1
|
Kubik BC, Holden JF. Non-thermodynamic factors affect competition between thermophilic chemolithoautotrophs from deep-sea hydrothermal vents. Appl Environ Microbiol 2024; 90:e0029224. [PMID: 39012100 PMCID: PMC11337833 DOI: 10.1128/aem.00292-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Various environmental factors, including H2 availability, metabolic tradeoffs, optimal growth temperature, stochasticity, and hydrology, were examined to determine if they affect microbial competition between three autotrophic thermophiles. The thiosulfate reducer Desulfurobacterium thermolithotrophum (Topt72°C) was grown in mono- and coculture separately with the methanogens Methanocaldococcus jannaschii (Topt82°C) at 72°C and Methanothermococcus thermolithotrophicus (Topt65°C) at 65°C at high and low H2 concentrations. Both methanogens showed a metabolic tradeoff shifting from high growth rate-low cell yield at high H2 concentrations to low growth rate-high cell yield at low H2 concentrations and when grown in coculture with the thiosulfate reducer. In 1:1 initial ratios, D. thermolithotrophum outcompeted both methanogens at high and low H2, no H2S was detected on low H2, and it grew with only CO2 as the electron acceptor indicating a similar metabolic tradeoff with low H2. When the initial methanogen-to-thiosulfate reducer ratio varied from 1:1 to 104:1 with high H2, D. thermolithotrophum always outcompeted M. jannaschii at 72°C. However, M. thermolithotrophicus outcompeted D. thermolithotrophum at 65°C when the ratio was 103:1. A reactive transport model that mixed pure hydrothermal fluid with cold seawater showed that hyperthermophilic methanogens dominated in systems where the residence time of the mixed fluid above 72°C was sufficiently high. With shorter residence times, thermophilic thiosulfate reducers dominated. If residence times increased with decreasing fluid temperature along the flow path, then thermophilic methanogens could dominate. Thermophilic methanogen dominance spread to previously thiosulfate-reducer-dominated conditions if the initial ratio of thermophilic methanogen-to-thiosulfate reducer increased. IMPORTANCE The deep subsurface is the largest reservoir of microbial biomass on Earth and serves as an analog for life on the early Earth and extraterrestrial environments. Methanogenesis and sulfur reduction are among the more common chemolithoautotrophic metabolisms found in hot anoxic hydrothermal vent environments. Competition between H2-oxidizing sulfur reducers and methanogens is primarily driven by the thermodynamic favorability of redox reactions with the former outcompeting methanogens. This study demonstrated that competition between the hydrothermal vent chemolithoautotrophs Methanocaldococcus jannaschii, Methanothermococcus thermolithotrophicus, and Desulfurobacterium thermolithotrophum is also influenced by other overlapping factors such as staggered optimal growth temperatures, stochasticity, and hydrology. By modeling all aspects of microbial competition coupled with field data, a better understanding is gained on how methanogens can outcompete thiosulfate reducers in hot anoxic environments and how the deep subsurface contributes to biogeochemical cycling.
Collapse
Affiliation(s)
- Briana C. Kubik
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
2
|
Howells AEG, De Martini F, Gile GH, Shock EL. An examination of protist diversity in serpentinization-hosted ecosystems of the Samail Ophiolite of Oman. Front Microbiol 2023; 14:1139333. [PMID: 37213519 PMCID: PMC10192764 DOI: 10.3389/fmicb.2023.1139333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/30/2023] [Indexed: 05/23/2023] Open
Abstract
In the Samail Ophiolite of Oman, the geological process of serpentinization produces reduced, hydrogen rich, hyperalkaline (pH > 11) fluids. These fluids are generated through water reacting with ultramafic rock from the upper mantle in the subsurface. On Earth's continents, serpentinized fluids can be expressed at the surface where they can mix with circumneutral surface water and subsequently generate a pH gradient (∼pH 8 to pH > 11) in addition to variations in other chemical parameters such as dissolved CO2, O2, and H2. Globally, archaeal and bacterial community diversity has been shown to reflect geochemical gradients established by the process of serpentinization. It is unknown if the same is true for microorganisms of the domain Eukarya (eukaryotes). In this study, using 18S rRNA gene amplicon sequencing, we explore the diversity of microbial eukaryotes called protists in sediments of serpentinized fluids in Oman. We demonstrate that protist community composition and diversity correlate significantly with variations in pH, with protist richness being significantly lower in sediments of hyperalkaline fluids. In addition to pH, the availability of CO2 to phototrophic protists, the composition of potential food sources (prokaryotes) for heterotrophic protists and the concentration of O2 for anaerobic protists are factors that likely shape overall protist community composition and diversity along the geochemical gradient. The taxonomy of the protist 18S rRNA gene sequences indicates the presence of protists that are involved in carbon cycling in serpentinized fluids of Oman. Therefore, as we evaluate the applicability of serpentinization for carbon sequestration, the presence and diversity of protists should be considered.
Collapse
Affiliation(s)
- Alta E. G. Howells
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Francesca De Martini
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Mesa Community College, Mesa, AZ, United States
| | - Gillian H. Gile
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
| | - Everett L. Shock
- Biodesign Center for Fundamental and Applied Microbiomics, Arizona State University, Tempe, AZ, United States
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
3
|
Jameson BD, Murdock SA, Ji Q, Stevens CJ, Grundle DS, Kim Juniper S. Network analysis of 16S rRNA sequences suggests microbial keystone taxa contribute to marine N 2O cycling. Commun Biol 2023; 6:212. [PMID: 36823449 PMCID: PMC9950131 DOI: 10.1038/s42003-023-04597-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
The mechanisms by which large-scale microbial community function emerges from complex ecological interactions between individual taxa and functional groups remain obscure. We leveraged network analyses of 16S rRNA amplicon sequences obtained over a seven-month timeseries in seasonally anoxic Saanich Inlet (Vancouver Island, Canada) to investigate relationships between microbial community structure and water column N2O cycling. Taxa separately broadly into three discrete subnetworks with contrasting environmental distributions. Oxycline subnetworks were structured around keystone aerobic heterotrophs that correlated with nitrification rates and N2O supersaturations, linking N2O production and accumulation to taxa involved in organic matter remineralization. Keystone taxa implicated in anaerobic carbon, nitrogen, and sulfur cycling in anoxic environments clustered together in a low-oxygen subnetwork that correlated positively with nitrification N2O yields and N2O production from denitrification. Close coupling between N2O producers and consumers in the anoxic basin is indicated by strong correlations between the low-oxygen subnetwork, PICRUSt2-predicted nitrous oxide reductase (nosZ) gene abundances, and N2O undersaturation. This study implicates keystone taxa affiliated with common ODZ groups as a potential control on water column N2O cycling and provides a theoretical basis for further investigations into marine microbial interaction networks.
Collapse
Affiliation(s)
- Brett D Jameson
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada.
| | - Sheryl A Murdock
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
| | - Qixing Ji
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- Thrust of Earth, Ocean & Atmospheric Sciences, Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou, Guangdong, 511400, China
| | - Catherine J Stevens
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
| | - Damian S Grundle
- Bermuda Institute of Ocean Sciences, 17 Biological Station, St. George's, GE01, Bermuda
- School of Ocean Futures & School of Earth & Space Exploration, Arizona State University, Tempe, AZ, 85287-7904, USA
| | - S Kim Juniper
- School of Earth & Ocean Sciences, University of Victoria, P.O. Box 1700 Station CSC, Victoria, BC, V8W 2Y2, Canada
- Department of Biology, University of Victoria, P.O. Box 1700 CSC, Victoria, BC, V8W 2Y2, Canada
- Ocean Networks Canada, 2474 Arbutus Road, Victoria, BC, V8N 1V8, Canada
| |
Collapse
|
4
|
Fernandes-Martins MC, Colman DR, Boyd ES. Relationships between fluid mixing, biodiversity, and chemosynthetic primary productivity in Yellowstone hot springs. Environ Microbiol 2023; 25:1022-1040. [PMID: 36651919 DOI: 10.1111/1462-2920.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/14/2023] [Indexed: 01/19/2023]
Abstract
The factors that influence biodiversity and productivity of hydrothermal ecosystems are not well understood. Here we investigate the relationship between fluid mixing, biodiversity, and chemosynthetic primary productivity in three co-localized hot springs (RSW, RSN, and RSE) in Yellowstone National Park that have different geochemistry. All three springs are sourced by reduced hydrothermal fluid, but RSE and RSN receive input of vapour phase gas and oxidized groundwaters, with input of both being substantially higher in RSN. Metagenomic sequencing revealed that communities in RSN were more biodiverse than those of RSE and RSW in all dimensions evaluated. Microcosm activity assays indicate that rates of dissolved inorganic carbon (DIC) uptake were also higher in RSN than in RSE and RSW. Together, these results suggest that increased mixing of reduced volcanic fluid with oxidized fluids generates additional niche space capable of supporting increasingly biodiverse communities that are more productive. These results provide insight into the factors that generate and maintain chemosynthetic biodiversity in hydrothermal systems and that influence the distribution, abundance, and diversity of microbial life in communities supported by chemosynthesis. These factors may also extend to other ecosystems not supported by photosynthesis, including the vast subterranean biosphere and biospheres beneath ice sheets and glaciers.
Collapse
Affiliation(s)
| | - Daniel R Colman
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| | - Eric S Boyd
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, Montana, USA
| |
Collapse
|
5
|
Holden JF, Sistu H. Formate and hydrogen in hydrothermal vents and their use by extremely thermophilic methanogens and heterotrophs. Front Microbiol 2023; 14:1093018. [PMID: 36950162 PMCID: PMC10025317 DOI: 10.3389/fmicb.2023.1093018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Extremely thermophilic methanogens in the Methanococci and heterotrophs in the Thermococci are common in deep-sea hydrothermal vents. All Methanococci use H2 as an electron donor, and a few species can also use formate. Most Methanococci have a coenzyme F420-reducing formate dehydrogenase. All Thermococci reduce S0 but have hydrogenases and produce H2 in the absence of S0. Some Thermococci have formate hydrogenlyase (Fhl) that reversibly converts H2 and CO2 to formate or an NAD(P)+-reducing formate dehydrogenase (Nfd). Questions remain if Methanococci or Thermococci use or produce formate in nature, why only certain species can grow on or produce formate, and what the physiological role of formate is? Formate forms abiotically in hydrothermal fluids through chemical equilibrium with primarily H2, CO2, and CO and is strongly dependent upon H2 concentration, pH, and temperature. Formate concentrations are highest in hydrothermal fluids where H2 concentrations are also high, such as in ultramafic systems where serpentinization reactions occur. In nature, Methanococci are likely to use formate as an electron donor when H2 is limiting. Thermococci with Fhl likely convert H2 and CO2 to formate when H2 concentrations become inhibitory for growth. They are unlikely to grow on formate in nature unless formate is more abundant than H2 in the environment. Nearly all Methanococci and Thermococci have a gene for at least one formate dehydrogenase catalytic subunit, which may be used to provide free formate for de novo purine biosynthesis. However, only species with a membrane-bound formate transporter can grow on or secrete formate. Interspecies H2 transfer occurs between Thermococci and Methanococci. This and putative interspecies formate transfer may support Methanococci in low H2 environments, which in turn may prevent growth inhibition of Thermococci by its own H2. Future research directions include understanding when, where, and how formate is used and produced by these organisms in nature, and how transcription of Thermococci genes encoding formate-related enzymes are regulated.
