1
|
Chen J, Zhao S, Gan Y, Wu J, Dai J, Chao HJ, Yan D. Dichlorodiphenyltrichloroethane inhibits soil ammonia oxidation by altering ammonia-oxidizing archaeal and bacterial communities. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122063. [PMID: 37330184 DOI: 10.1016/j.envpol.2023.122063] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Dichlorodiphenyltrichloroethane (DDT), a persistent organic pollutant, has known effects on natural microbes. However, its effects on soil ammonia-oxidizing microbes, significant contributors to soil ammoxidation, remain unexplored. To address this, we conducted a 30-day microcosm experiment to systematically study the effects of DDT contamination on soil ammonia oxidation and the communities of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). Our findings revealed that DDT inhibited soil ammonia oxidation in the early stage (0-6 days), but it gradually recovered after 16 days. The copy numbers of amoA gene of AOA decreased in all DDT-treated groups from 2 to 10 days, while that of AOB decreased from 2 to 6 days but increased from 6 to 10 days. DDT influenced the diversity and community composition of AOA but had no significant effect on AOB. Further, the dominant AOA communities comprised uncultured_ammonia-oxidizing_crenarchaeote and Nitrososphaera sp. JG1: while the abundance of the latter significantly and negatively correlated with NH 4+-N (P ≤ 0.001), DDT (0.001 < P ≤ 0.01), and DDD (0.01 < P ≤ 0.05) and positively correlated with NO3--N (P ≤ 0.001), that of the former significantly and positively correlated with DDT (P ≤ 0.001), DDD (P ≤ 0.001), and NH 4+-N (0.01 < P ≤ 0.05) and negatively correlated with NO3--N (P ≤ 0.001). Among AOB, the dominant group was the unclassified Nitrosomonadales in Proteobacteria, which showed significant negative correlation with NH 4+-N (0.01 < P ≤ 0.05) and significant positive correlation with NO3--N (0.001 < P ≤ 0.01). Notably, among AOB, only Nitrosospira sp. III7 exhibited significant negative correlations with DDE (0.001 < P ≤ 0.01), DDT (0.01 < P ≤ 0.05), and DDD (0.01 < P ≤ 0.05). These results indicate that DDT and its metabolites affect soil AOA and AOB, consequently affecting soil ammonia oxidation.
Collapse
Affiliation(s)
- Jing Chen
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Shuo Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yating Gan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jing Wu
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Jingcheng Dai
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Hong-Jun Chao
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China
| | - Dazhong Yan
- College of Life Science and Technology, Wuhan Polytechnic University, Wuhan, 430023, China.
| |
Collapse
|
2
|
Wang H, Li P, Liu X, Zhang J, Stein LY, Gu JD. An overlooked influence of reactive oxygen species on ammonia-oxidizing microbial communities in redox-fluctuating aquifers. WATER RESEARCH 2023; 233:119734. [PMID: 36804337 DOI: 10.1016/j.watres.2023.119734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Reactive oxygen species (ROS) are ubiquitous in O2-perturbed aquifers, but their role in shaping ammonia-oxidizing microbial communities is not clear. This study examined the dynamic responses of ammonia-oxidizing microorganisms (AOMs) in redox-fluctuating aquifers to ROS via field investigation and in-lab verification using transcriptomes/ metatranscriptome and RT-qPCR. Ammonia-oxidizing archaea (AOA) dominated recharge aquifers with lower ROS levels, whereas ammonia-oxidizing bacteria (AOB) and heterotrophic nitrifying aerobic bacteria (HNB) predominated in discharge areas with higher ROS levels. Similar succession in AOM enrichments was found in that the dominant AOMs changed from AOA Nitrosopumilus to AOB Nitrosomonas with increasing ROS. Ammonia oxidation and antioxidant capacity differed significantly among three AOM isolates exposed to ROS. ROS decreased the amoA gene expression of AOA strain Nitrososphaera viennensis PLX03, accompanied by inhibited ammonia oxidation capacity. By contrast, the catalase and superoxide dismutase activities of the AOB strain Nitrosomonas oligotropha PLL12 and HNB strain Pseudomonas aeruginosa PLL01 increased, and the antioxidant genes katG, sodA, ahpC, and ahpF were significantly upregulated. These results demonstrate that ROS exert an important influence on AOMs in redox-fluctuating aquifers. This study improves our understanding of the ecological niches of AOMs in surface/subsurface environments.
Collapse
Affiliation(s)
- Helin Wang
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430074, PR China
| | - Ping Li
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430074, PR China.
| | - Xiaohan Liu
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430074, PR China
| | - Jing Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Wuhan, 430074, PR China; Hubei Key Laboratory of Yangtze Catchment Environmental Aquatic Science, China University of Geosciences, Wuhan, 430074, PR China
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Ji-Dong Gu
- Environmental Science and Engineering, Guangdong Technion Israel Institute of Technology, Guangdong, 515063, PR China; Guangdong Provincial Key Laboratory of Materials and Technologies for Energy Conversion, Guangdong Technion - Israel Institute of Technology, Guangdong, 515063, PR China
| |
Collapse
|
3
|
Nitrogen Removal of Water and Sediment in Grass Carp Aquaculture Ponds by Mixed Nitrifying and Denitrifying Bacteria and Its Effects on Bacterial Community. WATER 2022. [DOI: 10.3390/w14121855] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Nitrification and denitrification are important for nitrogen (N) cycling in fish ponds culture, but the effects of nitrifying and denitrifying bacteria concentrations on pond water and sediments remain largely unknown. Here, we used 0, 0.15, 0.30, 0.60 mg/L different concentrations of mixed nitrifying and denitrifying bacteria to repair the pond substrate through an enclosure experiment lasting 15 days. The results showed that the purification effect of nitrifying and denitrifying bacteria was most obvious on pond nitrogen from day 4 to day 7. The optimal relative concentration was 0.60 mg/L for nitrifying and denitrifying bacteria; NH4+-N (ammonia nitrogen) decreased by 75.83%, NO2−-N (nitrite) by 93.09%, NO3−-N (nitrate) by 38.02%, and TN (total nitrogen) by 45.16% in this concentration group on pond water. In one cycle, C/N (carbon/nitrogen) ratio of both water body and bottom sediment significantly increased, but C/N ratio of water body increased more significantly than that of sediment. Water C/N ratio increased by 76.00%, and sediment C/N ratio increased by 51.96% in the 0.60 mg/L concentration group. Amplicon sequencing of pond sediment showed that the change in nitrifying and denitrifying bacterium diversity was consistent with that in water quality index. Dominant nitrifying bacteria had a relatively high percentage, with significant differences in dominant bacterium percentage across different bacterial addition groups, while dominant denitrifying bacterium percentage was not high without significant differences among different groups. The dominant species of nitrifying bacteria were, respectively, Nitrosomonas, Nitrosovibrio, Nitrosospira, and Aeromonas, and the dominant species of denitrifying bacteria were Thauera, Azoarcus, Magnetospirillum, Azospira, and Idiomarina. The correlation analyses showed an aerobic nitrification and facultative anaerobic denitrification in pond sediments. Research shows that the addition of exogenous nitrifying and denitrifying bacteria can effectively reduce the nitrogen load of pond water and sediment. At the concentration of 0.6 mg/L, the nitrogen load of pond water and sediment decreased most obviously, which had the best effect on pond purification.
Collapse
|
4
|
Sun X, Zhao J, Zhou X, Bei Q, Xia W, Zhao B, Zhang J, Jia Z. Salt tolerance-based niche differentiation of soil ammonia oxidizers. THE ISME JOURNAL 2022; 16:412-422. [PMID: 34389794 PMCID: PMC8776802 DOI: 10.1038/s41396-021-01079-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 07/20/2021] [Accepted: 07/26/2021] [Indexed: 02/03/2023]
Abstract
Ammonia oxidizers are key players in the global nitrogen cycle, yet little is known about their ecological performances and adaptation strategies for growth in saline terrestrial ecosystems. This study combined 13C-DNA stable-isotope probing (SIP) microcosms with amplicon and shotgun sequencing to reveal the composition and genomic adaptations of active ammonia oxidizers in a saline-sodic (solonetz) soil with high salinity and pH (20.9 cmolc exchangeable Na+ kg-1 soil and pH 9.64). Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) exhibited strong nitrification activities, although AOB performed most of the ammonia oxidation observed in the solonetz soil and in the farmland soil converted from solonetz soil. Members of the Nitrosococcus, which are more often associated with aquatic habitats, were identified as the dominant ammonia oxidizers in the solonetz soil with the first direct labeling evidence, while members of the Nitrosospira were the dominant ammonia oxidizers in the farmland soil, which had much lower salinity and pH. Metagenomic analysis of "Candidatus Nitrosococcus sp. Sol14", a new species within the Nitrosococcus lineage, revealed multiple genomic adaptations predicted to facilitate osmotic and pH homeostasis in this extreme habitat, including direct Na+ extrusion/H+ import and the ability to increase intracellular osmotic pressure by accumulating compatible solutes. Comparative genomic analysis revealed that variation in salt-tolerance mechanisms was the primary driver for the niche differentiation of ammonia oxidizers in saline-sodic soils. These results demonstrate how ammonia oxidizers can adapt to saline-sodic soil with excessive Na+ content and provide new insights on the nitrogen cycle in extreme terrestrial ecosystems.
