1
|
Kurakin G. Lipoxygenase in a Giant Sulfur Bacterium: An Evolutionary Solution for Size and Complexity? BIOCHEMISTRY. BIOKHIMIIA 2023; 88:842-845. [PMID: 37748879 DOI: 10.1134/s0006297923060111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/17/2023] [Accepted: 05/02/2023] [Indexed: 09/27/2023]
Abstract
Discovery of Thiomargarita magnifica - an exceptionally large giant sulfur bacterium - urges us to pay additional attention to the giant sulfur bacteria and to revisit our recent bioinformatic finding of lipoxygenases in the representatives of the genus Beggiatoa. These close relatives of Thiomargarita magnifica meet the similar size requirements by forming multicellular structures. We hypothesize that their lipoxygenases are a part of the oxylipin signaling system that provides high level of cell-to-cell signaling complexity which, in turn, enables them to reach large sizes.
Collapse
Affiliation(s)
- Georgy Kurakin
- Pirogov Russian National Research Medical University, Moscow, 117997, Russia.
| |
Collapse
|
2
|
Flood BE, Louw DC, Van der Plas AK, Bailey JV. Giant sulfur bacteria (Beggiatoaceae) from sediments underlying the Benguela upwelling system host diverse microbiomes. PLoS One 2021; 16:e0258124. [PMID: 34818329 PMCID: PMC8612568 DOI: 10.1371/journal.pone.0258124] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 09/20/2021] [Indexed: 01/04/2023] Open
Abstract
Due to their lithotrophic metabolisms, morphological complexity and conspicuous appearance, members of the Beggiatoaceae have been extensively studied for more than 100 years. These bacteria are known to be primarily sulfur-oxidizing autotrophs that commonly occur in dense mats at redox interfaces. Their large size and the presence of a mucous sheath allows these cells to serve as sites of attachment for communities of other microorganisms. But little is known about their individual niche preferences and attached microbiomes, particularly in marine environments, due to a paucity of cultivars and their prevalence in habitats that are difficult to access and study. Therefore, in this study, we compare Beggiatoaceae strain composition, community composition, and geochemical profiles collected from sulfidic sediments at four marine stations off the coast of Namibia. To elucidate community members that were directly attached and enriched in both filamentous Beggiatoaceae, namely Ca. Marithioploca spp. and Ca. Maribeggiatoa spp., as well as non-filamentous Beggiatoaceae, Ca. Thiomargarita spp., the Beggiatoaceae were pooled by morphotype for community analysis. The Beggiatoaceae samples collected from a highly sulfidic site were enriched in strains of sulfur-oxidizing Campylobacterota, that may promote a more hospitable setting for the Beggiatoaceae, which are known to have a lower tolerance for high sulfide to oxygen ratios. We found just a few host-specific associations with the motile filamentous morphotypes. Conversely, we detected 123 host specific enrichments with non-motile chain forming Beggiatoaceae. Potential metabolisms of the enriched strains include fermentation of host sheath material, syntrophic exchange of H2 and acetate, inorganic sulfur metabolism, and nitrite oxidation. Surprisingly, we did not detect any enrichments of anaerobic ammonium oxidizing bacteria as previously suggested and postulate that less well-studied anaerobic ammonium oxidation pathways may be occurring instead.
Collapse
Affiliation(s)
- Beverly E. Flood
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
- * E-mail:
| | - Deon C. Louw
- National Marine Information and Research Centre, Swakopmund, Namibia
| | | | - Jake V. Bailey
- Department of Earth and Environmental Sciences, University of Minnesota, Twin Cities, Minnesota, United States of America
| |
Collapse
|
3
|
Vainshtein M, Delegan Y. Intracellular Sulfur Inclusions: Source of Energy or Heater? Curr Microbiol 2021; 78:2471-2473. [PMID: 33982162 DOI: 10.1007/s00284-021-02524-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 04/28/2021] [Indexed: 10/21/2022]
Abstract
There are various groups of bacteria which receive energy from oxidation of inorganic sulfur compounds. Some of them produce elemental sulfur as an intermediate product and deposit it outside their cells. The group "sulfur bacteria" was described by their ability to produce intracellular sulfur inclusions. Traditionally, calculations of the released energy considered effect of the bacterial sulfide oxidation but never considered energy of the S-polymerization from monoatomic S to 8 atoms ring which is also essential (262.9 kJ). Till present, no biochemical reactions are known which could use energy of this eight atoms ring formation process. Thus, it is proposed that the intracellular sulfur inclusions can provide a lasting heating content of the cells as an additional advantage for the sulfur bacteria.
Collapse
Affiliation(s)
- Mikhail Vainshtein
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Prospekt Nauki 5, Pushchino, Moscow region, Russian Federation, 142290.
| | - Yanina Delegan
- G.K. Skryabin Institute of Biochemistry and Physiology of Microorganisms RAS, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Prospekt Nauki 5, Pushchino, Moscow region, Russian Federation, 142290
| |
Collapse
|
4
|
Scilipoti S, Koren K, Risgaard-Petersen N, Schramm A, Nielsen LP. Oxygen consumption of individual cable bacteria. SCIENCE ADVANCES 2021; 7:7/7/eabe1870. [PMID: 33568484 PMCID: PMC7875522 DOI: 10.1126/sciadv.abe1870] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 12/23/2020] [Indexed: 05/24/2023]
Abstract
The electric wires of cable bacteria possibly support a unique respiration mode with a few oxygen-reducing cells flaring off electrons, while oxidation of the electron donor and the associated energy conservation and growth is allocated to other cells not exposed to oxygen. Cable bacteria are centimeter-long, multicellular, filamentous Desulfobulbaceae that transport electrons across oxic-anoxic interfaces in aquatic sediments. From observed distortions of the oxic-anoxic interface, we derived oxygen consumption rates of individual cable bacteria and found biomass-specific rates of unheard magnitude in biology. Tightly controlled behavior, possibly involving intercellular electrical signaling, was found to generally keep <10% of individual filaments exposed to oxygen. The results strengthen the hypothesis that cable bacteria indeed have evolved an exceptional way to take the full energetic advantages of aerobic respiration and let >90% of the cells metabolize in the convenient absence of oxidative stress.
