1
|
Peng Y, Luo Y, Pan L, Hou Y, Qin L, Lan L, Ouyang K, Chen Y, Wei Z, Qin Y, Huang W. Immunogenicity analysis based on VP1 and VP2 proteins of bovine enterovirus. Virology 2024; 600:110260. [PMID: 39442312 DOI: 10.1016/j.virol.2024.110260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/25/2024]
Abstract
Bovine enterovirus (BEV) infection manifests as a spectrum of clinical signs affecting the respiratory, gastrointestinal, and reproductive systems in cattle. Outbreaks of this disease results in large economic losses to the bovine industry worldwide. Currently there are no efficacious vaccines and medicines to prevent BEV infection. In the present study, reverse transcription-polymerase chain reaction was used to amplify the VP1 and VP2 genes of BEV, enabling the synthesis of a chimeric recombinant protein which contained partial sequences from both proteins. Subsequently, the emulsified purified proteins with Freund's adjuvant were used for triple-fold immunization of 4-week-old Institute of Cancer Research (ICR) mice. The mice were subsequently subjected to a challenge assay which elicited an immune response that was characterized by elevated titers of BEV-specific neutralizing antibodies. Notably, the results showed that the purification of pET32a-VP1 and pET32a-VP2 proteins markedly curtailed virus excretion and mitigated the histopathological damage usually associated with BEV infections. These were observed in the small intestines, kidneys and brain in infected animals. It also alleviated clinical symptoms such as hypothermia and weight loss. In summary, this study offers a theoretical and practical basis for BEV vaccine development.
Collapse
Affiliation(s)
- Yuxin Peng
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuna Pan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yue Hou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Lishan Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Liuyi Lan
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Kang Ouyang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Ying Chen
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Zuzhang Wei
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China; Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China; Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China.
| |
Collapse
|
2
|
Luo Y, Liu H, Zou Y, Qiao C, Su Y, Zhu X, Zhang G, Huang W, Qin Y, Pan Y, Huang W. Molecular Epidemiology of Bovine Enteroviruses and Genome Characterization of Two Novel Bovine Enterovirus Strains in Guangxi, China. Microbiol Spectr 2023; 11:e0378522. [PMID: 36877012 PMCID: PMC10101013 DOI: 10.1128/spectrum.03785-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 02/04/2023] [Indexed: 03/07/2023] Open
Abstract
Bovine enterovirus (BEV) is a highly infectious pathogen that may cause respiratory and gastrointestinal disease outbreaks in cattle. This study aimed to investigate the prevalence and genetic characteristics of BEVs in Guangxi Province, China. A total of 1,168 fecal samples from 97 different bovine farms were collected between October 2021 and July 2022 in Guangxi Province, China. BEV was confirmed using a reverse transcription-PCR (RT-PCR) method targeting the 5' untranslated region (UTR), and isolates were genotyped by sequencing their genomes. The nearly complete genome sequences of eight BEV strains showing cytopathic effects in MDBK cells were determined and analyzed. In total, 125 (10.7%) of 1,168 fecal samples were positive for BEV. BEV infection was significantly associated with farming patterns and clinical symptoms (P < 0.05; odds ratio [OR] > 1). Molecular characterization indicated that five BEV strains from this study belonged to EV-E2 and one strain to EV-E4. Two BEV strains (GXNN2204 and GXGL2215) could not be assigned to a known type. Strain GXGL2215 showed the closest genetic relationship with GX1901 (GenBank accession number MN607030; China) in its VP1 (67.5%) and P1 (74.7%) and with NGR2017 (MH719217; Nigeria) in its polyprotein (72.0%). It was also close to the EV-E4 strain GXYL2213 from this study when the complete genome (81.7%) was compared. Strain GXNN2204 showed the closest genetic relationship with Ho12 (LC150008; Japan) in the VP1 (66.5%), P1 (71.6%), and polyprotein (73.2%). Genome sequence analysis suggested that strains GXNN2204 and GXGL2215 originated from the genomic recombination of EV-E4 and EV-F3 and EV-E2 and EV-E4, respectively. This study reports the cocirculation of multiple BEV types and the identification of two novel BEV strains in Guangxi, China, and it will provide further insights into the epidemiology and evolution of BEV in China. IMPORTANCE Bovine enterovirus (BEV) is a pathogen that causes intestinal, respiratory, and reproductive disease infections in cattle. This study reports on the widespread prevalence and biological characteristics of the different BEV types which currently exist in Guangxi Province, China. It also provides a reference for the study of the prevalence of BEV in China.
Collapse
Affiliation(s)
- Yuhang Luo
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Huanghao Liu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yanlin Zou
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Chengpeng Qiao
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yaquan Su
- Guangxi Agricultural Vocational University, Nanning, China
| | - Xinyue Zhu
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Guangxin Zhang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Wenfei Huang
- Guangxi Agricultural Vocational University, Nanning, China
| | - Yifeng Qin
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| | - Yan Pan
- Guangxi Agricultural Vocational University, Nanning, China
| | - Weijian Huang
- Laboratory of Animal Infectious Diseases and Molecular Immunology, College of Animal Science and Technology, Guangxi University, Nanning, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Nanning, China
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Nanning, China
- Guangxi Colleges and Universities Key Laboratory of Prevention and Control for Animal Disease, Nanning, China
| |
Collapse
|
3
|
Santiago-Rodriguez TM, Hollister EB. Viral Metagenomics as a Tool to Track Sources of Fecal Contamination: A One Health Approach. Viruses 2023; 15:236. [PMID: 36680277 PMCID: PMC9863393 DOI: 10.3390/v15010236] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/10/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The One Health framework recognizes that human, animal, and environmental health are linked and highly interdependent. Fecal contamination of water, soil, foodstuff, and air may impact many aspects of One Health, and culture, PCR-based, and sequencing methods are utilized in the detection of fecal contamination to determine source, load, and risk to inform targeted mitigation strategies. Viruses, particularly, have been considered as fecal contamination indicators given the narrow host range many exhibit and their association with other biological contaminants. Culture- and molecular-based methods are considered the gold-standards for virus detection and for determining specific sources of fecal contamination via viral indicators. However, viral metagenomics is also being considered as a tool for tracking sources of fecal contamination. In the present review, studies tracking potential sources of fecal contamination in freshwaters, marine waters, foodstuff, soil, and air using viral metagenomics are discussed to highlight the potential of viral metagenomics for optimizing fecal source tracking. Limitations of the use of viral metagenomics to track fecal contamination sources, including sample processing, nucleic acid recovery, sequencing depth, and bioinformatics are also discussed. Finally, the present review discusses the potential of viral metagenomics as part of the toolbox of methods in a One Health approach.
Collapse
|
4
|
Crnčević N, Rifatbegović Z, Hukić M, Deumić S, Pramenković E, Selimagić A, Gavrankapetanović I, Avdić M. Atypical Viral Infections in Gastroenterology. Diseases 2022; 10:diseases10040087. [PMID: 36278586 PMCID: PMC9590025 DOI: 10.3390/diseases10040087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/29/2022] [Accepted: 10/12/2022] [Indexed: 11/22/2022] Open
Abstract
Enteric viruses are commonly found obligate parasites in the gastrointestinal (GI) tract. These viruses usually follow a fecal-oral route of transmission and are characterized by their extraordinary stability as well as resistance in high-stress environments. Most of them cause similar symptoms including vomiting, diarrhea, and abdominal pain. In order to come in contract with mucosal surfaces, these viruses need to pass the three main lines of defense: mucus layer, innate immune defenses, and adaptive immune defenses. The following atypical gastrointestinal infections are discussed: SARS-CoV2, hantavirus, herpes simplex virus I, cytomegalovirus, and calicivirus. Dysbiosis represents any modification to the makeup of resident commensal communities from those found in healthy individuals and can cause a patient to become more susceptible to bacterial and viral infections. The interaction between bacteria, viruses, and host physiology is still not completely understood. However, with growing research on viral infections, dysbiosis, and new methods of detection, we are getting closer to understanding the nature of these viruses, their typical and atypical characteristics, long-term effects, and mechanisms of action in different organ systems.
Collapse
Affiliation(s)
- Neira Crnčević
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
- Correspondence: ; Tel.: +387-(61)-034487
| | - Zijah Rifatbegović
- Department of Abdominal Surgery, Clinic for Surgery, University Clinical Centre Tuzla, 75000 Tuzla, Bosnia and Herzegovina
| | - Mirsada Hukić
- Center for Disease Control and Geohealth Studies, Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
- Institute for Biomedical Diagnostics and Research Nalaz, Čekaluša 69, 71000 Sarajevo, Bosnia and Herzegovina
| | - Sara Deumić
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
| | - Emina Pramenković
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
| | - Amir Selimagić
- Department of Gastroenterohepatology, General Hospital “Prim. dr. Abdulah Nakas”, 71000 Sarajevo, Bosnia and Herzegovina
| | - Ismet Gavrankapetanović
- Clinic of Orthopedics and Traumatology, University Clinical Center Sarajevo, Bolnička 25, 71000 Sarajevo, Bosnia and Herzegovina
| | - Monia Avdić
- Department of Genetics and Bioengineering, International Burch University, Francuske revolucije bb, 71210 Ilidža, Bosnia and Herzegovina
- Center for Disease Control and Geohealth Studies, Academy of Sciences and Arts of Bosnia and Herzegovina, Bistrik 7, 71000 Sarajevo, Bosnia and Herzegovina
| |
Collapse
|
5
|
Huaman JL, Pacioni C, Sarker S, Doyle M, Forsyth DM, Pople A, Carvalho TG, Helbig KJ. Novel Picornavirus Detected in Wild Deer: Identification, Genomic Characterisation, and Prevalence in Australia. Viruses 2021; 13:v13122412. [PMID: 34960681 PMCID: PMC8706930 DOI: 10.3390/v13122412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/16/2022] Open
Abstract
The use of high-throughput sequencing has facilitated virus discovery in wild animals and helped determine their potential threat to humans and other animals. We report the complete genome sequence of a novel picornavirus identified by next-generation sequencing in faeces from Australian fallow deer. Genomic analysis revealed that this virus possesses a typical picornavirus-like genomic organisation of 7554 nt with a single open reading frame (ORF) encoding a polyprotein of 2225 amino acids. Based on the amino acid identity comparison and phylogenetic analysis of the P1, 2C, 3CD, and VP1 regions, this novel picornavirus was closely related to but distinct from known bopiviruses detected to date. This finding suggests that deer/bopivirus could belong to a novel species within the genus Bopivirus, tentatively designated as "Bopivirus C". Epidemiological investigation of 91 deer (71 fallow, 14 sambar and 6 red deer) and 23 cattle faecal samples showed that six fallow deer and one red deer (overall prevalence 7.7%, 95% confidence interval [CI] 3.8-15.0%) tested positive, but deer/bopivirus was undetectable in sambar deer and cattle. In addition, phylogenetic and sequence analyses indicate that the same genotype is circulating in south-eastern Australia. To our knowledge, this study reports for the first time a deer-origin bopivirus and the presence of a member of genus Bopivirus in Australia. Further epidemiological and molecular studies are needed to investigate the geographic distribution and pathogenic potential of this novel Bopivirus species in other domestic and wild animal species.
Collapse
Affiliation(s)
- Jose L. Huaman
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Carlo Pacioni
- Department of Environment, Land, Water, and Planning, Arthur Rylah Institute for Environmental Research, Heidelberg, VIC 3084, Australia;
- Environmental and Conservation Sciences, School of Veterinary and Life Sciences, Murdoch University, South Street, Murdoch, WA 6150, Australia
| | - Subir Sarker
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Mark Doyle
- South East Local Land Services, Bega, NSW 2550, Australia;
| | - David M. Forsyth
- Vertebrate Pest Research Unit, Department of Primary Industries, Orange Agricultural Institute, Orange, NSW 2800, Australia;
| | - Anthony Pople
- Department of Agriculture and Fisheries, Invasive Plants & Animals Research, Biosecurity Queensland, Ecosciences Precinct, Brisbane, QLD 4102, Australia;
| | - Teresa G. Carvalho
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
| | - Karla J. Helbig
- Department of Physiology, Anatomy, and Microbiology, School of Life Sciences, La Trobe University, Melbourne, VIC 3086, Australia; (J.L.H.); (S.S.); (T.G.C.)