Collapse
Affiliation(s)
- Xiangxin Sun
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- grid.15276.370000 0004 1936 8091Institute for Food and Agricultural Sciences (IFAS), Department of Microbiology & Cell Science, Fort Lauderdale Research and Education Center, University of Florida, Davie, FL USA
| | - Xue Zhou
- grid.257065.30000 0004 1760 3465College of Agricultural Science and Engineering, Hohai University, Nanjing, Jiangsu Province China
| | - Qicheng Bei
- grid.419554.80000 0004 0491 8361Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Weiwei Xia
- grid.260478.f0000 0000 9249 2313College of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, Jiangsu Province China
| | - Bingzi Zhao
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Jiabao Zhang
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| | - Zhongjun Jia
- grid.9227.e0000000119573309State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, Jiangsu Province China ,grid.410726.60000 0004 1797 8419University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Picone N, Pol A, Mesman R, van Kessel MAHJ, Cremers G, van Gelder AH, van Alen TA, Jetten MSM, Lücker S, Op den Camp HJM. Ammonia oxidation at pH 2.5 by a new gammaproteobacterial ammonia-oxidizing bacterium. THE ISME JOURNAL 2021; 15:1150-1164. [PMID: 33303933 PMCID: PMC8115276 DOI: 10.1038/s41396-020-00840-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 11/03/2020] [Accepted: 11/11/2020] [Indexed: 01/29/2023]
Abstract
Ammonia oxidation was considered impossible under highly acidic conditions, as the protonation of ammonia leads to decreased substrate availability and formation of toxic nitrogenous compounds. Recently, some studies described archaeal and bacterial ammonia oxidizers growing at pH as low as 4, while environmental studies observed nitrification at even lower pH values. In this work, we report on the discovery, cultivation, and physiological, genomic, and transcriptomic characterization of a novel gammaproteobacterial ammonia-oxidizing bacterium enriched via continuous bioreactor cultivation from an acidic air biofilter that was able to grow and oxidize ammonia at pH 2.5. This microorganism has a chemolithoautotrophic lifestyle, using ammonia as energy source. The observed growth rate on ammonia was 0.196 day-1, with a doubling time of 3.5 days. The strain also displayed ureolytic activity and cultivation with urea as ammonia source resulted in a growth rate of 0.104 day-1 and a doubling time of 6.7 days. A high ammonia affinity (Km(app) = 147 ± 14 nM) and high tolerance to toxic nitric oxide could represent an adaptation to acidic environments. Electron microscopic analysis showed coccoid cell morphology with a large amount of intracytoplasmic membrane stacks, typical of gammaproteobacterial ammonia oxidizers. Furthermore, genome and transcriptome analysis showed the presence and expression of diagnostic genes for nitrifiers (amoCAB, hao, nor, ure, cbbLS), but no nirK was identified. Phylogenetic analysis revealed that this strain belonged to a novel bacterial genus, for which we propose the name "Candidatus Nitrosacidococcus tergens" sp. RJ19.
Collapse
Affiliation(s)
- Nunzia Picone
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Arjan Pol
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Rob Mesman
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Maartje A. H. J. van Kessel
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Geert Cremers
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Antonie H. van Gelder
- grid.4818.50000 0001 0791 5666Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Theo A. van Alen
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Mike S. M. Jetten
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Sebastian Lücker
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| | - Huub J. M. Op den Camp
- grid.5590.90000000122931605Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
6
|
Shafiee RT, Diver PJ, Snow JT, Zhang Q, Rickaby REM. Marine ammonia-oxidising archaea and bacteria occupy distinct iron and copper niches. ISME COMMUNICATIONS 2021; 1:1. [PMID: 37938628 PMCID: PMC9723733 DOI: 10.1038/s43705-021-00001-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/11/2020] [Accepted: 01/06/2021] [Indexed: 12/22/2022]
Abstract
Ammonia oxidation by archaea and bacteria (AOA and AOB), is the first step of nitrification in the oceans. As AOA have an ammonium affinity 200-fold higher than AOB isolates, the chemical niche allowing AOB to persist in the oligotrophic ocean remains unclear. Here we show that marine isolates, Nitrosopumilus maritimus strain SCM1 (AOA) and Nitrosococcus oceani strain C-107 (AOB) have contrasting physiologies in response to the trace metals iron (Fe) and copper (Cu), holding potential implications for their niche separation in the oceans. A greater affinity for unchelated Fe may allow AOB to inhabit shallower, euphotic waters where ammonium supply is high, but competition for Fe is rife. In contrast to AOB, AOA isolates have a greater affinity and toxicity threshold for unchelated Cu providing additional explanation to the greater success of AOA in the marine environment where Cu availability can be highly variable. Using comparative genomics, we predict that the proteomic and metal transport basis giving rise to contrasting physiologies in isolates is widespread across phylogenetically diverse marine AOA and AOB that are not yet available in pure culture. Our results develop the testable hypothesis that ammonia oxidation may be limited by Cu in large tracts of the open ocean and suggest a relatively earlier emergence of AOB than AOA when considered in the context of evolving trace metal availabilities over geologic time.
Collapse
Affiliation(s)
- Roxana T Shafiee
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK.
| | - Poppy J Diver
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Joseph T Snow
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | - Qiong Zhang
- Department of Earth Sciences, University of Oxford, Oxfordshire, UK
| | | |
Collapse
|
7
|
Wang Y, Qin W, Jiang X, Ju F, Mao Y, Zhang A, Stahl DA, Zhang T. Seasonal Prevalence of Ammonia-Oxidizing Archaea in a Full-Scale Municipal Wastewater Treatment Plant Treating Saline Wastewater Revealed by a 6-Year Time-Series Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:2662-2673. [PMID: 33539079 DOI: 10.1021/acs.est.0c07703] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although several molecular-based studies have demonstrated the involvement of ammonia-oxidizing archaea (AOA) in ammonia oxidation in wastewater treatment plants (WWTPs), factors affecting the persistence and growth of AOA in these engineered systems have not been resolved. Here, we show a seasonal prevalence of AOA in a full-scale WWTP (Shatin, Hong Kong SAR) over a 6-year period of observation, even outnumbering ammonia-oxidizing bacteria in the seasonal peaks in 3 years, which may be due to the high bioavailable copper concentrations. Comparative analysis of three metagenome-assembled genomes of group I.1a AOA obtained from the activated sludge and 16S rRNA gene sequences recovered from marine sediments suggested that the seawater used for toilet flushing was the primary source of the WWTP AOA. A rare AOA population in the estuarine source water became transiently abundant in the WWTP with a metagenome-based relative abundance of up to 1.3% over three seasons of observation. Correlation-based network analysis revealed a robust co-occurrence relationship between these AOA and organisms potentially active in nitrite oxidation. Moreover, a strong correlation between the dominant AOA and an abundant proteobacterial organism suggested that capacity for extracellular polymeric substance production by the proteobacterium could provide a niche for AOA within bioaggregates. Together, the study highlights the importance of long-term observation in identifying biotic and abiotic factors governing population dynamics in open systems such as full-scale WWTPs.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Wei Qin
- School of Oceanography, University of Washington, Seattle 98195, Washington, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman 73019, Oklahoma, United States
| | - Xiaotao Jiang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - Feng Ju
- School of Engineering, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Yanping Mao
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
| | - Anni Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| | - David A Stahl
- Department of Civil and Environmental Engineering, University of Washington, Seattle 98195, Washington, United States
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
8
|
Wang L, Lim CK, Klotz MG. High Synteny and Sequence Identity between Genomes of Nitrosococcus oceani Strains Isolated from Different Oceanic Gyres Reveals Genome Economization and Autochthonous Clonal Evolution. Microorganisms 2020; 8:E693. [PMID: 32397339 PMCID: PMC7285500 DOI: 10.3390/microorganisms8050693] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/18/2020] [Accepted: 05/04/2020] [Indexed: 12/31/2022] Open
Abstract
The ammonia-oxidizing obligate aerobic chemolithoautotrophic gammaproteobacterium, Nitrosococcus oceani, is omnipresent in the world's oceans and as such important to the global nitrogen cycle. We generated and compared high quality draft genome sequences of N. oceani strains isolated from the Northeast (AFC27) and Southeast (AFC132) Pacific Ocean and the coastal waters near Barbados at the interface between the Caribbean Sea and the North Atlantic Ocean (C-27) with the recently published Draft Genome Sequence of N. oceani Strain NS58 (West Pacific Ocean) and the complete genome sequence of N. oceani C-107, the type strain (ATCC 19707) isolated from the open North Atlantic, with the goal to identify indicators for the evolutionary origin of the species. The genomes of strains C-107, NS58, C-27, and AFC27 were highly conserved in content and synteny, and these four genomes contained one nearly sequence-identical plasmid. The genome of strain AFC132 revealed the presence of genetic inventory unknown from other marine ammonia-oxidizing bacteria such as genes encoding NiFe-hydrogenase and a non-ribosomal peptide synthetase (NRPS)-like siderophore biosynthesis module. Comparative genome analysis in context with the literature suggests that AFC132 represents a metabolically more diverse ancestral lineage to the other strains with C-107 and NS58 potentially being the youngest. The results suggest that the N. oceani species evolved by genome economization characterized by the loss of genes encoding catabolic diversity while acquiring a higher redundancy in inventory dedicated to nitrogen catabolism, both of which could have been facilitated by their rich complements of CRISPR/Cas and Restriction Modification systems.