Collapse
Affiliation(s)
- Stefano Scilipoti
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| | - Klaus Koren
- Aarhus University Center for Water Technology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Nils Risgaard-Petersen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Andreas Schramm
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark
| | - Lars Peter Nielsen
- Center for Electromicrobiology, Department of Biology, Aarhus University, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Morphological Plasticity in a Sulfur-Oxidizing Marine Bacterium from the SUP05 Clade Enhances Dark Carbon Fixation. mBio 2019; 10:mBio.00216-19. [PMID: 31064824 PMCID: PMC6509183 DOI: 10.1128/mbio.00216-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Identifying shifts in microbial metabolism across redox gradients will improve efforts to model marine oxygen minimum zone (OMZ) ecosystems. Here, we show that aerobic morphology and metabolism increase cell size, sulfur storage capacity, and carbon fixation rates in “Ca. Thioglobus autotrophicus,” a chemosynthetic bacterium from the SUP05 clade that crosses oxic-anoxic boundaries. Sulfur-oxidizing bacteria from the SUP05 clade are abundant in anoxic and oxygenated marine waters that appear to lack reduced sources of sulfur for cell growth. This raises questions about how these chemosynthetic bacteria survive across oxygen and sulfur gradients and how their mode of survival impacts the environment. Here, we use growth experiments, proteomics, and cryo-electron tomography to show that a SUP05 isolate, “Candidatus Thioglobus autotrophicus,” is amorphous in shape and several times larger and stores considerably more intracellular sulfur when it respires oxygen. We also show that these cells can use diverse sources of reduced organic and inorganic sulfur at submicromolar concentrations. Enhanced cell size, carbon content, and metabolic activity of the aerobic phenotype are likely facilitated by a stabilizing surface-layer (S-layer) and an uncharacterized form of FtsZ-less cell division that supports morphological plasticity. The additional sulfur storage provides an energy source that allows cells to continue metabolic activity when exogenous sulfur sources are not available. This metabolic flexibility leads to the production of more organic carbon in the ocean than is estimated based solely on their anaerobic phenotype.
Collapse
|
6
|
Abstract
The largest known bacteria, Thiomargarita spp., have yet to be isolated in pure culture, but their large size allows for individual cells to be monitored in time course experiments or to be individually sorted for omics-based investigations. Here we investigated the metabolism of individual cells of Thiomargarita spp. by using a novel application of a tetrazolium-based dye that measures oxidoreductase activity. When coupled with microscopy, staining of the cells with a tetrazolium-formazan dye allows metabolic responses in Thiomargarita spp. to be to be tracked in the absence of observable cell division. Additionally, the metabolic activity of Thiomargarita sp. cells can be differentiated from the metabolism of other microbes in specimens that contain adherent bacteria. The results of our redox dye-based assay suggest that Thiomargarita is the most metabolically versatile under anoxic conditions, where it appears to express cellular oxidoreductase activity in response to the electron donors succinate, acetate, citrate, formate, thiosulfate, H2, and H2S. Under hypoxic conditions, formazan staining results suggest the metabolism of succinate and likely acetate, citrate, and H2S. Cells incubated under oxic conditions showed the weakest formazan staining response, and then only to H2S, citrate, and perhaps succinate. These results provide experimental validation of recent genomic studies of Candidatus Thiomargarita nelsonii that suggest metabolic plasticity and mixotrophic metabolism. The cellular oxidoreductase response of bacteria attached to the exterior of Thiomargarita also supports the possibility of trophic interactions between these largest of known bacteria and attached epibionts. The metabolic potential of many microorganisms that cannot be grown in the laboratory is known only from genomic data. Genomes of Thiomargarita spp. suggest that these largest of known bacteria are mixotrophs, combining lithotrophic metabolism with organic carbon degradation. Our use of a redox-sensitive tetrazolium dye to query the metabolism of these bacteria provides an independent line of evidence that corroborates the apparent metabolic plasticity of Thiomargarita observed in recently produced genomes. Finding new cultivation-independent means of testing genomic results is critical to testing genome-derived hypotheses on the metabolic potentials of uncultivated microorganisms.
Collapse
|
7
|
Winkel M, Salman-Carvalho V, Woyke T, Richter M, Schulz-Vogt HN, Flood BE, Bailey JV, Mußmann M. Single-cell Sequencing of Thiomargarita Reveals Genomic Flexibility for Adaptation to Dynamic Redox Conditions. Front Microbiol 2016; 7:964. [PMID: 27446006 PMCID: PMC4914600 DOI: 10.3389/fmicb.2016.00964] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Accepted: 06/03/2016] [Indexed: 11/25/2022] Open
Abstract
Large, colorless sulfur-oxidizing bacteria (LSB) of the family Beggiatoaceae form thick mats at sulfidic sediment surfaces, where they efficiently detoxify sulfide before it enters the water column. The genus Thiomargarita harbors the largest known free-living bacteria with cell sizes of up to 750 μm in diameter. In addition to their ability to oxidize reduced sulfur compounds, some Thiomargarita spp. are known to store large amounts of nitrate, phosphate and elemental sulfur internally. To date little is known about their energy yielding metabolic pathways, and how these pathways compare to other Beggiatoaceae. Here, we present a draft single-cell genome of a chain-forming “Candidatus Thiomargarita nelsonii Thio36”, and conduct a comparative analysis to five draft and one full genome of other members of the Beggiatoaceae. “Ca. T. nelsonii Thio36” is able to respire nitrate to both ammonium and dinitrogen, which allows them to flexibly respond to environmental changes. Genes for sulfur oxidation and inorganic carbon fixation confirmed that “Ca. T. nelsonii Thio36” can function as a chemolithoautotroph. Carbon can be fixed via the Calvin–Benson–Bassham cycle, which is common among the Beggiatoaceae. In addition we found key genes of the reductive tricarboxylic acid cycle that point toward an alternative CO2 fixation pathway. Surprisingly, “Ca. T. nelsonii Thio36” also encodes key genes of the C2-cycle that convert 2-phosphoglycolate to 3-phosphoglycerate during photorespiration in higher plants and cyanobacteria. Moreover, we identified a novel trait of a flavin-based energy bifurcation pathway coupled to a Na+-translocating membrane complex (Rnf). The coupling of these pathways may be key to surviving long periods of anoxia. As other Beggiatoaceae “Ca. T. nelsonii Thio36” encodes many genes similar to those of (filamentous) cyanobacteria. In summary, the genome of “Ca. T. nelsonii Thio36” provides additional insight into the ecology of giant sulfur-oxidizing bacteria, and reveals unique genomic features for the Thiomargarita lineage within the Beggiatoaceae.