- Correspondence: ; Tel.: +61-3-9479-6650
| |
Collapse
|
6
|
Zhang M, Hill JE, Alexander TW, Huang Y. The nasal viromes of cattle on arrival at western Canadian feedlots and their relationship to development of bovine respiratory disease. Transbound Emerg Dis 2020; 68:2209-2218. [PMID: 33031627 DOI: 10.1111/tbed.13873] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/03/2020] [Indexed: 01/08/2023]
Abstract
Bovine respiratory disease (BRD) has a complex pathogenesis and aetiology, being the costliest disease affecting the cattle industry in North America. In this study, we applied Nanopore-based viral metagenomic sequencing to explore the nasal virome of cattle upon arrival at feedlot and related the findings to the development of BRD. Deep nasal swabs (DNS) from 310 cattle for which BRD outcomes were known (155 cattle developed BRD within 40 days and 155 remained healthy) were included. The most prevalent virus in on-arrival samples was bovine coronavirus (BCV) (45.2%, 140/310), followed by bovine rhinitis virus B (BRBV) (21.9%, 68/310), enterovirus E (EVE) (19.6%, 60/310), bovine parainfluenza virus 3 (BPIV3) (10.3%, 32/310), ungulate tetraparvovirus 1 (UTPV1) (9.7%, 30/310) and influenza D virus (7.1%, 22/310). No relationship was found between BRD development and the number of viruses detected, the presence of any specific individual virus or combination of viruses. Bovine kobuvirus (BKV) was detected in 2.6% of animals (8/310), being the first report of this virus in Canada. Results of this study demonstrate the diversity of viruses in bovine DNS collected upon arrival at feedlot and highlights the need for further research into prediction of BRD development in the context of mixed infections.
Collapse
Affiliation(s)
- Maodong Zhang
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Janet E Hill
- Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Trevor W Alexander
- Agriculture and Agri-Food Canada, Lethbridge Research and Development Centre, Lethbridge, AB, Canada
| | - Yanyun Huang
- Department of Veterinary Pathology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada.,Prairie Diagnostic Services Inc, Saskatoon, SK, Canada
| |
Collapse
|
7
|
Ren X, Zhang S, Gao X, Guo X, Xin T, Zhu H, Jia H, Hou S. Experimental immunization of mice with a recombinant bovine enterovirus vaccine expressing BVDV E0 protein elicits a long-lasting serologic response. Virol J 2020; 17:88. [PMID: 32611446 PMCID: PMC7331136 DOI: 10.1186/s12985-020-01338-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/07/2020] [Indexed: 01/22/2023] Open
Abstract
Background Bovine viral diarrhea virus (BVDV) is a cause of substantial economic loss to the cattle industry worldwide, and there are currently no effective treatment or preventive measures. Bovine enterovirus (BEV) has a broad host range with low virulence and is a good candidate as a viral vaccine vector. In this study, we explored new insertion sites for the expression of exogenous genes in BEV, and developed a recombinant infectious cDNA clone for BEV BJ101 strain expressing BVDV E0 protein. Methods A recognition site for the viral proteinase 3Cpro was inserted in the GpBSK-BEV plasmid at the 2C/3A junction by overlapping PCR. Subsequently, the optimized full-length BVDV E0 gene was inserted to obtain the recombinant infectious plasmid GpBSK-BEV-E0. The rescued recombinant virus was obtained by transfection with linearized plasmid. Expression of BVDV E0 in the recombinant virus was confirmed by PCR, western blotting, and immunofluorescence analysis, and the genetic stability was tested in MDBK cells over 10 passages. We further tested the ability of the recombinant virus to induce an antibody response in mice infected with BVDV and immunized them with the recombinant virus and parental strain. Results The rescued recombinant virus rBEV-E0 was identified and confirmed by western blot and indirect immunofluorescence. The sequencing results showed that the recombinant virus remained stable for 10 passages without genetic changes. There was also no significant difference in growth dynamics and plaque morphology between the recombinant virus and parental virus. Mice infected with both recombinant and parental viruses produced antibodies against BEV VP1, while the recombinant virus also induced antibodies against BVDV E0. Conclusion A new insertion site in the BEV vector can be used for the prevention and control of both BEV and BVDV, providing a useful tool for future research on the development of viral vector vaccines.
Collapse
Affiliation(s)
- Xiao Ren
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Shan Zhang
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xintao Gao
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Xiaoyu Guo
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Ting Xin
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hongfei Zhu
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China
| | - Hong Jia
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| | - Shaohua Hou
- Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, No. 2, Yuan Ming Yuan West Road Haidian District, Beijing, 100193, China.
| |
Collapse
|
8
|
Detection and molecular characterisation of bovine Enterovirus in Brazil: four decades since the first report. Epidemiol Infect 2020; 147:e126. [PMID: 30868994 PMCID: PMC6518482 DOI: 10.1017/s0950268818003394] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
It is suggested that bovine enteroviruses (BEV) are involved in the aetiology of enteric infections, respiratory disease, reproductive disorders and infertility. In this study, bovine faecal samples collected in different Brazilian states were subjected to RNA extraction, reverse transcription-polymerase chain reaction analysis and partial sequencing of the 5′-terminal portion of BEV. One hundred and three samples were tested with an overall positivity of 14.5%. Phylogenetic analysis clustered these BEV Brazilian samples into the Enterovirus F clade. Our results bring an important update of the virus presence in Brazil and contribute to a better understanding of the distribution and characterisation of BEV in cattle.
Collapse
|
9
|
YAMADA M, KUBOTA K, TAKAHASHI S, TOYOFUKU C, HAKIM H, ALAM MS, HASAN MA, SHOHAM D, TAKEHARA K. Longitudinal and cross-sectional detection of four bovine enteric viruses by multiplex- reverse transcription polymerase chain reaction: Identification of possible indicator viruses to assess biosecurity level at bovine farms. J Vet Med Sci 2020; 82:314-319. [PMID: 31941845 PMCID: PMC7118485 DOI: 10.1292/jvms.19-0235] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 12/25/2019] [Indexed: 01/03/2023] Open
Abstract
It can be judged that if the detection frequency of prevalent pathogenic viruses decreases, biosecurity has been enhanced. To monitor bovine farm biosecurity levels, one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) for the simultaneous detection of group A rotavirus (RVA), bovine torovirus (BToV), bovine enterovirus (BEV), and bovine coronavirus (BCV) was designed, with the aim of configuring candidates for "viral pathogen indicators". A total of 322 bovine fecal samples were collected from calves aged less than three months at 48 bovine farms in Ibaraki and Chiba prefectures. At farm A, 20 calves were selected and sampled weekly for 12 weeks (184 samples); at farm B, 10 calves were selected and sampled for five weeks (50 samples); and at the rest of the 46 farms, 88 calves were sampled once. The screening on the 358 field samples proved positive for 27 RVA, 4 BToV, 55 BEV, and 52 BCV. In the successive sampling, RVA was detected once but not continuously, whereas BEV and BCV were detected in succession for up to five weeks. The results revealed that RVA was the primary agent among the positive samples obtained from calves aged three weeks or less, while BEV was the primary among those from the older than three weeks old. They can be employed as useful viral pathogen indicators for soundly evaluating biosecurity at bovine farms.
Collapse
Affiliation(s)
- Masashi YAMADA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Kai KUBOTA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Satoru TAKAHASHI
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Chiharu TOYOFUKU
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Hakimullah HAKIM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md. Shahin ALAM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Md. Amirul HASAN
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Dany SHOHAM
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
- Bar-Ilan University, Begin-Sadat Center for Strategic
Studies, Ramat Gan 5290002, Israel
| | - Kazuaki TAKEHARA
- Laboratory of Animal Health, Department of Veterinary
Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8,
Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
10
|
Rahmani F, Hmaied F, Matei I, Chirila F, Fit N, Yahya M, Jebri S, Amairia S, Hamdi M. Occurrence of Staphylococcus spp. and investigation of fecal and animal viral contaminations in livestock, river water, and sewage from Tunisia and Romania. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:206. [PMID: 32124087 DOI: 10.1007/s10661-020-8172-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 02/18/2020] [Indexed: 06/10/2023]
Abstract
The objective of this study was to determine the occurrence of Staphylococcus spp., Escherichia coli, somatic coliphages, F-specific RNA bacteriophages, hepatitis E virus (HEV), and bovine enterovirus (BEV) in fecal and water samples. The occurrence of Staphylococcus spp. was investigated in treated wastewater samples collected from slaughterhouse of Tunisia. Results showed that Staphylococcus spp. were detected in the totality of collected samples with an average mean of 5.44 Log10 (CFU/100 ml). Regarding fecal indicator bacteria, E. coli was detected in the totality of water samples and was more abundant in Tunisian samples than in samples collected from Romania (P < 0.05). Concerning somatic coliphages and F-specific RNA bacteriophages used as viral indicators, they were detected in all raw and treated wastewaters. Bovine enterovirus (BEV) was detected in 20.1% and 28% of bovine stool samples collected from Tunisia and Romania, respectively. BEV was also detected in 60% of porcine stool samples from Romania. BEV was absent in all treated sewage samples. HEV was detected in raw sewage and bovine fecal sample from Romania with low occurrence and none sample from Tunisia was positive. This study may give us an insight into the monitoring of water quality in Tunisia and Romania.
Collapse
Affiliation(s)
- Faten Rahmani
- Laboratoire Biotechnologies et Technologie Nucléaire, CNSTN, Pôle Technologique Sidi Thabet, 2020, Sidi Thabet, Tunisia
- Faculté des Sciences de Tunis, Université El Manar, Tunis, Tunisia
| | - Fatma Hmaied
- Laboratoire Biotechnologies et Technologie Nucléaire, CNSTN, Pôle Technologique Sidi Thabet, 2020, Sidi Thabet, Tunisia.
| | - Ioana Matei
- Department of Microbiology, Faculty of Veterinary Medecine, University Agricultural Sciences and Veterinary Medecine, 3-5 Mănăştur Street, 400372, Cluj-Napoca, Romania
| | - Flore Chirila
- Department of Microbiology, Faculty of Veterinary Medecine, University Agricultural Sciences and Veterinary Medecine, 3-5 Mănăştur Street, 400372, Cluj-Napoca, Romania
| | - Nicodim Fit
- Department of Microbiology, Faculty of Veterinary Medecine, University Agricultural Sciences and Veterinary Medecine, 3-5 Mănăştur Street, 400372, Cluj-Napoca, Romania
| | - Mariem Yahya
- Laboratoire Biotechnologies et Technologie Nucléaire, CNSTN, Pôle Technologique Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Sihem Jebri
- Laboratoire Biotechnologies et Technologie Nucléaire, CNSTN, Pôle Technologique Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Safa Amairia
- Laboratoire de Parasitologie, Univ. Manouba, École Nationale de Médecine Vétérinaire de Sidi Thabet, 2020, Sidi Thabet, Tunisia
| | - Moktar Hamdi
- Laboratoire d'Ecologie et de Technologie Microbienne, Institut National Sciences Appliquées de Tunis, Université de Carthage, BP 676, 1080, Tunis, Tunisia
| |
Collapse
|
11
|
Gür S, Gürçay M, Seyrek A. A study regarding bovine enterovirus type 1 infection in domestic animals and humans: An evaluation from the zoonotic aspect. J Vet Med Sci 2019; 81:1824-1828. [PMID: 31564680 PMCID: PMC6943316 DOI: 10.1292/jvms.18-0704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bovine enteroviruses (BEV) are members of Enterovirus genus of the
family Picornaviridae. BEV1 has a broad host spectrum, including humans.
