG251 dysfunction mediates azole tolerance as well as pleiotropic effects on stress response, filamentation and virulence.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
- Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, California, United States of America
- David Geffen School of Medicine at UCLA, Los Angeles, California, United States of America
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, Minnesota, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
15
|
Wang D, Zeng N, Li C, Li Z, Zhang N, Li B. Fungal biofilm formation and its regulatory mechanism. Heliyon 2024; 10:e32766. [PMID: 38988529 PMCID: PMC11233959 DOI: 10.1016/j.heliyon.2024.e32766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 06/07/2024] [Accepted: 06/08/2024] [Indexed: 07/12/2024] Open
Abstract
Fungal biofilm is a microbial community composed of fungal cells and extracellular polymeric substances (EPS). In recent years, fungal biofilms have played an increasingly important role in many fields. However, there are few studies on fungal biofilms and their related applications and development are still far from enough. Therefore, this review summarizes the composition and function of EPS in fungal biofilms, and improves and refines the formation process of fungal biofilms according to the latest viewpoints. Moreover, based on the study of Saccharomyces cerevisiae and Candida albicans, this review summarizes the gene regulation network of fungal biofilm synthesis, which is crucial for systematically understanding the molecular mechanism of fungal biofilm formation. It is of great significance to further develop effective methods at the molecular level to control harmful biofilms or enhance and regulate the formation of beneficial biofilms. Finally, the quorum sensing factors and mixed biofilms formed by fungi in the current research of fungal biofilms are summarized. These results will help to deepen the understanding of the formation process and internal regulation mechanism of fungal biofilm, provide reference for the study of EPS composition and structure, formation, regulation, group behavior and mixed biofilm formation of other fungal biofilms, and provide strategies and theoretical basis for the control, development and utilization of fungal biofilms.
Collapse
Affiliation(s)
- Dandan Wang
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Nan Zeng
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Chunji Li
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
- Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China, Ministry of Agriculture and Rural Affairs, Guangzhou, 510225, PR China
- College of Agriculture and Biology, Zhongkai University of Agriculture and Engineering, Guangzhou, 510225, PR China
| | - Zijing Li
- College of Food Science, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Ning Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, PR China
| | - Bingxue Li
- College of Land and Environment, Shenyang Agricultural University, Shenyang, 110866, PR China
| |
Collapse
|
16
|
El-Gazzar N, Elez RMMA, Attia ASA, Abdel-Warith AWA, Darwish MM, Younis EM, Eltahlawi RA, Mohamed KI, Davies SJ, Elsohaby I. Antifungal and antibiofilm effects of probiotic Lactobacillus salivarius, zinc nanoparticles, and zinc nanocomposites against Candida albicans from Nile tilapia ( Oreochromis niloticus), water and humans. Front Cell Infect Microbiol 2024; 14:1358270. [PMID: 38895734 PMCID: PMC11183309 DOI: 10.3389/fcimb.2024.1358270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 06/21/2024] Open
Abstract
Introduction Candida albicans (C. albicans) can form biofilms; a critical virulence factor that provides effective protection from commercial antifungals and contributes to public health issues. The development of new antifungal therapies, particularly those targeting biofilms, is imperative. Thus, this study was conducted to investigate the antifungal and antibiofilm effects of Lactobacillus salivarius (L. salivarius), zinc nanoparticles (ZnNPs) and nanocomposites (ZnNCs) on C. albicans isolates from Nile tilapia, fish wash water and human fish sellers in Sharkia Governorate, Egypt. Methods A cross-sectional study collected 300 samples from tilapia, fish wash water, and fish sellers (100 each). Probiotic L. salivarius was immobilized with ZnNPs to synthesize ZnNCs. The study assessed the antifungal and antibiofilm activities of ZnNPs, L. salivarius, and ZnNCs compared to amphotericin (AMB). Results Candida spp. were detected in 38 samples, which included C. albicans (42.1%), C. glabrata (26.3%), C. krusei (21.1%), and C. parapsilosis (10.5%). A total of 62.5% of the isolates were resistant to at least one antifungal agent, with the highest resistance to nystatin (62.5%). However, 75% of the isolates were highly susceptible to AMB. All C. albicans isolates exhibited biofilm-forming capabilities, with 4 (25%) isolates showing strong biofilm formation. At least one virulence-associated gene (RAS1, HWP1, ALS3, or SAP4) was identified among the C. albicans isolates. Probiotics L. salivarius, ZnNPs, and ZnNCs displayed antibiofilm and antifungal effects against C. albicans, with ZnNCs showing significantly higher inhibitory activity. ZnNCs, with a minimum inhibitory concentration (MIC) of 10 µg/mL, completely reduced C. albicans biofilm gene expression. Additionally, scanning electron microscopy images of C. albicans biofilms treated with ZnNCs revealed asymmetric, wrinkled surfaces, cell deformations, and reduced cell numbers. Conclusion This study identified virulent, resistant C. albicans isolates with strong biofilm-forming abilities in tilapia, water, and humans, that pose significant risks to public health and food safety.
Collapse
Affiliation(s)
- Nashwa El-Gazzar
- Department of Botany and Microbiology, Faculty of Science, Zagazig University, Zagazig, Egypt
| | - Rasha M. M. Abou Elez
- Department of Zoonoses, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Amira S. A. Attia
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | | | - Manal M. Darwish
- Medical Microbiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts, Giza, Egypt
| | - Elsayed M. Younis
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Rehab A. Eltahlawi
- Microbiology and Immunology Department, Faculty of Medicine, Zagazig University, Zagazig, Egypt
| | | | - Simon J. Davies
- Aquaculture Nutrition Research Unit ANRU, Carna Research Station, Ryan Institute, College of Science and Engineering, University of Galway, Galway, Ireland
| | - Ibrahim Elsohaby
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Centre for Applied One Health Research and Policy Advice (OHRP), City University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Department of Animal Medicine, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| |
Collapse
|
17
|
Tan L, Ma R, Katz AJ, Levi N. Farnesol repurposing for prevention and treatment of Acinetobacter baumannii biofilms. Biofilm 2024; 7:100198. [PMID: 38706984 PMCID: PMC11066513 DOI: 10.1016/j.bioflm.2024.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/17/2024] [Accepted: 04/19/2024] [Indexed: 05/07/2024] Open
Abstract
Acinetobacter baumannii has emerged as a multidrug-resistant (MDR) superbug by causing severe infections, with high mortality rates. The ability of A. baumannii to form biofilms significantly contributes to its persistence in diverse environmental and hospital settings. Here we report that farnesol, an FDA-approved commercial cosmetic and flavoring agent, demonstrates efficacy for both inhibition of biofilm formation, and disruption of established A. baumannii biofilms. Moreover, no resistance to farnesol was observed even after prolonged culture in the presence of sub-inhibitory farnesol doses. Farnesol combats A. baumannii biofilms by direct killing, while also facilitating biofilm detachment. Furthermore, farnesol was safe, and effective, for both prevention and treatment of A. baumannii biofilms in an ex vivo burned human skin model. Since current treatment options for A. baumannii biofilm infections were mainly counted on the combination therapy of last-resort antibiotics, and clearly non-sustainable due to robust MDR phenotype of A. baumannii, we propose that farnesol alone can be repurposed as a highly effective agent for both preventing and treating life-threating biofilm-associated infections of A. baumannii due to its proven safety, convenient topical delivery, and excellent efficiency, plus its superiority of evading resistance development.