Collapse
Affiliation(s)
- Lin Wang
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Chee Kent Lim
- Department of Biological Sciences, University of North Carolina, 9201 University City Boulevard, Charlotte, NC 28223, USA; (L.W.); (C.K.L.)
| | - Martin G. Klotz
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, 2710 Crimson Way, Richland, WA 99354, USA
| |
Collapse
|
9
|
Bock C, Jensen M, Forster D, Marks S, Nuy J, Psenner R, Beisser D, Boenigk J. Factors shaping community patterns of protists and bacteria on a European scale. Environ Microbiol 2020; 22:2243-2260. [PMID: 32202362 DOI: 10.1111/1462-2920.14992] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 03/18/2020] [Indexed: 01/19/2023]
Abstract
Factors shaping community patterns of microorganisms are controversially discussed. Physical and chemical factors certainly limit the survival of individual taxa and maintenance of diversity. In recent years, a contribution of geographic distance and dispersal barriers to distribution patterns of protists and bacteria has been demonstrated. Organismic interactions such as competition, predation and mutualism further modify community structure and maintenance of distinct taxa. Here, we address the relative importance of these different factors in shaping protists and bacterial communities on a European scale using high-throughput sequencing data obtained from lentic freshwater ecosystems. We show that community patterns of protists are similar to those of bacteria. Our results indicate that cross-domain organismic factors are important variables with a higher influence on protists as compared with bacteria. Abiotic physical and chemical factors also contributed significantly to community patterns. The contribution of these latter factors was higher for bacteria, which may reflect a stronger biogeochemical coupling. The contribution of geographical distance was similar for both microbial groups.
Collapse
Affiliation(s)
- Christina Bock
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Manfred Jensen
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Dominik Forster
- Department of Ecology, University of Kaiserslautern, Erwin-Schrödinger-Str. 14, 67663, Kaiserslautern, Germany
| | - Sabina Marks
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Julia Nuy
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Roland Psenner
- Lake and Glacier Research, Institute of Ecology, University of Innsbruck, Technikerstrasse 25, 6020, Innsbruck, Austria
| | - Daniela Beisser
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| | - Jens Boenigk
- Biodiversity, University of Duisburg-Essen, Universitätsstr. 5, 45141, Essen, Germany
| |
Collapse
|
10
|
Taylor HB, Kurtz HD. Composition, diversity, and activity of aerobic ammonia-oxidizing Bacteria and Archaea in the intertidal sands of a grand strand South Carolina beach. Microbiologyopen 2020; 9:e1011. [PMID: 32126588 PMCID: PMC7221436 DOI: 10.1002/mbo3.1011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 01/22/2023] Open
Abstract
Aerobic ammonia oxidation to nitrite has been established as an important ecosystem process in regulating the level of nitrogen in marine ecosystems. This process is carried out by ammonia-oxidizing bacteria (AOB) within the classes Betaproteobacteria and Gammaproteobacteria and ammonia-oxidizing Archaea (AOA) from the phylum Thaumarchaeota, and the latter of which has been established as more prevalent in marine systems. This study investigated the presence, abundance, and activity of these groups of microbes at a beach near Springmaid Pier in Myrtle Beach, South Carolina, through the implementation of next generation sequencing, quantitative PCR (qPCR), and microcosm experiments to monitor activity. Sequencing analysis revealed a diverse community of ammonia-oxidizing microbes dominated by AOA classified within the family Nitrosopumilaceae, and qPCR revealed the abundance of AOA amoA genes over AOB by at least an order of magnitude in most samples. Microcosm studies indicate that the rates of potential ammonia oxidation in these communities satisfy Michaelis-Menten substrate kinetics and this process is more active at temperatures corresponding to summer months than winter. Potential rates in AOA medium were higher than that of AOB medium, indicating a potentially greater contribution of AOA to this process in this environment. In conclusion, this study provides further evidence of the dominance of AOA in these environments compared with AOB and highlights the overall efficiency of this process at turning over excess ammonium that may be present in these environments.
Collapse
Affiliation(s)
- Harrison B Taylor
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| | - Harry D Kurtz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, United States
| |
Collapse
|
11
|
Zhao MM, Chen YP, Xue LG, Fan TT. Three kinds of ammonia oxidizing microorganisms play an important role in ammonia nitrogen self-purification in the Yellow River. CHEMOSPHERE 2020; 243:125405. [PMID: 31995872 DOI: 10.1016/j.chemosphere.2019.125405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/29/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
To develop the microbial resources of the Yellow River, seven water samples were collected along the Lanzhou region of the river from upstream to downstream for testing. Analysis of various physico-chemical indexes was conducted, and key parameters influencing the water quality were selected through principal component analysis, after which the decisive factors impacting water quality were determined by correlation and regression analysis. The results indicated that (1) DO, NH3-N, NO2--N, TN, TC, As, Cr6+ and Pb were the main physico-chemical factors influencing water quality in the Lanzhou region, with NH3-N having the greatest effect. (2) Ammonia-oxidizing microorganisms [ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), and anaerobic ammonia-oxidizing bacteria (AMX)] were found to mediate the transformation of NH3-N in the studied section. AOA was the primary microbe community among the two aerobic ammonia-oxidizing microorganisms (AOA and AOB) in the Yellow River. (3) Phylogenetic analysis showed that there were some known groups, and there were still many unknown species in the water of the studied section, especially within the AMX population. (4) Correlation analysis revealed that AOA has strong adaptability to unhealthy environments, and that some environmental factors (higher concentrations of carbon, nitrogen and some heavy metals) could increase the AOA gene abundance. Overall, these results suggested there are rich ammonia-oxidizing microbial resources, especially AOA, in the Lanzhou section of the Yellow River, which have the potential for application in nitrogen sewage treatment.
Collapse
Affiliation(s)
- Meng M Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Yi-Ping Chen
- SKLLQG, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China.
| | - Lin-Gui Xue
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| | - Tao T Fan
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, China
| |
Collapse
|
12
|
Draft Genome Sequence of Nitrosococcus oceani Strain NS58, a Marine Ammonia-Oxidizing Gammaproteobacterium Isolated from Tokyo Bay Sediment. Microbiol Resour Announc 2019; 8:8/35/e00923-19. [PMID: 31467109 PMCID: PMC6715879 DOI: 10.1128/mra.00923-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
We report a draft genome sequence of Nitrosococcus oceani strain NS58, isolated from Tokyo Bay sediment. The genome sequence of strain NS58 was nearly identical (>99.99%) to those of other strains of N. oceani isolated from different ocean regions. Only nine single-nucleotide polymorphisms were identified between N. oceani ATCC 19707T and NS58. We report a draft genome sequence of Nitrosococcus oceani strain NS58, isolated from Tokyo Bay sediment. The genome sequence of strain NS58 was nearly identical (>99.99%) to those of other strains of N. oceani isolated from different ocean regions. Only nine single-nucleotide polymorphisms were identified between N. oceani ATCC 19707T and NS58.