Collapse
Affiliation(s)
- Matthias Winkel
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine MicrobiologyBremen, Germany; Section Geomicrobiology, GFZ German Research Centre for Geoscience, Helmholtz Centre PotsdamPotsdam, Germany
| | - Verena Salman-Carvalho
- HGF MPG Joint Research Group for Deep-sea Ecology and Technology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Tanja Woyke
- Department of Energy Joint Genome Institute, Walnut Creek CA, USA
| | - Michael Richter
- Microbial Genomics and Bioinformatics Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | - Beverly E Flood
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Jake V Bailey
- Department of Earth Sciences, University of Minnesota, Minneapolis MN, USA
| | - Marc Mußmann
- Molecular Ecology Group, Department of Molecular Ecology, Max Planck Institute for Marine Microbiology Bremen, Germany
| |
Collapse
|
8
|
Flood BE, Fliss P, Jones DS, Dick GJ, Jain S, Kaster AK, Winkel M, Mußmann M, Bailey J. Single-Cell (Meta-)Genomics of a Dimorphic Candidatus Thiomargarita nelsonii Reveals Genomic Plasticity. Front Microbiol 2016; 7:603. [PMID: 27199933 PMCID: PMC4853749 DOI: 10.3389/fmicb.2016.00603] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/11/2016] [Indexed: 11/23/2022] Open
Abstract
The genus Thiomargarita includes the world's largest bacteria. But as uncultured organisms, their physiology, metabolism, and basis for their gigantism are not well understood. Thus, a genomics approach, applied to a single Candidatus Thiomargarita nelsonii cell was employed to explore the genetic potential of one of these enigmatic giant bacteria. The Thiomargarita cell was obtained from an assemblage of budding Ca. T. nelsonii attached to a provannid gastropod shell from Hydrate Ridge, a methane seep offshore of Oregon, USA. Here we present a manually curated genome of Bud S10 resulting from a hybrid assembly of long Pacific Biosciences and short Illumina sequencing reads. With respect to inorganic carbon fixation and sulfur oxidation pathways, the Ca. T. nelsonii Hydrate Ridge Bud S10 genome was similar to marine sister taxa within the family Beggiatoaceae. However, the Bud S10 genome contains genes suggestive of the genetic potential for lithotrophic growth on arsenite and perhaps hydrogen. The genome also revealed that Bud S10 likely respires nitrate via two pathways: a complete denitrification pathway and a dissimilatory nitrate reduction to ammonia pathway. Both pathways have been predicted, but not previously fully elucidated, in the genomes of other large, vacuolated, sulfur-oxidizing bacteria. Surprisingly, the genome also had a high number of unusual features for a bacterium to include the largest number of metacaspases and introns ever reported in a bacterium. Also present, are a large number of other mobile genetic elements, such as insertion sequence (IS) transposable elements and miniature inverted-repeat transposable elements (MITEs). In some cases, mobile genetic elements disrupted key genes in metabolic pathways. For example, a MITE interrupts hupL, which encodes the large subunit of the hydrogenase in hydrogen oxidation. Moreover, we detected a group I intron in one of the most critical genes in the sulfur oxidation pathway, dsrA. The dsrA group I intron also carried a MITE sequence that, like the hupL MITE family, occurs broadly across the genome. The presence of a high degree of mobile elements in genes central to Thiomargarita's core metabolism has not been previously reported in free-living bacteria and suggests a highly mutable genome.
Collapse
Affiliation(s)
- Beverly E Flood
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Palmer Fliss
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| | - Daniel S Jones
- Department of Earth Sciences, University of MinnesotaMinneapolis, MN, USA; Biotechnology Institute, University of MinnesotaSt. Paul, MN, USA
| | - Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Sunit Jain
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA
| | - Anne-Kristin Kaster
- German Collection of Microorganisms and Cell Cultures, Leibniz Institute DSMZ Braunschweig, Germany
| | - Matthias Winkel
- Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences Potsdam, Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | - Jake Bailey
- Department of Earth Sciences, University of Minnesota Minneapolis, MN, USA
| |
Collapse
|
9
|
Metatranscriptomic analysis of diminutive Thiomargarita-like bacteria ("Candidatus Thiopilula" spp.) from abyssal cold seeps of the Barbados Accretionary Prism. Appl Environ Microbiol 2015; 81:3142-56. [PMID: 25724961 DOI: 10.1128/aem.00039-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/23/2015] [Indexed: 11/20/2022] Open
Abstract
Large sulfur-oxidizing bacteria in the family Beggiatoaceae are important players in the global sulfur cycle. This group contains members of the well-known genera Beggiatoa, Thioploca, and Thiomargarita but also recently identified and relatively unknown candidate taxa, including "Candidatus Thiopilula" spp. and "Ca. Thiophysa" spp. We discovered a population of "Ca. Thiopilula" spp. colonizing cold seeps near Barbados at a ∼4.7-km water depth. The Barbados population consists of spherical cells that are morphologically similar to Thiomargarita spp., with elemental sulfur inclusions and a central vacuole, but have much smaller cell diameters (5 to 40 μm). Metatranscriptomic analysis revealed that when exposed to anoxic sulfidic conditions, Barbados "Ca. Thiopilula" organisms expressed genes for the oxidation of elemental sulfur and the reduction of nitrogenous compounds, consistent with their vacuolated morphology and intracellular sulfur storage capability. Metatranscriptomic analysis further revealed that anaerobic methane-oxidizing and sulfate-reducing organisms were active in the sediment, which likely provided reduced sulfur substrates for "Ca. Thiopilula" and other sulfur-oxidizing microorganisms in the community. The novel observations of "Ca. Thiopilula" and associated organisms reported here expand our knowledge of the globally distributed and ecologically successful Beggiatoaceae group and thus offer insight into the composition and ecology of deep cold seep microbial communities.