Collapse
Affiliation(s)
- Li Tan
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
18
|
Tan L, Ma R, Reeves T, Katz AJ, Levi N. Repurposing Farnesol for Combating Drug-Resistant and Persistent Single and Polymicrobial Biofilms. Antibiotics (Basel) 2024; 13:350. [PMID: 38667026 PMCID: PMC11047559 DOI: 10.3390/antibiotics13040350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/05/2024] [Accepted: 04/09/2024] [Indexed: 04/29/2024] Open
Abstract
Biofilm-associated infections caused by drug-resistant and persistent bacteria remain a significant clinical challenge. Here we report that farnesol, commercially available as a cosmetic and flavoring agent, shows significant anti-biofilm properties when dissolved in ethanol using a proprietary formulation emulsion technique. Farnesol in the new formulation inhibits biofilm formation and disrupts established biofilms for Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa, including their polymicrobial biofilms, and, moreover, kills S. aureus persister cells that have developed tolerance to antibiotics. No resistance to farnesol was observed for S. aureus after twenty continuous passages. Farnesol combats biofilms by direct killing, while also facilitating biofilm detachment. Furthermore, farnesol was safe and effective for preventing and treating biofilm-associated infections of both types of bacteria in an ex vivo burned human skin model. These data suggest that farnesol in the new formulation is an effective broad-spectrum anti-biofilm agent with promising clinical potential. Due to its established safety, low-cost, versatility, and excellent efficacy-including ability to reduce persistent and resistant microbial populations-farnesol in the proprietary formulation represents a compelling transformative, translational, and commercial platform for addressing many unsolved clinical challenges.
Collapse
Affiliation(s)
- Li Tan
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Rong Ma
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Tony Reeves
- Department of Internal Medicine, Section on Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA
| | - Adam J. Katz
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| | - Nicole Levi
- Department of Plastic and Reconstructive Surgery, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA; (L.T.); (A.J.K.)
| |
Collapse
|
19
|
Kiran Kumar Reddy G, Hari Kumar P, Padmavathi AR, Kutala VK, Sandur SK, Nancharaiah Y. Antifungal and antibiofilm action of triphenylphosphonium-conjugated curcumin on Candida albicans: Efficacy and activity mechanisms. INTERNATIONAL BIODETERIORATION & BIODEGRADATION 2024; 189:105751. [DOI: 10.1016/j.ibiod.2024.105751] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
20
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
21
|
Kadirvelu L, Sivaramalingam SS, Jothivel D, Chithiraiselvan DD, Karaiyagowder Govindarajan D, Kandaswamy K. A review on antimicrobial strategies in mitigating biofilm-associated infections on medical implants. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 6:100231. [PMID: 38510214 PMCID: PMC10951465 DOI: 10.1016/j.crmicr.2024.100231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024] Open
Abstract
Biomedical implants are crucial in providing support and functionality to patients with missing or defective body parts. However, implants carry an inherent risk of bacterial infections that are biofilm-associated and lead to significant complications. These infections often result in implant failure, requiring replacement by surgical restoration. Given these complications, it is crucial to study the biofilm formation mechanism on various biomedical implants that will help prevent implant failures. Therefore, this comprehensive review explores various types of implants (e.g., dental implant, orthopedic implant, tracheal stent, breast implant, central venous catheter, cochlear implant, urinary catheter, intraocular lens, and heart valve) and medical devices (hemodialyzer and pacemaker) in use. In addition, the mechanism of biofilm formation on those implants, and their pathogenesis were discussed. Furthermore, this article critically reviews various approaches in combating implant-associated infections, with a special emphasis on novel non-antibiotic alternatives to mitigate biofilm infections.
Collapse
Affiliation(s)
- Lohita Kadirvelu
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Sowmiya Sri Sivaramalingam
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Deepsikha Jothivel
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | - Dhivia Dharshika Chithiraiselvan
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| | | | - Kumaravel Kandaswamy
- Research Center for Excellence in Microscopy, Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, 641049, Tamil Nadu, India
| |
Collapse
|
22
|
Zhou X, Hilk A, Solis NV, Hogan BM, Bierbaum TA, Filler SG, Burrack LS, Selmecki A. Erg251 has complex and pleiotropic effects on azole susceptibility, filamentation, and stress response phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583770. [PMID: 38496635 PMCID: PMC10942443 DOI: 10.1101/2024.03.06.583770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Ergosterol is essential for fungal cell membrane integrity and growth, and numerous antifungal drugs target ergosterol. Inactivation or modification of ergosterol biosynthetic genes can lead to changes in antifungal drug susceptibility, filamentation and stress response. Here, we found that the ergosterol biosynthesis gene ERG251 is a hotspot for point mutations during adaptation to antifungal drug stress within two distinct genetic backgrounds of Candida albicans. Heterozygous point mutations led to single allele dysfunction of ERG251 and resulted in azole tolerance in both genetic backgrounds. This is the first known example of point mutations causing azole tolerance in C. albicans. Importantly, single allele dysfunction of ERG251 in combination with recurrent chromosome aneuploidies resulted in bona fide azole resistance. Homozygous deletions of ERG251 caused increased fitness in low concentrations of fluconazole and decreased fitness in rich medium, especially at low initial cell density. Dysfunction of ERG251 resulted in transcriptional upregulation of the alternate sterol biosynthesis pathway and ZRT2, a Zinc transporter. Notably, we determined that overexpression of ZRT2 is sufficient to increase azole tolerance in C. albicans. Our combined transcriptional and phenotypic analyses revealed the pleiotropic effects of ERG251 on stress responses including cell wall, osmotic and oxidative stress. Interestingly, while loss of either allele of ERG251 resulted in similar antifungal drug responses, we observed functional divergence in filamentation regulation between the two alleles of ERG251 (ERG251-A and ERG251-B) with ERG251-A exhibiting a dominant role in the SC5314 genetic background. Finally, in a murine model of systemic infection, homozygous deletion of ERG251 resulted in decreased virulence while the heterozygous deletion mutants maintain their pathogenicity. Overall, this study provides extensive genetic, transcriptional and phenotypic analysis for the effects of ERG251 on drug susceptibility, fitness, filamentation and stress responses.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Audrey Hilk
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| | - Norma V. Solis
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
| | - Bode M. Hogan
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Tessa A. Bierbaum
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Scott G. Filler
- Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor UCLA Medical Center, Torrance, CA, USA
- David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura S. Burrack
- Gustavus Adolphus College, Department of Biology, Saint Peter, MN, USA
| | - Anna Selmecki
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
23
|
Dühring S, Schuster S. Studying mixed-species biofilms of Candida albicans and Staphylococcus aureus using evolutionary game theory. PLoS One 2024; 19:e0297307. [PMID: 38446770 PMCID: PMC10917284 DOI: 10.1371/journal.pone.0297307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/03/2024] [Indexed: 03/08/2024] Open
Abstract
Mixed-species biofilms of Candida albicans and Staphylococcus aureus pose a significant clinical challenge due to their resistance to the human immune system and antimicrobial therapy. Using evolutionary game theory and nonlinear dynamics, we analyse the complex interactions between these organisms to understand their coexistence in the human host. We determine the Nash equilibria and evolutionary stable strategies of the game between C. albicans and S. aureus and point out different states of the mixed-species biofilm. Using replicator equations we study the fungal-bacterial interactions on a population level. Our focus is on the influence of available nutrients and the quorum sensing molecule farnesol, including the potential therapeutic use of artificially added farnesol. We also investigate the impact of the suggested scavenging of C. albicans hyphae by S. aureus. Contrary to common assumptions, we confirm the hypothesis that under certain conditions, mixed-species biofilms are not universally beneficial. Instead, different Nash equilibria occur depending on encountered conditions (i.e. varying farnesol levels, either produced by C. albicans or artificially added), including antagonism. We further show that the suggested scavenging of C. albicans' hyphae by S. aureus does not influence the overall outcome of the game. Moreover, artificially added farnesol strongly affects the dynamics of the game, although its use as a medical adjuvant (add-on medication) may pose challenges.