Collapse
|
6
|
Wang Y, Ren Z, He P, Xu J, Li D, Liu C, Liu B, Wu N. Microeukaryotic Community Shifting Along a Lentic-Lotic Continuum. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.887787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
As an important regulator of ecosystem functions in river systems, microeukaryotes play an important role in energy and material conversion, yet little is known about the shift along a lentic-lotic continuum. In this study, the 18S rRNA genes sequencing was used to identify the microeukaryotic communities at 82 sites along a lentic-lotic continuum with the aim of understanding the impact of upstream inlet river on microeukaryotic communities in Baiyang Lake (BYD) and its downstream. Our results showed that the upstream inlet river affected the diversity and community composition of microeukaryotes in BYD and downstream rivers, and environmental variables greatly affected the composition of microeukaryotic community. The community composition in BYD had lower variabilities. Co-occurrence network analysis revealed that the network was non-random and clearly parsed into three modules, and different modules were relatively more abundant to a particular area. As keystone taxa, some nodes of the upstream microeukaryotic network played an important role in structuring network and maintaining the stability of the ecosystem. In BYD and downstream, the microeukaryotic network was highly fragmented, and the loss of keystone taxa would have an adverse impact on the integrity and function of the microeukaryotic community. Microeukaryotes had strong tendencies to co-occur, which may contribute to the stability and resilience of microeukaryotic communities. Overall, these findings extend the current understanding of the diversity and community composition of microeukaryotic along a lentic-lotic continuum.
Collapse
|
7
|
Pillot G, Amin Ali O, Davidson S, Shintu L, Godfroy A, Combet-Blanc Y, Bonin P, Liebgott PP. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions. Sci Rep 2021; 11:14782. [PMID: 34285254 PMCID: PMC8292307 DOI: 10.1038/s41598-021-94135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Oulfat Amin Ali
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Sylvain Davidson
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes-UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Patricia Bonin
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France.
| |
Collapse
|
8
|
Murdock SA, Tunnicliffe V, Boschen-Rose RE, Juniper SK. Emergent "core communities" of microbes, meiofauna and macrofauna at hydrothermal vents. ISME COMMUNICATIONS 2021; 1:27. [PMID: 36739470 PMCID: PMC9723782 DOI: 10.1038/s43705-021-00031-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 05/27/2021] [Accepted: 06/04/2021] [Indexed: 02/06/2023]
Abstract
Assessment of ecosystem health entails consideration of species interactions within and between size classes to determine their contributions to ecosystem function. Elucidating microbial involvement in these interactions requires tools to distil diverse microbial information down to relevant, manageable elements. We used covariance ratios (proportionality) between pairs of species and patterns of enrichment to identify "core communities" of likely interacting microbial (<64 µm), meiofaunal (64 µm to 1 mm) and macrofaunal (>1 mm) taxa within assemblages hosted by a foundation species, the hydrothermal vent tubeworm Ridgeia piscesae. Compared with samples from co-located hydrothermal fluids, microbial communities within R. piscesae assemblages are hotspots of taxonomic richness and are high in novelty (unclassified OTUs) and in relative abundance of Bacteroidetes. We also observed a robust temperature-driven distinction in assemblage composition above and below ~25 °C that spanned micro to macro size classes. The core high-temperature community included eight macro- and meiofaunal taxa and members of the Bacteroidetes and Epsilonbacteraeota, particularly the genera Carboxylicivirga, Nitratifractor and Arcobacter. The core low-temperature community included more meiofaunal species in addition to Alpha- and Gammaproteobacteria, and Actinobacteria. Inferred associations among high-temperature core community taxa suggest increased reliance on species interactions under more severe hydrothermal conditions. We propose refinement of species diversity to "core communities" as a tool to simplify investigations of relationships between taxonomic and functional diversity across domains and scales by narrowing the taxonomic scope.
Collapse
Affiliation(s)
- S A Murdock
- School of Earth & Ocean Sciences, University of Victoria, Victoria, Canada.
| | - V Tunnicliffe
- School of Earth & Ocean Sciences, University of Victoria, Victoria, Canada
- Department of Biology, University of Victoria, Victoria, Canada
| | - R E Boschen-Rose
- Department of Biology, University of Victoria, Victoria, Canada
- Ocean & Earth Science, University of Southampton, Southampton, UK
| | - S K Juniper
- School of Earth & Ocean Sciences, University of Victoria, Victoria, Canada
- Ocean Networks Canada, University of Victoria, Victoria, Canada
| |
Collapse
|
9
|
Dick GJ. The microbiomes of deep-sea hydrothermal vents: distributed globally, shaped locally. Nat Rev Microbiol 2020; 17:271-283. [PMID: 30867583 DOI: 10.1038/s41579-019-0160-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The discovery of chemosynthetic ecosystems at deep-sea hydrothermal vents in 1977 changed our view of biology. Chemosynthetic bacteria and archaea form the foundation of vent ecosystems by exploiting the chemical disequilibrium between reducing hydrothermal fluids and oxidizing seawater, harnessing this energy to fix inorganic carbon into biomass. Recent research has uncovered fundamental aspects of these microbial communities, including their relationships with underlying geology and hydrothermal geochemistry, interactions with animals via symbiosis and distribution both locally in various habitats within vent fields and globally across hydrothermal systems in diverse settings. Although 'black smokers' and symbioses between microorganisms and macrofauna attract much attention owing to their novelty and the insights they provide into life under extreme conditions, habitats such as regions of diffuse flow, subseafloor aquifers and hydrothermal plumes have important roles in the global cycling of elements through hydrothermal systems. Owing to sharp contrasts in physical and chemical conditions between these various habitats and their dynamic, extreme and geographically isolated nature, hydrothermal vents provide a valuable window into the environmental and ecological forces that shape microbial communities and insights into the limits, origins and evolution of microbial life.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Murdock SA, Juniper SK. Hydrothermal vent protistan distribution along the Mariana arc suggests vent endemics may be rare and novel. Environ Microbiol 2019; 21:3796-3815. [DOI: 10.1111/1462-2920.14729] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 04/21/2019] [Accepted: 06/04/2019] [Indexed: 11/27/2022]
Affiliation(s)
- Sheryl A. Murdock
- School of Earth & Ocean Sciences University of Victoria Victoria Canada
| | - S. Kim Juniper
- School of Earth & Ocean Sciences University of Victoria Victoria Canada
- Department of Biology University of Victoria Victoria Canada
| |
Collapse
|
11
|
Stewart LC, Algar CK, Fortunato CS, Larson BI, Vallino JJ, Huber JA, Butterfield DA, Holden JF. Fluid geochemistry, local hydrology, and metabolic activity define methanogen community size and composition in deep-sea hydrothermal vents. THE ISME JOURNAL 2019; 13:1711-1721. [PMID: 30842565 PMCID: PMC6776001 DOI: 10.1038/s41396-019-0382-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 12/03/2018] [Accepted: 02/20/2019] [Indexed: 12/25/2022]
Abstract
The size and biogeochemical impact of the subseafloor biosphere in oceanic crust remain largely unknown due to sampling limitations. We used reactive transport modeling to estimate the size of the subseafloor methanogen population, volume of crust occupied, fluid residence time, and nature of the subsurface mixing zone for two low-temperature hydrothermal vents at Axial Seamount. Monod CH4 production kinetics based on chemostat H2 availability and batch-culture Arrhenius growth kinetics for the hyperthermophile Methanocaldococcus jannaschii and thermophile Methanothermococcus thermolithotrophicus were used to develop and parameterize a reactive transport model, which was constrained by field measurements of H2, CH4, and metagenome methanogen concentration estimates in 20-40 °C hydrothermal fluids. Model results showed that hyperthermophilic methanogens dominate in systems where a narrow flow path geometry is maintained, while thermophilic methanogens dominate in systems where the flow geometry expands. At Axial Seamount, the residence time of fluid below the surface was 29-33 h. Only 1011 methanogenic cells occupying 1.8-18 m3 of ocean crust per m2 of vent seafloor area were needed to produce the observed CH4 anomalies. We show that variations in local geology at diffuse vents can create fluid flow paths that are stable over space and time, harboring persistent and distinct microbial communities.
Collapse
Affiliation(s)
- Lucy C Stewart
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
- GNS Science, Wellington, 5010, New Zealand
| | | | | | - Benjamin I Larson
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - Joseph J Vallino
- Ecosystems Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - David A Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, Seattle, WA, 98195, USA
| | - James F Holden
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA.
| |
Collapse
|
12
|
Colman DR, Lindsay MR, Boyd ES. Mixing of meteoric and geothermal fluids supports hyperdiverse chemosynthetic hydrothermal communities. Nat Commun 2019; 10:681. [PMID: 30737379 PMCID: PMC6368606 DOI: 10.1038/s41467-019-08499-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 01/15/2019] [Indexed: 12/28/2022] Open
Abstract
Little is known of how mixing of meteoric and geothermal fluids supports biodiversity in non-photosynthetic ecosystems. Here, we use metagenomic sequencing to investigate a chemosynthetic microbial community in a hot spring (SJ3) of Yellowstone National Park that exhibits geochemistry consistent with mixing of a reduced volcanic gas-influenced end member with an oxidized near-surface meteoric end member. SJ3 hosts an exceptionally diverse community with representatives from ~50% of known higher-order archaeal and bacterial lineages, including several divergent deep-branching lineages. A comparison of functional potential with other available chemosynthetic community metagenomes reveals similarly high diversity and functional potentials (i.e., incorporation of electron donors supplied by volcanic gases) in springs sourced by mixed fluids. Further, numerous closely related SJ3 populations harbor differentiated metabolisms that may function to minimize niche overlap, further increasing endemic diversity. We suggest that dynamic mixing of waters generated by subsurface and near-surface geological processes may play a key role in the generation and maintenance of chemosynthetic biodiversity in hydrothermal and other similar environments. Chemosynthetic microbial communities in hydrothermal environments receiving meteoric and geothermal fluids are understudied. Here, Colman et al. use metagenomics to study one such community from a hot spring at Yellowstone National Park, revealing exceptional biodiversity and unique functional potential.