The virus usually causes subclinical infection, but fatal/severe cases have also been
reported in different animal species. There is quite limited data regarding BEV1 in
humans. The purpose of this study is to investigate human infection and to identify
possible risk factors for viral exposure. For this purpose, blood serum samples (n=1,526)
were collected from a city center and nearby villagers simultaneously from humans and farm
animals in Elazig province in Eastern Anatolia. As a result of serum neutralisation test,
BEV1 specific antibody presence detected in cattle was 85.3% (163/191), 73.5% in donkeys
(64/87), 71.8% in goats (115/160), 46.5% in sheep (93/200), 43.9% in horses (40/91), 41.3%
in dogs (19/46) and 33% in humans (248/751). Although a high contamination potential was
mentioned for people living in rural areas, it was determined that infection rates in
rural areas (31.6%) and urban centers (32.2%) were very close. There was no difference
according to sex. Viral exposure is higher in the 40 to 70 age range. In addition, the
serological evidence of the infection in donkeys was identified for the first time with
this study.
Collapse
Affiliation(s)
- Sibel Gür
- Department of Virology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar 03200, Turkey
| | - Metin Gürçay
- Department of Virology, Faculty of Veterinary Medicine, Bingöl University, Bingöl 12000, Turkey
| | - Adnan Seyrek
- Department of Microbiology, Faculty of Medicine, Fırat University, Elazığ 23119, Turkey
| |
Collapse
|
12
|
Işidan H, Turan T, Atasoy MO, Sözdutmaz I, Irehan B. Detection and first molecular characterisation of three picornaviruses from diarrhoeic calves in Turkey. Acta Vet Hung 2019; 67:463-476. [PMID: 31549549 DOI: 10.1556/004.2019.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The involvement of picornaviruses in calf diarrhoea was evaluated by the analysis of 127 faecal samples collected from diarrhoeic calves during 2014-2016. Virus detections were carried out by PCR using generic or specific primer pairs. One-third of the faecal samples (33.86%) were found to be positive for one or more of the studied viruses. Bovine kobuvirus was detected in 22.83%, bovine hungarovirus in 11.02%, while bovine enterovirus 1 in 5.51% of the samples. The sequences of the PCR products indicated the existence of novel variants in all the three virus species. When comparing the partial sequences, the nucleotide sequence identities between our newly detected viruses and those previously deposited to the GenBank ranged between 76 and 99%. Phylogenetic analyses revealed a novel lineage within the species Hunnivirus A. Our findings suggest that these viruses should be regarded as possible aetiological agents of calf diarrhoea. Based on the newly determined sequences, we designed and tested a new generic PCR primer set for the more reliable detection of bovine hungaroviruses. This is the first report on the molecular detection of the presence of bovine hungarovirus, bovine kobuvirus and bovine enterovirus 1 in the faecal samples of diarrhoeic calves in Turkey.
Collapse
Affiliation(s)
- Hakan Işidan
- 1Department of Virology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| | - Turhan Turan
- 1Department of Virology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| | - Mustafa Ozan Atasoy
- 1Department of Virology, Faculty of Veterinary Medicine, Cumhuriyet University, 58140 Sivas, Turkey
| | - Ibrahim Sözdutmaz
- 2Department of Virology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | | |
Collapse
|
13
|
Liu D, Hu J, Dong H, Huang L, Wei Y, Xia D, Zhu H, Wang X, Wu H, Wang X, Liu C. Identification of three linear B cell epitopes using monoclonal antibodies against bovine enterovirus VP2 protein. Appl Microbiol Biotechnol 2019; 103:7467-7480. [PMID: 31253999 DOI: 10.1007/s00253-019-09971-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/01/2019] [Accepted: 06/05/2019] [Indexed: 12/26/2022]
Abstract
Bovine enterovirus (BEV) VP2 protein is a structural protein that plays an important role in inducing protective immunity in the host. The function of VP2 has been characterized, but there is little information on its B cell epitopes. Three monoclonal antibodies (mAbs) directed against BEV VP2 were generated and characterized from mice immunized with the recombinant VP2 protein. Three minimal linear epitopes 152FQEAFWLEDG161, 168LIYPHQ173, and 46DATSVD51 reactive to the three mAbs were identified using western blotting analysis. Three-dimensional model of the BEV-E virion and the VP2 monomer showed that epitope 152FQEAFWLEDG161 is exposed on surface of the virion and epitopes 46DATSVD51 and 168LIYPHQ173 are located inside the virion. Alignment of the amino acid sequences corresponding to the regions containing the three minimal linear epitopes in the VP2 proteins and their cross-reactivity with the three mAbs showed that epitope 168LIYPHQ173 is completely conserved in all BEV strains. Epitope 46DATSVD51 is highly conserved among BEV-E strains and partly conserved among BEV-F strains. However, epitope 152FQEAFWLEDG161 is not conserved among BEV-F strains. Using the mAbs of 3H4 and 1E10, we found that VP2 localized in the cytoplasm during viral replication and could be used to monitor the viral antigen in infected tissues using immunohistochemistry. A preliminary 3H4-epitope-based indirect ELISA allowed us to detect anti-BEV-strain-HY12 antibodies in mice. This study indicates that the three mAbs could be useful tools for investigating the structure and function of the viral VP2 protein and the development of serological diagnostic techniques for BEV infection.
Collapse
Affiliation(s)
- Dan Liu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.,College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Junying Hu
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Hui Dong
- Inactivated Vaccine Production Workshop Comprehensive Group, Harbin Weike Biotechnology Limited Company, Harbin, 150069, China
| | - Liping Huang
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Yanwu Wei
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Deli Xia
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Hongzhen Zhu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xu Wang
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China
| | - Hongli Wu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China
| | - Xinping Wang
- College of Veterinary Medicine, Key Laboratory for Zoonosis, Ministry of Education, Jilin University, No. 5333 Xian Road, Changchun, Jilin, 130062, China.
| | - Changming Liu
- Swine Digestive System Infectious Diseases Research Team, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 678 Haping Road, Xiangfang District, Harbin, 150069, China.
| |
Collapse
|
14
|
Molecular Identification of Enteroviruses from Cattle and Goat Feces and Environment in Thailand. Appl Environ Microbiol 2019; 85:AEM.02420-18. [PMID: 30552188 DOI: 10.1128/aem.02420-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 12/07/2018] [Indexed: 12/29/2022] Open
Abstract
The identification and characterization of viruses of the genus Enterovirus in healthy and infected livestock, including cattle and goats, have been increasing. Enterovirus E (EV-E) and Enterovirus F (EV-F) are commonly found in cattle, whereas Enterovirus G (EV-G) is found in goats. In this study, molecular and phylogenetic analyses were performed to determine the prevalence of EVs in cattle and goat feces from Kanchanaburi Province, Thailand. The presence of EVs in water samples and the feces of other animals collected from the areas surrounding cattle and goat farms was also investigated. By use of 5'-untranslated region (5' UTR) real-time reverse transcription-PCR (RT-PCR), EVs were detected in 39.5% of cattle samples, 47% of goat samples, 35.3% of water samples, and one pool of chicken feces. Phylogenetic analysis revealed the presence of EV-E and EV-F in cattle, EV-E and EV-G in goats, and EV-F in water samples and chicken feces. Analysis of enteroviral VP1 sequences from cattle revealed that the EV-E genotypes circulating in the study region were EV-E1, with a possible new genotype that is closely related to EV-E2. Analysis of enteroviral VP1 sequences from goats suggested the circulation of EV-G5 and a possible new genotype that is closely related to EV-G20. Sequence analyses also suggested that although the VP1 sequences from goats were closely related to those of EV-G, which were considered porcine enterovirus sequences, their 5' UTRs form a separated cluster with sequences of sheep and goat origin, suggesting a new classification of the ovine/caprine-specific enterovirus group.IMPORTANCE Possible new EV-E and EV-G genotypes were identified for EVs detected in this study. The EV-E viruses were also successfully isolated from MDBK cells. The goat EV sequence analysis suggested the presence of an ovine/caprine-specific EV group that is different from EV-G of porcine origin. The significance of our research is that it identifies and characterizes possible novel EVs, thereby indicating that enteroviruses in animals are continually evolving. The facts that enteroviruses can persist in the environment, contaminate it for long periods, and be transmitted between animals raise serious concerns regarding this group of viruses as emerging livestock pathogens.
Collapse
|
15
|
Construction and evaluation of HA-epitope-tag introduction onto the VP1 structural protein of a novel HY12 enterovirus. Virology 2018; 525:106-116. [PMID: 30253275 DOI: 10.1016/j.virol.2018.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 09/14/2018] [Indexed: 11/23/2022]
Abstract
In this study, we investigated the feasibility of using enterovirus HY12 as a vector to express an exogenous hemagglutinin (HA)-epitope tag onto the HY12-encoded VP1 protein via a reverse genetic system. Characteristics of recombinant (r) HY12-VP1-HA marker virus were determined by immunoperoxidase monolayer assay, western blot, electron microscopy, and serum-neutralisation assay. Sequence analysis demonstrated that the marker virus stably maintained the HA-epitope-tag in MDBK cells, with no changes in viral morphological features observed relative to those of the parental rHY12 virus. Furthermore, detection by immunofluorescence assay revealed the expression of HA-epitope tag and VP2 protein, which distinguish the marker virus from parental rHY12 virus. In addition, neonatal mice infected with the recombinant marker virus showed various microscopic pathological lesions and generated anti-HY12 virus and -HA-epitope-tag antibodies. These results indicated that the recombinant marker virus represented a valuable platform to promote the development of novel genetic vaccines.
Collapse
|
16
|
Rahpaya SS, Tsuchiaka S, Kishimoto M, Oba M, Katayama Y, Nunomura Y, Kokawa S, Kimura T, Kobayashi A, Kirino Y, Okabayashi T, Nonaka N, Mekata H, Aoki H, Shiokawa M, Umetsu M, Morita T, Hasebe A, Otsu K, Asai T, Yamaguchi T, Makino S, Murata Y, Abi AJ, Omatsu T, Mizutani T. Dembo polymerase chain reaction technique for detection of bovine abortion, diarrhea, and respiratory disease complex infectious agents in potential vectors and reservoirs. J Vet Sci 2018; 19:350-357. [PMID: 29284216 PMCID: PMC5974516 DOI: 10.4142/jvs.2018.19.3.350] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 12/12/2017] [Accepted: 12/26/2017] [Indexed: 11/20/2022] Open
Abstract
Bovine abortion, diarrhea, and respiratory disease complexes, caused by infectious agents, result in high and significant economic losses for the cattle industry. These pathogens are likely transmitted by various vectors and reservoirs including insects, birds, and rodents. However, experimental data supporting this possibility are scarce. We collected 117 samples and screened them for 44 bovine abortive, diarrheal, and respiratory disease complex pathogens by using Dembo polymerase chain reaction (PCR), which is based on TaqMan real-time PCR. Fifty-seven samples were positive for at least one pathogen, including bovine viral diarrhea virus, bovine enterovirus, Salmonella enterica ser. Dublin, Salmonella enterica ser. Typhimurium, and Neospora caninum; some samples were positive for multiple pathogens. Bovine viral diarrhea virus and bovine enterovirus were the most frequently detected pathogens, especially in flies, suggesting an important role of flies in the transmission of these viruses. Additionally, we detected the N. caninum genome from a cockroach sample for the first time. Our data suggest that insects (particularly flies), birds, and rodents are potential vectors and reservoirs of abortion, diarrhea, and respiratory infectious agents, and that they may transmit more than one pathogen at the same time.