Collapse
Affiliation(s)
- Sybille Dühring
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| | - Stefan Schuster
- Department of Bioinformatics, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
24
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
25
|
Costa AF, da Silva JT, Martins JA, Rocha VL, de Menezes LB, Amaral AC. Chitosan nanoparticles encapsulating farnesol evaluated in vivo against Candida albicans. Braz J Microbiol 2024; 55:143-154. [PMID: 37964169 PMCID: PMC10920512 DOI: 10.1007/s42770-023-01168-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/26/2023] [Indexed: 11/16/2023] Open
Abstract
Farnesol is a natural essential oil with antimicrobial properties. Complexation of farnesol in chitosan nanoparticles can be useful to improve its bioavailability and potentiate its antifungal capabilities such as inhibition of hyphal and biofilm formation. The aim of this study was to develop and characterize chitosan nanoparticles with farnesol (NF) and evaluate their toxicity and antifungal action on C. albicans in vivo. The NF were prepared by the ionic gelation method and showed physicochemical characteristics such as diameter less than 200 nm, monodisperse distribution, positive zeta potential, spherical morphology, and stability after 120 days of storage. In the evaluation of toxicity in Galleria mellonella, NF did not reduce the survival rate, indicating that there was no toxicity in vivo at the doses tested. In the assays with G. mellonella infected by C. albicans, the larvae treated with NF had a high survival rate after 48 h, with a significant reduction of the fungal load and inhibition of the formation of biofilms and hyphae. In the murine model of vulvovaginal candidiasis (VVC), histopathological analysis showed a reduction in inflammatory parameters, fungal burden, and hyphal inhibition in mice treated with NF. The produced nanoparticles can be a promising alternative to inhibit C. albicans infection.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil.
| | - Jacqueline Teixeira da Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Juliana Assis Martins
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Viviane Lopes Rocha
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Liliana Borges de Menezes
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, GO, 74605-050, Brazil
| |
Collapse
|
26
|
Zhang YG, Zhang T, Lin L. Identification of Flo11-like Adhesin in Schizosaccharomyces pombe and the Mechanism of Small-Molecule Compounds Mediating Biofilm Formation in Yeasts. Microorganisms 2024; 12:358. [PMID: 38399762 PMCID: PMC10893080 DOI: 10.3390/microorganisms12020358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 02/04/2024] [Accepted: 02/07/2024] [Indexed: 02/25/2024] Open
Abstract
Fungal infection is initiated by the adhesion of pathogens to biotic and abiotic surfaces, with various manifestations including biofilm formation and invasive growth, etc. A previous report, though devoid of functional data, speculated that the Schizosaccharomyces pombe glycoprotein SPBPJ4664.02 could be the homology of Saccharomyces cerevisiae Flo11. Here, our studies with S. pombe substantiated the previously proposed speculation by (1) the deletion of SPBPJ4664.02 attenuated biofilm formation and invasive growth in S. pombe; (2) the S. pombe's lack of SPBPJ4664.02 could be complemented by expressing S. cerevisiae flo11. Furthermore, indole-3-acetic acid (IAA) and dodecanol were examined in S. pombe for their respective effects on biofilm formation. IAA and dodecanol at high concentrations could inhibit biofilm formation, whereas opposing effects were observed with low concentrations of these molecules. Mechanism studies with the SPBPJ4664.02Δ and SPBPJ4664.02Δ/flo11OE versus the wild type have demonstrated that IAA or dodecanol might exert regulatory effects downstream of SPBPJ4664.02 in the signaling pathway for biofilm formation. Moreover, our research extrapolated to Candida albicans has pinpointed that IAA inhibited biofilm formation at high concentrations, consistent with the transcriptional downregulation of the biofilm-related genes. Dodecanol suppressed C. albicans biofilm formation at all the concentrations tested, in accord with the downregulation of biofilm-related transcripts.
Collapse
Affiliation(s)
- Yu-Gang Zhang
- Medical School, Key Laboratory of Developmental Genes and Human Diseases (MOE), School of Life Science and Technology, Southeast University, Nanjing 210096, China;
| | - Tong Zhang
- Department of Bioengineering, Medical School, Southeast University, Nanjing 210009, China;
| | - Lan Lin
- Medical School, Key Laboratory of Developmental Genes and Human Diseases (MOE), School of Life Science and Technology, Southeast University, Nanjing 210096, China;
| |
Collapse
|
27
|
El Zawawy NA, El-Safty S, Kenawy ER, Ibrahim Salem S, Ali SS, Mahmoud YAG. Exploring the biomedical potential of a novel modified glass ionomer cement against the pandrug-resistant oral pathogen Candida albicans SYN-01. J Oral Microbiol 2023; 15:2195741. [PMID: 37008537 PMCID: PMC10064826 DOI: 10.1080/20002297.2023.2195741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
Abstract
Dental caries is an infectious disease that is a major concern for dentists. Streptococci and Lactobacilli were long thought to be the primary etiology responsible for caries. Candida albicans with acidogenic and aciduric characteristics has recently been implicated in the onset and progression of cariogenic lesions. Moreover, due to the increased resistance to common antimicrobials, the discovery of innovative candidates is in high demand. Therefore, our study might be the first report that explores the efficacy of glass ionomer cement (GIC) incorporated with a newly modified carboxylated chitosan derivative (CS-MC) against multidrug-resistant (MDR) and/or pandrug resistant (PDR) C. albicans isolated from the oral cavity. In this work, four CS-MC-GIC groups with different concentrations were formulated. Group four (CS-MC-GIC-4) gave a significant performance as an anticandidal agent against selected PDR Candida strain, with an obvious decrease in its cell viability and high antibiofilm activity. It also, enhanced all the mechanical properties and supports cell viability of Vero cells as a nontoxic compound. Moreover, CS-MC-GIC-4 inhibited neuraminidases completely, which might provide a novel mechanism to prevent dental/oral infections. Thus, findings in this study open up new prospect of the utilization of CS-MC-GIC as a novel dental filling material against oral drug-resistant Candida.
![]() ![]()
Collapse
Affiliation(s)
- Nessma A. El Zawawy
- Botany Department, Faculty of Science Tanta University, Tanta, Egypt
- CONTACT Nessma A. El Zawawy Botany Department, Faculty of Science, Tanta University, Tanta31527, Egypt
| | - Samy El-Safty
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - El-Refaie Kenawy
- Polymer Research Group, Department of Chemistry, Faculty of Science Tanta University, Tanta, Egypt
| | - Sara Ibrahim Salem
- Polymer Research Group, Department of Chemistry, Faculty of Science Tanta University, Tanta, Egypt
| | - Sameh S. Ali
- Botany Department, Faculty of Science Tanta University, Tanta, Egypt
| | | |
Collapse
|
28
|
Ajetunmobi OH, Badali H, Romo JA, Ramage G, Lopez-Ribot JL. Antifungal therapy of Candida biofilms: Past, present and future. Biofilm 2023; 5:100126. [PMID: 37193227 PMCID: PMC10182175 DOI: 10.1016/j.bioflm.2023.100126] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/19/2023] [Accepted: 04/20/2023] [Indexed: 05/18/2023] Open
Abstract
Virtually all Candida species linked to clinical candidiasis are capable of forming highly resistant biofilms on different types of surfaces, which poses an additional significant threat and further complicates therapy of these infections. There is a scarcity of antifungal agents, and their effectiveness, particularly against biofilms, is limited. Here we provide a historical perspective on antifungal agents and therapy of Candida biofilms. As we reflect upon the past, consider the present, and look towards the future of antifungal therapy of Candida biofilms, we believe that there are reasons to remain optimistic, and that the major challenges of Candida biofilm therapy can be conquered within a reasonable timeframe.