Collapse
|
10
|
Abstract
Fixed nitrogen limits primary productivity in many parts of the global ocean, and it consequently plays a role in controlling the carbon dioxide content of the atmosphere. The concentration of fixed nitrogen is determined by the balance between two processes: the fixation of nitrogen gas into organic forms by diazotrophs, and the reconversion of fixed nitrogen to nitrogen gas by denitrifying organisms. However, current sedimentary denitrification rates are poorly constrained, especially in permeable sediments, which cover the majority of the continental margin. Also, anammox has recently been shown to be an additional pathway for the loss of fixed nitrogen in sediments. This article briefly reviews sedimentary fixed nitrogen loss by sedimentary denitrification and anammox, including in sediments in contact with oxygen-deficient zones. A simple extrapolation of existing rate measurements to the global sedimentary denitrification rate yields a value smaller than many existing measurement-based estimates but still larger than the rate of water column denitrification.
Collapse
Affiliation(s)
- Allan H Devol
- School of Oceanography, University of Washington, Seattle, Washington 98195-5351;
| |
Collapse
|
11
|
Chan Y, Li A, Gopalakrishnan S, Shin PKS, Wu RSS, Pointing SB, Chiu JMY. Interactive effects of hypoxia and polybrominated diphenyl ethers (PBDEs) on microbial community assembly in surface marine sediments. MARINE POLLUTION BULLETIN 2014; 85:400-409. [PMID: 24878302 DOI: 10.1016/j.marpolbul.2014.04.052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Revised: 04/28/2014] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
Hypoxia alters the oxidation-reduction balance and the biogeochemical processes in sediments, but little is known about its impacts on the microbial community that is responsible for such processes. In this study, we investigated the effects of hypoxia and the ubiquitously dispersed flame-retardant BDE47 on the bacterial communities in marine surface sediments during a 28-days microcosm experiment. Both hypoxia and BDE47 alone significantly altered the bacterial community and reduced the species and genetic diversity. UniFrac analysis revealed that BDE47 selected certain bacterial species and resulted in major community shifts, whereas hypoxia changed the relative abundances of taxa, suggesting slower but nonetheless significant community shifts. These two stressors targeted mostly different taxa, but they both favored Bacteroidetes and suppressed Gammaproteobacteria. Importantly, the impacts of BDE47 on bacterial communities were different under hypoxic and normoxic conditions, highlighting the need to consider risk assessments for BDE47 in a broader context of interaction with hypoxia.
Collapse
Affiliation(s)
- Yuki Chan
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong; Auckland University of Technology, School of Applied Sciences, Institute for Applied Ecology New Zealand, Private Bag 92006, Auckland 1142, New Zealand
| | - Amy Li
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | | | - Paul K S Shin
- Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Rudolf S S Wu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Stephen B Pointing
- Auckland University of Technology, School of Applied Sciences, Institute for Applied Ecology New Zealand, Private Bag 92006, Auckland 1142, New Zealand
| | - Jill M Y Chiu
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong.
| |
Collapse
|
12
|
Salman V, Bailey JV, Teske A. Phylogenetic and morphologic complexity of giant sulphur bacteria. Antonie van Leeuwenhoek 2013; 104:169-86. [PMID: 23793621 DOI: 10.1007/s10482-013-9952-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
The large sulphur bacteria, first discovered in the early nineteenth century, include some of the largest bacteria identified to date. Individual cells are often visible to the unaided eye and can reach 750 μm in diameter. The cells usually feature light-refracting inclusions of elemental sulphur and a large internal aqueous vacuole, which restricts the cytoplasm to the outermost periphery. In some taxa, it has been demonstrated that the vacuole can also serve for the storage of high millimolar concentrations of nitrate. Over the course of the past two centuries, a wide range of morphological variation within the family Beggiatoaceae has been found. However, representatives of this clade are frequently recalcitrant to current standard microbiological techniques, including 16S rRNA gene sequencing and culturing, and a reliable classification of these bacteria is often complicated. Here we present a summary of the efforts made and achievements accomplished in the past years, and give perspectives for investigating the heterogeneity and possible evolutionary developments in this extraordinary group of bacteria.
Collapse
Affiliation(s)
- Verena Salman
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3300, USA.