Collapse
Affiliation(s)
- Sayed Samim Rahpaya
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
- Faculty of Veterinary Science, Paraclinic Department, Kabul University, Kabul 1006, Afghanistan
| | - Shinobu Tsuchiaka
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Yuka Nunomura
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Saki Kokawa
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Takashi Kimura
- Laboratory of Comparative Pathology, Department of Clinical Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Atsushi Kobayashi
- Laboratory of Comparative Pathology, Department of Clinical Science, Faculty of Veterinary Medicine, Hokkaido University, Sapporo 060-0808, Japan
| | - Yumi Kirino
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Tamaki Okabayashi
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Nariaki Nonaka
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hirohisa Mekata
- Center for Animal Disease Control, University of Miyazaki, Miyazaki 889-2192, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Mai Shiokawa
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Moeko Umetsu
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Tatsushi Morita
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Tokyo 180-8602, Japan
| | - Ayako Hasebe
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | - Keiko Otsu
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | - Tetsuo Asai
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
- Education and Research Center for Food Animal Health (GeFAH), Gifu University, Gifu 501-1193, Japan
| | | | - Shinji Makino
- Department of Microbiology and Immunology, University of Texas Medical Branch at Galveston, TX 77555-1019, USA
| | - Yoshiteru Murata
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
| | - Ahmad Jan Abi
- Faculty of Veterinary Science, Paraclinic Department, Kabul University, Kabul 1006, Afghanistan
| | - Tsutomu Omatsu
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| | - Tetsuya Mizutani
- Research and Education Center for Prevention of Global Infectious Diseases of Animals, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-0045, Japan
- United Graduate School of Veterinary Science, Gifu University, Gifu 501-1193, Japan
| |
Collapse
|
17
|
Brié A, Boudaud N, Mssihid A, Loutreul J, Bertrand I, Gantzer C. Inactivation of murine norovirus and hepatitis A virus on fresh raspberries by gaseous ozone treatment. Food Microbiol 2017; 70:1-6. [PMID: 29173615 DOI: 10.1016/j.fm.2017.08.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 06/28/2017] [Accepted: 08/18/2017] [Indexed: 10/19/2022]
Abstract
Raspberries are vulnerable products for which industrial treatment solutions ensuring both food safety and sensory quality are not easily applicable. Raspberries have been associated with numerous foodborne outbreaks in recent decades. Ozone has been proven effective as a drinking water treatment against pathogenic microorganisms. Nevertheless, to date, little information is available regarding the effect of gaseous ozone on viruses in food matrices. A comparison of the effect of gaseous ozone on murine norovirus (MNV-1) and hepatitis A virus (HAV) adsorbed on fresh raspberries was performed. Infectious MNV-1 was highly inactivated (>3.3 log10) by ozone (3 ppm, 1 min). The raspberry matrix seems to enhance inactivation by ozone compared to water. The same treatment was observed to have little effect on HAV even for the highest dose under the tested conditions (5 ppm, 3 min). Ozone treatment (5 ppm, 3 min) did not affect the appearance of raspberries even after three days post-treatment. No ozone effect was observed on the genomes detected by RT-PCR on both tested viruses, irrespective of the matrix or tested doses used. Gaseous ozone could therefore be a good candidate for human norovirus inactivation on raspberries but new conditions are needed for it to have significant effects on HAV inactivation.
Collapse
Affiliation(s)
- Adrien Brié
- ACTALIA, Food Safety Department, Saint Lô, F-50000, France; Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France
| | | | | | - Julie Loutreul
- ACTALIA, Food Safety Department, Saint Lô, F-50000, France
| | - Isabelle Bertrand
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France
| | - Christophe Gantzer
- Université de Lorraine, LCPME (Laboratoire de Chimie Physique et Microbiologie pour l'Environnement), UMR 7564, Faculté de Pharmacie, Nancy, France; CNRS, LCPME, UMR 7564, Institut Jean Barriol, Nancy, France.
| |
Collapse
|
18
|
Nshimyimana JP, Freedman AJE, Shanahan P, Chua LCH, Thompson JR. Variation of Bacterial Communities with Water Quality in an Urban Tropical Catchment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5591-5601. [PMID: 28414467 DOI: 10.1021/acs.est.6b04737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A major challenge for assessment of water quality in tropical environments is the natural occurrence and potential growth of Fecal Indicator Bacteria (FIB). To gain a better understanding of the relationship between measured levels of FIB and the distribution of sewage-associated bacteria, including potential pathogens, in the tropics this study compared the abundance of FIB (Total coliforms and E. coli) and the Bacteroidales (HF183 marker) with bacterial community structure determined by next-generation amplicon sequencing. Water was sampled twice over 6 months from 18 sites within a tropical urban catchment and reservoir, followed by extraction of DNA from microorganisms, and sequencing targeting the V3-V4 region of the 16S rRNA gene. Multivariate statistical analyses indicated that bacterial community composition (BCC) varied between reservoir and catchment, within catchment land-uses, and with E. coli concentration. Beta-regression indicated that the proportion of sequences from sewage-associated taxa (SAT) or pathogen-like sequences (PLS) were predicted most significantly by measured levels of E. coli(log MPN/100 mL) (χ2 > 8.7; p < 0.003). In addition, SAT were significantly predicted by log HF183 levels (χ2=13.1; p = 0.0003) while PLS were not. Our study suggests that measurements of E. coli concentration could be useful in predicting samples enriched in sewage-associated and pathogen-like bacteria in tropical environments despite the potential for nonconservative behavior.
Collapse
Affiliation(s)
- Jean Pierre Nshimyimana
- School of Civil and Environmental Engineering, Nanyang Technological University (NTU) , 50 Nanyang Avenue, Singapore 639798, Singapore
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Centre for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART) , 1 Create Way, Singapore 138602, Singapore
- Singapore Center on Environmental Life Sciences Engineering (SCELSE), NTU , 60 Nanyang Drive, Singapore 637551, Singapore
| | - Adam Joshua Ehrich Freedman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Centre for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART) , 1 Create Way, Singapore 138602, Singapore
| | - Peter Shanahan
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Centre for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART) , 1 Create Way, Singapore 138602, Singapore
| | - Lloyd C H Chua
- School of Engineering, Deakin University , Waurn Ponds, Geelong, Victoria 3216, Australia
| | - Janelle R Thompson
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology (MIT) , 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
- Centre for Environmental Sensing and Modeling (CENSAM), Singapore-MIT Alliance for Research and Technology (SMART) , 1 Create Way, Singapore 138602, Singapore
| |
Collapse
|
19
|
Lenaker PL, Corsi SR, Borchardt MA, Spencer SK, Baldwin AK, Lutz MA. Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries. WATER RESEARCH 2017; 113:11-21. [PMID: 28187346 PMCID: PMC7126339 DOI: 10.1016/j.watres.2017.01.060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 01/11/2017] [Accepted: 01/29/2017] [Indexed: 05/06/2023]
Abstract
Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120-1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management strategies for pathogen reduction.
Collapse
Affiliation(s)
- P L Lenaker
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA.
| | - S R Corsi
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| | - M A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr. Marshfield, WI 54449, USA
| | - S K Spencer
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr. Marshfield, WI 54449, USA
| | - A K Baldwin
- U.S. Geological Survey, Idaho Water Science Center, 230 Collins Road, Office 145, Boise, ID 83702, USA
| | - M A Lutz
- U.S. Geological Survey, Wisconsin Water Science Center, 8505 Research Way, Middleton, WI 53562, USA
| |
Collapse
|
20
|
Tsuchiaka S, Rahpaya SS, Otomaru K, Aoki H, Kishimoto M, Naoi Y, Omatsu T, Sano K, Okazaki-Terashima S, Katayama Y, Oba M, Nagai M, Mizutani T. Identification of a novel bovine enterovirus possessing highly divergent amino acid sequences in capsid protein. BMC Microbiol 2017; 17:18. [PMID: 28095784 PMCID: PMC5240211 DOI: 10.1186/s12866-016-0923-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 12/28/2016] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Bovine enterovirus (BEV) belongs to the species Enterovirus E or F, genus Enterovirus and family Picornaviridae. Although numerous studies have identified BEVs in the feces of cattle with diarrhea, the pathogenicity of BEVs remains unclear. Previously, we reported the detection of novel kobu-like virus in calf feces, by metagenomics analysis. In the present study, we identified a novel BEV in diarrheal feces collected for that survey. Complete genome sequences were determined by deep sequencing in feces. Secondary RNA structure analysis of the 5' untranslated region (UTR), phylogenetic tree construction and pairwise identity analysis were conducted. RESULTS The complete genome sequences of BEV were genetically distant from other EVs and the VP1 coding region contained novel and unique amino acid sequences. We named this strain as BEV AN12/Bos taurus/JPN/2014 (referred to as BEV-AN12). According to genome analysis, the genome length of this virus is 7414 nucleotides excluding the poly (A) tail and its genome consists of a 5'UTR, open reading frame encoding a single polyprotein, and 3'UTR. The results of secondary RNA structure analysis showed that in the 5'UTR, BEV-AN12 had an additional clover leaf structure and small stem loop structure, similarly to other BEVs. In pairwise identity analysis, BEV-AN12 showed high amino acid (aa) identities to Enterovirus F in the polyprotein, P2 and P3 regions (aa identity ≥82.4%). Therefore, BEV-AN12 is closely related to Enterovirus F. However, aa sequences in the capsid protein regions, particularly the VP1 encoding region, showed significantly low aa identity to other viruses in genus Enterovirus (VP1 aa identity ≤58.6%). In addition, BEV-AN12 branched separately from Enterovirus E and F in phylogenetic trees based on the aa sequences of P1 and VP1, although it clustered with Enterovirus F in trees based on sequences in the P2 and P3 genome region. CONCLUSIONS We identified novel BEV possessing highly divergent aa sequences in the VP1 coding region in Japan. According to species definition, we proposed naming this strain as "Enterovirus K", which is a novel species within genus Enterovirus. Further genomic studies are needed to understand the pathogenicity of BEVs.
Collapse
Affiliation(s)
- Shinobu Tsuchiaka
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sayed Samim Rahpaya
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Konosuke Otomaru
- Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima-shi, Kagoshima, 890-0065, Japan
| | - Hiroshi Aoki
- Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo, 180-8602, Japan
| | - Mai Kishimoto
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuki Naoi
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Tsutomu Omatsu
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kaori Sano
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Sachiko Okazaki-Terashima
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan.,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yukie Katayama
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mami Oba
- Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Nagai
- Faculty of Bioresources and Environmental Sciences, Ishikawa prefectural University, 1-308, Suematsu, Nonoichi-shi, Ishikawa, 921-8836, Japan
| | - Tetsuya Mizutani
- The United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagito, Gifu-shi, Gifu, 501-1193, Japan. .,Research and Education Center for Prevention of Global Infectious Disease of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
21
|
Volkov GL, Havryliuk SP, Krasnobryzha IM, Havryliuk OS. The Protein/Peptide Direct Virus Inactivation During Chromatographic Process: Developing Approaches. Appl Biochem Biotechnol 2016; 181:233-249. [PMID: 27530437 DOI: 10.1007/s12010-016-2209-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Accepted: 08/05/2016] [Indexed: 12/26/2022]
Abstract
Virus clearance is required for pharmaceutical preparations derived from animal or human sources such as blood products, vaccines, recombinant proteins produced in mammalian cell lines, etc. High cost and substantial protein losses during virus inactivation are significant problems for protein/peptide manufacturing. The goal of this project was to develop a method to perform virus inactivation in a course of protein chromatographic purification. Another goal was to show that the chromatographic adsorbent can serve as reliable "sieva" for mechanical washing away of infecting viruses. Using chromatographic, photometric, IFA, and RT-PCR approaches, it was discovered that high temperature-depending dynamic capacity of adsorbent allowed to perform a virus inactivation directly in a chromatographic column by solvent/detergent treatment. The peptide/protein biological activity was completely preserved. Using this new approach enveloped and nonenveloped viruses were effectively removed protein preparation. In addition, it was shown that RT-PCR method demonstrates more precise and reproducible results and robust properties for assessment of virus reduction than virus titer followed by infectivity studies. Presented method allowed to obtain the factor of virus concentration decrease (FVD) values that were higher than those provided by known technologies and was sufficient for a full inactivation of viruses. The method is recommended to use in pharmaceutical industry.