Collapse
Affiliation(s)
- Olabayo H. Ajetunmobi
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hamid Badali
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jesus A. Romo
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Gordon Ramage
- Glasgow Biofilm Research Network, School of Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8TA, UK
| | - Jose L. Lopez-Ribot
- Department of Molecular Microbiology & Immunology, South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author. Department of Molecular Microbiology & Immunology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
29
|
Su Y, Ding T. Targeting microbial quorum sensing: the next frontier to hinder bacterial driven gastrointestinal infections. Gut Microbes 2023; 15:2252780. [PMID: 37680117 PMCID: PMC10486307 DOI: 10.1080/19490976.2023.2252780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Bacteria synchronize social behaviors via a cell-cell communication and interaction mechanism termed as quorum sensing (QS). QS has been extensively studied in monocultures and proved to be intensively involved in bacterial virulence and infection. Despite the role QS plays in pathogens during laboratory engineered infections has been proved, the potential functions of QS related to pathogenesis in context of microbial consortia remain poorly understood. In this review, we summarize the basic molecular mechanisms of QS, primarily focusing on pathogenic microbes driving gastrointestinal (GI) infections. We further discuss how GI pathogens disequilibrate the homeostasis of the indigenous microbial consortia, rebuild a realm dominated by pathogens, and interact with host under worsening infectious conditions via pathogen-biased QS signaling. Additionally, we present recent applications and main challenges of manipulating QS network in microbial consortia with the goal of better understanding GI bacterial sociality and facilitating novel therapies targeting bacterial infections.
Collapse
Affiliation(s)
- Ying Su
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| | - Tao Ding
- Department of Immunology and Microbiology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
- Ministry of Education, Key Laboratory of Tropical Diseases Control (Sun Yat-Sen University), Guangzhou, China
| |
Collapse
|
30
|
Boone CHT, Parker KA, Gutzmann DJ, Atkin AL, Nickerson KW. Farnesol as an antifungal agent: comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Front Physiol 2023; 14:1207567. [PMID: 38054042 PMCID: PMC10694251 DOI: 10.3389/fphys.2023.1207567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
31
|
Massey J, Zarnowski R, Andes D. Role of the extracellular matrix in Candida biofilm antifungal resistance. FEMS Microbiol Rev 2023; 47:fuad059. [PMID: 37816666 DOI: 10.1093/femsre/fuad059] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 09/17/2023] [Accepted: 10/09/2023] [Indexed: 10/12/2023] Open
Abstract
Clinical infection due to Candida species frequently involve growth in biofilm communities. Recalcitrance despite antifungal therapy leads to disease persistence associated with high morbidity and mortality. Candida possesses several tools allowing evasion of antifungal effects. Among these, protection of biofilm cells via encasement by the extracellular matrix is responsible for a majority drug resistance phenotype. The Candida matrix composition is complex and includes a mannan-glucan complex linked to antifungal drug sequestration. This mechanism of resistance is conserved across the Candida genus and impacts each of the available antifungal drug classes. The exosome pathway is responsible for delivery and assembly of much of the Candida extracellular matrix as functional vesicle protein and polysaccharide cargo. Investigations demonstrate the vesicle matrix delivery pathway is a useful fungal biofilm drug target. Further elucidation of the vesicle pathway, as well as understanding the roles of biofilm driven cargo may provide additional targets to aid the diagnosis, prevention, and treatment of Candida biofilms.
Collapse
Affiliation(s)
- Justin Massey
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - Robert Zarnowski
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| | - David Andes
- Department of Medicine, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, 1685 Highland Ave Madison WI 53705, Madison
| |
Collapse
|
32
|
Bonincontro G, Scuderi SA, Marino A, Simonetti G. Synergistic Effect of Plant Compounds in Combination with Conventional Antimicrobials against Biofilm of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida spp. Pharmaceuticals (Basel) 2023; 16:1531. [PMID: 38004397 PMCID: PMC10675371 DOI: 10.3390/ph16111531] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Bacterial and fungal biofilm has increased antibiotic resistance and plays an essential role in many persistent diseases. Biofilm-associated chronic infections are difficult to treat and reduce the efficacy of medical devices. This global problem has prompted extensive research to find alternative strategies to fight microbial chronic infections. Plant bioactive metabolites with antibiofilm activity are known to be potential resources to alleviate this problem. The phytochemical screening of some medicinal plants showed different active groups, such as stilbenes, tannins, alkaloids, terpenes, polyphenolics, flavonoids, lignans, quinones, and coumarins. Synergistic effects can be observed in the interaction between plant compounds and conventional drugs. This review analyses and summarises the current knowledge on the synergistic effects of plant metabolites in combination with conventional antimicrobials against biofilms of Staphylococcus aureus, Pseudomonas aeruginosa, and Candida albicans. The synergism of conventional antimicrobials with plant compounds can modify and inhibit the mechanisms of acquired resistance, reduce undesirable effects, and obtain an appropriate therapeutic effect at lower doses. A deeper knowledge of these combinations and of their possible antibiofilm targets is needed to develop next-generation novel antimicrobials and/or improve current antimicrobials to fight drug-resistant infections attributed to biofilm.
Collapse
Affiliation(s)
- Graziana Bonincontro
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Andreana Marino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres, 98100 Messina, Italy;
| | - Giovanna Simonetti
- Department of Environmental Biology, Sapienza University of Rome, P.le Aldo Moro, 5, 00185 Roma, Italy;
| |
Collapse
|
33
|
Sharma H, Sehgal R, Jhacak S, Deshmukh K, Nada R. Evaluation of farnesol orally and topically against experimental cutaneous leishmaniasis: In -vivo analysis. PLoS One 2023; 18:e0290297. [PMID: 37639393 PMCID: PMC10461828 DOI: 10.1371/journal.pone.0290297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/06/2023] [Indexed: 08/31/2023] Open
Abstract
Leishmaniasis is a zoonotic disease transmitted by an obligate intra-macrophage protozoan of the genus Leishmania through the infective bite of a vector sandfly. This study investigated the therapeutic efficacy of farnesol, a sesquiterpene compound, for the treatment of cutaneous leishmaniasis (CL) using in vivo BALB/c mouse model. In this study, farnesol's efficacy was compared with the standard drug, paromomycin. It was observed that farnesol significantly reduced lesion sizes and footpad thickness compared to the control group (paromomycin). Lymph node size was also significantly reduced in farnesol-treated mice, indicating its ability to control infection spread. Combination therapy with farnesol and Paromomycin did not demonstrate synergistic effects. These results highlight the potential of farnesol as an alternative therapeutic agent for CL. Further investigations are required to elucidate its mechanism of action and assess potential off-target effects. Optimization of oral delivery methods should be explored to enhance bioavailability. Overall, our findings support farnesol's efficacy in CL treatment, offering promising prospects for improved disease management.
Collapse
Affiliation(s)
- Harshita Sharma
- Department of Medical Parasitology, PGIMER, Chandigarh, India
| | - Rakesh Sehgal
- Department of Medical Parasitology, PGIMER, Chandigarh, India
| | - Sanjay Jhacak
- Department of Natural Products, NIPER, Mohali, India
| | | | | |
Collapse
|
34
|
Zeng H, Stadler M, Abraham WR, Müsken M, Schrey H. Inhibitory Effects of the Fungal Pigment Rubiginosin C on Hyphal and Biofilm Formation in Candida albicans and Candida auris. J Fungi (Basel) 2023; 9:726. [PMID: 37504715 PMCID: PMC10381533 DOI: 10.3390/jof9070726] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/29/2023] Open
Abstract
The two fungal human pathogens, Candida auris and Candida albicans, possess a variety of virulence mechanisms. Among them are the formation of biofilms to protect yeast against harsh conditions through the development of (pseudo)hyphae whilst also facilitating the invasion of host tissues. In recent years, increased rates of antifungal resistance have been associated with C. albicans and C. auris, posing a significant challenge for the effective treatment of fungal infections. In the course of our ongoing search for novel anti-infectives, six selected azaphilones were tested for their cytotoxicity and antimicrobial effects as well as for their inhibitory activity against biofilm and hyphal formation. This study revealed that rubiginosin C, derived from stromata of the ascomycete Hypoxylon rubiginosum, effectively inhibited the formation of biofilms, pseudohyphae, and hyphae in both C. auris and C. albicans without lethal effects. Crystal violet staining assays were utilized to assess the inhibition of biofilm formation, while complementary microscopic techniques, such as confocal laser scanning microscopy, scanning electron microscopy, and optical microscopy, were used to investigate the underlying mechanisms. Rubiginosin C is one of the few substances known to effectively target both biofilm formation and the yeast-to-hyphae transition of C. albicans and C. auris within a concentration range not affecting host cells, making it a promising candidate for therapeutic intervention in the future.