Collapse
Affiliation(s)
- Daniel R Colman
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Melody R Lindsay
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA
| | - Eric S Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59718, USA. .,NASA Astrobiology Institute, Ames Research Center, Mountain View, CA, USA.
| |
Collapse
|
13
|
Adam N, Perner M. Microbially Mediated Hydrogen Cycling in Deep-Sea Hydrothermal Vents. Front Microbiol 2018; 9:2873. [PMID: 30532749 PMCID: PMC6265342 DOI: 10.3389/fmicb.2018.02873] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Accepted: 11/08/2018] [Indexed: 11/13/2022] Open
Abstract
Deep-sea hydrothermal vents may provide one of the largest reservoirs on Earth for hydrogen-oxidizing microorganisms. Depending on the type of geological setting, hydrothermal environments can be considerably enriched in hydrogen (up to millimolar concentrations). As hot, reduced hydrothermal fluids ascend to the seafloor they mix with entrained cold, oxygenated seawater, forming thermal and chemical gradients along their fluid pathways. Consequently, in these thermally and chemically dynamic habitats biochemically distinct hydrogenases (adapted to various temperature regimes, oxygen and hydrogen concentrations) from physiologically and phylogenetically diverse Bacteria and Archaea can be expected. Hydrogen oxidation is one of the important inorganic energy sources in these habitats, capable of providing relatively large amounts of energy (237 kJ/mol H2) for driving ATP synthesis and autotrophic CO2 fixation. Therefore, hydrogen-oxidizing organisms play a key role in deep-sea hydrothermal vent ecosystems as they can be considerably involved in light-independent primary biomass production. So far, the specific role of hydrogen-utilizing microorganisms in deep-sea hydrothermal ecosystems has been investigated by isolating hydrogen-oxidizers, measuring hydrogen consumption (ex situ), studying hydrogenase gene distribution and more recently by analyzing metatranscriptomic and metaproteomic data. Here we summarize this available knowledge and discuss the advent of new techniques for the identification of novel hydrogen-uptake and -evolving enzymes from hydrothermal vent microorganisms.
Collapse
Affiliation(s)
| | - Mirjam Perner
- Geomicrobiology, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| |
Collapse
|
14
|
Gajigan AP, Yñiguez AT, Villanoy CL, San Diego-McGlone ML, Jacinto GS, Conaco C. Diversity and community structure of marine microbes around the Benham Rise underwater plateau, northeastern Philippines. PeerJ 2018; 6:e4781. [PMID: 29785352 PMCID: PMC5960264 DOI: 10.7717/peerj.4781] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/26/2018] [Indexed: 12/30/2022] Open
Abstract
Microbes are central to the structuring and functioning of marine ecosystems. Given the remarkable diversity of the ocean microbiome, uncovering marine microbial taxa remains a fundamental challenge in microbial ecology. However, there has been little effort, thus far, to describe the diversity of marine microorganisms in the region of high marine biodiversity around the Philippines. Here, we present data on the taxonomic diversity of bacteria and archaea in Benham Rise, Philippines, Western Pacific Ocean, using 16S V4 rRNA gene sequencing. The major bacterial and archaeal phyla identified in the Benham Rise are Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes, Marinimicrobia, Thaumarchaeota and, Euryarchaeota. The upper mesopelagic layer exhibited greater microbial diversity and richness compared to surface waters. Vertical zonation of the microbial community is evident and may be attributed to physical stratification of the water column acting as a dispersal barrier. Canonical Correspondence Analysis (CCA) recapitulated previously known associations of taxa and physicochemical parameters in the environment, such as the association of oligotrophic clades with low nutrient surface water and deep water clades that have the capacity to oxidize ammonia or nitrite at the upper mesopelagic layer. These findings provide foundational information on the diversity of marine microbes in Philippine waters. Further studies are warranted to gain a more comprehensive picture of microbial diversity within the region.
Collapse
Affiliation(s)
- Andrian P Gajigan
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines.,Current affiliation: Department of Oceanography, University of Hawaii at Manoa, USA
| | - Aletta T Yñiguez
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cesar L Villanoy
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | | | - Gil S Jacinto
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines Diliman, Quezon City, Philippines
| |
Collapse
|
15
|
Pjevac P, Meier DV, Markert S, Hentschker C, Schweder T, Becher D, Gruber-Vodicka HR, Richter M, Bach W, Amann R, Meyerdierks A. Metaproteogenomic Profiling of Microbial Communities Colonizing Actively Venting Hydrothermal Chimneys. Front Microbiol 2018; 9:680. [PMID: 29696004 PMCID: PMC5904459 DOI: 10.3389/fmicb.2018.00680] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/22/2018] [Indexed: 11/15/2022] Open
Abstract
At hydrothermal vent sites, chimneys consisting of sulfides, sulfates, and oxides are formed upon contact of reduced hydrothermal fluids with oxygenated seawater. The walls and surfaces of these chimneys are an important habitat for vent-associated microorganisms. We used community proteogenomics to investigate and compare the composition, metabolic potential and relative in situ protein abundance of microbial communities colonizing two actively venting hydrothermal chimneys from the Manus Basin back-arc spreading center (Papua New Guinea). We identified overlaps in the in situ functional profiles of both chimneys, despite differences in microbial community composition and venting regime. Carbon fixation on both chimneys seems to have been primarily mediated through the reverse tricarboxylic acid cycle and fueled by sulfur-oxidation, while the abundant metabolic potential for hydrogen oxidation and carbon fixation via the Calvin–Benson–Bassham cycle was hardly utilized. Notably, the highly diverse microbial community colonizing the analyzed black smoker chimney had a highly redundant metabolic potential. In contrast, the considerably less diverse community colonizing the diffusely venting chimney displayed a higher metabolic versatility. An increased diversity on the phylogenetic level is thus not directly linked to an increased metabolic diversity in microbial communities that colonize hydrothermal chimneys.
Collapse
Affiliation(s)
- Petra Pjevac
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Dimitri V Meier
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Stephanie Markert
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | | | - Thomas Schweder
- Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Harald R Gruber-Vodicka
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Department of Symbiosis, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Michael Richter
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany.,Ribocon GmbH, Bremen, Germany
| | - Wolfgang Bach
- MARUM Center for Marine Environmental Sciences, Department of Geosciences, University of Bremen, Bremen, Germany
| | - Rudolf Amann
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| | - Anke Meyerdierks
- Department of Molecular Ecology, Max Planck Institute for Marine Microbiology, Bremen, Germany
| |
Collapse
|
16
|
Fortunato CS, Larson B, Butterfield DA, Huber JA. Spatially distinct, temporally stable microbial populations mediate biogeochemical cycling at and below the seafloor in hydrothermal vent fluids. Environ Microbiol 2017; 20:769-784. [DOI: 10.1111/1462-2920.14011] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 10/20/2017] [Accepted: 11/22/2017] [Indexed: 11/30/2022]
Affiliation(s)
- Caroline S. Fortunato
- Marine Biological Laboratory; Josephine Bay Paul Center; Woods Hole MA USA
- Department of Biology; Wilkes University; Wilkes-Barre PA USA
| | - Benjamin Larson
- Joint Institute for the Study of the Atmosphere and Ocean; University of Washington and NOAA Pacific Marine Environmental Lab; Seattle WA USA
| | - David A. Butterfield
- Joint Institute for the Study of the Atmosphere and Ocean; University of Washington and NOAA Pacific Marine Environmental Lab; Seattle WA USA
| | - Julie A. Huber
- Marine Biological Laboratory; Josephine Bay Paul Center; Woods Hole MA USA
- Marine Chemistry and Geochemistry Department; Woods Hole Oceanographic Institution; Woods Hole MA USA
| |
Collapse
|
17
|
Tully BJ, Wheat CG, Glazer BT, Huber JA. A dynamic microbial community with high functional redundancy inhabits the cold, oxic subseafloor aquifer. ISME JOURNAL 2017; 12:1-16. [PMID: 29099490 PMCID: PMC5739024 DOI: 10.1038/ismej.2017.187] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/19/2017] [Accepted: 09/22/2017] [Indexed: 11/29/2022]
Abstract
The rock-hosted subseafloor crustal aquifer harbors a reservoir of microbial life that may influence global marine biogeochemical cycles. Here we utilized metagenomic libraries of crustal fluid samples from North Pond, located on the flanks of the Mid-Atlantic Ridge, a site with cold, oxic subseafloor fluid circulation within the upper basement to query microbial diversity. Twenty-one samples were collected during a 2-year period to examine potential microbial metabolism and community dynamics. We observed minor changes in the geochemical signatures over the 2 years, yet the microbial community present in the crustal fluids underwent large shifts in the dominant taxonomic groups. An analysis of 195 metagenome-assembled genomes (MAGs) were generated from the data set and revealed a connection between litho- and autotrophic processes, linking carbon fixation to the oxidation of sulfide, sulfur, thiosulfate, hydrogen, and ferrous iron in members of the Proteobacteria, specifically the Alpha-, Gamma- and Zetaproteobacteria, the Epsilonbacteraeota and the Planctomycetes. Despite oxic conditions, analysis of the MAGs indicated that members of the microbial community were poised to exploit hypoxic or anoxic conditions through the use of microaerobic cytochromes, such as cbb3- and bd-type cytochromes, and alternative electron acceptors, like nitrate and sulfate. Temporal and spatial trends from the MAGs revealed a high degree of functional redundancy that did not correlate with the shifting microbial community membership, suggesting functional stability in mediating subseafloor biogeochemical cycles. Collectively, the repeated sampling at multiple sites, together with the successful binning of hundreds of genomes, provides an unprecedented data set for investigation of microbial communities in the cold, oxic crustal aquifer.
Collapse
Affiliation(s)
- Benjamin J Tully
- Center for Dark Energy Biosphere Investigations, University of Southern California, Los Angeles, CA, USA
| | - C Geoff Wheat
- College of Fisheries and Ocean Sciences, University of Alaska Fairbanks, Fairbanks, AK, USA
| | - Brain T Glazer
- Department of Oceanography, University of Hawaii, Honolulu, HI, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| |
Collapse
|
18
|
Anderson RE, Reveillaud J, Reddington E, Delmont TO, Eren AM, McDermott JM, Seewald JS, Huber JA. Genomic variation in microbial populations inhabiting the marine subseafloor at deep-sea hydrothermal vents. Nat Commun 2017; 8:1114. [PMID: 29066755 PMCID: PMC5655027 DOI: 10.1038/s41467-017-01228-6] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 08/30/2017] [Indexed: 02/01/2023] Open
Abstract
Little is known about evolutionary drivers of microbial populations in the warm subseafloor of deep-sea hydrothermal vents. Here we reconstruct 73 metagenome-assembled genomes (MAGs) from two geochemically distinct vent fields in the Mid-Cayman Rise to investigate patterns of genomic variation within subseafloor populations. Low-abundance populations with high intra-population diversity coexist alongside high-abundance populations with low genomic diversity, with taxonomic differences in patterns of genomic variation between the mafic Piccard and ultramafic Von Damm vent fields. Populations from Piccard are significantly enriched in nonsynonymous mutations, suggesting stronger purifying selection in Von Damm relative to Piccard. Comparison of nine Sulfurovum MAGs reveals two high-coverage, low-diversity MAGs from Piccard enriched in unique genes related to the cellular membrane, suggesting these populations were subject to distinct evolutionary pressures that may correlate with genes related to nutrient uptake, biofilm formation, or viral invasion. These results are consistent with distinct evolutionary histories between geochemically different vent fields, with implications for understanding evolutionary processes in subseafloor microbial populations.