Collapse
Affiliation(s)
- Georgii L Volkov
- Neutromics Ukraina TOV, 12, Melnikova str, Kyiv, Ukraine. .,Shijir International LCC, Raining Valley, Ulaanbaatar, Mongolia.
| | | | | | - Olena S Havryliuk
- Neutromics Ukraina TOV, 12, Melnikova str, Kyiv, Ukraine.,Shijir International LCC, Raining Valley, Ulaanbaatar, Mongolia
| |
Collapse
|
22
|
Kosoltanapiwat N, Yindee M, Chavez IF, Leaungwutiwong P, Adisakwattana P, Singhasivanon P, Thawornkuno C, Thippornchai N, Rungruengkitkun A, Soontorn J, Pearsiriwuttipong S. Genetic variations in regions of bovine and bovine-like enteroviral 5'UTR from cattle, Indian bison and goat feces. Virol J 2016; 13:13. [PMID: 26811239 PMCID: PMC4727389 DOI: 10.1186/s12985-016-0468-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 01/17/2016] [Indexed: 11/16/2022] Open
Abstract
Background Bovine enteroviruses (BEV) are members of the genus Enterovirus in the family Picornaviridae. They are predominantly isolated from cattle feces, but also are detected in feces of other animals, including goats and deer. These viruses are found in apparently healthy animals, as well as in animals with clinical signs and several studies reported recently suggest a potential role of BEV in causing disease in animals. In this study, we surveyed the presence of BEV in domestic and wild animals in Thailand, and assessed their genetic variability. Methods Viral RNA was extracted from fecal samples of cattle, domestic goats, Indian bison (gaurs), and deer. The 5’ untranslated region (5’UTR) was amplified by nested reverse transcription-polymerase chain reaction (RT-PCR) with primers specific to BEV 5’UTR. PCR products were sequenced and analyzed phylogenetically using the neighbor-joining algorithm to observe genetic variations in regions of the bovine and bovine-like enteroviral 5’UTR found in this study. Results BEV and BEV-like sequences were detected in the fecal samples of cattle (40/60, 67 %), gaurs (3/30, 10 %), and goats (11/46, 24 %). Phylogenetic analyses of the partial 5’UTR sequences indicated that different BEV variants (both EV-E and EV-F species) co-circulated in the domestic cattle, whereas the sequences from gaurs and goats clustered according to the animal species, suggesting that these viruses are host species-specific. Conclusions Varieties of BEV and BEV-like 5’UTR sequences were detected in fecal samples from both domestic and wild animals. To our knowledge, this is the first report of the genetic variability of BEV in Thailand.
Collapse
Affiliation(s)
- Nathamon Kosoltanapiwat
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Marnoch Yindee
- Faculty of Veterinary Science, Mahidol University, Bangkok, Thailand.
| | - Irwin Fernandez Chavez
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Pornsawan Leaungwutiwong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Pratap Singhasivanon
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Charin Thawornkuno
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Narin Thippornchai
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Amporn Rungruengkitkun
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Juthamas Soontorn
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| | - Sasipan Pearsiriwuttipong
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
23
|
Corsi SR, Borchardt MA, Carvin RB, Burch TR, Spencer SK, Lutz MA, McDermott CM, Busse KM, Kleinheinz GT, Feng X, Zhu J. Human and Bovine Viruses and Bacteria at Three Great Lakes Beaches: Environmental Variable Associations and Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:987-95. [PMID: 26720156 DOI: 10.1021/acs.est.5b04372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65-87% for pathogenic bacteria, and 13-35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 2 × 10(-5), 8 × 10(-6), and 3 × 10(-7) [corrected] for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.
Collapse
Affiliation(s)
- Steven R Corsi
- U.S. Geological Survey, Wisconsin Water Science Center , 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Mark A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service , 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Rebecca B Carvin
- U.S. Geological Survey, Wisconsin Water Science Center , 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Tucker R Burch
- U.S. Geological Survey, Wisconsin Water Science Center , 2615 Yellowstone Drive, Marshfield, Wisconsin 54449, United States
| | - Susan K Spencer
- U.S. Department of Agriculture, Agricultural Research Service , 2615 Yellowstone Dr., Marshfield, Wisconsin 54449, United States
| | - Michelle A Lutz
- U.S. Geological Survey, Wisconsin Water Science Center , 8505 Research Way, Middleton, Wisconsin 53562, United States
| | - Colleen M McDermott
- Department of Biology and Microbiology, University of Wisconsin Oshkosh , 800 Algoma Boulevard, Oshkosh, Wisconsin 54901, United States
| | - Kimberly M Busse
- Department of Biology and Microbiology, University of Wisconsin Oshkosh , 800 Algoma Boulevard, Oshkosh, Wisconsin 54901, United States
| | - Gregory T Kleinheinz
- Department of Biology and Microbiology, University of Wisconsin Oshkosh , 800 Algoma Boulevard, Oshkosh, Wisconsin 54901, United States
| | - Xiaoping Feng
- Department of Statistics, University of Wisconsin-Madison , 1300 University Avenue, Madison, Wisconsin 53706, United States
| | - Jun Zhu
- Department of Statistics, University of Wisconsin-Madison , 1300 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
24
|
Fongaro G, Padilha J, Schissi CD, Nascimento MA, Bampi GB, Viancelli A, Barardi CRM. Human and animal enteric virus in groundwater from deep wells, and recreational and network water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:20060-6. [PMID: 26300358 DOI: 10.1007/s11356-015-5196-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 08/10/2015] [Indexed: 04/16/2023]
Abstract
This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health.
Collapse
Affiliation(s)
- Gislaine Fongaro
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil.
| | - J Padilha
- Laboratório de Análise Ambiental, Fundação Universidade do Contestado, Concórdia, SC, 89700-000, Brazil
| | - C D Schissi
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - M A Nascimento
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| | - G B Bampi
- Laboratório de Análise Ambiental, Fundação Universidade do Contestado, Concórdia, SC, 89700-000, Brazil
| | - A Viancelli
- Laboratório de Análise Ambiental, Fundação Universidade do Contestado, Concórdia, SC, 89700-000, Brazil
| | - C R M Barardi
- Laboratório de Virologia Aplicada, Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianópolis, SC, 88040-900, Brazil
| |
Collapse
|
25
|
Gibson KE. Tracking Pathogens in the Environment. Food Saf (Tokyo) 2015. [DOI: 10.1016/b978-0-12-800245-2.00003-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
26
|
Abd-Elmaksoud S, Spencer SK, Gerba CP, Tamimi AH, Jokela WE, Borchardt MA. Simultaneous Concentration of Bovine Viruses and Agricultural Zoonotic Bacteria from Water Using Sodocalcic Glass Wool Filters. FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:253-9. [PMID: 25059211 PMCID: PMC7091103 DOI: 10.1007/s12560-014-9159-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Accepted: 07/07/2014] [Indexed: 05/18/2023]
Abstract
Infiltration and runoff from manured agricultural fields can result in livestock pathogens reaching groundwater and surface waters. Here, we measured the effectiveness of glass wool filters to simultaneously concentrate enteric viruses and bacteria of bovine origin from water. The recovery efficiencies were determined for bovine viral diarrhea virus types 1 and 2, bovine rotavirus group A, bovine coronavirus, poliovirus Sabin III, toxigenic Escherichia coli ,and Campylobacter jejuni seeded into water with three different turbidity levels (0.5, 215, and 447 NTU). Twenty liters of dechlorinated tap water (pH 7) were seeded with the test organisms, and then passed through a glass wool filter using a peristaltic pump (flow rate = 1 liter min(-1)). Retained organisms were eluted from the filters by passing beef extract-glycine buffer (pH 9.5) in the direction opposite of sample flow. Recovered organisms were enumerated by qPCR except for C. jejuni, which was quantified by culture. Mean recovery efficiencies ranged from 55 to 33% for the bacteria and 58 to 16% for the viruses. Using bootstrapping techniques combined with Analysis of Variance, recovery efficiencies were found to differ among the pathogen types tested at the two lowest turbidity levels; however, for a given pathogen type turbidity did not affect recovery except for C. jejuni. Glass wool filtration is a cost-effective method for concentrating several waterborne pathogens of bovine origin simultaneously, although recovery may be low for some specific taxa such as bovine viral diarrhea virus 1.
Collapse
Affiliation(s)
- Sherif Abd-Elmaksoud
- Environmental Virology Laboratory, Department of Water Pollution Research, National Research Centre, Cairo, Egypt
- Department of Soil, Water and Environment Science, University of Arizona, Tucson, AZ, USA
| | - Susan K Spencer
- Environmentally Integrated Dairy Management Research Unit, USDA - Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, WI, 54449, USA
| | - Charles P Gerba
- Department of Soil, Water and Environment Science, University of Arizona, Tucson, AZ, USA
| | - Akrum H Tamimi
- Department of Soil, Water and Environment Science, University of Arizona, Tucson, AZ, USA
| | - William E Jokela
- Environmentally Integrated Dairy Management Research Unit, USDA - Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, WI, 54449, USA
| | - Mark A Borchardt
- Environmentally Integrated Dairy Management Research Unit, USDA - Agricultural Research Service, 2615 Yellowstone Drive, Marshfield, WI, 54449, USA.
| |
Collapse
|
27
|
Corsi SR, Borchardt MA, Spencer SK, Hughes PE, Baldwin AK. Human and bovine viruses in the Milwaukee River watershed: hydrologically relevant representation and relations with environmental variables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 490:849-60. [PMID: 24908645 PMCID: PMC7125695 DOI: 10.1016/j.scitotenv.2014.05.072] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 04/14/2023]
Abstract
To examine the occurrence, hydrologic variability, and seasonal variability of human and bovine viruses in surface water, three stream locations were monitored in the Milwaukee River watershed in Wisconsin, USA, from February 2007 through June 2008. Monitoring sites included an urban subwatershed, a rural subwatershed, and the Milwaukee River at the mouth. To collect samples that characterize variability throughout changing hydrologic periods, a process control system was developed for unattended, large-volume (56-2800 L) filtration over extended durations. This system provided flow-weighted mean concentrations during runoff and extended (24-h) low-flow periods. Human viruses and bovine viruses were detected by real-time qPCR in 49% and 41% of samples (n=63), respectively. All human viruses analyzed were detected at least once including adenovirus (40% of samples), GI norovirus (10%), enterovirus (8%), rotavirus (6%), GII norovirus (1.6%) and hepatitis A virus (1.6%). Three of seven bovine viruses analyzed were detected including bovine polyomavirus (32%), bovine rotavirus (19%), and bovine viral diarrhea virus type 1 (5%). Human viruses were present in 63% of runoff samples resulting from precipitation and snowmelt, and 20% of low-flow samples. Maximum human virus concentrations exceeded 300 genomic copies/L. Bovine viruses were present in 46% of runoff samples resulting from precipitation and snowmelt and 14% of low-flow samples. The maximum bovine virus concentration was 11 genomic copies/L. Statistical modeling indicated that stream flow, precipitation, and season explained the variability of human viruses in the watershed, and hydrologic condition (runoff event or low-flow) and season explained the variability of the sum of human and bovine viruses; however, no model was identified that could explain the variability of bovine viruses alone. Understanding the factors that affect virus fate and transport in rivers will aid watershed management for minimizing human exposure and disease transmission.
Collapse
Affiliation(s)
- S R Corsi
- U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562, United States.
| | - M A Borchardt
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449, United States
| | - S K Spencer
- U.S. Department of Agriculture, Agricultural Research Service, 2615 Yellowstone Dr., Marshfield, WI 54449, United States
| | - P E Hughes
- U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562, United States
| | - A K Baldwin
- U.S. Geological Survey, Wisconsin Water Science Center, Middleton, WI 53562, United States
| |
Collapse
|
28
|
Zhang H, Liu H, Bao J, Guo Y, Peng T, Zhou P, Zhang W, Ma B, Wang J, Gao M. Characterization of an Enterovirus species E isolated from naturally infected bovine in China. Virus Res 2014; 191:101-7. [PMID: 25102330 DOI: 10.1016/j.virusres.2014.07.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 07/28/2014] [Accepted: 07/28/2014] [Indexed: 11/26/2022]
Abstract
Bovine enteroviruses, which belong to the Picornaviridae family, can cause clinical symptoms in cattle and are excreted in feces. In this study, a cytolytic virus was isolated from Madin-Darby bovine kidney (MDBK) cells from fecal samples of bovine with severe diarrhea and hemorrhagic intestinal mucosa that had been originally diagnosed with bovine viral diarrhea (BVD) by a bovine viral diarrhea virus Ag point-of-care test (IDEXX, American). Random priming PCR was used to amplify underlying viral sequences and identify the isolated virus. Phylogenetic analysis indicated that the isolated virus closely matches the EV-E2 species, which is different from other Chinese strains previously isolated. The newly identified virus was named HLJ-3531/2013. We infected the sulking mice with the isolated virus. Reverse-transcription PCR, hematoxylin and eosin (HE) staining, serum neutralization (SN) test, and virus isolation from various tissues revealed that HLJ-3531/2013 can infect the intestine, liver, and lung of suckling mice. The present work is the first to report the reproduction of clinical symptoms by an isolated virus in an experimental infection model of animals and lays a solid foundation for the development of the pathogenesis of bovine enteroviruses.