Collapse
Affiliation(s)
- Haoxuan Zeng
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Marc Stadler
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| | - Wolf-Rainer Abraham
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Mathias Müsken
- Central Facility for Microscopy, Helmholtz Centre for Infection Research GmbH, Inhoffenstrasse 7, 38124 Braunschweig, Germany
| | - Hedda Schrey
- Department of Microbial Drugs, Helmholtz Centre for Infection Research GmbH and German Centre for Infection Research (DZIF), Partner Site Hannover/Braunschweig, Inhoffenstrasse 7, 38124 Braunschweig, Germany
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstraße 7, 38106 Braunschweig, Germany
| |
Collapse
|
35
|
Aberle B, Kowalczyk D, Massini S, Egler-Kemmerer AN, Gergel S, Hammer SC, Hauer B. Methylation of Unactivated Alkenes with Engineered Methyltransferases To Generate Non-natural Terpenoids. Angew Chem Int Ed Engl 2023; 62:e202301601. [PMID: 36997338 DOI: 10.1002/anie.202301601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/30/2023] [Accepted: 03/30/2023] [Indexed: 04/01/2023]
Abstract
Terpenoids are built from isoprene building blocks and have numerous biological functions. Selective late-stage modification of their carbon scaffold has the potential to optimize or transform their biological activities. However, the synthesis of terpenoids with a non-natural carbon scaffold is often a challenging endeavor because of the complexity of these molecules. Herein we report the identification and engineering of (S)-adenosyl-l-methionine-dependent sterol methyltransferases for selective C-methylation of linear terpenoids. The engineered enzyme catalyzes selective methylation of unactivated alkenes in mono-, sesqui- and diterpenoids to produce C11 , C16 and C21 derivatives. Preparative conversion and product isolation reveals that this biocatalyst performs C-C bond formation with high chemo- and regioselectivity. The alkene methylation most likely proceeds via a carbocation intermediate and regioselective deprotonation. This method opens new avenues for modifying the carbon scaffold of alkenes in general and terpenoids in particular.
Collapse
Affiliation(s)
- Benjamin Aberle
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Daniel Kowalczyk
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Simon Massini
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexander-N Egler-Kemmerer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Sebastian Gergel
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Stephan C Hammer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
- Faculty of Chemistry, Organic Chemistry and Biocatalysis, Bielefeld University, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Bernhard Hauer
- Department of Technical Biochemistry, Institute of Biochemistry and Technical Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| |
Collapse
|
36
|
Jin X, Hou X, Wang X, Zhang M, Chen J, Song M, Zhang J, Zheng H, Chang W, Lou H. Characterization of an allosteric inhibitor of fungal-specific C-24 sterol methyltransferase to treat Candida albicans infections. Cell Chem Biol 2023; 30:553-568.e7. [PMID: 37160123 DOI: 10.1016/j.chembiol.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Filamentation is an important virulence factor of the pathogenic fungus Candida albicans. The abolition of Candida albicans hyphal formation by disrupting sterol synthesis is an important concept for the development of antifungal drugs with high safety. Here, we conduct a high-throughput screen using a C. albicans strain expressing green fluorescent protein-labeled Dpp3 to identify anti-hypha agents by interfering with ergosterol synthesis. The antipyrine derivative H55 is characterized to have minimal cytotoxicity and potent inhibition of C. albicans hyphal formation in multiple cultural conditions. H55 monotherapy exhibits therapeutic efficacy in mouse models of azole-resistant candidiasis. H55 treatment increases the accumulation of zymosterol, the substrate of C-24 sterol methyltransferase (Erg6). The results of enzyme assays, photoaffinity labeling, molecular simulation, mutagenesis, and cellular thermal shift assays support H55 as an allosteric inhibitor of Erg6. Collectively, H55, an inhibitor of the fungal-specific enzyme Erg6, holds potential to treat C. albicans infections.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xue Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
37
|
MacAlpine J, Robbins N, Cowen LE. Bacterial-fungal interactions and their impact on microbial pathogenesis. Mol Ecol 2023; 32:2565-2581. [PMID: 35231147 PMCID: PMC11032213 DOI: 10.1111/mec.16411] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 01/14/2022] [Accepted: 02/18/2022] [Indexed: 11/27/2022]
Abstract
Microbial communities of the human microbiota exhibit diverse effects on human health and disease. Microbial homeostasis is important for normal physiological functions and changes to the microbiota are associated with many human diseases including diabetes, cancer, and colitis. In addition, there are many microorganisms that are either commensal or acquired from environmental reservoirs that can cause diverse pathologies. Importantly, the balance between health and disease is intricately connected to how members of the microbiota interact and affect one another's growth and pathogenicity. However, the mechanisms that govern these interactions are only beginning to be understood. In this review, we outline bacterial-fungal interactions in the human body, including examining the mechanisms by which bacteria govern fungal growth and virulence, as well as how fungi regulate bacterial pathogenesis. We summarize advances in the understanding of chemical, physical, and protein-based interactions, and their role in exacerbating or impeding human disease. We focus on the three fungal species responsible for the majority of systemic fungal infections in humans: Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus. We conclude by summarizing recent studies that have mined microbes for novel antimicrobials and antivirulence factors, highlighting the potential of the human microbiota as a rich resource for small molecule discovery.
Collapse
Affiliation(s)
- Jessie MacAlpine
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Nicole Robbins
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| | - Leah E. Cowen
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5G 1M1, Canada
| |
Collapse
|
38
|
Nikoomanesh F, Falahatinejad M, Černáková L, Dos Santos ALS, Mohammadi SR, Rafiee M, Rodrigues CF, Roudbary M. Combination of Farnesol with Common Antifungal Drugs: Inhibitory Effect against Candida Species Isolated from Women with RVVC. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040743. [PMID: 37109701 PMCID: PMC10143126 DOI: 10.3390/medicina59040743] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/29/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: Vulvovaginal candidiasis (VVC) is a mucous membrane infection, with an increased rate of antifungal resistance of Candida species. In this study, the in vitro efficacy of farnesol alone or in combination with traditional antifungals was assessed against resistant Candida strains recovered from women with VVC. Materials and Methods: Eighty Candida isolates were identified by multiplex polymerase chain reaction (PCR), and the antifungal susceptibility to amphotericin B (AMB), fluconazole (FLU), itraconazole (ITZ), voriconazole (VOR), clotrimazole (CTZ), and farnesol was tested by the standard microdilution method. The combinations of farnesol with each antifungal were calculated based on the fractional inhibitory concentration index (FICI). Result: Candida glabrata was the predominant species (48.75%) isolated from vaginal discharges, followed by C. albicans (43.75%), C. parapsilosis (3.75%), a mixed infection of C. albicans and C. glabrata (2.5%) and C. albicans and C. parapsilosis (1%). C. albicans and C. glabrata isolates had lower susceptibility to FLU (31.4% and 23.0%, respectively) and CTZ (37.1% and 33.3%, respectively). Importantly, there was "synergism" between farnesol-FLU and farnesol-ITZ against C. albicans and C. parapsilosis (FICI = 0.5 and 0.35, respectively), reverting the original azole-resistant profile. Conclusion: These findings indicate that farnesol can revert the resistance profile of azole by enhancing the activity of FLU and ITZ in resistant Candida isolates, which is a clinically promising result.