Collapse
Affiliation(s)
- Rika E Anderson
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA.
- Department of Biology, Carleton College, Northfield, MN, 55057, USA.
| | - Julie Reveillaud
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Cirad UMR 117, Inra UMR 1309 ASTRE, Cirad Campus International de Baillarguet, Montpellier, France
| | - Emily Reddington
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Great Pond Foundation, Edgartown, MA, 02539, USA
| | - Tom O Delmont
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Department of Medicine, University of Chicago, Chicago, IL, 60637, USA
| | - Jill M McDermott
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
- Department of Earth and Environmental Sciences, Lehigh University, Bethlehem, PA, 18015, USA
| | - Jeff S Seewald
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| | - Julie A Huber
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, 02543, USA
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, 02543, USA
| |
Collapse
|
19
|
Olins HC, Rogers DR, Preston C, Ussler W, Pargett D, Jensen S, Roman B, Birch JM, Scholin CA, Haroon MF, Girguis PR. Co-registered Geochemistry and Metatranscriptomics Reveal Unexpected Distributions of Microbial Activity within a Hydrothermal Vent Field. Front Microbiol 2017; 8:1042. [PMID: 28659879 PMCID: PMC5468400 DOI: 10.3389/fmicb.2017.01042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2017] [Accepted: 05/24/2017] [Indexed: 12/11/2022] Open
Abstract
Despite years of research into microbial activity at diffuse flow hydrothermal vents, the extent of microbial niche diversity in these settings is not known. To better understand the relationship between microbial activity and the associated physical and geochemical conditions, we obtained co-registered metatranscriptomic and geochemical data from a variety of different fluid regimes within the ASHES vent field on the Juan de Fuca Ridge. Microbial activity in the majority of the cool and warm fluids sampled was dominated by a population of Gammaproteobacteria (likely sulfur oxidizers) that appear to thrive in a variety of chemically distinct fluids. Only the warmest, most hydrothermally-influenced flows were dominated by active populations of canonically vent-endemic Epsilonproteobacteria. These data suggest that the Gammaproteobacteria collected during this study may be generalists, capable of thriving over a broader range of geochemical conditions than the Epsilonproteobacteria. Notably, the apparent metabolic activity of the Gammaproteobacteria—particularly carbon fixation—in the seawater found between discrete fluid flows (the intra-field water) suggests that this area within the Axial caldera is a highly productive, and previously overlooked, habitat. By extension, our findings suggest that analogous, diffuse flow fields may be similarly productive and thus constitute a very important and underappreciated aspect of deep-sea biogeochemical cycling that is occurring at the global scale.
Collapse
Affiliation(s)
- Heather C Olins
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Daniel R Rogers
- Department of Chemistry, Stonehill CollegeEaston, MA, United States
| | - Christina Preston
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - William Ussler
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Douglas Pargett
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Scott Jensen
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Brent Roman
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - James M Birch
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - Christopher A Scholin
- Research and Development, Monterey Bay Aquarium Research InstituteMoss Landing, CA, United States
| | - M Fauzi Haroon
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| | - Peter R Girguis
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridge, MA, United States
| |
Collapse
|
20
|
Crespo-Medina M, Twing KI, Sánchez-Murillo R, Brazelton WJ, McCollom TM, Schrenk MO. Methane Dynamics in a Tropical Serpentinizing Environment: The Santa Elena Ophiolite, Costa Rica. Front Microbiol 2017; 8:916. [PMID: 28588569 PMCID: PMC5440473 DOI: 10.3389/fmicb.2017.00916] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 05/04/2017] [Indexed: 12/17/2022] Open
Abstract
Uplifted ultramafic rocks represent an important vector for the transfer of carbon and reducing power from the deep subsurface into the biosphere and potentially support microbial life through serpentinization. This process has a strong influence upon the production of hydrogen and methane, which can be subsequently consumed by microbial communities. The Santa Elena Ophiolite (SEO) on the northwestern Pacific coast of Costa Rica comprises ~250 km2 of ultramafic rocks and mafic associations. The climatic conditions, consisting of strongly contrasting wet and dry seasons, make the SEO a unique hydrogeological setting, where water-rock reactions are enhanced by large storm events (up to 200 mm in a single storm). Previous work on hyperalkaline spring fluids collected within the SEO has identified the presence of microorganisms potentially involved in hydrogen, methane, and methanol oxidation (such as Hydrogenophaga, Methylobacterium, and Methylibium spp., respectively), as well as the presence of methanogenic Archaea (such as Methanobacterium). Similar organisms have also been documented at other serpentinizing sites, however their functions have not been confirmed. SEO's hyperalkaline springs have elevated methane concentrations, ranging from 145 to 900 μM, in comparison to the background concentrations (<0.3 μM). The presence and potential activity of microorganisms involved in methane cycling in serpentinization-influenced fluids from different sites within the SEO were investigated using molecular, geochemical, and modeling approaches. These results were combined to elucidate the bioenergetically favorable methane production and/or oxidation reactions in this tropical serpentinizing environment. The hyperalkaline springs at SEO contain a greater proportion of Archaea and methanogens than has been detected in any terrestrial serpentinizing system. Archaea involved in methanogenesis and anaerobic methane oxidation accounted from 40 to 90% of total archaeal sequences. Genes involved in methanogenic metabolisms were detected from the metagenome of one of the alkaline springs. Methanogenic activities are likely to be facilitated by the movement of nutrients, including dissolved inorganic carbon (DIC), from surface water and their infiltration into serpentinizing groundwater. These data provide new insight into methane cycle in tropical serpentinizing environments.
Collapse
Affiliation(s)
- Melitza Crespo-Medina
- Center for Education, Conservation and Research, Inter-American University of Puerto RicoSan Juan, PR, United States
| | - Katrina I Twing
- Department of Biology, University of UtahSalt Lake City, UT, United States
| | - Ricardo Sánchez-Murillo
- Stable Isotope Research Group, School of Chemistry, National University of Costa RicaHeredia, Costa Rica
| | | | - Thomas M McCollom
- Laboratory for Atmospheric and Space Physics, Center for Astrobiology, University of Colorado BoulderBoulder, CO, United States
| | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State UniversityEast Lansing, MI, United States
| |
Collapse
|
21
|
Djurhuus A, Mikalsen SO, Giebel HA, Rogers AD. Cutting through the smoke: the diversity of microorganisms in deep-sea hydrothermal plumes. ROYAL SOCIETY OPEN SCIENCE 2017; 4:160829. [PMID: 28484604 PMCID: PMC5414241 DOI: 10.1098/rsos.160829] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Accepted: 03/10/2017] [Indexed: 05/19/2023]
Abstract
There are still notable gaps regarding the detailed distribution of microorganisms between and within insular habitats such as deep-sea hydrothermal vents. This study investigates the community composition of black smoker vent microorganisms in the Southern Hemisphere, and changes thereof along a spatial and chemical gradient ranging from the vent plume to surrounding waters. We sampled two hydrothermal vent fields, one at the South West Indian Ridge (SWIR), the other at the East Scotia Ridge (ESR). Samples were collected across vent fields at varying vertical distances from the origin of the plumes. The microbial data were sequenced on an Illumina MiSeq platform for the 16SrRNA gene. A substantial amount of vent-specific putative chemosynthetic microorganisms were found, particularly in samples from focused hydrothermal venting. Common vent-specific organisms from both vent fields were the genera Arcobacter, Caminibacter and Sulfurimonas from the Epsilonproteobacteria and the SUP05 group from the Gammaproteobacteria. There were no major differences in microbial composition between SWIR and ESR for focused plume samples. However, within the ESR the diffuse flow and focused samples differed significantly in microbial community composition and relative abundance. For Epsilonproteobacteria, we found evidence of niche-specificity to hydrothermal vent environments. This taxon decreased in abundance by three orders of magnitude from the vent orifice to background water. Epsilonproteobacteria distribution followed a distance-decay relationship as vent-effluents mixed with the surrounding seawater. This study demonstrates strong habitat affinity of vent microorganisms on a metre scale with distinct environmental selection.
Collapse
Affiliation(s)
- Anni Djurhuus
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
- e-mail:
| | - Svein-Ole Mikalsen
- Department of Science and Technology, University of the Faroe Islands, Noatun 3, Torshavn, Faroe Islands
| | - Helge-Ansgar Giebel
- Institute of Chemistry and Biology of the Marine Environment (ICBM), Carl-von-Ossietzky University Oldenburg, , Germany
| | - Alex D. Rogers
- Department of Zoology, University of Oxford, South Parks Road, OX1 3PS UK
| |
Collapse
|
22
|
Yanagawa K, Ijiri A, Breuker A, Sakai S, Miyoshi Y, Kawagucci S, Noguchi T, Hirai M, Schippers A, Ishibashi JI, Takaki Y, Sunamura M, Urabe T, Nunoura T, Takai K. Defining boundaries for the distribution of microbial communities beneath the sediment-buried, hydrothermally active seafloor. THE ISME JOURNAL 2017; 11:529-542. [PMID: 27754478 PMCID: PMC5270560 DOI: 10.1038/ismej.2016.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 07/26/2016] [Accepted: 08/05/2016] [Indexed: 02/07/2023]
Abstract
Subseafloor microbes beneath active hydrothermal vents are thought to live near the upper temperature limit for life on Earth. We drilled and cored the Iheya North hydrothermal field in the Mid-Okinawa Trough, and examined the phylogenetic compositions and the products of metabolic functions of sub-vent microbial communities. We detected microbial cells, metabolic activities and molecular signatures only in the shallow sediments down to 15.8 m below the seafloor at a moderately distant drilling site from the active hydrothermal vents (450 m). At the drilling site, the profiles of methane and sulfate concentrations and the δ13C and δD isotopic compositions of methane suggested the laterally flowing hydrothermal fluids and the in situ microbial anaerobic methane oxidation. In situ measurements during the drilling constrain the current bottom temperature of the microbially habitable zone to ~45 °C. However, in the past, higher temperatures of 106-198 °C were possible at the depth, as estimated from geochemical thermometry on hydrothermally altered clay minerals. The 16S rRNA gene phylotypes found in the deepest habitable zone are related to those of thermophiles, although sequences typical of known hyperthermophilic microbes were absent from the entire core. Overall our results shed new light on the distribution and composition of the boundary microbial community close to the high-temperature limit for habitability in the subseafloor environment of a hydrothermal field.