| | | | | |
Collapse
|
13
|
Beutler M, Milucka J, Hinck S, Schreiber F, Brock J, Mußmann M, Schulz-Vogt HN, de Beer D. Vacuolar respiration of nitrate coupled to energy conservation in filamentousBeggiatoaceae. Environ Microbiol 2012; 14:2911-9. [DOI: 10.1111/j.1462-2920.2012.02851.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 07/04/2012] [Accepted: 07/23/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Jana Milucka
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Susanne Hinck
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | | | - Jörg Brock
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Marc Mußmann
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Heide N. Schulz-Vogt
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology; Celsiusstrasse 1; 28359; Bremen; Germany
| |
Collapse
|
14
|
Schwedt A, Kreutzmann AC, Polerecky L, Schulz-Vogt HN. Sulfur respiration in a marine chemolithoautotrophic beggiatoa strain. Front Microbiol 2012; 2:276. [PMID: 22291687 PMCID: PMC3253548 DOI: 10.3389/fmicb.2011.00276] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Accepted: 12/23/2011] [Indexed: 11/24/2022] Open
Abstract
The chemolithoautotrophic strain Beggiatoa sp. 35Flor shows an unusual migration behavior when cultivated in a gradient medium under high sulfide fluxes. As common for Beggiatoa spp., the filaments form a mat at the oxygen–sulfide interface. However, upon prolonged incubation, a subpopulation migrates actively downward into the anoxic and sulfidic section of the medium, where the filaments become gradually depleted in their sulfur and polyhydroxyalkanoates (PHA) inclusions. This depletion is correlated with the production of hydrogen sulfide. The sulfur- and PHA-depleted filaments return to the oxygen–sulfide interface, where they switch back to depositing sulfur and PHA by aerobic sulfide oxidation. Based on these observations we conclude that internally stored elemental sulfur is respired at the expense of stored PHA under anoxic conditions. Until now, nitrate has always been assumed to be the alternative electron acceptor in chemolithoautotrophic Beggiatoa spp. under anoxic conditions. As the medium and the filaments were free of oxidized nitrogen compounds we can exclude this metabolism. Furthermore, sulfur respiration with PHA under anoxic conditions has so far only been described for heterotrophic Beggiatoa spp., but our medium did not contain accessible organic carbon. Hence the PHA inclusions must originate from atmospheric CO2 fixed by the filaments while at the oxygen–sulfide interface. We propose that the directed migration of filaments into the anoxic section of an oxygen–sulfide gradient system is used as a last resort to preserve cell integrity, which would otherwise be compromised by excessive sulfur deposition occurring in the presence of oxygen and high sulfide fluxes. The regulating mechanism of this migration is still unknown.
Collapse
Affiliation(s)
- Anne Schwedt
- Max Planck Institute for Marine Microbiology Bremen, Germany
| | | | | | | |
Collapse
|
15
|
Jin Z, Shen J, Qiao Z, Yang G, Wang R, Pei Y. Hydrogen sulfide improves drought resistance in Arabidopsis thaliana. Biochem Biophys Res Commun 2011; 414:481-6. [DOI: 10.1016/j.bbrc.2011.09.090] [Citation(s) in RCA: 142] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 09/19/2011] [Indexed: 12/25/2022]
|
16
|
Lane N. Energetics and genetics across the prokaryote-eukaryote divide. Biol Direct 2011; 6:35. [PMID: 21714941 PMCID: PMC3152533 DOI: 10.1186/1745-6150-6-35] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Accepted: 06/30/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All complex life on Earth is eukaryotic. All eukaryotic cells share a common ancestor that arose just once in four billion years of evolution. Prokaryotes show no tendency to evolve greater morphological complexity, despite their metabolic virtuosity. Here I argue that the eukaryotic cell originated in a unique prokaryotic endosymbiosis, a singular event that transformed the selection pressures acting on both host and endosymbiont. RESULTS The reductive evolution and specialisation of endosymbionts to mitochondria resulted in an extreme genomic asymmetry, in which the residual mitochondrial genomes enabled the expansion of bioenergetic membranes over several orders of magnitude, overcoming the energetic constraints on prokaryotic genome size, and permitting the host cell genome to expand (in principle) over 200,000-fold. This energetic transformation was permissive, not prescriptive; I suggest that the actual increase in early eukaryotic genome size was driven by a heavy early bombardment of genes and introns from the endosymbiont to the host cell, producing a high mutation rate. Unlike prokaryotes, with lower mutation rates and heavy selection pressure to lose genes, early eukaryotes without genome-size limitations could mask mutations by cell fusion and genome duplication, as in allopolyploidy, giving rise to a proto-sexual cell cycle. The side effect was that a large number of shared eukaryotic basal traits accumulated in the same population, a sexual eukaryotic common ancestor, radically different to any known prokaryote. CONCLUSIONS The combination of massive bioenergetic expansion, release from genome-size constraints, and high mutation rate favoured a protosexual cell cycle and the accumulation of eukaryotic traits. These factors explain the unique origin of eukaryotes, the absence of true evolutionary intermediates, and the evolution of sex in eukaryotes but not prokaryotes. REVIEWERS This article was reviewed by: Eugene Koonin, William Martin, Ford Doolittle and Mark van der Giezen. For complete reports see the Reviewers' Comments section.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, London, UK.
| |
Collapse
|
17
|
Abstract
All complex life is composed of eukaryotic (nucleated) cells. The eukaryotic cell arose from prokaryotes just once in four billion years, and otherwise prokaryotes show no tendency to evolve greater complexity. Why not? Prokaryotic genome size is constrained by bioenergetics. The endosymbiosis that gave rise to mitochondria restructured the distribution of DNA in relation to bioenergetic membranes, permitting a remarkable 200,000-fold expansion in the number of genes expressed. This vast leap in genomic capacity was strictly dependent on mitochondrial power, and prerequisite to eukaryote complexity: the key innovation en route to multicellular life.
Collapse
Affiliation(s)
- Nick Lane
- Department of Genetics, Evolution and Environment, University College London, Gower Street, London W1E 6BT, UK.