Collapse
|
13
|
De Corte D, Paredes G, Yokokawa T, Sintes E, Herndl GJ. Differential Response of Cafeteria roenbergensis to Different Bacterial and Archaeal Prey Characteristics. MICROBIAL ECOLOGY 2019; 78:1-5. [PMID: 30448922 DOI: 10.1007/s00248-018-1293-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 11/09/2018] [Indexed: 06/09/2023]
Abstract
In the marine environment, the abundance of Bacteria and Archaea is either controlled bottom-up via nutrient availability or top-down via grazing. Heterotrophic nanoflagellates (HNF) are mainly responsible for prokaryotic grazing losses besides viral lysis. However, the grazing specificity of HNF on specific bacterial and archaeal taxa is under debate. Bacteria and Archaea might have different nutritive values and surface properties affecting the growth rates of HNF. In this study, we offered different bacterial and archaeal strains with different morphologic and physiologic characteristics to Cafeteria roenbergensis, one of the most abundant and ubiquitous species of HNF in the ocean. Two Nitrosopumilus maritimus-related strains isolated from the northern Adriatic Sea (Nitrosopumilus adriaticus, Nitrosopumilus piranensis), two Nitrosococcus strains, and two fast growing marine Bacteria (Pseudoalteromonas sp. and Marinobacter sp.) were fed to Cafeteria cultures. Cafeteria roenbergensis exhibited high growth rates when feeding on Pseudoalteromonas sp., Marinobacter sp., and Nitrosopumilus adriaticus, while the addition of the other strains resulted in minimal growth. Taken together, our data suggest that the differences in growth of Cafeteria roenbergensis associated to grazing on different thaumarchaeal and bacterial strains are likely due to the subtle metabolic, cell size, and physiological differences between different bacterial and thaumarchaeal taxa. Moreover, Nitrosopumilus adriaticus experienced a similar grazing pressure by Cafeteria roenbergensis as compared to the other strains, suggesting that other HNF may also prey on Archaea which might have important consequences on the global biogeochemical cycles.
Collapse
Affiliation(s)
- Daniele De Corte
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan.
| | - Gabriela Paredes
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Taichi Yokokawa
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Natushima 2-15, Yokosuka, Kanagawa, 237-0061, Japan
| | - Eva Sintes
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Gerhard J Herndl
- Department of Limnology and Bio-Oceanography, Center of Functional Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, PO Box 59, 1790 AB, Den Burg, The Netherlands
| |
Collapse
|
14
|
Van der Heyden C, De Mulder T, Volcke EIP, Demeyer P, Heyndrickx M, Rasschaert G. Long-term microbial community dynamics at two full-scale biotrickling filters treating pig house exhaust air. Microb Biotechnol 2019; 12:775-786. [PMID: 31106964 PMCID: PMC6559015 DOI: 10.1111/1751-7915.13417] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 03/23/2019] [Accepted: 04/06/2019] [Indexed: 11/30/2022] Open
Abstract
In this study, the microbial community structure of two full‐scale biotrickling filters treating exhaust air from a pig housing facility were evaluated using 16S metabarcoding. The effect of inoculation with activated sludge of a nearby domestic waste water treatment plant was investigated, which is a cheap procedure and easy to apply in practice. The study was performed at a three‐stage and a two‐stage full‐scale biotrickling filter; of which, only the latter was inoculated. Both biotrickling filters evolved towards a rather similar community over time, which differed from the one in the activated sludge used for inoculation. However, the bacterial population at both biotrickling filters showed small differences on the family level. A large population of heterotrophic bacteria, including denitrifying bacteria, was present in both biotrickling filters. In the non‐inoculated biotrickling filter, nitrite‐oxidizing bacteria (NOB) could not be detected, which corresponded with the incomplete nitrification leading to high nitrite accumulation observed in this system. Inoculation with the wide spectrum inoculum activated sludge had in this study a positive effect on the biotrickling filter performance (higher ammonia removal and lower nitrous oxide production). It could thus be beneficial to inoculate biotrickling filters in order to enrich NOB at the start‐up, making it easier to keep the free nitrous acid concentration low enough to not be inhibited by it.
Collapse
Affiliation(s)
- Caroline Van der Heyden
- Department of Biosystems Engineering, Ghent University, Coupure links 653, 9000, Gent, Belgium.,Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115, bus 1, 9820, Merelbeke, Belgium.,Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Thijs De Mulder
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium
| | - Eveline I P Volcke
- Department of Biosystems Engineering, Ghent University, Coupure links 653, 9000, Gent, Belgium
| | - Peter Demeyer
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Burgemeester Van Gansberghelaan 115, bus 1, 9820, Merelbeke, Belgium
| | - Marc Heyndrickx
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium.,Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820, Merelbeke, Belgium
| | - Geertui Rasschaert
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food (ILVO), Brusselsesteenweg 370, 9090, Melle, Belgium
| |
Collapse
|
15
|
Diversity and community structure of ammonia oxidizers in a marsh wetland of the northeast China. Appl Microbiol Biotechnol 2018; 102:8561-8571. [DOI: 10.1007/s00253-018-9225-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 06/21/2018] [Accepted: 07/04/2018] [Indexed: 02/04/2023]
|
16
|
Hydrothermal chimneys host habitat-specific microbial communities: analogues for studying the possible impact of mining seafloor massive sulfide deposits. Sci Rep 2018; 8:10386. [PMID: 29991752 PMCID: PMC6039533 DOI: 10.1038/s41598-018-28613-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Accepted: 06/22/2018] [Indexed: 01/17/2023] Open
Abstract
To assess the risk that mining of seafloor massive sulfides (SMS) from extinct hydrothermal vent environments has for changing the ecosystem irreversibly, we sampled SMS analogous habitats from the Kairei and the Pelagia vent fields along the Indian Ridge. In total 19.8 million 16S rRNA tags from 14 different sites were analyzed and the microbial communities were compared with each other and with publicly available data sets from other marine environments. The chimneys appear to provide habitats for microorganisms that are not found or only detectable in very low numbers in other marine habitats. The chimneys also host rare organisms and may function as a vital part of the ocean’s seed bank. Many of the reads from active and inactive chimney samples were clustered into OTUs, with low or no resemblance to known species. Since we are unaware of the chemical reactions catalyzed by these unknown organisms, the impact of this diversity loss and bio-geo-coupling is hard to predict. Given that chimney structures can be considered SMS analogues, removal of sulfide deposits from the seafloor in the Kairei and Pelagia fields will most likely alter microbial compositions and affect element cycling in the benthic regions and probably beyond.
Collapse
|
17
|
A missing link in the estuarine nitrogen cycle?: Coupled nitrification-denitrification mediated by suspended particulate matter. Sci Rep 2018; 8:2282. [PMID: 29396528 PMCID: PMC5797115 DOI: 10.1038/s41598-018-20688-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 01/23/2018] [Indexed: 11/17/2022] Open
Abstract
In estuarine and coastal ecosystems, the majority of previous studies have considered coupled nitrification-denitrification (CND) processes to be exclusively sediment based, with little focus on suspended particulate matter (SPM) in the water column. Here, we present evidence of CND processes in the water column of Hangzhou Bay, one of the largest macrotidal embayments in the world. Spearman’s correlation analysis showed that SPM was negatively correlated with nitrate (rho = −0.372, P = 0.018) and marker genes for nitrification and denitrification in the water column were detected by quantitative PCR analysis. The results showed that amoA and nir gene abundances strongly correlated with SPM (all P < 0.01) and the ratio of amoA/nir strongly correlated with nitrate (rho = −0.454, P = 0.003). Furthermore, aggregates consisting of nitrifiers and denitrifiers on SPM were also detected by fluorescence in situ hybridization. Illumina MiSeq sequencing further showed that ammonia oxidizers mainly belonged to the genus Nitrosomonas, while the potential denitrifying genera Bradyrhizobium, Comamonas, Thauera, Stenotrophomonas, Acinetobacter, Anaeromyxobacter, Sulfurimonas, Paenibacillus and Sphingobacterium showed significant correlations with SPM (all P < 0.01). This study suggests that SPM may provide a niche for CND processes to occur, which has largely been missing from our understanding of nitrogen cycling in estuarine waters.