Collapse
Affiliation(s)
- Katsunori Yanagawa
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
- Faculty of Social and Cultural Studies, Kyushu University, Fukuoka, Japan
| | - Akira Ijiri
- Geomicrobiology Group, Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kochi, Japan
| | - Anja Breuker
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Sanae Sakai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Youko Miyoshi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Shinsuke Kawagucci
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Takuroh Noguchi
- Interdisciplinary Science Unit, Multidisciplinary Science Cluster, Research and Education Faculty, Kochi University, Kochi, Japan
| | - Miho Hirai
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Axel Schippers
- Geomicrobiology, Federal Institute for Geosciences and Natural Resources (BGR), Hannover, Germany
| | - Jun-ichiro Ishibashi
- Department of Earth and Planetary Sciences, Faculty of Science, Kyushu University, Higashi-ku, Fukuoka, Japan
| | - Yoshihiro Takaki
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Michinari Sunamura
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Tetsuro Urabe
- Department of Earth and Planetary Science, University of Tokyo, Tokyo, Japan
| | - Takuro Nunoura
- Marine Functional Biology Group, Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research (D-SUGAR), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka, Japan
| |
Collapse
|
23
|
Brazelton WJ, Thornton CN, Hyer A, Twing KI, Longino AA, Lang SQ, Lilley MD, Früh-Green GL, Schrenk MO. Metagenomic identification of active methanogens and methanotrophs in serpentinite springs of the Voltri Massif, Italy. PeerJ 2017; 5:e2945. [PMID: 28149702 PMCID: PMC5274519 DOI: 10.7717/peerj.2945] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/27/2016] [Indexed: 12/22/2022] Open
Abstract
The production of hydrogen and methane by geochemical reactions associated with the serpentinization of ultramafic rocks can potentially support subsurface microbial ecosystems independent of the photosynthetic biosphere. Methanogenic and methanotrophic microorganisms are abundant in marine hydrothermal systems heavily influenced by serpentinization, but evidence for methane-cycling archaea and bacteria in continental serpentinite springs has been limited. This report provides metagenomic and experimental evidence for active methanogenesis and methanotrophy by microbial communities in serpentinite springs of the Voltri Massif, Italy. Methanogens belonging to family Methanobacteriaceae and methanotrophic bacteria belonging to family Methylococcaceae were heavily enriched in three ultrabasic springs (pH 12). Metagenomic data also suggest the potential for hydrogen oxidation, hydrogen production, carbon fixation, fermentation, and organic acid metabolism in the ultrabasic springs. The predicted metabolic capabilities are consistent with an active subsurface ecosystem supported by energy and carbon liberated by geochemical reactions within the serpentinite rocks of the Voltri Massif.
Collapse
Affiliation(s)
- William J Brazelton
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | | | - Alex Hyer
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | - Katrina I Twing
- Department of Earth and Environmental Sciences, Michigan State University , East Lansing , MI , United States
| | - August A Longino
- Department of Biology, University of Utah , Salt Lake City , UT , United States
| | - Susan Q Lang
- Department of Earth and Ocean Sciences, University of South Carolina, Columbia, SC, United States; Department of Earth Sciences, ETH Zurich, Zurich, Switzerland
| | - Marvin D Lilley
- School of Oceanography, University of Washington , Seattle , WA , United States
| | | | - Matthew O Schrenk
- Department of Earth and Environmental Sciences, Michigan State University , East Lansing , MI , United States
| |
Collapse
|
24
|
Topçuoğlu BD, Stewart LC, Morrison HG, Butterfield DA, Huber JA, Holden JF. Hydrogen Limitation and Syntrophic Growth among Natural Assemblages of Thermophilic Methanogens at Deep-sea Hydrothermal Vents. Front Microbiol 2016; 7:1240. [PMID: 27547206 PMCID: PMC4974244 DOI: 10.3389/fmicb.2016.01240] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 07/26/2016] [Indexed: 11/13/2022] Open
Abstract
Thermophilic methanogens are common autotrophs at hydrothermal vents, but their growth constraints and dependence on H2 syntrophy in situ are poorly understood. Between 2012 and 2015, methanogens and H2-producing heterotrophs were detected by growth at 80°C and 55°C at most diffuse (7-40°C) hydrothermal vent sites at Axial Seamount. Microcosm incubations of diffuse hydrothermal fluids at 80°C and 55°C demonstrated that growth of thermophilic and hyperthermophilic methanogens is primarily limited by H2 availability. Amendment of microcosms with NH4 (+) generally had no effect on CH4 production. However, annual variations in abundance and CH4 production were observed in relation to the eruption cycle of the seamount. Microcosm incubations of hydrothermal fluids at 80°C and 55°C supplemented with tryptone and no added H2 showed CH4 production indicating the capacity in situ for methanogenic H2 syntrophy. 16S rRNA genes were found in 80°C microcosms from H2-producing archaea and H2-consuming methanogens, but not for any bacteria. In 55°C microcosms, sequences were found from H2-producing bacteria and H2-consuming methanogens and sulfate-reducing bacteria. A co-culture of representative organisms showed that Thermococcus paralvinellae supported the syntrophic growth of Methanocaldococcus bathoardescens at 82°C and Methanothermococcus sp. strain BW11 at 60°C. The results demonstrate that modeling of subseafloor methanogenesis should focus primarily on H2 availability and temperature, and that thermophilic H2 syntrophy can support methanogenesis within natural microbial assemblages and may be an important energy source for thermophilic autotrophs in marine geothermal environments.
Collapse
Affiliation(s)
| | - Lucy C. Stewart
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| | - Hilary G. Morrison
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - David A. Butterfield
- Joint Institute for the Study of Atmosphere and Ocean, University of Washington, SeattleWA, USA
- Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, SeattleWA, USA
| | - Julie A. Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, Woods HoleMA, USA
| | - James F. Holden
- Department of Microbiology, University of Massachusetts, AmherstMA, USA
| |
Collapse
|
25
|
He T, Zhang X. Characterization of Bacterial Communities in Deep-Sea Hydrothermal Vents from Three Oceanic Regions. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2016; 18:232-241. [PMID: 26626941 DOI: 10.1007/s10126-015-9683-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 11/15/2015] [Indexed: 06/05/2023]
Abstract
Deep-sea hydrothermal vents are considered to be one of the most spectacular ecosystems on Earth. Microorganisms form the basis of the food chain in vents controlling the vent communities. However, the diversity of bacterial communities in deep-sea hydrothermal vents from different oceans remains largely unknown. In this study, the pyrosequencing of 16S rRNA gene was used to characterize the bacterial communities of the venting sulfide, seawater, and tubeworm trophosome from East Pacific Rise, South Atlantic Ridge, and Southwest Indian Ridge, respectively. A total of 23,767 operational taxonomic units (OTUs) were assigned into 42 different phyla. Although Proteobacteria, Actinobacteria, and Bacteroidetes were the predominant phyla in all vents, differences of bacterial diversity were observed among different vents from three oceanic regions. The sulfides of East Pacific Rise possessed the most diverse bacterial communities. The bacterial diversities of venting seawater were much lower than those of vent sulfides. The symbiotic bacteria of tubeworm Ridgeia piscesae were included in the bacterial community of vent sulfides, suggesting their significant ecological functions as the primary producers in the deep-sea hydrothermal vent ecosystems. Therefore, our study presented a comprehensive view of bacterial communities in deep-sea hydrothermal vents from different oceans.
Collapse
Affiliation(s)
- Tianliang He
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Xiaobo Zhang
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education and College of Life Sciences, Zhejiang University, Hangzhou, 310058, People's Republic of China.
| |
Collapse
|
26
|
Coupled RNA-SIP and metatranscriptomics of active chemolithoautotrophic communities at a deep-sea hydrothermal vent. ISME JOURNAL 2016; 10:1925-38. [PMID: 26872039 PMCID: PMC5029171 DOI: 10.1038/ismej.2015.258] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 12/07/2015] [Accepted: 12/10/2015] [Indexed: 01/13/2023]
Abstract
The chemolithoautotrophic microbial community of the rocky subseafloor potentially provides a large amount of organic carbon to the deep ocean, yet our understanding of the activity and metabolic complexity of subseafloor organisms remains poorly described. A combination of metagenomic, metatranscriptomic, and RNA stable isotope probing (RNA-SIP) analyses were used to identify the metabolic potential, expression patterns, and active autotrophic bacteria and archaea and their pathways present in low-temperature hydrothermal fluids from Axial Seamount, an active submarine volcano. Metagenomic and metatranscriptomic results showed the presence of genes and transcripts for sulfur, hydrogen, and ammonium oxidation, oxygen respiration, denitrification, and methanogenesis, as well as multiple carbon fixation pathways. In RNA-SIP experiments across a range of temperatures under reducing conditions, the enriched 13C fractions showed differences in taxonomic and functional diversity. At 30 °C and 55 °C, Epsilonproteobacteria were dominant, oxidizing hydrogen and primarily reducing nitrate. Methanogenic archaea were also present at 55 °C, and were the only autotrophs present at 80 °C. Correspondingly, the predominant CO2 fixation pathways changed from the reductive tricarboxylic acid (rTCA) cycle to the reductive acetyl-CoA pathway with increasing temperature. By coupling RNA-SIP with meta-omics, this study demonstrates the presence and activity of distinct chemolithoautotrophic communities across a thermal gradient of a deep-sea hydrothermal vent.
Collapse
|
27
|
Lin TJ, Ver Eecke HC, Breves EA, Dyar MD, Jamieson JW, Hannington MD, Dahle H, Bishop JL, Lane MD, Butterfield DA, Kelley DS, Lilley MD, Baross JA, Holden JF. Linkages between mineralogy, fluid chemistry, and microbial communities within hydrothermal chimneys from the Endeavour Segment, Juan de Fuca Ridge. GEOCHEMISTRY, GEOPHYSICS, GEOSYSTEMS : G(3) 2016; 17:300-323. [PMID: 30123099 PMCID: PMC6094386 DOI: 10.1002/2015gc006091] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Rock and fluid samples were collected from three hydrothermal chimneys at the Endeavour Segment, Juan de Fuca Ridge to evaluate linkages among mineralogy, fluid chemistry, and microbial community composition within the chimneys. Mössbauer, midinfrared thermal emission, and visible-near infrared spectroscopies were utilized for the first time to characterize vent mineralogy, in addition to thin-section petrography, X-ray diffraction, and elemental analyses. A 282°C venting chimney from the Bastille edifice was composed primarily of sulfide minerals such as chalcopyrite, marcasite, and sphalerite. In contrast, samples from a 300°C venting chimney from the Dante edifice and a 321°C venting chimney from the Hot Harold edifice contained a high abundance of the sulfate mineral anhydrite. Geochemical modeling of mixed vent fluids suggested the oxic-anoxic transition zone was above 100°C at all three vents, and that the thermodynamic energy available for autotrophic microbial redox reactions favored aerobic sulfide and methane oxidation. As predicted, microbes within the Dante and Hot Harold chimneys were most closely related to mesophilic and thermophilic aerobes of the Betaproteobacteria and Gammaproteobacteria and sulfide-oxidizing autotrophic Epsilonproteobacteria. However, most of the microbes within the Bastille chimney were most closely related to mesophilic and thermophilic anaerobes of the Deltaproteobacteria, especially sulfate reducers, and anaerobic hyperthermophilic archaea. The predominance of anaerobes in the Bastille chimney indicated that other environmental factors promote anoxic conditions. Possibilities include the maturity or fluid flow characteristics of the chimney, abiotic Fe2+ and S2- oxidation in the vent fluids, or O2 depletion by aerobic respiration on the chimney outer wall.