Collapse
Affiliation(s)
- Fatemeh Nikoomanesh
- Infectious Disease Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Mahsa Falahatinejad
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Lucia Černáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, 842 15 Bratislava, Slovakia
| | - André Luis Souza Dos Santos
- Department of General Microbiology, Microbiology Institute Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-901, RJ, Brazil
| | - Shahla Roudbar Mohammadi
- Department of Medical Mycology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran 14115111, Iran
| | - Mitra Rafiee
- Department of Immunology, School of Medicine, Cellular and Molecular Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Célia Fortuna Rodrigues
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal
- TOXRUN-Toxicology Research Unit, Cooperativa de Ensino Superior Politécnico e Universitário-CESPU, 4585-116 Gandra PRD, Portugal
| | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran 1449614535, Iran
| |
Collapse
|
39
|
Robertson SN, Soukarieh F, White TM, Camara M, Romero M, Griffiths RL. Probing Interkingdom Signaling Molecules via Liquid Extraction Surface Analysis-Mass Spectrometry. Anal Chem 2023; 95:5079-5086. [PMID: 36881460 PMCID: PMC10034741 DOI: 10.1021/acs.analchem.2c05703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Previously, metabolites diffused or secreted from microbial samples have been analyzed via liquid chromatography-mass spectrometry (LC-MS) approaches following lengthy extraction protocols. Here, we present a model system for growing biofilms on discs before utilizing rapid and direct surface sampling MS, namely, liquid extraction surface analysis, to study the microbial exometabolome. One of the benefits of this approach is its surface-specific nature, enabling mimicking biofilm formation in a way that the study of planktonic liquid cultures cannot imitate. Even though Pseudomonas aeruginosa (P. aeruginosa), Staphylococcus aureus (S. aureus), and Candida albicans (C. albicans) have been studied previously in isolation, very few studies consider the complexity of the interplay between these pathogens, which are commonly combined causative agents of infection. Our model system provides a route to investigate changes in the exometabolome, such as metabolites that become circulatory in the presence of multiple pathogens. Our results agree with previous reports showing that 2-alkyl-4(1H)-quinolone signal molecules produced by P. aeruginosa are important markers of infection and suggest that methods for monitoring levels of 2-heptyl-4-hydroxyquinoline and 2,4-dihydroxyquinoline, as well as pyocyanin, could be beneficial in the determination of causative agents in interkingdom infection including P. aeruginosa. Furthermore, studying changes in exometabolome metabolites between pqs quorum sensing antagonists in treated and nontreated samples suggests suppression of phenazine production by P. aeruginosa. Hence, our model provides a rapid analytical approach to gaining a mechanistic understanding of bacterial signaling.
Collapse
Affiliation(s)
- Shaun N Robertson
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Fadi Soukarieh
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Thomas M White
- Faculty of Science, School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Miguel Camara
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
| | - Manuel Romero
- U.K. National Biofilm Innovation Centre (NBIC), Biodiscovery Institute, School of Life Sciences, Faculty of Health and Medical Sciences, University of Nottingham, NG7 2RD Nottingham, U.K
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Rian L Griffiths
- Faculty of Science, School of Pharmacy, University of Nottingham, NG7 2RD Nottingham, U.K
| |
Collapse
|
40
|
Patel R, Soni M, Soyantar B, Shivangi S, Sutariya S, Saraf M, Goswami D. A clash of quorum sensing vs quorum sensing inhibitors: an overview and risk of resistance. Arch Microbiol 2023; 205:107. [PMID: 36881156 DOI: 10.1007/s00203-023-03442-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/08/2023] [Accepted: 02/15/2023] [Indexed: 03/08/2023]
Abstract
Indiscriminate use of antibiotics to treat microbial pathogens has caused emergence of multiple drug resistant strains. Most infectious diseases are caused by microbes that are capable of intercommunication using signaling molecules, which is known as quorum sensing (QS). Such pathogens express their pathogenicity through various QS-regulated virulence factors. Interference of QS could lead to decisive results in controlling such pathogenicity. Hence, QS inhibition has become an attractive new approach for the development of novel drugs. Many quorum sensing inhibitors (QSIs) of diverse origins have been reported. It is imperative that more such anti-QS compounds be found and studied, as they have significant effect on microbial pathogenicity. This review attempts to give a brief account of QS mechanism, its inhibition and describes some compounds with anti-QS potential. Also discussed is the possibility of emergence of quorum sensing resistance.
Collapse
Affiliation(s)
- Rohit Patel
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Mansi Soni
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Bilv Soyantar
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Suruchi Shivangi
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Swati Sutariya
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Meenu Saraf
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Dweipayan Goswami
- Department of Microbiology and Biotechnology, University School of Sciences, Gujarat University, Ahmedabad, Gujarat, 380009, India.
| |
Collapse
|
41
|
Mohammadi S, Leduc A, Charette SJ, Barbeau J, Vincent AT. Amino acid substitutions in specific proteins correlate with farnesol unresponsiveness in Candida albicans. BMC Genomics 2023; 24:93. [PMID: 36859182 PMCID: PMC9979538 DOI: 10.1186/s12864-023-09174-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND The quorum-sensing molecule farnesol, in opportunistic yeast Candida albicans, modulates its dimorphic switch between yeast and hyphal forms, and biofilm formation. Although there is an increasing interest in farnesol as a potential antifungal drug, the molecular mechanism by which C. albicans responds to this molecule is still not fully understood. RESULTS A comparative genomic analysis between C. albicans strains that are naturally unresponsive to 30 µM of farnesol on TYE plates at 37 °C versus responsive strains uncovered new molecular determinants involved in the response to farnesol. While no signature gene was identified, amino acid changes in specific proteins were shown to correlate with the unresponsiveness to farnesol, particularly with substitutions in proteins known to be involved in the farnesol response. Although amino acid changes occur primarily in disordered regions of proteins, some amino acid changes were also found in known domains. Finally, the genomic investigation of intermediate-response strains showed that the non-response to farnesol occurs gradually following the successive accumulation of amino acid changes at specific positions. CONCLUSION It is known that large genomic changes, such as recombinations and gene flow (losses and gains), can cause major phenotypic changes in pathogens. However, it is still not well known or documented how more subtle changes, such as amino acid substitutions, play a role in the adaptation of pathogens. The present study shows that amino acid changes can modulate C. albicans yeast's response to farnesol. This study also improves our understanding of the network of proteins involved in the response to farnesol, and of the involvement of amino acid substitutions in cellular behavior.