Collapse
|
18
|
Zhu W, Wang C, Sun F, Zhao L, Dou W, Mao Z, Wu W. Overall bacterial community composition and abundance of nitrifiers and denitrifiers in a typical macrotidal estuary. MARINE POLLUTION BULLETIN 2018; 126:540-548. [PMID: 28978406 DOI: 10.1016/j.marpolbul.2017.09.062] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 09/23/2017] [Accepted: 09/26/2017] [Indexed: 06/07/2023]
Abstract
Coupled nitrogen cycling processes can alleviate the negative effects of eutrophication caused by excessive nitrogen load in estuarine ecosystems. The abundance and diversity of nitrifiers and denitrifiers across different environmental gradients were examined in the sediment of Hangzhou Bay. Quantitative PCR and Pearson's correlation analyses suggested that the bacterial ammonia-oxidizers (AOB) were the dominant phylotypes capable of ammonia oxidation, while the nirS-encoding denitrifiers predominated in the denitrification process. Simultaneously, nitrite and pH were found to be the two major factors influencing amoA and nir gene abundances, and the distribution of bacterial communities. Moreover, the ratio of nirS/AOB amoA gene abundance showed negative correlation with nitrite concentration. Fluorescence in situ hybridization further demonstrated that AOB and acetate-denitrifying cells were closely connected and formed obvious aggregates in the sediment. Together, all these results provided us a preliminary insight for coupled nitrification-denitrification processes in the sediment of Hangzhou Bay.
Collapse
Affiliation(s)
- Weijing Zhu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Cheng Wang
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Faqian Sun
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Liancheng Zhao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Wenjie Dou
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Zhihua Mao
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, State Oceanic Administration, 36 Baochu North Road, Hangzhou 310012, China
| | - Weixiang Wu
- Zhejiang Province Key Laboratory for Water Pollution Control and Environmental Safety Technology, Institute of Environmental Science and Technology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
19
|
Wang L, Li Y, Niu L, Zhang W, Zhang H, Wang L, Wang P. Response of ammonia oxidizing archaea and bacteria to decabromodiphenyl ether and copper contamination in river sediments. CHEMOSPHERE 2018; 191:858-867. [PMID: 29107227 DOI: 10.1016/j.chemosphere.2017.10.067] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 10/09/2017] [Accepted: 10/10/2017] [Indexed: 06/07/2023]
Abstract
Ammonia oxidation plays a fundamental role in river nitrogen cycling ecosystems, which is normally governed by both ammonia oxidizing archaea (AOA) and ammonia oxidizing bacteria (AOB). Co-contamination of typical emerging pollutant Polybrominated diphenyl ethers (PBDEs) and heavy metal on AOA and AOB communities in river sediments remains unknown. In this study, multiple analytical tools, including high-throughput pyrosequencing and real-time quantitative PCR (qPCR), were used to reveal the ammonia monooxygenase (AMO) activity, subunit alpha (amoA) gene abundance, and community structures of AOA and AOB in river sediments. It was found that the inhibition of AMO activities was increased with the increase of decabromodiphenyl ether (BDE 209, 1-100 mg kg-1) and copper (Cu, 50-500 mg kg-1) concentrations. Moreover, the synergic effects of BDE 209 and Cu resulted in a higher AMO activity reduction than the individual pollutant BDE 209. The AOA amoA copy number declined by 75.9% and 83.2% and AOB amoA gene abundance declined 82.8% and 90.0% at 20 and 100 mg kg-1 BDE 209 with a 100 mg kg-1 Cu co-contamination, respectively. The pyrosequencing results showed that both AOB and AOA community structures were altered, with a higher change of AOB than that of AOA. The results demonstrated that the AOB microbial community may be better adapted to BDE 209 and Cu pollution, while AOA might possess a greater capacity for stress resistance. Our study provides a better understanding of the ecotoxicological effects of heavy metal and micropollutant combined exposure on AOA and AOB in river sediments.
Collapse
Affiliation(s)
- Linqiong Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Lihua Niu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Huanjun Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Longfei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Peifang Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
20
|
Fumasoli A, Bürgmann H, Weissbrodt DG, Wells GF, Beck K, Mohn J, Morgenroth E, Udert KM. Growth of Nitrosococcus-Related Ammonia Oxidizing Bacteria Coincides with Extremely Low pH Values in Wastewater with High Ammonia Content. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:6857-6866. [PMID: 28509546 PMCID: PMC5538757 DOI: 10.1021/acs.est.7b00392] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Ammonia oxidation decreases the pH in wastewaters where alkalinity is limited relative to total ammonia. The activity of ammonia oxidizing bacteria (AOB), however, typically decreases with pH and often ceases completely in slightly acidic wastewaters. Nevertheless, nitrification at low pH has been reported in reactors treating human urine, but it has been unclear which organisms are involved. In this study, we followed the population dynamics of ammonia oxidizing organisms and reactor performance in synthetic fully hydrolyzed urine as the pH decreased over time in response to a decrease in the loading rate. Populations of the β-proteobacterial Nitrosomonas europaea lineage were abundant at the initial pH close to 6, but the growth of a possibly novel Nitrosococcus-related AOB genus decreased the pH to the new level of 2.2, challenging the perception that nitrification is inhibited entirely at low pH values, or governed exclusively by β-proteobacterial AOB or archaea. With the pH shift, nitrite oxidizing bacteria were not further detected, but nitrous acid (HNO2) was still removed through chemical decomposition to nitric oxide (NO) and nitrate. The growth of acid-tolerant γ-proteobacterial AOB should be prevented, by keeping the pH above 5.4, which is a typical pH limit for the N. europaea lineage. Otherwise, the microbial community responsible for high-rate nitrification can be lost, and strong emissions of hazardous volatile nitrogen compounds such as NO are likely.
Collapse
Affiliation(s)
- Alexandra Fumasoli
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Helmut Bürgmann
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - David G. Weissbrodt
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
- Center
for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9100 Aalborg, Denmark
- Department
of Biotechnology, Delft University of Technology, Delft, 2629 HZ, The Netherlands
| | - George F. Wells
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Department
of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Karin Beck
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 6047 Kastanienbaum, Switzerland
| | - Joachim Mohn
- Laboratory
for Air Pollution/Environmental Technology, Empa, Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland
| | - Eberhard Morgenroth
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Environmental Engineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Kai M. Udert
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Phone: +41 58 765 5360; fax: +41 58 765 5808; e-mail: ; address: Process Engineering, Überlandstrasse 133, 8600
Dübendorf, Switzerland
| |
Collapse
|
21
|
Wang L, Lim CK, Dang H, Hanson TE, Klotz MG. D1FHS, the Type Strain of the Ammonia-Oxidizing Bacterium Nitrosococcus wardiae spec. nov.: Enrichment, Isolation, Phylogenetic, and Growth Physiological Characterization. Front Microbiol 2016; 7:512. [PMID: 27148201 PMCID: PMC4830845 DOI: 10.3389/fmicb.2016.00512] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/29/2016] [Indexed: 11/30/2022] Open
Abstract
An ammonia-oxidizing bacterium, strain D1FHS, was enriched into pure culture from a sediment sample retrieved in Jiaozhou Bay, a hyper-eutrophic semi-closed water body hosting the metropolitan area of Qingdao, China. Based on initial 16S rRNA gene sequence analysis, strain D1FHS was classified in the genus Nitrosococcus, family Chromatiaceae, order Chromatiales, class Gammaproteobacteria; the 16S rRNA gene sequence with highest level of identity to that of D1FHS was obtained from Nitrosococcus halophilus Nc4(T). The average nucleotide identity between the genomes of strain D1FHS and N. halophilus strain Nc4 is 89.5%. Known species in the genus Nitrosococcus are obligate aerobic chemolithotrophic ammonia-oxidizing bacteria adapted to and restricted to marine environments. The optimum growth (maximum nitrite production) conditions for D1FHS in a minimal salts medium are: 50 mM ammonium and 700 mM NaCl at pH of 7.5 to 8.0 and at 37°C in dark. Because pertinent conditions for other studied Nitrosococcus spp. are 100-200 mM ammonium and <700 mM NaCl at pH of 7.5 to 8.0 and at 28-32°C, D1FHS is physiologically distinct from other Nitrosococcus spp. in terms of substrate, salt, and thermal tolerance.