Collapse
Affiliation(s)
- T. J. Lin
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - H. C. Ver Eecke
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - E. A. Breves
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - M. D. Dyar
- Department of Astronomy, Mount Holyoke College, South Hadley, Massachusetts, USA
| | - J. W. Jamieson
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
- GEOMAR, Helmholtz Centre for Ocean Research, Kiel, Germany
| | - M. D. Hannington
- Department of Earth Sciences, University of Ottawa, Ottawa, Ontario, Canada
| | - H. Dahle
- Department of Biology, Centre for Geobiology, University of Bergen, Bergen, Norway
| | - J. L. Bishop
- SETI Institute/NASA Ames Research Center, Moffett Field, California, USA
| | - M. D. Lane
- Planetary Science Institute, Tucson, Arizona, USA
| | - D. A. Butterfield
- Joint Institute for the Study of the Atmosphere and Ocean, University of Washington and NOAA-PMEL, Seattle, Washington, USA
| | - D. S. Kelley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - M. D. Lilley
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. A. Baross
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - J. F. Holden
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
28
|
Reveillaud J, Reddington E, McDermott J, Algar C, Meyer JL, Sylva S, Seewald J, German CR, Huber JA. Subseafloor microbial communities in hydrogen-rich vent fluids from hydrothermal systems along the Mid-Cayman Rise. Environ Microbiol 2016; 18:1970-87. [PMID: 26663423 PMCID: PMC5021209 DOI: 10.1111/1462-2920.13173] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 12/01/2015] [Indexed: 11/30/2022]
Abstract
Warm fluids emanating from hydrothermal vents can be used as windows into the rocky subseafloor habitat and its resident microbial community. Two new vent systems on the Mid‐Cayman Rise each exhibits novel geologic settings and distinctively hydrogen‐rich vent fluid compositions. We have determined and compared the chemistry, potential energy yielding reactions, abundance, community composition, diversity, and function of microbes in venting fluids from both sites: Piccard, the world's deepest vent site, hosted in mafic rocks; and Von Damm, an adjacent, ultramafic‐influenced system. Von Damm hosted a wider diversity of lineages and metabolisms in comparison to Piccard, consistent with thermodynamic models that predict more numerous energy sources at ultramafic systems. There was little overlap in the phylotypes found at each site, although similar and dominant hydrogen‐utilizing genera were present at both. Despite the differences in community structure, depth, geology, and fluid chemistry, energetic modelling and metagenomic analysis indicate near functional equivalence between Von Damm and Piccard, likely driven by the high hydrogen concentrations and elevated temperatures at both sites. Results are compared with hydrothermal sites worldwide to provide a global perspective on the distinctiveness of these newly discovered sites and the interplay among rocks, fluid composition and life in the subseafloor.
Collapse
Affiliation(s)
- Julie Reveillaud
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Emily Reddington
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Jill McDermott
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | - Christopher Algar
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| | - Julie L Meyer
- Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Sean Sylva
- Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | | | - Julie A Huber
- Marine Biological Laboratory, Josephine Bay Paul Center, 7 MBL Street, Woods Hole, MA, 02543, USA
| |
Collapse
|
29
|
Holmes D, Smith J. Biologically Produced Methane as a Renewable Energy Source. ADVANCES IN APPLIED MICROBIOLOGY 2016; 97:1-61. [PMID: 27926429 DOI: 10.1016/bs.aambs.2016.09.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Methanogens are a unique group of strictly anaerobic archaea that are more metabolically diverse than previously thought. Traditionally, it was thought that methanogens could only generate methane by coupling the oxidation of products formed by fermentative bacteria with the reduction of CO2. However, it has recently been observed that many methanogens can also use electrons extruded from metal-respiring bacteria, biocathodes, or insoluble electron shuttles as energy sources. Methanogens are found in both human-made and natural environments and are responsible for the production of ∼71% of the global atmospheric methane. Their habitats range from the human digestive tract to hydrothermal vents. Although biologically produced methane can negatively impact the environment if released into the atmosphere, when captured, it can serve as a potent fuel source. The anaerobic digestion of wastes such as animal manure, human sewage, or food waste produces biogas which is composed of ∼60% methane. Methane from biogas can be cleaned to yield purified methane (biomethane) that can be readily incorporated into natural gas pipelines making it a promising renewable energy source. Conventional anaerobic digestion is limited by long retention times, low organics removal efficiencies, and low biogas production rates. Therefore, many studies are being conducted to improve the anaerobic digestion process. Researchers have found that addition of conductive materials and/or electrically active cathodes to anaerobic digesters can stimulate the digestion process and increase methane content of biogas. It is hoped that optimization of anaerobic digesters will make biogas more readily accessible to the average person.
Collapse
|
30
|
Burrell TJ, Maas EW, Hulston DA, Law CS. Bacterial abundance, processes and diversity responses to acidification at a coastal CO2 vent. FEMS Microbiol Lett 2015; 362:fnv154. [PMID: 26337149 DOI: 10.1093/femsle/fnv154] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2015] [Indexed: 11/12/2022] Open
Abstract
Shallow CO2 vents are used as natural laboratories to study biological responses to ocean acidification, and so it is important to determine whether pH is the primary driver of bacterial processes and community composition, or whether other variables associated with vent water have a significant influence. Water from a CO2 vent (46 m, Bay of Plenty, New Zealand) was compared to reference water from an upstream control site, and also to control water acidified to the same pH as the vent water. After 84 h, both vent and acidified water exhibited higher potential bulk water and cell-specific glucosidase activity relative to control water, whereas cell-specific protease activities were similar. However, bulk vent water glucosidase activity was double that of the acidified water, as was bacterial secondary production in one experiment, suggesting that pH was not the only factor affecting carbohydrate hydrolysis. In addition, there were significant differences in bacterial community composition in the vent water relative to the control and acidified water after 84 h, including the presence of extremophiles which may influence carbohydrate degradation. This highlights the importance of characterizing microbial processes and community composition in CO2 vent emissions, to confirm that they represent robust analogues for the future acidified ocean.
Collapse
Affiliation(s)
- Tim J Burrell
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Victoria University of Wellington, School of Biological Sciences, Wellington 6140, New Zealand
| | - Elizabeth W Maas
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Now at; Ministry for Primary Industry, PO Box 12034, Ahuriri, Napier 4144, New Zealand
| | - Debbie A Hulston
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand
| | - Cliff S Law
- National Institute of Water and Atmospheric Research, Greta Point, Wellington 6021, New Zealand Department of Chemistry, University of Otago, Dunedin 9016, New Zealand
| |
Collapse
|
31
|
Carugati L, Corinaldesi C, Dell'Anno A, Danovaro R. Metagenetic tools for the census of marine meiofaunal biodiversity: An overview. Mar Genomics 2015; 24 Pt 1:11-20. [PMID: 25957694 DOI: 10.1016/j.margen.2015.04.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/27/2015] [Accepted: 04/27/2015] [Indexed: 01/30/2023]
Abstract
Marine organisms belonging to meiofauna (size range: 20-500 μm) are amongst the most abundant and highly diversified metazoans on Earth including 22 over 35 known animal Phyla and accounting for more than 2/3 of the abundance of metazoan organisms. In any marine system, meiofauna play a key role in the functioning of the food webs and sustain important ecological processes. Estimates of meiofaunal biodiversity have been so far almost exclusively based on morphological analyses, but the very small size of these organisms and, in some cases, the insufficient morphological distinctive features limit considerably the census of the biodiversity of this component. Molecular approaches recently applied also to small invertebrates (including meiofauna) can offer a new momentum for the census of meiofaunal biodiversity. Here, we provide an overview on the application of metagenetic approaches based on the use of next generation sequencing platforms to study meiofaunal biodiversity, with a special focus on marine nematodes. Our overview shows that, although such approaches can represent a useful tool for the census of meiofaunal biodiversity, there are still different shortcomings and pitfalls that prevent their extensive use without the support of the classical taxonomic identification. Future investigations are needed to address these problems and to provide a good match between the contrasting findings emerging from classical taxonomic and molecular/bioinformatic tools.
Collapse
Affiliation(s)
- Laura Carugati
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Cinzia Corinaldesi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Antonio Dell'Anno
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - Roberto Danovaro
- Department of Life and Environmental Sciences, Polytechnic University of Marche, via Brecce Bianche, 60131 Ancona, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| |
Collapse
|
32
|
Anderson RE, Sogin ML, Baross JA. Biogeography and ecology of the rare and abundant microbial lineages in deep-sea hydrothermal vents. FEMS Microbiol Ecol 2014; 91:1-11. [DOI: 10.1093/femsec/fiu016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
33
|
Crespo-Medina M, Twing KI, Kubo MDY, Hoehler TM, Cardace D, McCollom T, Schrenk MO. Insights into environmental controls on microbial communities in a continental serpentinite aquifer using a microcosm-based approach. Front Microbiol 2014; 5:604. [PMID: 25452748 PMCID: PMC4231944 DOI: 10.3389/fmicb.2014.00604] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 10/24/2014] [Indexed: 11/25/2022] Open
Abstract
Geochemical reactions associated with serpentinization alter the composition of dissolved organic compounds in circulating fluids and potentially liberate mantle-derived carbon and reducing power to support subsurface microbial communities. Previous studies have identified Betaproteobacteria from the order Burkholderiales and bacteria from the order Clostridiales as key components of the serpentinite–hosted microbiome, however there is limited knowledge of their metabolic capabilities or growth characteristics. In an effort to better characterize microbial communities, their metabolism, and factors limiting their activities, microcosm experiments were designed with fluids collected from several monitoring wells at the Coast Range Ophiolite Microbial Observatory (CROMO) in northern California during expeditions in March and August 2013. The incubations were initiated with a hydrogen atmosphere and a variety of carbon sources (carbon dioxide, methane, acetate, and formate), with and without the addition of nutrients and electron acceptors. Growth was monitored by direct microscopic counts; DNA yield and community composition was assessed at the end of the 3 month incubation. For the most part, results indicate that bacterial growth was favored by the addition of acetate and methane, and that the addition of nutrients and electron acceptors had no significant effect on microbial growth, suggesting no nutrient- or oxidant-limitation. However, the addition of sulfur amendments led to different community compositions. The dominant organisms at the end of the incubations were closely related to Dethiobacter sp. and to the family Comamonadaceae, which are also prominent in culture-independent gene sequencing surveys. These experiments provide one of first insights into the biogeochemical dynamics of the serpentinite subsurface environment and will facilitate experiments to trace microbial activities in serpentinizing ecosystems.