| | | |
Collapse
|
18
|
Girnth AC, Grünke S, Lichtschlag A, Felden J, Knittel K, Wenzhöfer F, de Beer D, Boetius A. A novel, mat-forming Thiomargarita population associated with a sulfidic fluid flow from a deep-sea mud volcano. Environ Microbiol 2010; 13:495-505. [DOI: 10.1111/j.1462-2920.2010.02353.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
19
|
Kalanetra KM, Nelson DC. Vacuolate-attached filaments: highly productive Ridgeia piscesae epibionts at the Juan de Fuca hydrothermal vents. MARINE BIOLOGY 2009; 157:791-800. [PMID: 24391244 PMCID: PMC3873080 DOI: 10.1007/s00227-009-1362-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 11/24/2009] [Indexed: 05/30/2023]
Abstract
Vacuolate sulfur bacteria with high morphological similarity to vacuolate-attached filaments previously described from shallow hydrothermal vents (White Point, CA) were found at deep-sea hydrothermal vents. These filamentous bacteria grow in dense mats that cover surfaces and potentially provide a significant source of organic carbon where they occur. Vacuolate-attached filaments were collected near vents at the Clam Bed site of the Endeavour Segment of the Juan de Fuca Ridge and from the sediment surface at Escanaba Trough on the Gorda Ridge. A phylogenetic analysis comparing their 16S rRNA gene sequences to those collected from the shallow White Point site showed that all vacuolate-attached filament sequences form a monophyletic group within the vacuolate sulfur-oxidizing bacteria clade in the gamma proteobacteria. Abundance of the attached filaments was quantified over the length of the exterior surface of the tubes of Ridgeia piscesae worms collected from the Clam Bed site at Juan de Fuca yielding a per worm average of 0.070 ± 0.018 cm3 (n = 4). In agreement with previous results for White Point filaments, anion measurements by ion chromatography showed no detectable internal nitrate concentrations above ambient seawater (n = 9). For one R. piscesae tube worm "bush" at the Easter Island vent site, potential gross epibiont productivity is estimated to be 15 to 45× the net productivity of the worms.
Collapse
Affiliation(s)
- Karen M. Kalanetra
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
- Present Address: Department of Public Health Sciences, University of California, One Shields Avenue, Davis, CA 95616 USA
| | - Douglas C. Nelson
- Department of Microbiology, University of California, 357 Briggs Hall, Davis, CA 95616 USA
| |
Collapse
|
20
|
Abstract
Among prokaryotes, the large vacuolated marine sulphur bacteria are unique in their ability to store, transport and metabolize significant quantities of sulphur, nitrogen, phosphorus and carbon compounds. In this study, unresolved questions of metabolism, storage management and behaviour were addressed in laboratory experiments with Thioploca species collected on the continental shelf off Chile. The Thioploca cells had an aerobic metabolism with a potential oxygen uptake rate of 1760 micromol O2 per dm(3) biovolume per h, equivalent to 4.4 nmol O2 per min per mg protein. When high ambient sulphide concentrations (approximately 200 microM) were present, a sulphide uptake of 6220+/-2230 micromol H2S per dm(3) per h, (mean+/-s.e.m., n=4) was measured. This sulphide uptake rate was six times higher than the oxidation rate of elemental sulphur by oxygen or nitrate, thus indicating a rapid sulphur accumulation by Thioploca. Thioploca reduce nitrate to ammonium and we found that dinitrogen was not produced, neither through denitrification nor through anammox activity. Unexpectedly, polyphosphate storage was not detectable by microautoradiography in physiological assays or by staining and microscopy. Carbon dioxide fixation increased when nitrate and nitrite were externally available and when organic carbon was added to incubations. Sulphide addition did not increase carbon dioxide fixation, indicating that Thioploca use excess of sulphide to rapidly accumulate sulphur rather than to accelerate growth. This is interpreted as an adaptation to infrequent high sulphate reduction rates in the seabed. The physiology and behaviour of Thioploca are summarized and the adaptations to an environment, dominated by infrequent oxygen availability and periods of high sulphide abundance, are discussed.
Collapse
|
21
|
Zhang CM, Luan XS, Xiao M, Song J, Lu L, Xiao X. Catalytic removal of sulfide by an immobilized sulfide-oxidase bioreactor. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2008.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
22
|
Mußmann M, Hu FZ, Richter M, de Beer D, Preisler A, Jørgensen BB, Huntemann M, Glöckner FO, Amann R, Koopman WJH, Lasken RS, Janto B, Hogg J, Stoodley P, Boissy R, Ehrlich GD. Insights into the genome of large sulfur bacteria revealed by analysis of single filaments. PLoS Biol 2007; 5:e230. [PMID: 17760503 PMCID: PMC1951784 DOI: 10.1371/journal.pbio.0050230] [Citation(s) in RCA: 136] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Accepted: 06/26/2007] [Indexed: 11/19/2022] Open
Abstract
Marine sediments are frequently covered by mats of the filamentous Beggiatoa and other large nitrate-storing bacteria that oxidize hydrogen sulfide using either oxygen or nitrate, which they store in intracellular vacuoles. Despite their conspicuous metabolic properties and their biogeochemical importance, little is known about their genetic repertoire because of the lack of pure cultures. Here, we present a unique approach to access the genome of single filaments of Beggiatoa by combining whole genome amplification, pyrosequencing, and optical genome mapping. Sequence assemblies were incomplete and yielded average contig sizes of approximately 1 kb. Pathways for sulfur oxidation, nitrate and oxygen respiration, and CO2 fixation confirm the chemolithoautotrophic physiology of Beggiatoa. In addition, Beggiatoa potentially utilize inorganic sulfur compounds and dimethyl sulfoxide as electron acceptors. We propose a mechanism of vacuolar nitrate accumulation that is linked to proton translocation by vacuolar-type ATPases. Comparative genomics indicates substantial horizontal gene transfer of storage, metabolic, and gliding capabilities between Beggiatoa and cyanobacteria. These capabilities enable Beggiatoa to overcome non-overlapping availabilities of electron donors and acceptors while gliding between oxic and sulfidic zones. The first look into the genome of these filamentous sulfur-oxidizing bacteria substantially deepens the understanding of their evolution and their contribution to sulfur and nitrogen cycling in marine sediments.