Collapse
Affiliation(s)
- Haili Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Hongtao Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Jun Bao
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China
| | - Yongli Guo
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tongquan Peng
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Pingping Zhou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Wenlong Zhang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Ma
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Junwei Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China; Synergetic Innovation Center of Food Safety and Nutrition, Harbin 150030, China.
| | - Mingchun Gao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
29
|
Zhu L, Xing Z, Gai X, Li S, San Z, Wang X. Identification of a novel enterovirus E isolates HY12 from cattle with severe respiratory and enteric diseases. PLoS One 2014; 9:e97730. [PMID: 24830424 PMCID: PMC4022658 DOI: 10.1371/journal.pone.0097730] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 03/31/2014] [Indexed: 12/04/2022] Open
Abstract
In this study, a virus strain designated as HY12 was isolated from cattle with a disease of high morbidity and mortality in Jilin province. Biological and physiochemical properties showed that HY12 isolates is cytopathic with an extremely high infectivity. HY12 is resistant to treatment of organic solvent and acid, and unstable at 60°C for 1 h. Electron microscopy observation revealed the virus is an approximately 22–28 nm in diameter. The complete genome sequence of HY12 consists of 7416 nucleotides, with a typical picornavirus genome organization including a 5′-untranslated region (UTR), a large single ORF encoding a polyprotein of 2176 amino acids, and a 3′-UTR. Phylogenetic analysis clustered HY12 isolates to a new serotype/genotype within the clade of enterovirus E (formerly BEV-A). Alignment analysis revealed a unique insertion of 2 amino acid residues (NF) at the C-terminal of VP1 protein between aa 825 and 826, and several rare mutations in VP1 and VP4 of HY12 isolates in relation to known bovine enterovirus (BEV) strains. This is the first report of an enterovirus E in China, which is potentially associated with an outbreak in cattle with severe respiratory and enteric diseases.
Collapse
Affiliation(s)
- Lisai Zhu
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zeli Xing
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xiaochun Gai
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Sujing Li
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Zhihao San
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
| | - Xinping Wang
- College of Veterinary Medicine, Jilin University, Changchun, Jilin, China
- * E-mail:
| |
Collapse
|
30
|
Spilki FR, da Luz RB, Fabres RB, Soliman MC, Kluge M, Fleck JD, Rodrigues MT, Comerlato J, Cenci A, Cerva C, Dasso MG, Roehe PM. Detection of human adenovirus, rotavirus and enterovirus in water samples collected on dairy farms from Tenente Portela, Northwest of Rio Grande do Sul, Brazil. Braz J Microbiol 2014; 44:953-7. [PMID: 24516464 PMCID: PMC3910217 DOI: 10.1590/s1517-83822013000300046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 04/01/2013] [Indexed: 11/24/2022] Open
Abstract
Viral gastroenteritis and other waterborne diseases are a major concern for health in Brazil. A number of studies were conducted about the presence of viruses on water samples from Brazilian areas. However, the knowledge about the occurrence of viral contamination of drinking water sources in rural settings of the country is insufficient. On the present work, 15 samples from 5 dairy farms located at the municipality of Tenente Portela were collected and analysed for the presence of human adenoviruses (HAdV), as well as human enteroviruses (EV) and rotaviruses (RV). HAdV was present on 66.66% of the water samples, and have been found in all samples from artesian wells and springs, which are used as sources of drinking water for the individuals inhabiting those farms. EV and RV found only in one sample each. The detection rates of HAdV on the water from these dairy farms are alarming and point towards a situation of elevated environmental contamination by fecal microorganisms of human origin and poor basic sanitation conditions.
Collapse
Affiliation(s)
- Fernando Rosado Spilki
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Roger Bordin da Luz
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Rafael Bandeira Fabres
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Mayra Cristina Soliman
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Mariana Kluge
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Juliane Deise Fleck
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Manoela Tressoldi Rodrigues
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Juliana Comerlato
- Laboratório de Microbiologia Molecular, Instituto de Ciências da Saúde, Universidade Feevale, Novo Hamburgo, RS, Brazil
| | - Alexander Cenci
- Instituto de Pesquisas Veterinárias Desidério Finamor / Fepagro Saúde Animal, Eldorado do Sul, RS, Brazil
| | - Cristine Cerva
- Instituto de Pesquisas Veterinárias Desidério Finamor / Fepagro Saúde Animal, Eldorado do Sul, RS, Brazil
| | - Maurício Gautério Dasso
- Instituto de Pesquisas Veterinárias Desidério Finamor / Fepagro Saúde Animal, Eldorado do Sul, RS, Brazil
| | - Paulo Michel Roehe
- Instituto de Pesquisas Veterinárias Desidério Finamor / Fepagro Saúde Animal, Eldorado do Sul, RS, Brazil. ; Laboratório de Virologia, Departamento de Microbiologia, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
31
|
Fu LL, Li JR. Microbial Source Tracking: A Tool for Identifying Sources of Microbial Contamination in the Food Chain. Crit Rev Food Sci Nutr 2013; 54:699-707. [DOI: 10.1080/10408398.2011.605231] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Chang J, Li Y, Yang D, Wang F, Jiang Z, Yu L. VP1 B-C and D-E loops of bovine enterovirus cluster B can effectively display foot-and-mouth disease virus type O-conserved neutralizing epitope. J Gen Virol 2013; 94:2691-2699. [PMID: 24077365 DOI: 10.1099/vir.0.057745-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
On the basis of generation of an infectious cDNA clone for the BHM26 strain of bovine enterovirus cluster B (BEV-B), 22 sites on different loops of the BHM26 capsid were selected according to an alignment of its sequence with the structural motifs of BEV-A strain VG-5-27 for insertion of the foot-and-mouth disease virus (FMDV) type O-conserved neutralizing epitope 8E8. Two recombinant viruses, rBEV-A1 and rBEV-DE, in which the FMDV epitope was inserted into the VP1 B-C or D-E loops, were rescued by transfection of BHK-21 cells with the in vitro-transcribed RNA of the recombinant BHM26 genome-length cDNA constructs. The two epitope-inserted viruses were genetically stable and exhibited growth properties similar to those of their parental virus in BHK-21 and IBRS-2 cells, which are susceptible to both BEV and FMDV. However, the two recombinant BEVs (rBEVs) had a significantly lower growth titre than those of the parental virus BHM26 in MDBK and Marc145 cells, which are susceptible to BEV but not to FMDV. These results indicated that insertion of the FMDV epitope into the VP1 B-C or D-E loops of the BEV particle altered the replication properties of BEV. In addition, the two rBEVs were sensitive to neutralization by the FMDV type O-specific mAb 8E8, and anti-FMDV IgG antibodies were induced in mice by intramuscular inoculation with the rBEV-A1 and rBEV-DE viruses. Our results demonstrate that the VP1 B-C and D-E loops of the BEV-B particle can effectively display a foreign epitope, making this an attractive approach for the design of BEV-vectored and epitope-based vaccines.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/blood
- Antibodies, Neutralizing/blood
- Antibodies, Neutralizing/immunology
- Antibodies, Viral/blood
- Capsid Proteins/chemistry
- Capsid Proteins/genetics
- Capsid Proteins/metabolism
- Cattle
- Cell Line
- Enterovirus, Bovine/genetics
- Enterovirus, Bovine/immunology
- Enterovirus, Bovine/metabolism
- Enterovirus, Bovine/physiology
- Epitopes/immunology
- Foot-and-Mouth Disease Virus/genetics
- Foot-and-Mouth Disease Virus/immunology
- Foot-and-Mouth Disease Virus/metabolism
- Genetic Vectors
- Mice
- Mice, Inbred BALB C
- Recombination, Genetic
- Virus Replication
Collapse
Affiliation(s)
- Jitao Chang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Yingli Li
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Decheng Yang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Fang Wang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Zhigang Jiang
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| | - Li Yu
- Division of Livestock Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, No. 427 Maduan Street, Harbin 150001, PR China
| |
Collapse
|
33
|
Case-control study of microbiological etiology associated with calf diarrhea. Vet Microbiol 2013; 166:375-85. [PMID: 23886509 PMCID: PMC7117237 DOI: 10.1016/j.vetmic.2013.07.001] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 06/27/2013] [Accepted: 07/01/2013] [Indexed: 11/22/2022]
Abstract
Calf diarrhea is a major economic burden for the US cattle industry. A variety of infectious agents are implicated in calf diarrhea and co-infection of multiple pathogens is not uncommon in diarrheic calves. A case–control study was conducted to assess infectious etiologies associated with calf diarrhea in Midwest cattle farms. A total of 199 and 245 fecal samples were obtained from diarrheic and healthy calves, respectively, from 165 cattle farms. Samples were tested by a panel of multiplex PCR assays for 11 enteric pathogens: bovine rotavirus group A (BRV-A), bovine coronavirus (BCoV), bovine viral diarrhea virus (BVDV), bovine enterovirus (BEV), bovine norovirus (BNoV), Nebovirus, bovine torovirus (BToV) Salmonella spp. (Salmonella), Escherichia coli (E. coli) K99+, Clostridium perfringens with β toxin gene and Cryptosporidium parvum (C. parvum). The association between diarrhea and detection of each pathogen was analyzed using a multivariate logistic regression model. More than a half of the fecal samples from the diarrheic calves had multiple pathogens. Statistically, BRV-A, BCoV, BNoV, Nebovirus, Salmonella, E. coli K99+, and C. parvum were significantly associated with calf diarrhea (p < 0.05). Among them, C. parvum and BRV-A were considered to be the most common enteric pathogens for calf diarrhea with high detection frequency (33.7% and 27.1%) and strong odds ratio (173 and 79.9). Unexpectedly BNoV (OR = 2.0) and Nebovirus (OR = 16.7) were identified with high frequency in diarrheic calves, suggesting these viruses may have a significant contribution to calf diarrhea.
Collapse
|
34
|
Mauffret A, Mieszkin S, Morizur M, Alfiansah Y, Lozach S, Gourmelon M. Recent innovation in microbial source tracking using bacterial real-time PCR markers in shellfish. MARINE POLLUTION BULLETIN 2013; 68:21-9. [PMID: 23398745 DOI: 10.1016/j.marpolbul.2012.12.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 12/20/2012] [Accepted: 12/23/2012] [Indexed: 05/15/2023]
Abstract
We assessed the capacity of real-time PCR markers to identify the origin of contamination in shellfish. Oyster, cockles or clams were either contaminated with fecal materials and host-associated markers designed from Bacteroidales or Catellicoccus marimammalium 16S RNA genes were extracted from their intravalvular liquid, digestive tissues or shellfish flesh. Extraction of bacterial DNA from the oyster intravalvular liquid with FastDNA spin kit for soil enabled the selected markers to be quantified in 100% of artificially contaminated samples, and the source of contamination to be identified in 13 out of 38 naturally contaminated batches from European Class B and Class C areas. However, this protocol did not enable the origin of the contamination to be identified in cockle or clam samples. Although results are promising for extracts from intravalvular liquid in oyster, it is unlikely that a single protocol could be the best across all bacterial markers and types of shellfish.