Collapse
Affiliation(s)
- Lin Wang
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Chee Kent Lim
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
| | - Hongyue Dang
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
- Joint Research Center for Carbon Sink: The Institute of Marine Microbes and Ecospheres, Xiamen University and the Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
| | - Thomas E. Hanson
- School of Marine Science and Policy, College of Earth, Ocean, and Environment, University of DelawareNewark, DE, USA
- Delaware Biotechnology Institute, University of DelawareNewark, DE, USA
| | - Martin G. Klotz
- Evolutionary and Genomic Microbiology, Department of Biological Sciences, University of North Carolina at CharlotteCharlotte, NC, USA
- State Key Laboratory of Marine Environmental Science and College of Ocean and Earth Sciences, Xiamen UniversityXiamen, China
- Joint Research Center for Carbon Sink: The Institute of Marine Microbes and Ecospheres, Xiamen University and the Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of SciencesQingdao, China
- Evolutionary and Genomic Microbiology, Department of Biology and School of Earth and Environmental Sciences, Queens College, The City University of New YorkFlushing, NY, USA
| |
Collapse
|
22
|
Kormas KA, Pachiadaki MG, Karayanni H, Leadbetter ER, Bernhard JM, Edgcomb VP. Inter-comparison of the potentially active prokaryotic communities in the halocline sediments of Mediterranean deep-sea hypersaline basins. Extremophiles 2015; 19:949-60. [DOI: 10.1007/s00792-015-0770-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 06/28/2015] [Indexed: 11/29/2022]
|
23
|
Biological conversion of methane to liquid fuels: status and opportunities. Biotechnol Adv 2014; 32:1460-75. [PMID: 25281583 DOI: 10.1016/j.biotechadv.2014.09.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 09/01/2014] [Accepted: 09/24/2014] [Indexed: 12/21/2022]
Abstract
Methane is the main component of natural gas and biogas. As an abundant energy source, methane is crucial not only to meet current energy needs but also to achieve a sustainable energy future. Conversion of methane to liquid fuels provides energy-dense products and therefore reduces costs for storage, transportation, and distribution. Compared to thermochemical processes, biological conversion has advantages such as high conversion efficiency and using environmentally friendly processes. This paper is a comprehensive review of studies on three promising groups of microorganisms (methanotrophs, ammonia-oxidizing bacteria, and acetogens) that hold potential in converting methane to liquid fuels; their habitats, biochemical conversion mechanisms, performance in liquid fuels production, and genetic modification to enhance the conversion are also discussed. To date, methane-to-methanol conversion efficiencies (moles of methanol produced per mole methane consumed) of up to 80% have been reported. A number of issues that impede scale-up of this technology, such as mass transfer limitations of methane, inhibitory effects of H2S in biogas, usage of expensive chemicals as electron donors, and lack of native strains capable of converting methane to liquid fuels other than methanol, are discussed. Future perspectives and strategies in addressing these challenges are also discussed.
Collapse
|
24
|
Pesciaroli C, Rodelas B, Juarez-Jiménez B, Barghini P, Fenice M. Bacterial community structure of a coastal area in Kandalaksha Bay, White Sea, Russia: possible relation to tidal hydrodynamics. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0877-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
25
|
Laverock B, Tait K, Gilbert JA, Osborn AM, Widdicombe S. Impacts of bioturbation on temporal variation in bacterial and archaeal nitrogen-cycling gene abundance in coastal sediments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2014; 6:113-21. [PMID: 24596269 PMCID: PMC4208606 DOI: 10.1111/1758-2229.12115] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/11/2013] [Indexed: 05/13/2023]
Abstract
In marine environments, macrofauna living in or on the sediment surface may alter the structure, diversity and function of benthic microbial communities. In particular, microbial nitrogen (N)-cycling processes may be enhanced by the activity of large bioturbating organisms. Here, we study the effect of the burrowing mud shrimp Upogebia deltaura upon temporal variation in the abundance of genes representing key N-cycling functional guilds. The abundance of bacterial genes representing different N-cycling guilds displayed different temporal patterns in burrow sediments in comparison with surface sediments, suggesting that the burrow provides a unique environment where bacterial gene abundances are influenced directly by macrofaunal activity. In contrast, the abundances of archaeal ammonia oxidizers varied temporally but were not affected by bioturbation, indicating differential responses between bacterial and archaeal ammonia oxidizers to environmental physicochemical controls. This study highlights the importance of bioturbation as a control over the temporal variation in nitrogen-cycling microbial community dynamics within coastal sediments.
Collapse
Affiliation(s)
- B Laverock
- Plymouth Marine LaboratoryProspect Place, Plymouth, PL1 3DH, UK
- Department of Animal and Plant Sciences, University of SheffieldSheffield, S10 2TN, UK
- School of Plant Biology and the UWA Oceans Institute, University of Western AustraliaCrawley, WA, 6009, Australia
| | - K Tait
- Plymouth Marine LaboratoryProspect Place, Plymouth, PL1 3DH, UK
| | - J A Gilbert
- Argonne National Laboratory, Institute of Genomic and Systems Biology9700 South Cass Avenue, Argonne, IL, 60439, USA
- Department of Ecology and Evolution, University of Chicago5640 South Ellis Avenue, Chicago, IL, 60637, USA
| | - A M Osborn
- Department of Animal and Plant Sciences, University of SheffieldSheffield, S10 2TN, UK
- Department of Biological Sciences, University of HullHull, HU6 7RX, UK
- School of Life Sciences, University of Lincoln, Brayford PoolLincoln, LN6 7TS, UK
| | - S Widdicombe
- Plymouth Marine LaboratoryProspect Place, Plymouth, PL1 3DH, UK
| |
Collapse
|
26
|
Correlation of seasonal nitrification failure and ammonia-oxidizing community dynamics in a wastewater treatment plant treating water from a saline thermal spa. ANN MICROBIOL 2014. [DOI: 10.1007/s13213-014-0811-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
27
|
Laverock B, Kitidis V, Tait K, Gilbert JA, Osborn AM, Widdicombe S. Bioturbation determines the response of benthic ammonia-oxidizing microorganisms to ocean acidification. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120441. [PMID: 23980243 PMCID: PMC3758174 DOI: 10.1098/rstb.2012.0441] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ocean acidification (OA), caused by the dissolution of increasing concentrations of atmospheric carbon dioxide (CO2) in seawater, is projected to cause significant changes to marine ecology and biogeochemistry. Potential impacts on the microbially driven cycling of nitrogen are of particular concern. Specifically, under seawater pH levels approximating future OA scenarios, rates of ammonia oxidation (the rate-limiting first step of the nitrification pathway) have been shown to dramatically decrease in seawater, but not in underlying sediments. However, no prior study has considered the interactive effects of microbial ammonia oxidation and macrofaunal bioturbation activity, which can enhance nitrogen transformation rates. Using experimental mesocosms, we investigated the responses to OA of ammonia oxidizing microorganisms inhabiting surface sediments and sediments within burrow walls of the mud shrimp Upogebia deltaura. Seawater was acidified to one of four target pH values (pHT 7.90, 7.70, 7.35 and 6.80) in comparison with a control (pHT 8.10). At pHT 8.10, ammonia oxidation rates in burrow wall sediments were, on average, fivefold greater than in surface sediments. However, at all acidified pH values (pH ≤ 7.90), ammonia oxidation rates in burrow sediments were significantly inhibited (by 79-97%; p < 0.01), whereas rates in surface sediments were unaffected. Both bacterial and archaeal abundances increased significantly as pHT declined; by contrast, relative abundances of bacterial and archaeal ammonia oxidation (amoA) genes did not vary. This research suggests that OA could cause substantial reductions in total benthic ammonia oxidation rates in coastal bioturbated sediments, leading to corresponding changes in coupled nitrogen cycling between the benthic and pelagic realms.