Collapse
Affiliation(s)
- Marc Mußmann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Fen Z Hu
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Michael Richter
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Dirk de Beer
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - André Preisler
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Bo B Jørgensen
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Marcel Huntemann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
| | - Frank Oliver Glöckner
- Max Planck Institute for Marine Microbiology, Bremen, Germany
- School of Engineering and Sciences, Jacobs University Bremen, Bremen, Germany
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| | - Rudolf Amann
- Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Werner J. H Koopman
- Department of Membrane Biochemistry, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Roger S Lasken
- J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Benjamin Janto
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Justin Hogg
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Paul Stoodley
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Robert Boissy
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
| | - Garth D Ehrlich
- Center for Genomic Sciences, Allegheny General Hospital/Allegheny-Singer Research Institute, Pittsburgh, Pennsylvania, United States of America
- * To whom correspondence should be addressed. E-mail: (MM); (FOG); (GDE)
| |
Collapse
|
23
|
Papenbrock J, Riemenschneider A, Kamp A, Schulz-Vogt HN, Schmidt A. Characterization of cysteine-degrading and H2S-releasing enzymes of higher plants - from the field to the test tube and back. PLANT BIOLOGY (STUTTGART, GERMANY) 2007; 9:582-8. [PMID: 17853358 DOI: 10.1055/s-2007-965424] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Due to the clean air acts and subsequent reduction of emission of gaseous sulfur compounds sulfur deficiency became one of the major nutrient disorders in Northern Europe. Typical sulfur deficiency symptoms can be diagnosed. Especially plants of the Cruciferae family are more susceptible against pathogen attack. Sulfur fertilization can in part recover or even increase resistance against pathogens in comparison to sulfur-deficient plants. The term sulfur-induced resistance (SIR) was introduced, however, the molecular basis for SIR is largely unknown. There are several sulfur-containing compounds in plants which might be involved in SIR, such as high levels of thiols, glucosinolates, cysteine-rich proteins, phytoalexins, elemental sulfur, or H2S. Probably more than one strategy is used by plants. Species- or even variety-dependent differences in the development of SIR are probably used. Our research focussed mainly on the release of H2S as defence strategy. In field experiments using different BRASSICA NAPUS genotypes it was shown that the genetic differences among BRASSICA genotypes lead to differences in sulfur content and L-cysteine desulfhydrase activity. Another field experiment demonstrated that sulfur supply and infection with PYRENOPEZIZA BRASSICA influenced L-cysteine desulfhydrase activity in BRASSICA NAPUS. Cysteine-degrading enzymes such as cysteine desulfhydrases are hypothesized to be involved in H2S release. Several L- and D-cysteine-specific desulfhydrase candidates have been isolated and partially analyzed from the model plant ARABIDOPSIS THALIANA. However, it cannot be excluded that H2S is also released in a partial back reaction of O-acetyl-L-serine(thiol)lyase or enzymes not yet characterized. For the exact determination of the H2S concentration in the cell a H2S-specific microsensor was used the first time for plant cells. The transfer of the results obtained for application back on BRASSICA was initiated.
Collapse
Affiliation(s)
- J Papenbrock
- Institut für Botanik, Universität Hannover, Herrenhäuser Strasse 2, 30419 Hannover, Germany.
| | | | | | | | | |
Collapse
|
24
|
Kojima H, Nakajima T, Fukui M. Carbon source utilization and accumulation of respiration-related substances by freshwater Thioploca species. FEMS Microbiol Ecol 2006; 59:23-31. [PMID: 16989657 DOI: 10.1111/j.1574-6941.2006.00201.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Carbon source utilization of Thioploca species from freshwater and brackish lakes in Japan was investigated. Microautoradiography demonstrated that freshwater and brackish Thioploca samples assimilate acetate. In addition, vertical nitrate transportation by freshwater Thioploca was examined by measuring substances accumulated in Thioploca filaments. The filaments of Thioploca sp. from Lake Biwa, a Japanese mesotrophic lake, contained nitrate at concentrations higher than ambient by two to three orders of magnitude. They also accumulated high concentrations of sulfate and abundant elemental sulfur. The results suggest that the Thioploca-specific strategy for sulfur oxidation, migration with accumulated nitrate, is effective even in freshwater habitats of lower sulfide supply.
Collapse
Affiliation(s)
- Hisaya Kojima
- Department of Biological Sciences, Graduate School of Science, Tokyo Metropolitan University, Tokyo, Japan.
| | | | | |
Collapse
|
25
|
Ahmad A, Kalanetra KM, Nelson DC. Cultivated Beggiatoa spp. define the phylogenetic root of morphologically diverse, noncultured, vacuolate sulfur bacteria. Can J Microbiol 2006; 52:591-8. [PMID: 16788728 DOI: 10.1139/w05-154] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Within the last 10 years, numerous SSU rRNA sequences have been collected from natural populations of conspicuous, vacuolate, colorless sulfur bacteria, which form a phylogenetically cohesive cluster (large-vacuolate sulfur bacteria clade) in the gamma-Proteobacteria. Currently, this clade is composed of four named or de facto genera: all known Thioploca and Thiomargarita strains, all vacuolate Beggiatoa strains, and several strains of vacuolate, attached filaments, which bear a superficial similarity to Thiothrix. Some of these vacuolate bacteria accumulate nitrate for respiratory purposes. This clade encompasses the largest known prokaryotic cells (Thiomargarita namibiensis) and several strains that are important in the global marine sulfur cycle. Here, we report additional sequences from five pure culture strains of Beggiatoa spp., including the only two cultured marine strains (nonvacuolate), which firmly establish the root of this vacuolate clade. Each of several diverse metabolic motifs, including obligate and facultative chemolithoautotrophy, probable mixotrophy, and seemingly strict organoheterotrophy, is represented in at least one of the nonvacuolate strains that root the vacuolate clade. Because the genus designation Beggiatoa is interspersed throughout the vacuolate clade along with other recognized or de facto genera, the need for taxonomic revision is clear.