Collapse
Affiliation(s)
- A Mauffret
- IFREMER, Laboratoire de Microbiologie, RBE, EMP, Plouzané, France
| | | | | | | | | | | |
Collapse
|
35
|
Wong K, Fong TT, Bibby K, Molina M. Application of enteric viruses for fecal pollution source tracking in environmental waters. ENVIRONMENT INTERNATIONAL 2012; 45:151-64. [PMID: 22537583 DOI: 10.1016/j.envint.2012.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 05/22/2023]
Abstract
Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infection, enteric viruses replicate and are excreted in high numbers in the hosts' feces and urine. Due to the specificity in host infection, enteric viruses have been considered one of the most accurate library-independent culture-independent MST tools. In an assessment of molecular viral assays based on sensitivity, specificity and the density of the target virus in fecal-impacted samples, human adenovirus and human polyomavirus were found to be the most promising human-specific viral markers. However, more research is needed to identify promising viral markers for livestock because of cross-reactions that were observed among livestock species or the limited number of samples tested for specificity. Other viral indicators of fecal origin, F+ RNA coliphage and pepper mild mottle virus, have also been proposed as potential targets for developing MST markers. Enhancing the utility of enteric viruses for MST applications through next generation sequencing (NGS) and virus concentration technology is discussed in the latter part of this review. The massive sequence databases generated by shotgun and gene-targeted metagenomics enable more efficient and reliable design of MST assays. Finally, recent studies revealed that alternative virus concentration methodologies may be more cost-effective than standard technologies such as 1MDS; however, improvements in the recovery efficiency and consistency are still needed. Overall, developments in metagenomic information combined with efficient concentration methodologies, as well as high host-specificity, make enteric viruses a promising tool in MST applications.
Collapse
Affiliation(s)
- Kelvin Wong
- United States Environmental Protection Agency, Ecosystems Research Division, 960 College Station Road, Athens, GA, USA.
| | | | | | | |
Collapse
|
36
|
Boros Á, Pankovics P, Knowles NJ, Reuter G. Natural interspecies recombinant bovine/porcine enterovirus in sheep. J Gen Virol 2012; 93:1941-1951. [DOI: 10.1099/vir.0.041335-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Members of the genus Enterovirus (family Picornaviridae) are believed to be common and widespread among humans and different animal species, although only a few enteroviruses have been identified from animal sources. Intraspecies recombination among human enteroviruses is a well-known phenomenon, but only a few interspecies examples have been reported and, to our current knowledge, none of these have involved non-primate enteroviruses. In this study, we report the detection and complete genome characterization (using RT-PCR and long-range PCR) of a natural interspecies recombinant bovine/porcine enterovirus (ovine enterovirus type 1; OEV-1) in seven (44 %) of 16 faecal samples from 3-week-old domestic sheep (Ovis aries) collected in two consecutive years. Phylogenetic analysis of the complete coding region revealed that OEV-1 (ovine/TB4-OEV/2009/HUN; GenBank accession no. JQ277724) was a novel member of the species Porcine enterovirus B (PEV-B), implying the endemic presence of PEV-B viruses among sheep. However, the 5′ UTR of OEV-1 showed a high degree of sequence and structural identity to bovine enteroviruses. The presumed recombination breakpoint was mapped to the end of the 5′ UTR at nucleotide position 814 using sequence and SimPlot analyses. The interspecies-recombinant nature of OEV-1 suggests a closer relationship among bovine and porcine enteroviruses, enabling the exchange of at least some modular genetic elements that may evolve independently.
Collapse
Affiliation(s)
- Ákos Boros
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Péter Pankovics
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| | - Nick J. Knowles
- Institute for Animal Health, Pirbright Laboratory, Ash Road, Pirbright, Woking, Surrey, GU24 0NF, UK
| | - Gábor Reuter
- Regional Laboratory of Virology, National Reference Laboratory of Gastroenteric Viruses, ÁNTSZ Regional Institute of State Public Health Service, H-7623, Szabadság út 7, Pécs, Hungary
| |
Collapse
|
37
|
Li Y, Chang J, Wang Q, Yu L. Isolation of two Chinese bovine enteroviruses and sequence analysis of their complete genomes. Arch Virol 2012; 157:2369-75. [PMID: 22851010 PMCID: PMC7087101 DOI: 10.1007/s00705-012-1424-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Accepted: 06/13/2012] [Indexed: 11/28/2022]
Abstract
In this study, RNA corresponding to bovine enterovirus (BEV) was detected in 24.6 % of faecal samples (17/69) from diarrheic and healthy cattle in six different areas in China by an RT-PCR screening method. Furthermore, two cytopathic agents, designated as BHM26 and BJ50, were isolated from the bovine diarrheic fecal samples. During passage in MA104 cells, ultrathin sections of virus-infected monolayers were examined using a transmission electron microscope, and a large number of symmetrical virus crystals were seen in the cytoplasm, with monomorphic small viral particles of 27-30 nm in diameter. The full-length RNA genomes were 7433 and 7416 nucleotides long, respectively, with a genome organization analogous to that of picornaviruses. Phylogenetic analysis of the VP1 and VP3 capsid protein coding sequences suggested that the viruses BHM26 and BJ50 belong to genotype 2 of the BEV cluster B (BEV-B). In addition, sequence comparisons of the 5′ and 3′ UTRs and P1, P2 and P3 subgenomic regions of the two isolates suggested that there were intergenotypic recombination events occurring during evolution of the BHM26 and BJ50 isolates.
Collapse
Affiliation(s)
- Yingli Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, People's Republic of China
| | | | | | | |
Collapse
|
38
|
Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, D'Agostino M, Santos R, Saiz JC, Rzeżutka A, Bosch A, Gironés R, Carducci A, Muscillo M, Kovač K, Diez-Valcarce M, Vantarakis A, von Bonsdorff CH, de Roda Husman AM, Hernández M, van der Poel WHM. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 2012; 36:786-814. [PMID: 22091646 PMCID: PMC7114518 DOI: 10.1111/j.1574-6976.2011.00306.x] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 08/30/2011] [Indexed: 12/11/2022] Open
Abstract
Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed.
Collapse
|
39
|
Rodríguez-Lázaro D, Cook N, Ruggeri FM, Sellwood J, Nasser A, Nascimento MSJ, D'Agostino M, Santos R, Saiz JC, Rzeżutka A, Bosch A, Gironés R, Carducci A, Muscillo M, Kovač K, Diez-Valcarce M, Vantarakis A, von Bonsdorff CH, de Roda Husman AM, Hernández M, van der Poel WHM. Virus hazards from food, water and other contaminated environments. FEMS Microbiol Rev 2012. [PMID: 22091646 DOI: 10.1111/j.1574-6976.2011.00306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/15/2023] Open
Abstract
Numerous viruses of human or animal origin can spread in the environment and infect people via water and food, mostly through ingestion and occasionally through skin contact. These viruses are released into the environment by various routes including water run-offs and aerosols. Furthermore, zoonotic viruses may infect humans exposed to contaminated surface waters. Foodstuffs of animal origin can be contaminated, and their consumption may cause human infection if the viruses are not inactivated during food processing. Molecular epidemiology and surveillance of environmental samples are necessary to elucidate the public health hazards associated with exposure to environmental viruses. Whereas monitoring of viral nucleic acids by PCR methods is relatively straightforward and well documented, detection of infectious virus particles is technically more demanding and not always possible (e.g. human norovirus or hepatitis E virus). The human pathogenic viruses that are most relevant in this context are nonenveloped and belong to the families of the Caliciviridae, Adenoviridae, Hepeviridae, Picornaviridae and Reoviridae. Sampling methods and strategies, first-choice detection methods and evaluation criteria are reviewed.
Collapse
|
40
|
Molecular identification and characterization of a new type of bovine enterovirus. Appl Environ Microbiol 2012; 78:4497-500. [PMID: 22492440 DOI: 10.1128/aem.00109-12] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bovine enteroviruses belong to the family Picornaviridae. Little is known about their pathogenic potential; however, they cause asymptomatic infections in cattle and are excreted in feces. In the present study, viruses isolated from environmental samples were sequenced. According to phylogenetic analyses and standard picornavirus nomenclature, these isolates constitute a new type of bovine enterovirus serogroup A.
Collapse
|
41
|
Schwarte KA, Russell JR, Kovar JL, Morrical DG, Ensley SM, Yoon K, Cornick NA, Cho YI. Grazing management effects on sediment, phosphorus, and pathogen loading of streams in cool-season grass pastures. JOURNAL OF ENVIRONMENTAL QUALITY 2011; 40:1303-13. [PMID: 21712600 PMCID: PMC7159343 DOI: 10.2134/jeq2010.0524] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Indexed: 05/23/2023]
Abstract
Erosion and runoff from pastures may lead to degradation of surface water. A 2-yr grazing study was conducted to quantify the effects of grazing management on sediment, phosphorus (P), and pathogen loading of streams in cool-season grass pastures. Six adjoining 12.1-ha pastures bisected by a stream in central Iowa were divided into three treatments: continuous stocking with unrestricted stream access (CSU), continuous stocking with restricted stream access (CSR), and rotational stocking (RS). Rainfall simulations on stream banks resulted in greater ( < 0.10) proportions of applied precipitation and amounts of sediment and P transported in runoff from bare sites than from vegetated sites across grazing treatments. Similar differences were observed comparing vegetated sites in CSU and RS pastures with vegetated sites in CSR pastures. Bovine enterovirus was shed by an average of 24.3% of cows during the study period and was collected in the runoff of 8.3 and 16.7% of runoff simulations on bare sites in CSU pastures in June and October of 2008, respectively, and from 8.3% of runoff simulations on vegetated sites in CSU pastures in April 2009. Fecal pathogens (bovine coronavirus [BCV], bovine rotavirus group A, and O157:H7) shed or detected in runoff were almost nonexistent; only BCV was detected in feces of one cow in August of 2008. Erosion of cut-banks was the greatest contributor of sediment and P loading to the stream; contributions from surface runoff and grazing animals were considerably less and were minimized by grazing management practices that reduced congregation of cattle by pasture streams.
Collapse
Affiliation(s)
| | | | - John L. Kovar
- USDA–ARS, National Lab. for Agriculture and the EnvironmentAmesIA50011
| | | | | | | | - Nancy A. Cornick
- Dep. of Vet. Microbiology and Preventative Med.Iowa State Univ.AmesIA50011
| | - Yong Il Cho
- Dep. of Vet. Microbiology and Preventative Med.Iowa State Univ.AmesIA50011
| |
Collapse
|
42
|
Roslev P, Bukh AS. State of the art molecular markers for fecal pollution source tracking in water. Appl Microbiol Biotechnol 2011; 89:1341-55. [DOI: 10.1007/s00253-010-3080-7] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 12/15/2010] [Accepted: 12/15/2010] [Indexed: 01/16/2023]
|
43
|
Buitrago D, Cano-Gómez C, Agüero M, Fernandez-Pacheco P, Gómez-Tejedor C, Jiménez-Clavero MÁ. A Survey of Porcine Picornaviruses and Adenoviruses in Fecal Samples in Spain. J Vet Diagn Invest 2010; 22:763-6. [DOI: 10.1177/104063871002200519] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In the course of an epidemiologic surveillance program for swine diseases carried out in Spain, 206 cytopathic viruses were isolated from 600 porcine fecal samples between 2004 and 2005. The virus isolates were examined using reverse transcription polymerase chain reaction (RT-PCR) methods specific for different types of porcine picornaviruses, including members of the Teschovirus, Enterovirus, and Sapelovirus genera, and PCR for porcine adenoviruses. Of the 206 isolates, 97 (47%) were identified as teschoviruses, 18 (9%) as sapeloviruses, and 7 (3%) as porcine adenoviruses. Neither Porcine enterovirus B nor Swine vesicular disease virus was found among the isolates. The present study confirms that teschoviruses are highly prevalent in porcine fecal samples, at least in Spain. It also reveals that these viruses commonly circulate among apparently healthy pigs.