Collapse
Affiliation(s)
- B Laverock
- Plymouth Marine Laboratory, Prospect Place, Plymouth PL1 3DH, UK.
| | | | | | | | | | | |
Collapse
|
28
|
Shen T, Stieglmeier M, Dai J, Urich T, Schleper C. Responses of the terrestrial ammonia-oxidizing archaeon Ca. Nitrososphaera viennensis and the ammonia-oxidizing bacterium Nitrosospira multiformis to nitrification inhibitors. FEMS Microbiol Lett 2013; 344:121-9. [PMID: 23617238 DOI: 10.1111/1574-6968.12164] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/19/2013] [Accepted: 04/22/2013] [Indexed: 01/31/2023] Open
Abstract
Nitrification inhibitors have been used for decades to improve nitrogen fertilizer utilization in farmland. However, their effect on ammonia-oxidizing Archaea (AOA) in soil is little explored. Here, we compared the impact of diverse inhibitors on nitrification activity of the soil archaeon Ca. Nitrososphaera viennensis EN76 and compared it to that of the ammonia-oxidizing bacterium (AOB) Nitrosospira multiformis. Allylthiourea, amidinothiourea, and dicyandiamide (DCD) inhibited ammonia oxidation in cultures of both N. multiformis and N. viennensis, but the effect on N. viennensis was markedly lower. In particular, the effective concentration 50 (EC50) of allylthiourea was 1000 times higher for the AOA culture. Among the tested nitrification inhibitors, DCD was the least potent against N. viennensis. Nitrapyrin had at the maximal soluble concentration only a very weak inhibitory effect on the AOB N. multiformis, but showed a moderate effect on the AOA. The antibiotic sulfathiazole inhibited the bacterium, but barely affected the archaeon. Only the NO-scavenger carboxy-PTIO had a strong inhibitory effect on the archaeon, but had little effect on the bacterium in the concentrations tested. Our results reflect the fundamental metabolic and cellular differences of AOA and AOB and will be useful for future applications of inhibitors aimed at distinguishing activities of AOA and AOB in soil environments.
Collapse
Affiliation(s)
- Tianlin Shen
- Institute of Ecology and Biodiversity, College of Life Science, Shandong University, Jinan, China
| | | | | | | | | |
Collapse
|
29
|
Li XR, Xiao YP, Ren WW, Liu ZF, Shi JH, Quan ZX. Abundance and composition of ammonia-oxidizing bacteria and archaea in different types of soil in the Yangtze River estuary. J Zhejiang Univ Sci B 2013; 13:769-82. [PMID: 23024044 DOI: 10.1631/jzus.b1200013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tidal flats are soil resources of great significance. Nitrification plays a central role in the nitrogen cycle and is often a critical first step in nitrogen removal from estuarine and coastal environments. We determined the abundance as well as composition of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in different soils during land reclamation process. The abundance of AOA was higher than that of AOB in farm land and wild land while AOA was not detected in tidal flats using real-time polymerase chain reaction (PCR). The different abundances of AOB and AOA were negatively correlated with the salinity. The diversities of AOB and AOA were also investigated using clone libraries by amplification of amoA gene. Among AOB, nearly all sequences belonged to the Nitrosomonas lineage in the initial land reclamation process, i.e., tidal flats, while both Nitrosomonas and Nitrosospira lineages were detected in later and transition phases of land reclamation process, farm land and wild land. The ratio of the numbers of sequences of Nitrosomonas and Nitrosospira lineages was positively correlated with the salinity and the net nitrification rate. As for AOA, there was no obvious correlation with the changes in the physicochemical properties of the soil. This study suggests that AOB may be more import than AOA with respect to influencing the different land reclamation process stages.
Collapse
Affiliation(s)
- Xiao-ran Li
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | | | | | | | | | | |
Collapse
|
30
|
Bustamante M, Verdejo V, Zúñiga C, Espinosa F, Orlando J, Carú M. Comparison of water availability effect on ammonia-oxidizing bacteria and archaea in microcosms of a Chilean semiarid soil. Front Microbiol 2012; 3:282. [PMID: 22973261 PMCID: PMC3433791 DOI: 10.3389/fmicb.2012.00282] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 07/18/2012] [Indexed: 11/30/2022] Open
Abstract
Water availability is the main limiting factor in arid soils; however, few studies have
examined the effects of drying and rewetting on nitrifiers from these environments. The
effect of water availability on the diversity of ammonia-oxidizing bacteria (AOB) and
archaea (AOA) from a semiarid soil of the Chilean sclerophyllous matorral was determined
by microcosm assays. The addition of water every 14 days to reach 60% of the WHC
significantly increased nitrate content in rewetted soil microcosms (p
< 0.001). This stimulation of net nitrification by water addition was inhibited by
acetylene addition at 100 Pa. The composition of AOA and AOB assemblages from the soils
microcosms was determined by clone sequencing of amoA genes
(A-amoA and B-amoA, respectively), and the 16S rRNA
genes specific for β-proteobacteria (beta-amo). Sequencing of
beta-amo genes has revealed representatives of
Nitrosomonas and Nitrosospira while
B-amoA clones consisted only of Nitrosospira
sequences. Furthermore, all clones from the archaeal amoA gene library
(A-amoA) were related to “mesophilic Crenarchaeota”
sequences (actually, reclassified as the phylum Thaumarchaeota). The effect of water
availability on both microbial assemblages structure was determined by T-RFLP profiles
using the genetic markers amoA for archaea, and beta-amo
for bacteria. While AOA showed fluctuations in some T-RFs, AOB structure remained
unchanged by water pulses. The relative abundance of AOA and AOB was estimated by the Most
Probable Number coupled to Polymerase Chain Reaction (MPN-PCR) assay. AOB was the
predominant guild in this soil and higher soil water content did not affect their
abundance, in contrast to AOA, which slightly increased under these conditions. Therefore,
these results suggest that water addition to these semiarid soil microcosms could favor
archaeal contribution to ammonium oxidation.
Collapse
Affiliation(s)
- Mauricio Bustamante
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile Santiago, Chile
| | | | | | | | | | | |
Collapse
|
31
|
Kondo K, Yoshimatsu K, Fujiwara T. Expression, and molecular and enzymatic characterization of Cu-containing nitrite reductase from a marine ammonia-oxidizing gammaproteobacterium, Nitrosococcus oceani. Microbes Environ 2012; 27:407-12. [PMID: 22641151 PMCID: PMC4103548 DOI: 10.1264/jsme2.me11310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ammonia-oxidizing bacteria (AOB) remove intracellular nitrite to prevent its toxicity by a nitrifier denitrification pathway involving two denitrifying enzymes, nitrite reductase and nitric oxide reductase. Here, a Cu-containing nitrite reductase from Nitrosococcus oceani strain NS58, a gammaproteobacterial marine AOB, was expressed in Escherichia coli and purified to homogeneity. Sequence homology analysis indicated that the nitrite reductase from N. oceani was phylogenetically closer to its counterparts from denitrifying bacteria than that of the betaproteobacterium Nitrosomonas europaea. The recombinant enzyme was a homotrimer of a 32 kDa subunit molecule. The enzyme was green in the oxidized state with absorption peaks at 455 nm and 575 nm. EPR spectroscopy indicated the presence of type 2 Cu. Molecular activities and the affinity constant for the nitrite were determined to be 1.6×10(3) s(-1) and 52 μM, respectively.
Collapse
Affiliation(s)
- Keitaro Kondo
- Department of Biological Science, Graduate School of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka 422–8529, Japan
| | | | | |
Collapse
|
32
|
Lopez-Lopez C, Martín-Pascual J, González-Martínez A, Calderón K, González-López J, Hontoria E, Poyatos JM. Influence of filling ratio and carrier type on organic matter removal in a moving bed biofilm reactor with pretreatment of electrocoagulation in wastewater treatment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2012; 47:1759-1767. [PMID: 22755522 DOI: 10.1080/10934529.2012.689223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
At present, there is great concern about limited water resources and water quality, which require a more advanced technology. The Moving Bed Biofilm Reactor (MBBR) has been shown to be an efficient technology for removal of organic matter and nutrients in industrial and urban wastewater treatment. However, there are some pollutants which are more difficult to remove by biological processes, so this process can be improved with additional physical and chemical treatments such as electrocoagulation, which appears to be a promising technology in electrochemical treatments. In this research, urban wastewater was treated in an MBBR plant with an electrocoagulation pre-treatment. K1 from AnoxKaldnes and AQWISE ABC5 from Aqwise were the carriers studied under three different filling ratios (20, 35, and 50%). The experimental pilot plant had four bioreactors with 20 L of operation volume and a common feed tank with 100 L of operation volume. The movement of the carriers was generated by aeration and stirrer systems. Organic matter removal was studied by analysis of soluble chemical oxygen demand (sCOD). The maximum organic matter removal in this MBBR system was 65.8% ± 1.4% and 78.4% ± 0.1% for K1 and Aqwise ABC5 carriers, respectively. Moreover, the bacterial diversity of the biofilm was studied by temperature-gradient gel electrophoresis (TGGE) of PCR-amplified partial 16S rRNA genes. 20 prominent TGGE bands were successfully reamplified and sequenced, being the predominant population: β-Proteobacteria, α-Proteobacteria, and Actinobacteria.