Collapse
Affiliation(s)
- Azeem Ahmad
- Section of Microbiology, University of California, Davis, 95616, USA
| | | | | |
Collapse
|
26
|
Kalanetra KM, Joye SB, Sunseri NR, Nelson DC. Novel vacuolate sulfur bacteria from the Gulf of Mexico reproduce by reductive division in three dimensions. Environ Microbiol 2005; 7:1451-60. [PMID: 16104867 DOI: 10.1111/j.1462-2920.2005.00832.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Large spherical sulfur bacteria, 180-375 microm in diameter, were found regularly and in abundance in surface sediments collected from hydrocarbon seeps (water depth 525-640 m) in the Gulf of Mexico. These bacteria were characterized by a thin 'shell' of sulfur globule-filled cytoplasm that surrounded a central vacuole (roughly 80% of biovolume) containing high concentrations of nitrate (average 460 mM). Approximately 800 base pairs of 16S rRNA gene sequence data, linked to this bacterium by fluorescent in situ hybridization, showed 99% identity with Thiomargarita namibiensis, previously described only from sediments collected off the coast of Namibia (Western Africa). Unlike T. namibiensis, where cells form a linear chain within a common sheath, the Gulf of Mexico strain occurred as single cells and clusters of two, four and eight cells, which were clearly the product of division in one to three planes. In sediment cores maintained at 4 degrees C, which undoubtedly experienced a diminishing flux of hydrogen sulfide over time, the Thiomargarita-like bacterium remained viable for up to 2 years. During that long period, each cell appeared to undergo (as judged by change in biovolume) one to three reductive divisions, perhaps as a dispersal strategy in the face of diminished availability of its putative electron donor.
Collapse
Affiliation(s)
- Karen M Kalanetra
- Section of Microbiology, 357 Briggs Hall, University of California, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
27
|
Abstract
Phosphorite deposits in marine sediments are a long-term sink for an essential nutrient, phosphorus. Here we show that apatite abundance in sediments on the Namibian shelf correlates with the abundance and activity of the giant sulfur bacterium Thiomargarita namibiensis, which suggests that sulfur bacteria drive phosphogenesis. Sediments populated by Thiomargarita showed sharp peaks of pore water phosphate (</=300 micromolar) and massive phosphorite accumulations (>/=50 grams of phosphorus per kilogram). Laboratory experiments revealed that under anoxic conditions, Thiomargarita released enough phosphate to account for the precipitation of hydroxyapatite observed in the environment.
Collapse
Affiliation(s)
- Heide N Schulz
- Institute for Microbiology, University of Hannover, Schneiderberg 50, D-30167 Hannover, Germany.
| | | |
Collapse
|
28
|
Revsbech NP. Analysis of microbial communities with electrochemical microsensors and microscale biosensors. Methods Enzymol 2005; 397:147-66. [PMID: 16260290 DOI: 10.1016/s0076-6879(05)97009-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Electrochemical microsensors for O2, pH, H2S, H2, and N2O are now available commercially, thus it has become a relatively simple task to analyze the microenvironment in stratified microbial communities for several chemical species. In addition, sensors are available for the physical parameters diffusivity and flow, and based on knowledge about both transport processes and microdistribution of chemistry, it becomes possible to calculate the spatial distribution and local rates of transformations, such as aerobic respiration or denitrification. As compared to other advanced techniques, microsensor equipment is inexpensive. For example, it is possible to start working with oxygen microsensors with an investment of only about 5000 dollars. Construction of one's own microsensors is only recommended for the very dedicated user, but the investment here is mainly in terms of man-hours as the equipment is simple and inexpensive. By establishing a microsensor construction facility, it is possible to work with short-lived sensors such as ion-selective microsensors for H+, NO2(-), NO3(-), Ca2+, and CO3(-) based on ion exchangers and with microscale biosensors for NO(x)-, NO2(-), CH4, and volatile fatty acids based on immobilized bacteria.
Collapse
Affiliation(s)
- Niels Peter Revsbech
- Department of Microbial Ecology, Institute of Biology, University of Aarhus, Denmark
| |
Collapse
|
29
|
Gray ND, Comaskey D, Miskin IP, Pickup RW, Suzuki K, Head IM. Adaptation of sympatric Achromatium spp. to different redox conditions as a mechanism for coexistence of functionally similar sulphur bacteria. Environ Microbiol 2004; 6:669-77. [PMID: 15186345 DOI: 10.1111/j.1462-2920.2004.00607.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Changes in the abundance of sympatric Achromatium spp. in response to the artificial manipulation of redox conditions in sediment microcosms was determined by fluorescence in situ hybridization (FISH). Adaptation to different redox conditions was shown to be one mechanism that supported the coexistence of functionally similar Achromatium spp. In sediment microcosms, in which the overlying water was oxygenated, Achromatium community size and composition remained unchanged over time. However, imposition of anoxic conditions induced changes in community structure. Anoxia caused a reduction in the relative abundance of Achromatium sp. RY8 (72 +/- 4% to 49 +/- 2%) and an increase in Achromatium sp. RY5 (19 +/- 5% to 32 +/- 3%) and a newly identified Achromatium sp., RYKS (14 +/- 4% to 27 +/- 2%). In anoxic microcosms supplemented with a single addition of nitrate at different initial concentrations the relative decline in Achromatium sp. RY8 was dependent on the initial nitrate concentration. In these experiments nitrate was rapidly removed. In contrast, when high levels of nitrate were maintained by periodic replacement of the overlying water with nitrate supplemented anoxic water, the composition of the Achromatium community remained stable over time. This suggested that all of the coexisting Achromatium spp. are obligate or facultative anaerobes, but, Achromatium sp. RY8 was more sensitive to sediment redox conditions than the other Achromatium species. Given the heterogeneous nature of sedimentary environments, redox-related niche differentiation may promote coexistence of sympatric Achromatium spp.
Collapse
MESH Headings
- Adaptation, Physiological
- Aerobiosis
- Anaerobiosis
- Colony Count, Microbial
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- Ecosystem
- Genes, rRNA/genetics
- Geologic Sediments/microbiology
- Gram-Negative Aerobic Bacteria/growth & development
- Gram-Negative Aerobic Bacteria/isolation & purification
- Gram-Negative Aerobic Bacteria/metabolism
- In Situ Hybridization
- Molecular Sequence Data
- Nitrates/metabolism
- Oxidation-Reduction
- Oxygen/analysis
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Staining and Labeling
- Sulfur/metabolism
- Water/chemistry
- Water Microbiology
Collapse
Affiliation(s)
- Neil D Gray
- School of Civil Engineering and Geosciences, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK.
| | | | | | | | | | | |
Collapse
|