Collapse
Affiliation(s)
- Dolores Buitrago
- Laboratorio Central de Veterinaria, Algete, Spain (Buitrago, Agüero, Gómez-Tejedor)
| | - Cristina Cano-Gómez
- Centro de Investigación en Sanidad Animal, Valdeolmos, Spain (Cano-Gómez, Fernandez-Pacheco, Jiménez-Clavero)
| | - Montserrat Agüero
- Laboratorio Central de Veterinaria, Algete, Spain (Buitrago, Agüero, Gómez-Tejedor)
| | - Paloma Fernandez-Pacheco
- Centro de Investigación en Sanidad Animal, Valdeolmos, Spain (Cano-Gómez, Fernandez-Pacheco, Jiménez-Clavero)
| | | | | |
Collapse
|
44
|
Wolf S, Hewitt J, Greening GE. Viral multiplex quantitative PCR assays for tracking sources of fecal contamination. Appl Environ Microbiol 2010; 76:1388-94. [PMID: 20061455 PMCID: PMC2832383 DOI: 10.1128/aem.02249-09] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2009] [Accepted: 12/28/2009] [Indexed: 12/30/2022] Open
Abstract
Human and animal fecal pollution of the environment presents a risk to human health because of the presence of pathogenic viruses and bacteria. To distinguish between human and animal sources of pollution, we designed specific real-time reverse transcription (RT)-PCR assays for human and animal enteric viruses, including norovirus genogroups I, II, and III; porcine adenovirus types 3 and 5; ovine adenovirus; atadenovirus; and human adenovirus species C and F, which are excreted by infected humans, pigs, cattle, sheep, deer, and goats, and for the detection of F+ RNA bacteriophage genogroups I to IV, which are associated with human and animal wastes. The sensitivity of this viral toolbox (VTB) was tested against 10-fold dilution series of DNA plasmids that carry the target sequences of the respective viruses and was shown to detect at least 10 plasmid copies for each assay. A panel of human and animal enteric and respiratory viruses showed these assays to be highly sensitive and specific to their respective targets. The VTB was used to detect viruses in fecal and environmental samples, including raw sewage and biosolids from municipal sewage treatment plants, abattoir sewage, and fecally contaminated shellfish and river water, which were likely to contain animal or human viruses.
Collapse
Affiliation(s)
- Sandro Wolf
- Institute of Environmental Science and Research Ltd., Kenepuru Science Centre, P.O. Box 50-348, Porirua, New Zealand
| | - Joanne Hewitt
- Institute of Environmental Science and Research Ltd., Kenepuru Science Centre, P.O. Box 50-348, Porirua, New Zealand
| | - Gail E. Greening
- Institute of Environmental Science and Research Ltd., Kenepuru Science Centre, P.O. Box 50-348, Porirua, New Zealand
| |
Collapse
|
45
|
Yampara-Iquise H, Zheng G, Jones JE, Carson CA. Use of a Bacteroides thetaiotaomicron-specific alpha-1-6, mannanase quantitative PCR to detect human faecal pollution in water. J Appl Microbiol 2010; 105:1686-93. [PMID: 19149766 DOI: 10.1111/j.1365-2672.2008.03895.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The aims of this work were to develop a quantitative test, based on Bacteroides thetaiotaomicron, for human faecal pollution in water and to evaluate test performance. METHODS AND RESULTS qPCR primers, based on the complete genomic sequence of B. thetaiotaomicron VPI 5482, were designed and tested. The single-copy putative mannanase homologue, alpha-1-6 mannanase, was selected as the particular target and sequences within this gene chosen as the qPCR primers by Blast search for specificity to B. thetaiotaomicron. The average concentration of B. thetaiotaomicron in human faeces was 1.39 x 10(8) cells per gram faeces and the detection limit was 9.3 B. thetaiotaomicron copies per qPCR procedure. Comparison of B. thetaiotaomicron content in sewage vs pooled nonhuman faecal samples indicated that the current assay is specific for sewage. CONCLUSION The subject assay is potentially useful for quantification of sewage pollution in water. SIGNIFICANCE AND IMPACT OF THE STUDY Bacteroides-associated markers, proposed for faecal source tracking, have exclusively been based on gene sequences related to generally classified and uncultured bacteria. However, genes associated with host-microbe interaction have been suggested as more specific markers. The present assay targets such a gene of B. thetaiotaomicron which is considered to be a symbiont in the human gut.
Collapse
Affiliation(s)
- H Yampara-Iquise
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO, USA
| | | | | | | |
Collapse
|
46
|
Performance assessment PCR-based assays targeting bacteroidales genetic markers of bovine fecal pollution. Appl Environ Microbiol 2010; 76:1359-66. [PMID: 20061457 DOI: 10.1128/aem.02033-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
There are numerous PCR-based assays available to characterize bovine fecal pollution in ambient waters. The determination of which approaches are most suitable for field applications can be difficult because each assay targets a different gene, in many cases from different microorganisms, leading to variation in assay performance. We describe a performance evaluation of seven end-point PCR and real-time quantitative PCR (qPCR) assays reported to be associated with either ruminant or bovine feces. Each assay was tested against a reference collection of DNA extracts from 247 individual bovine fecal samples representing 11 different populations and 175 fecal DNA extracts from 24 different animal species. Bovine-associated genetic markers were broadly distributed among individual bovine samples ranging from 39 to 93%. Specificity levels of the assays spanned 47.4% to 100%. End-point PCR sensitivity also varied between assays and among different bovine populations. For qPCR assays, the abundance of each host-associated genetic marker was measured within each bovine population and compared to results of a qPCR assay targeting 16S rRNA gene sequences from Bacteroidales. Experiments indicate large discrepancies in the performance of bovine-associated assays across different bovine populations. Variability in assay performance between host populations suggests that the use of bovine microbial source-tracking applications will require a priori characterization at each watershed of interest.
Collapse
|
47
|
A single amino acid substitution in the capsid of foot-and-mouth disease virus can increase acid lability and confer resistance to acid-dependent uncoating inhibition. J Virol 2010; 84:2902-12. [PMID: 20053737 DOI: 10.1128/jvi.02311-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The acid-dependent disassembly of foot-and-mouth disease virus (FMDV) is required for viral RNA release from endosomes to initiate replication. Although the FMDV capsid disassembles at acid pH, mutants escaping inhibition by NH(4)Cl of endosomal acidification were found to constitute about 10% of the viruses recovered from BHK-21 cells infected with FMDV C-S8c1. For three of these mutants, the degree of NH(4)Cl resistance correlated with the sensitivity of the virion to acid-induced inactivation of its infectivity. Capsid sequencing revealed the presence in each of these mutants of a different amino acid substitution (VP3 A123T, VP3 A118V, and VP2 D106G) that affected a highly conserved residue among FMDVs located close to the capsid interpentameric interfaces. These residues may be involved in the modulation of the acid-induced dissociation of the FMDV capsid. The substitution VP3 A118V present in mutant c2 was sufficient to confer full resistance to NH(4)Cl and concanamycin A (a V-ATPase inhibitor that blocks endosomal acidification) as well as to increase the acid sensitivity of the virion to an extent similar to that exhibited by mutant c2 relative to the sensitivity of the parental virus C-S8c1. In addition, the increased propensity to dissociation into pentameric subunits of virions bearing substitution VP3 A118V indicates that this replacement also facilitates the dissociation of the FMDV capsid.
Collapse
|
48
|
Gür S, Yapkiç O, Yilmaz A. Serological survey of bovine enterovirus type 1 in different mammalian species in Turkey. Zoonoses Public Health 2008; 55:106-11. [PMID: 18234029 DOI: 10.1111/j.1863-2378.2007.01095.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The bovine enterovirus type 1 (BEV-1) infection has a wide range of host spectrum including humans. In this study, seroprevalence of BEV-1 was investigated in eight mammalian species. Blood serum samples were collected from 244 humans, 1520 cattle, 272 horse, 126 dog, 281 sheep, 477 goat, 18 camel (Camelus dromedarius) and 82 gazelle (Gazella subgutturosa subgutturosa) in different regions of Turkey. Microneutralization tests showed that gazelle and camel did not have any seropositivities, but seropositivities were detected in humans (30.3%), cattle (64.8%), horse (12.8%), dog (3.2%), sheep (32.8%) and goat (27.6%).
Collapse
Affiliation(s)
- S Gür
- Department of Virology, Faculty of Veterinary Medicine, Afyon Kocatepe University, Afyonkarahisar, Turkey.
| | | | | |
Collapse
|
49
|
Stewart-Pullaro J, Daugomah JW, Chestnut DE, Graves DA, Sobsey MD, Scott GI. F+ RNA coliphage typing for microbial source tracking in surface waters. J Appl Microbiol 2007; 101:1015-26. [PMID: 17040225 DOI: 10.1111/j.1365-2672.2006.03011.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS The utility of coliphages to detect and track faecal pollution was evaluated using South Carolina surface waters that exceeded State faecal coliform standards. METHODS AND RESULTS Coliphages were isolated from 117 surface water samples by single agar layer (SAL) and enrichment presence/absence (EP/A) methods. Confirmed F+ RNA coliphages were typed for microbial source tracking using a library-independent approach. Concentrations of somatic coliphages using 37 and 44.5 degrees C incubation temperatures were found to be significantly different and the higher temperature may be more specific for faecal contamination. The EP/A technique detected coliphages infecting Escherichia coli Famp in 38 (66%) of the 58 surface water samples negative for F+ coliphages by the SAL method. However, coliphages isolated by EP/A were found to be less representative of coliphage diversity within a sample. Among the 2939 coliphage isolates tested from surface water and known source samples, 813 (28%) were found to be F+ RNA. The majority (94%) of surface water F+ RNA coliphage isolates typed as group I. Group II and/or III viruses were identified from 14 surface water stations, the majority of which were downstream of wastewater discharges. These sites were likely contaminated by human-source faecal pollution. CONCLUSIONS The results suggest that faecal contamination in surface waters can be detected and source identifications aided by coliphage analyses. SIGNIFICANCE AND IMPACT OF THE STUDY This study supports the premise that coliphage typing can provide useful, but not absolute, information to distinguish human from animal sources of faecal pollution. Furthermore, the comparison of coliphage isolation methods detailed in this study should provide valuable information to those wishing to incorporate coliphage detection into water quality assessments.
Collapse
Affiliation(s)
- J Stewart-Pullaro
- NOAA, Center for Coastal Environmental Health and Biomolecular Research, Charleston, SC, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Field KG, Samadpour M. Fecal source tracking, the indicator paradigm, and managing water quality. WATER RESEARCH 2007; 41:3517-38. [PMID: 17643471 DOI: 10.1016/j.watres.2007.06.056] [Citation(s) in RCA: 141] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2007] [Revised: 05/18/2007] [Accepted: 06/18/2007] [Indexed: 05/03/2023]
Abstract
Fecal source tracking is used because standard methods of measuring fecal contamination in water by enumerating fecal indicator bacteria (FIB) do not identify the sources of the contamination. This paper presents a critical review of source tracking with emphasis on the extent to which methods have been tested (especially in comparison with other methods and/or with blind samples), when methods are applicable, their shortcomings, and their usefulness in predicting public health risk or pathogen occurrence. In addition, the paper discusses the broader question of whether fecal source tracking and fecal indicator monitoring is the best approach to regulate water quality and protect human health. Many fecal source-tracking methods have only been tested against sewage or fecal samples or isolates in laboratory studies (proof of concept testing) and/or applied in field studies where the "real" answer is not known, so their comparative performance and accuracy cannot be assessed. For source tracking to be quantitative, stability of ratios between host-specific markers in the environment must be established. In addition, research is needed on the correlation between host-specific markers and pathogens, and survival of markers after waste treatments. As a result of the exclusive emphasis on FIB in legislation, monitoring has concentrated on FIB and lost sight of pathogens. A more rational approach to regulating water quality would start with available epidemiological data to identify pathogens of concern in a particular water body, and then use targeted pathogen monitoring coupled with targeted fecal source tracking to control them. Baseline monitoring of indicators would become just one tool among many.
Collapse
Affiliation(s)
- Katharine G Field
- Department of Microbiology, Oregon State University, Corvallis, OR 97331, USA.
| | | |
Collapse
|