Collapse
Affiliation(s)
- Melitza Crespo-Medina
- Department of Geological Sciences, Michigan State University East Lansing, MI, USA ; Center for Environmental Education, Conservation and Research, Inter American University of Puerto Rico San Juan, PR, USA
| | - Katrina I Twing
- Department of Geological Sciences, Michigan State University East Lansing, MI, USA
| | | | - Tori M Hoehler
- Exobiology Branch, Ames Research Center, NASA Moffett Field, CA, USA
| | - Dawn Cardace
- Department of Geosciences, University of Rhode Island Kingston, RI, USA
| | - Tom McCollom
- Center for Astrobiology and Laboratory for Atmospheric and Space Physics, University of Colorado Boulder, CO, USA
| | - Matthew O Schrenk
- Department of Geological Sciences, Michigan State University East Lansing, MI, USA
| |
Collapse
|
34
|
Anderson RE, Sogin ML, Baross JA. Evolutionary strategies of viruses, bacteria and archaea in hydrothermal vent ecosystems revealed through metagenomics. PLoS One 2014; 9:e109696. [PMID: 25279954 PMCID: PMC4184897 DOI: 10.1371/journal.pone.0109696] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 09/11/2014] [Indexed: 11/18/2022] Open
Abstract
The deep-sea hydrothermal vent habitat hosts a diverse community of archaea and bacteria that withstand extreme fluctuations in environmental conditions. Abundant viruses in these systems, a high proportion of which are lysogenic, must also withstand these environmental extremes. Here, we explore the evolutionary strategies of both microorganisms and viruses in hydrothermal systems through comparative analysis of a cellular and viral metagenome, collected by size fractionation of high temperature fluids from a diffuse flow hydrothermal vent. We detected a high enrichment of mobile elements and proviruses in the cellular fraction relative to microorganisms in other environments. We observed a relatively high abundance of genes related to energy metabolism as well as cofactors and vitamins in the viral fraction compared to the cellular fraction, which suggest encoding of auxiliary metabolic genes on viral genomes. Moreover, the observation of stronger purifying selection in the viral versus cellular gene pool suggests viral strategies that promote prolonged host integration. Our results demonstrate that there is great potential for hydrothermal vent viruses to integrate into hosts, facilitate horizontal gene transfer, and express or transfer genes that manipulate the hosts’ functional capabilities.
Collapse
Affiliation(s)
- Rika E. Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Mitchell L. Sogin
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - John A. Baross
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
35
|
Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools. Sci Rep 2014; 3:1748. [PMID: 23624511 PMCID: PMC3638166 DOI: 10.1038/srep01748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/02/2013] [Indexed: 01/29/2023] Open
Abstract
In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.
Collapse
|
36
|
Bourbonnais A, Juniper SK, Butterfield DA, Anderson RE, Lehmann MF. Diversity and abundance of Bacteria and nirS-encoding denitrifiers associated with the Juan de Fuca Ridge hydrothermal system. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0813-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
37
|
Ver Eecke HC, Akerman NH, Huber JA, Butterfield DA, Holden JF. Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:665-671. [PMID: 24115616 DOI: 10.1111/1758-2229.12065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Accepted: 02/18/2013] [Indexed: 06/02/2023]
Abstract
A hyperthermophilic deep-sea methanogen, Methanocaldococcus strain JH146, was isolated from 26°C hydrothermal fluid at Axial Volcano to model high temperature methanogenesis in the subseafloor. Emphasis was placed on defining growth kinetics, cell yields and growth energy demand (GE) across a range of conditions. The organism uses H2 and CO2 as its sole carbon and energy sources. At various temperatures, pHs, and chlorinities, its growth rates and cell yields co-varied while GE remained uniform at 1.69 × 10(-11) J cell(-1)s(-1) ± 0.68 × 10(-11) J cell(-1)s(-1) (s.d., n = 23). An exception was at superoptimal growth temperatures where GE increased to 7.25 × 10(-11) J cell(-1)s(-1) presumably due to heat shock. GE also increased from 5.1 × 10(-12) J cell(-1)s(-1) to 7.61 × 10(-11) J cell(-1)s(-1) as NH4 (+) concentrations decreased from 9.4 mM to 0.14 mM. JH146 did not fix N2 or assimilate NO3 (-), lacked the N2-fixing (cluster II) nifH gene, and became nitrogen limited below 0.14 mM NH4Cl. Nitrogen availability may impact growth in situ since ammonia concentrations at Axial Volcano are < 18 μM. Our approach contributes to refining bioenergetic and carbon flux models for methanogens and other organisms in hydrothermal vents and other environments.
Collapse
Affiliation(s)
- Helene C Ver Eecke
- Department of Microbiology, University of Massachusetts, Amherst, MA, 01003, USA
| | | | | | | | | |
Collapse
|
38
|
Campbell BJ, Polson SW, Zeigler Allen L, Williamson SJ, Lee CK, Wommack KE, Cary SC. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 2013; 4:182. [PMID: 23898323 PMCID: PMC3721025 DOI: 10.3389/fmicb.2013.00182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 02/01/2023] Open
Abstract
Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.
Collapse
Affiliation(s)
- Barbara J Campbell
- Department of Biological Sciences, Life Science Facility, Clemson University Clemson, SC, USA
| | | | | | | | | | | | | |
Collapse
|
39
|
Akerman NH, Butterfield DA, Huber JA. Phylogenetic diversity and functional gene patterns of sulfur-oxidizing subseafloor Epsilonproteobacteria in diffuse hydrothermal vent fluids. Front Microbiol 2013; 4:185. [PMID: 23847608 PMCID: PMC3703533 DOI: 10.3389/fmicb.2013.00185] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2013] [Accepted: 06/18/2013] [Indexed: 11/13/2022] Open
Abstract
Microorganisms throughout the dark ocean use reduced sulfur compounds for chemolithoautotrophy. In many deep-sea hydrothermal vents, sulfide oxidation is quantitatively the most important chemical energy source for microbial metabolism both at and beneath the seafloor. In this study, the presence and activity of vent endemic Epsilonproteobacteria was examined in six low-temperature diffuse vents over a range of geochemical gradients from Axial Seamount, a deep-sea volcano in the Northeast Pacific. PCR primers were developed and applied to target the sulfur oxidation soxB gene of Epsilonproteobacteria. soxB genes belonging to the genera Sulfurimonas and Sulfurovum are both present and expressed at most diffuse vent sites, but not in background seawater. Although Sulfurovum-like soxB genes were detected in all fluid samples, the RNA profiles were nearly identical among the vents and suggest that Sulfurimonas-like species are the primary Epsilonproteobacteria responsible for actively oxidizing sulfur via the Sox pathway at each vent. Community patterns of subseafloor Epsilonproteobacteria 16S rRNA genes were best matched to methane concentrations in vent fluids, as well as individual vent locations, indicating that both geochemistry and geographical isolation play a role in structuring subseafloor microbial populations. The data show that in the subseafloor at Axial Seamount, Epsilonproteobacteria are expressing the soxB gene and that microbial patterns in community distribution are linked to both vent location and chemistry.
Collapse
Affiliation(s)
- Nancy H Akerman
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory Woods Hole, MA, USA
| | | | | |
Collapse
|
40
|
Meyer JL, Akerman NH, Proskurowski G, Huber JA. Microbiological characterization of post-eruption "snowblower" vents at Axial Seamount, Juan de Fuca Ridge. Front Microbiol 2013; 4:153. [PMID: 23785361 PMCID: PMC3683637 DOI: 10.3389/fmicb.2013.00153] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 05/29/2013] [Indexed: 12/02/2022] Open
Abstract
Microbial processes within the subseafloor can be examined during the ephemeral and uncommonly observed phenomena known as snowblower venting. Snowblowers are characterized by the large quantity of white floc that is expelled from the seafloor following mid-ocean ridge eruptions. During these eruptions, rapidly cooling lava entrains seawater and hydrothermal fluids enriched in geochemical reactants, creating a natural bioreactor that supports a subseafloor microbial “bloom.” Previous studies hypothesized that the eruption-associated floc was made by sulfide-oxidizing bacteria; however, the microbes involved were never identified. Here we present the first molecular analysis combined with microscopy of microbial communities in snowblower vents from samples collected shortly after the 2011 eruption at Axial Seamount, an active volcano on the Juan de Fuca Ridge. We obtained fluid samples and white flocculent material from active snowblower vents as well as orange flocculent material found on top of newly formed lava flows. Both flocculent types revealed diverse cell types and particulates when examined by phase contrast and scanning electron microscopy (SEM). Distinct archaeal and bacterial communities were detected in each sample type through Illumina tag sequencing of 16S rRNA genes and through sequencing of the sulfide oxidation gene, soxB. In fluids and white floc, the dominant bacteria were sulfur-oxidizing Epsilonproteobacteria and the dominant archaea were thermophilic Methanococcales. In contrast, the dominant organisms in the orange floc were Gammaproteobacteria and Thaumarchaeota Marine Group I. In all samples, bacteria greatly outnumbered archaea. The presence of anaerobic methanogens and microaerobic Epsilonproteobacteria in snowblower communities provides evidence that these blooms are seeded by subseafloor microbes, rather than from microbes in bottom seawater. These eruptive events thus provide a unique opportunity to observe subseafloor microbial communities.
Collapse
Affiliation(s)
- Julie L Meyer
- Josephine Bay Paul Center, Marine Biological Laboratory Woods Hole, MA, USA
| | | | | | | |
Collapse
|
41
|
Olins HC, Rogers DR, Frank KL, Vidoudez C, Girguis PR. Assessing the influence of physical, geochemical and biological factors on anaerobic microbial primary productivity within hydrothermal vent chimneys. GEOBIOLOGY 2013; 11:279-293. [PMID: 23551687 DOI: 10.1111/gbi.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Accepted: 02/25/2013] [Indexed: 06/02/2023]
Abstract
Chemosynthetic primary production supports hydrothermal vent ecosystems, but the extent of that productivity and its governing factors have not been well constrained. To better understand anaerobic primary production within massive vent deposits, we conducted a series of incubations at 4, 25, 50 and 90 °C using aggregates recovered from hydrothermal vent structures. We documented in situ geochemistry, measured autochthonous organic carbon stable isotope ratios and assessed microbial community composition and functional gene abundances in three hydrothermal vent chimney structures from Middle Valley on the Juan de Fuca Ridge. Carbon fixation rates were greatest at lower temperatures and were comparable among chimneys. Stable isotope ratios of autochthonous organic carbon were consistent with the Calvin-Benson-Bassham cycle being the predominant mode of carbon fixation for all three chimneys. Chimneys exhibited marked differences in vent fluid geochemistry and microbial community composition, with structures being differentially dominated by gamma (γ) or epsilon (ε) proteobacteria. Similarly, qPCR analyses of functional genes representing different carbon fixation pathways showed striking differences in gene abundance among chimney structures. Carbon fixation rates showed no obvious correlation with observed in situ vent fluid geochemistry, community composition or functional gene abundance. Together, these data reveal that (i) net anaerobic carbon fixation rates among these chimneys are elevated at lower temperatures, (ii) clear differences in community composition and gene abundance exist among chimney structures, and (iii) tremendous spatial heterogeneity within these environments likely confounds efforts to relate the observed rates to in situ microbial and geochemical factors. We also posit that microbes typically thought to be mesophiles are likely active and growing at cooler temperatures, and that their activity at these temperatures comprises the majority of endolithic anaerobic primary production in hydrothermal vent chimneys.