Collapse
Affiliation(s)
- Sima Mohammadi
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| | - Annie Leduc
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Steve J. Charette
- grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada ,grid.421142.00000 0000 8521 1798Centre de recherche de l’Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Département de biochimie, de microbiologie et de bio-informatique, Université Laval, Quebec City, QC Canada
| | - Jean Barbeau
- grid.14848.310000 0001 2292 3357Département de stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal City, QC Canada
| | - Antony T. Vincent
- grid.23856.3a0000 0004 1936 8390Département des sciences animales, Faculté des sciences de l’agriculture et de l’alimentation, Université Laval, Pavillon Paul-Comtois, 2425 rue de l’Agriculture, G1V 0A6 Quebec City, QC Canada ,grid.23856.3a0000 0004 1936 8390Institut de biologie intégrative et des systèmes, Université Laval, Quebec City, QC Canada
| |
Collapse
|
42
|
Gaálová-Radochová B, Kendra S, Jordao L, Kursawe L, Kikhney J, Moter A, Bujdáková H. Effect of Quorum Sensing Molecule Farnesol on Mixed Biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel) 2023; 12:antibiotics12030441. [PMID: 36978309 PMCID: PMC10044556 DOI: 10.3390/antibiotics12030441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
The natural bioactive molecule farnesol (FAR) is widely studied mainly for its antibiofilm and antimicrobial properties. In addition, it increases the effectiveness of some antimicrobial substances, which makes it interesting for the development of combined therapy. In the present work, the effect of FAR either alone or in combination with oxacillin (OXA) on mixed biofilms formed by clinically relevant pathogens, Candida albicans and Staphylococcus aureus, was studied. S. aureus isolates used for biofilm formation originated from blood cultures and central venous catheters (CVC) were characterized in terms of antimicrobial resistance. The minimal biofilm inhibitory concentration (MBIC50) for FAR of 48 h mixed biofilms formed by the C. albicans and methicillin-sensitive S. aureus (MSSA) was determined to be 125 μM, and for the mixed biofilms with methicillin-resistant S. aureus (MRSA) was determined to be 250 μM. Treatment of mixed biofilms with OXA (2 mg/mL) showed ≤4% inhibition; however, the combination of OXA (2 mg/mL) and FAR (300 μM) resulted in 80% inhibition of biofilms. In addition, planktonic cells of S. aureus exhibited an increased susceptibility to OXA, cefoxitin and kanamycin in the presence of FAR (150 and 300 μM). Scanning electron microscopy (SEM) micrographs confirmed patchy biofilm and lack of candidal hyphae in the samples treated with FAR and FAR/OXA in comparison to control and mixed biofilms treated only with OXA. Intriguingly, in a pilot experiment using fluorescence in situ hybridization (FISH), considerable differences in activity (as indicated by ribosome content) of staphylococcal cells were detected. While the activity rate of the staphylococci in mixed biofilms treated with FAR was high, no FISH-positive signal for staphylococcal cells was found in the biofilm treated with FAR/OXA.
Collapse
Affiliation(s)
- Barbora Gaálová-Radochová
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
- Correspondence: ; Tel.: +421-2-9014-9480
| | - Samuel Kendra
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Luisa Jordao
- Department of Environmental Health, Research and Development Unit, National Institute of Health Dr. Ricardo Jorge (INSA), Av. Padre Cruz, 1649-016 Lisboa, Portugal
| | - Laura Kursawe
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Judith Kikhney
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
| | - Annette Moter
- Biofilmcenter, Institute of Microbiology, Infectious Diseases and Immunology, Charité—Universitätsmedizin Berlin, Hindenburgdamm 30, 12203 Berlin, Germany
- MoKi Analytics GmbH, Charité-Universitätsmedizin Berlin, Hindenburdamm 30, 12203 Berlin, Germany
- Moter Diagnostics, Marienplatz 9, 12207 Berlin, Germany
| | - Helena Bujdáková
- Department of Microbiology and Virology, Faculty of Natural Sciences, Comenius University in Bratislava, Ilkovičova 6, 842 15 Bratislava, Slovakia
| |
Collapse
|
43
|
El-Zawawy NA, Ali SS, Nouh HS. Exploring the potential of Rhizopus oryzae AUMC14899 as a novel endophytic fungus for the production of L-tyrosine and its biomedical applications. Microb Cell Fact 2023; 22:31. [PMID: 36804031 PMCID: PMC9942418 DOI: 10.1186/s12934-023-02041-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 02/12/2023] [Indexed: 02/22/2023] Open
Abstract
BACKGROUND A significant threat to the public's health is the rise in antimicrobial resistance among numerous nosocomial bacterial infections. This may be a detriment to present initiatives to enhance the health of immune-compromised patients. Consequently, attention has been devoted to exploring new bioactive compounds in the field of drug discovery from endophytes. Therefore, this study is the first on the production of L-tyrosine (LT) as a promising bio-therapeutic agent from endophytic fungi. RESULTS A new endophytic fungal isolate has been identified for the first time as Rhizopus oryzae AUMC14899 from Opuntia ficus-indica (L.) and submitted to GenBank under the accession number MZ025968. Separation of amino acids in the crude extract of this fungal isolate was carried out, giving a higher content of LT, which is then characterized and purified. LT exhibited strong antibacterial and anti-biofilm activities against multidrug-resistant Gram-negative and Gram-positive bacteria. The recorded minimum inhibitory concentration (MIC) values ranged from 6 to 20 µg/ml. In addition, LT caused a strong reduction in biofilm formation and disrupted the preformed biofilm. Moreover, results indicated that LT supported cell viability, evidencing hemocompatibility and no cytotoxicity. CONCLUSION Our findings suggest that LT has potential as a therapeutic agent due to its potential antibacterial, anti-biofilm, hemocompatibility, and lack of cytotoxic activities, which may also increase the range of therapy options for skin burn infections, leading to the development of a novel fungal-based drug.
Collapse
Affiliation(s)
- Nessma A. El-Zawawy
- grid.412258.80000 0000 9477 7793Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hoda S. Nouh
- grid.412258.80000 0000 9477 7793Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| |
Collapse
|
44
|
Kaur K, Singh A, Kaur R, Kaur H, Kaur R, Arora S, Bedi N. In silico molecular modelling studies and antibiofilm efficacy of shikonin against Candida albicans: mechanistic insight. Arch Microbiol 2023; 205:93. [PMID: 36800037 DOI: 10.1007/s00203-023-03426-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 01/12/2023] [Accepted: 01/26/2023] [Indexed: 02/18/2023]
Abstract
In the recent past, the occurrence of fungal infections has increased drastically and candidiasis, caused prominently by Candida albicans, is foremost among them which has caused significant mortality and morbidity majorly in immune-compromised patients. Shikonin is a well-known natural naphthazarin derivative with promising antifungal efficacy, but it's mechanism of action is still unclear. Keeping this in view, present work was designed to get a mechanistic insight of anti-candida efficacy of shikonin via in vitro experiments and in situ molecular modelling studies. The current exploratory study is based on research that uses both qualitative and quantitative techniques, including minimum inhibitory concentration, minimum biofilm inhibitory concentration, time kill assay, cell cycle analysis and apoptotic assays, static biofilm formation assays, microscopic biofilm assessment assays, ergosterol content estimation and molecular docking/simulation studies. The study revealed a notable effect of shikonin against Candida albicans, including retardation of biofilms. Shikonin, with its increasing concentration leads to candidal cell apoptosis and necrosis establishing its dose-dependent effect. Additionally, it exhibited fungicidal activity via a mechanism of action likely related to ergosterol complexation which was further corroborated by molecular docking and simulation studies.
Collapse
Affiliation(s)
- Kirandeep Kaur
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Atamjit Singh
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajanbir Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Harneetpal Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Rajinder Kaur
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Saroj Arora
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, India
| | - Neena Bedi
- Department of Pharmaceutical Sciences, Guru Nanak Dev University, Amritsar, 143005, India.
| |
Collapse
|
45
|
Agustín MDR, Tarifa MC, Vela-Gurovic MS, Brugnoni LI. Application of natamycin and farnesol as bioprotection agents to inhibit biofilm formation of yeasts and foodborne bacterial pathogens in apple juice processing lines. Food Microbiol 2023; 109:104123. [PMID: 36309453 DOI: 10.1016/j.fm.2022.104123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/18/2022] [Accepted: 08/20/2022] [Indexed: 11/18/2022]
Abstract
Biofilms serve as a reservoir for pathogenic and spoilage microorganisms, and their removal from different surfaces is a recurring problem in the beverage industry. This study aimed to investigate the effect of a combination of natamycin (NAT, 0.01 mmol/l) and farnesol (FAR, 0.6 mmol/l) against biofilms on ultrafiltration (UF) membranes and stainless steel (SS) surfaces using apple juice as food matrix. The co-adhesion of Rhodotorula mucilaginosa, Candida tropicalis, C. krusei and C. kefyr (mixed-yeast) with Listeria monocytogenes, Salmonella enterica or Escherichia coli O157:H7 (multi-species) in presence of NAT + FAR was evaluated for 2, 24, 48 h. In biofilms treated with NAT + FAR were observed by cell quantification and microscopy, inhibition of the filamentous yeast forms, disruption of the tri-dimensional structure and a high detachment of yeast cells. NAT + FAR affected the biofilms independently of the surfaces used and the presence (or not) of bacteria. L. monocytogenes was the most susceptible (p < 0.001) in multi-species biofilms, followed by E. coli O157:H7 on both surfaces (p < 0.001), whereas the growth of S. enterica was reduced (p < 0.05) in SS but not in UF-membranes (p > 0.05). Since the combination NAT + FAR affected the structure and viability of yeast species and foodborne pathogens in multi-species biofilms developed on UF-membranes and SS surfaces, the combination proposed could be considered a promising control agent to prevent biofilms in apple juice processing lines.
Collapse
Affiliation(s)
- María Del Rosario Agustín
- Instituto de Ciencias Biológicas y Biomédicas Del Sur, (INBIOSUR-CONICET), Universidad Nacional Del Sur, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina.
| | - María Clara Tarifa
- Universidad Nacional de Río Negro, CIT Río Negro, Río Negro, Argentina; Centro de Investigaciones y Transferencia de Río Negro, CIT Río Negro (UNRN-CONICET), 8336, Villa Regina, Argentina
| | - María Soledad Vela-Gurovic
- Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina; Centro de Recursos Naturales Renovables de La Zona Semiárida (CERZOS-CONICET), Universidad Nacional Del Sur, 8000, Bahía Blanca, Argentina
| | - Lorena Inés Brugnoni
- Instituto de Ciencias Biológicas y Biomédicas Del Sur, (INBIOSUR-CONICET), Universidad Nacional Del Sur, 8000, Bahía Blanca, Argentina; Departamento de Biología, Bioquímica y Farmacia, Universidad Nacional Del Sur (UNS), Bahía Blanca, Argentina
| |
Collapse
|
46
|
Kaur J, Nobile CJ. Antifungal drug-resistance mechanisms in Candida biofilms. Curr Opin Microbiol 2023; 71:102237. [PMID: 36436326 PMCID: PMC11569868 DOI: 10.1016/j.mib.2022.102237] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/23/2022] [Accepted: 10/27/2022] [Indexed: 11/27/2022]
Abstract
Infections caused by the Candida species of human fungal pathogens are a significant medical problem because they can disseminate to nearly every organ of the body. In addition, there are only a few classes of antifungal drugs available to treat patients with invasive fungal infections. Candida infections that are associated with biofilms can withstand much higher concentrations of antifungal drugs compared with infections caused by planktonic cells, thus making biofilm infections particularly challenging to treat. Candida albicans is among the most prevalent fungal species of the human microbiota, asymptomatically colonizing several niches of the body, including the gastrointestinal tract, genitourinary tract, mouth, and skin. Immunocompromised health conditions, dysbiosis of the microbiota, or environmental changes, however, can lead to C. albicans overgrowth, causing infections that range from superficial mucosal infections to severe hematogenously disseminated infections. Here, we review the current knowledge of antifungal drug-resistance mechanisms occurring in Candida biofilms.
Collapse
Affiliation(s)
- Jaspreet Kaur
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California Merced, Merced, CA, USA; Health Sciences Research Institute, University of California Merced, Merced, CA, USA.
| |
Collapse
|
47
|
Sousa A, Phung AN, Škalko-Basnet N, Obuobi S. Smart delivery systems for microbial biofilm therapy: Dissecting design, drug release and toxicological features. J Control Release 2023; 354:394-416. [PMID: 36638844 DOI: 10.1016/j.jconrel.2023.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/14/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023]
Abstract
Bacterial biofilms are highly protected surface attached communities of bacteria that typically cause chronic infections. To address their recalcitrance to antibiotics and minimise side effects of current therapies, smart drug carriers are being explored as promising platforms for antimicrobials. Herein, we briefly summarize recent efforts and considerations that have been applied in the design of these smart carriers. We guide readers on a journey on how they can leverage the inherent biofilm microenvironment, external stimuli, or combine both types of stimuli in a predictable manner. The specific carrier features that are responsible for their 'on-demand' properties are detailed and their impact on antibiofilm property are further discussed. Moreover, an analysis on the impact of such features on drug release profiles is provided. Since nanotechnology represents a significant slice of the drug delivery pie, some insights on the potential toxicity are also depicted. We hope that this review inspires researchers to use their knowledge and creativity to design responsive systems that can eradicate biofilm infections.
Collapse
Affiliation(s)
- A Sousa
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - A Ngoc Phung
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - N Škalko-Basnet
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway
| | - S Obuobi
- Drug Transport and Delivery Research Group, Department of Pharmacy, UIT The Arctic University of Norway, Tromsø, Norway.
| |
Collapse
|
48
|
Design, Synthesis and Structure-Activity Relationship Studies of Nicotinamide Derivatives as Potent Antifungal Agents by Disrupting Cell Wall. Molecules 2023; 28:molecules28031135. [PMID: 36770802 PMCID: PMC9919825 DOI: 10.3390/molecules28031135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/16/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023] Open
Abstract
Fungal infections pose a serious challenge to human health due to the limited paucity of antifungal treatments. Starting as a hit compound screened from our compound library, a series of nicotinamide derivatives have been successfully synthesized via a facile one-step coupling reaction of aromatic carboxylic acid and amine. The synthesized compounds were evaluated for their antifungal activity against Candida albicans SC5314. Among the 37 nicotinamide derivatives screened, compound 16g was found to be the most active against C. albicans SC5314, with an MIC value of 0.25 μg/mL and without significant cytotoxicity. The rudimentary structure-activity relationships study revealed that the position of the amino and isopropyl groups of 16g was critical for its antifungal activity. In particular, compound 16g showed potent activity against six fluconazole-resistant C. albicans strains with MIC values ranging from 0.125-1 μg/mL and showed moderate activity against the other seven species of Candida, three strains of Cryptococcus neoformans, and three strains of Trichophyton. Furthermore, compound 16g showed fungicidal, anti-hyphal, and anti-biofilm activities in vitro, which were related to its ability to disrupt the cell wall of C. albicans. Taken together, 16g is a promising compound that is fungal-specific by targeting the cell wall and could be used as a lead compound for further investigation.
Collapse
|
49
|
Benziane MY, Bendahou M, Benbelaïd F, Khadir A, Belhadef H, Benaissa A, Ouslimani S, Mahdi F, Muselli A. Efficacy of endemic Algerian essential oils against single and mixed biofilms of Candida albicans and Candida glabrata. Arch Oral Biol 2022; 145:105584. [DOI: 10.1016/j.archoralbio.2022.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/05/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
|
50
|
Fan F, Liu Y, Liu Y, Lv R, Sun W, Ding W, Cai Y, Li W, Liu X, Qu W. Candida albicans biofilms: antifungal resistance, immune evasion, and emerging therapeutic strategies. Int J Antimicrob Agents 2022; 60:106673. [PMID: 36103915 DOI: 10.1016/j.ijantimicag.2022.106673] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/24/2022] [Accepted: 09/09/2022] [Indexed: 12/14/2022]
Abstract
Candida albicans is a fungal pathogen that can form biofilms on medical devices and host tissue, resulting in serious, life-threatening infections. These fungal biofilms are inherently resistant to traditional antifungal therapies and the host immune system; therefore, biofilm-associated infections are a huge clinical challenge. This review summarizes the most important insights into C. albicans biofilm-associated antifungal drug resistance mechanisms and immune evasion strategies. In addtion, this review also discusses the strategies for antifungal drug use to combat these processes, providing further evidence for novel drugs research and clinical therapies.
Collapse
Affiliation(s)
- FangMei Fan
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Yi Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - YiQing Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - RuiXue Lv
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Wei Sun
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - WenJing Ding
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - YanXing Cai
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - WeiWei Li
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Xing Liu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China
| | - Wei Qu
- Department of Laboratory Medicine, Guiyang Maternity & Child Health Hospital, Guiyang, 550003, China.
| |
Collapse
|