Collapse
Affiliation(s)
- H C Olins
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | | | | | | | | |
Collapse
|
42
|
Sánchez de la Campa A, García-Salamanca A, Solano J, de la Rosa J, Ramos JL. Chemical and microbiological characterization of atmospheric particulate matter during an intense African dust event in Southern Spain. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3630-8. [PMID: 23484487 DOI: 10.1021/es3051235] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
This study presents the results of the physicochemical characterization of particulate matter associated with an important dust event from the Sahara area that occurred in the South of Spain in 2010. The chemical composition of the samples reflected the dominance of the crustal component of sand from the Sahara desert, although the presence of Mo, Ti, and V trace elements indicated that the dust contained industrial material; probably collected in its transport from Africa. Microbial biodiversity associated with the dust was low, but dominated by Firmicutes and Proteobacteria. Some Firmicutes (belonging to the genus Bacillus and Sporosarcina) were cultured on solid and liquid medium, which suggested that the transported microbes were alive or present as spores that germinated under favorable conditions. These cultivable microbes in the form of spores were highly resistant to desiccation, heat, and UV light.
Collapse
Affiliation(s)
- Ana Sánchez de la Campa
- CIQSO-Associate Unit University of Huelva Atmospheric Pollution, University of Huelva, Campus El Carmen, E-21071 Huelva, Spain
| | | | | | | | | |
Collapse
|
43
|
Bacterial communities associated with subsurface geochemical processes in continental serpentinite springs. Appl Environ Microbiol 2013; 79:3906-16. [PMID: 23584766 DOI: 10.1128/aem.00330-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Reactions associated with the geochemical process of serpentinization can generate copious quantities of hydrogen and low-molecular-weight organic carbon compounds, which may provide energy and nutrients to sustain subsurface microbial communities independently of the photosynthetically supported surface biosphere. Previous microbial ecology studies have tested this hypothesis in deep sea hydrothermal vents, such as the Lost City hydrothermal field. This study applied similar methods, including molecular fingerprinting and tag sequencing of the 16S rRNA gene, to ultrabasic continental springs emanating from serpentinizing ultramafic rocks. These molecular surveys were linked with geochemical measurements of the fluids in an interdisciplinary approach designed to distinguish potential subsurface organisms from those derived from surface habitats. The betaproteobacterial genus Hydrogenophaga was identified as a likely inhabitant of transition zones where hydrogen-enriched subsurface fluids mix with oxygenated surface water. The Firmicutes genus Erysipelothrix was most strongly correlated with geochemical factors indicative of subsurface fluids and was identified as the most likely inhabitant of a serpentinization-powered subsurface biosphere. Both of these taxa have been identified in multiple hydrogen-enriched subsurface habitats worldwide, and the results of this study contribute to an emerging biogeographic pattern in which Betaproteobacteria occur in near-surface mixing zones and Firmicutes are present in deeper, anoxic subsurface habitats.
Collapse
|
44
|
Lauber CL, Ramirez KS, Aanderud Z, Lennon J, Fierer N. Temporal variability in soil microbial communities across land-use types. ISME JOURNAL 2013; 7:1641-50. [PMID: 23552625 DOI: 10.1038/ismej.2013.50] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/09/2013] [Accepted: 02/13/2013] [Indexed: 02/01/2023]
Abstract
Although numerous studies have investigated changes in soil microbial communities across space, questions about the temporal variability in these communities and how this variability compares across soils have received far less attention. We collected soils on a monthly basis (May to November) from replicated plots representing three land-use types (conventional and reduced-input row crop agricultural plots and early successional grasslands) maintained at a research site in Michigan, USA. Using barcoded pyrosequencing of the 16S rRNA gene, we found that the agricultural and early successional land uses harbored unique soil bacterial communities that exhibited distinct temporal patterns. α-Diversity, the numbers of taxa or lineages, was significantly influenced by the sampling month with the temporal variability in α-diversity exceeding the variability between land-use types. In contrast, differences in community composition across land-use types were reasonably constant across the 7-month period, suggesting that the time of sampling is less important when assessing β-diversity patterns. Communities in the agricultural soils were most variable over time and the changes were significantly correlated with soil moisture and temperature. Temporal shifts in bacterial community composition within the successional grassland plots were less predictable and are likely a product of complex interactions between the soil environment and the more diverse plant community. Temporal variability needs to be carefully assessed when comparing microbial diversity across soil types and the temporal patterns in microbial community structure can not necessarily be generalized across land uses, even if those soils are exposed to the same climatic conditions.
Collapse
Affiliation(s)
- Christian L Lauber
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO 80309-0216, USA
| | | | | | | | | |
Collapse
|
45
|
Modeling the Impact of Diffuse Vent Microorganisms Along Mid-Ocean Ridges and Flanks. ACTA ACUST UNITED AC 2013. [DOI: 10.1029/178gm11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
|
46
|
Amenábar MJ, Flores PA, Pugin B, Boehmwald FA, Blamey JM. Archaeal diversity from hydrothermal systems of Deception Island, Antarctica. Polar Biol 2012. [DOI: 10.1007/s00300-012-1267-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
47
|
Huber JA, Butterfield DA, Baross JA. Bacterial diversity in a subseafloor habitat following a deep-sea volcanic eruption. FEMS Microbiol Ecol 2012; 43:393-409. [PMID: 19719671 DOI: 10.1111/j.1574-6941.2003.tb01080.x] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Abstract The bacterial diversity in a diffuse flow hydrothermal vent habitat at Axial Volcano, Juan de Fuca Ridge was examined shortly after an eruptive event in 1998 and again in 1999 and 2000 using PCR-amplified 16S rRNA gene sequence analyses. While considerable overlap with deep-sea background seawater was found within the alpha- and gamma-proteobacteria, unique subseafloor phylotypes were distinguishable. These included diverse members of the epsilon-proteobacteria, high temperature groups such as Desulfurobacterium, Gram-positive bacteria, and members of novel candidate divisions WS6 and ABY1. Phylotype richness was highest in the particle-attached populations from all three sampling periods, and diversity appeared to increase over that time, particularly among the epsilon-proteobacteria. A preliminary model of the subseafloor is presented that relates microbial diversity to temperature, chemical characteristics of diffuse flow fluids and the degree of mixing with seawater.
Collapse
Affiliation(s)
- Julie A Huber
- School of Oceanography and Astrobiology Program, University of Washington, Box 357940, Seattle, WA 98195, USA
| | | | | |
Collapse
|
48
|
Microbial diversity in sediments associated with surface-breaching gas hydrate mounds in the Gulf of Mexico. FEMS Microbiol Ecol 2012; 46:39-52. [PMID: 19719581 DOI: 10.1016/s0168-6496(03)00191-0] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract A molecular phylogenetic approach was used to characterize the composition of microbial communities from two gas hydrate sedimentary systems in the Gulf of Mexico. Nucleic acids, extracted from sediments directly overlying surface-breaching gas hydrate mounds collected from a research submersible (water depth 550-575 m), were amplified with nine different 16S rDNA gene primer sets. The polymerase chain reaction primers targeted microorganisms at the domain-specific (Bacteria and Archaea) and group-specific (sulfate-reducing bacteria (SRB) and putative anaerobic methane-oxidizing (ANME) archaea) level. Amplicons were obtained with five of the nine primer sets including two of the six SRB Groups (SRB Group 5 and Group 6) and used to generate five different clone libraries. Analysis of 126 clones from the Archaea library revealed that the sediments associated with naturally occurring gas hydrate harbored a low diversity. Sequence analysis indicated the majority of archaeal clones were most closely related to Methanosarcinales, Methanomicrobiales and distinct phylogenetic lineages within the ANME groups. The most frequently recovered phylotypes in the ANME library were related to either ANME-2 or Methanomicrobiales. In contrast to the two archaeal libraries, bacterial diversity was higher with the majority of the 126 bacterial clones most closely related to uncultured clones dominated by the delta- and epsilon-Proteobacteria. Interestingly, while 82% of the clones in the SRB Group 5 library were affiliated with delta-Proteobacteria, the vast majority (83%) of clones in the SRB Group 6 library was affiliated with the Firmicutes. This is the first phylogenetic-based description of microbial communities extant in methane-rich hydrate-associated sediments from a hydrocarbon seep region in the Gulf of Mexico.
Collapse
|
49
|
Anderson RE, Beltrán MT, Hallam SJ, Baross JA. Microbial community structure across fluid gradients in the Juan de Fuca Ridge hydrothermal system. FEMS Microbiol Ecol 2012; 83:324-39. [PMID: 22928928 DOI: 10.1111/j.1574-6941.2012.01478.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2012] [Revised: 08/10/2012] [Accepted: 08/14/2012] [Indexed: 11/30/2022] Open
Abstract
Physical and chemical gradients are dominant factors in shaping hydrothermal vent microbial ecology, where archaeal and bacterial habitats encompass a range between hot, reduced hydrothermal fluid and cold, oxidized seawater. To determine the impact of these fluid gradients on microbial communities inhabiting these systems, we surveyed bacterial and archaeal community structure among and between hydrothermal plumes, diffuse flow fluids, and background seawater in several hydrothermal vent sites on the Juan de Fuca Ridge using 16S rRNA gene diversity screening (clone libraries and terminal restriction length polymorphisms) and quantitative polymerase chain reaction methods. Community structure was similar between hydrothermal plumes and background seawater, where a number of taxa usually associated with low-oxygen zones were observed, whereas high-temperature diffuse fluids exhibited a distinct phylogenetic profile. SUP05 and Arctic96BD-19 sulfur-oxidizing bacteria were prevalent in all three mixing regimes where they exhibited overlapping but not identical abundance patterns. Taken together, these results indicate conserved patterns of redox-driven niche partitioning between hydrothermal mixing regimes and microbial communities associated with sinking particles and oxygen-deficient waters. Moreover, the prevalence of SUP05 and Arctic96BD-19 in plume and diffuse flow fluids indicates a more cosmopolitan role for these groups in the ecology and biogeochemistry of the dark ocean.
Collapse
Affiliation(s)
- Rika E Anderson
- School of Oceanography and Astrobiology Program, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
50
|
Discovering the roles of subsurface microorganisms: Progress and future of deep biosphere investigation. CHINESE SCIENCE BULLETIN-CHINESE 2012. [DOI: 10.1007/s11434-012-5358-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|