Collapse
Affiliation(s)
- C Lopez-Lopez
- Department of Civil Engineering, University of Granada, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
33
|
Diversity and abundance of ammonia-oxidizing archaea and bacteria in polluted mangrove sediment. Syst Appl Microbiol 2011; 34:513-23. [DOI: 10.1016/j.syapm.2010.11.023] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 11/15/2010] [Accepted: 11/15/2010] [Indexed: 11/24/2022]
|
34
|
Community shift of ammonia-oxidizing bacteria along an anthropogenic pollution gradient from the Pearl River Delta to the South China Sea. Appl Microbiol Biotechnol 2011; 94:247-59. [PMID: 22005744 PMCID: PMC3304064 DOI: 10.1007/s00253-011-3636-1] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2011] [Revised: 09/22/2011] [Accepted: 10/06/2011] [Indexed: 11/20/2022]
Abstract
The phylogenetic diversity and abundance of ammonia-oxidizing beta-proteobacteria (beta-AOB) was analyzed along an anthropogenic pollution gradient from the coastal Pearl River Delta to the South China Sea using the ammonia monooxygenase subunit A (amoA) gene. Along the gradient from coastal to the open ocean, the phylogenetic diversity of the dominant genus changed from Nitrosomonas to Nitrosospira, indicating the niche specificity by these two genera as both salinity and anthropogenic influence were major factors involved. The diversity of bacterial amoA gene was also variable along the gradient, with the highest in the deep-sea sediments, followed by the marshes sediments and the lowest in the coastal areas. Within the Nitrosomonas-related clade, four distinct lineages were identified including a putative new one (A5-16) from the different sites over the large geographical area. In the Nitrosospira-related clade, the habitat-specific lineages to the deep-sea and coastal sediments were identified. This study also provides strong support that Nitrosomonas genus, especially Nitrosomonas oligotropha lineage (6a) could be a potential bio-indicator species for pollution or freshwater/wastewater input into coastal environments. A suite of statistical analyses used showed that water depth and temperature were major factors shaping the community structure of beta-AOB in this study area.
Collapse
|
35
|
Hozuki T, Ohtsuka T, Arai K, Yoshimatsu K, Tanaka S, Fujiwara T. Effect of salinity on hydroxylamine oxidation in a marine ammonia-oxidizing gammaproteobacterium, Nitrosococcus oceani strain NS58: molecular and catalytic properties of tetraheme cytochrome c-554. Microbes Environ 2011; 25:95-102. [PMID: 21576859 DOI: 10.1264/jsme2.me09154] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Tetraheme cytochrome c-554 is a physiological electron acceptor of hydroxylamine oxidoreductase (HAO), a core enzyme of ammonia oxidation in chemoautotrophic nitrifiers. Here we report the purification of cytochrome c-554 from Nitrosococcus oceani strain NS58, a marine gammaproteobacterial ammonia-oxidizing bacterium. The NS58 cytochrome is a 25 kDa-protein having four hemes c. The absorption spectrum of the cytochrome showed peaks at 420 nm, 523 nm, and 554 nm, with shoulders at around 430 nm and 580 nm in the reduced state. In contrast to the highly basic counterpart from the betaproteobacterium Nitrosomonas europaea, the NS58 cytochrome c-554 was an acidic protein whose isoelectric point was 4.6. HAO was also purified, and the reaction with the NS58 cytochrome was found to be salt-tolerant. Compared with the activity observed in a non-salt solution, 60% of the activity remained in a saline concentration comparable to that of seawater.
Collapse
Affiliation(s)
- Takeshi Hozuki
- Department of Biological Science, Graduate School of Science, Shizuoka University, 836 Oh-ya, Suruga-ku, Shizuoka 422–8529, Japan
| | | | | | | | | | | |
Collapse
|
36
|
Yuasa HJ, Ushigoe A, Ball HJ. Molecular evolution of bacterial indoleamine 2,3-dioxygenase. Gene 2011; 485:22-31. [PMID: 21689736 DOI: 10.1016/j.gene.2011.06.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2011] [Revised: 05/30/2011] [Accepted: 06/03/2011] [Indexed: 12/31/2022]
Abstract
Indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) are tryptophan-degrading enzymes that catalyze the first step in L-Trp catabolism via the kynurenine pathway. In mammals, TDO is mainly expressed in the liver and primarily supplies nicotinamide adenine dinucleotide (NAD(+)). TDO is widely distributed from mammals to bacteria. Active IDO enzymes have been reported only in vertebrates and fungi. In mammals, IDO activity plays a significant role in the immune system while in fungal species, IDO is constitutively expressed and supplies NAD(+), like mammalian TDO. A search of genomic databases reveals that some bacterial species also have a putative IDO gene. A phylogenetic analysis clustered bacterial IDOs into two groups, group I or group II bacterial IDOs. The catalytic efficiencies of group I bacterial IDOs were very low and they are suspected not to contribute significantly to L-Trp metabolism. The bacterial species bearing the group I bacterial IDO are scattered across a few phyla and no phylogenetically close relationship is observed between them. This suggests that the group I bacterial IDOs might be acquired by horizontal gene transmission that occurred in each lineage independently. In contrast, group II bacterial IDOs showed rather high catalytic efficiency. Particularly, the enzymatic characteristics (K(m), V(max) and inhibitor selectivity) of the Gemmatimonas aurantiaca IDO are comparable to those of mammalian IDO1, although comparison of the IDO sequences does not suggest a close evolutionary relationship. In several bacteria, TDO and the kynureninase gene (kynU) are clustered on their chromosome suggesting that these genes could be transcribed in an operon. Interestingly, G. aurantiaca has no TDO, and the IDO is clustered with kynU on its chromosome. Although the G. aurantiaca also has NadA and NadB to synthesize a quinolinic acid (a precursor of NAD(+)) via the aspartate pathway, the high activity of the G. aurantiaca IDO flanking the kynU gene suggests its IDO has a function similar to eukaryotic enzymes.
Collapse
Affiliation(s)
- Hajime J Yuasa
- Laboratory of Biochemistry, Department of Applied Science, National University Corporation Kochi University, Japan.
| | | | | |
Collapse
|
37
|
Campbell MA, Chain PSG, Dang H, El Sheikh AF, Norton JM, Ward NL, Ward BB, Klotz MG. Nitrosococcus watsonii sp. nov., a new species of marine obligate ammonia-oxidizing bacteria that is not omnipresent in the world's oceans: calls to validate the names 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis'. FEMS Microbiol Ecol 2011; 76:39-48. [PMID: 21204874 DOI: 10.1111/j.1574-6941.2010.01027.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Local associations between anammox bacteria and obligate aerobic bacteria in the genus Nitrosococcus appear to be significant for ammonia oxidation in oxygen minimum zones. The literature on the genus Nitrosococcus in the Chromatiaceae family of purple sulfur bacteria (Gammaproteobacteria, Chromatiales) contains reports on four described species, Nitrosococcus nitrosus, Nitrosococcus oceani, 'Nitrosococcus halophilus' and 'Nitrosomonas mobilis', of which only N. nitrosus and N. oceani are validly published names and only N. oceani is omnipresent in the world's oceans. The species 'N. halophilus' with Nc4(T) as the type strain was proposed in 1990, but the species is not validly published. Phylogenetic analyses of signature genes, growth-physiological studies and an average nucleotide identity analysis between N. oceani ATCC19707(T) (C-107, Nc9), 'N. halophilus' strain Nc4(T) and Nitrosococcus sp. strain C-113 revealed that a proposal for a new species is warranted. Therefore, the provisional taxonomic assignment Nitrosococcus watsonii is proposed for Nitrosococcus sp. strain C-113(T) . Sequence analysis of Nitrosococcus haoAB signature genes detected in cultures enriched from Jiaozhou Bay sediments (China) identified only N. oceani-type sequences, suggesting that different patterns of distribution in the environment correlate with speciation in the genus Nitrosococcus.
Collapse
Affiliation(s)
- Mark A Campbell
- Evolutionary and Genomic Microbiology Laboratory, Department of Biology, University of Louisville, Louisville, KY 40292, USA
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Chain PS, Xie G, Starkenburg SR, Scholz MB, Beckloff N, Lo CC, Davenport KW, Reitenga KG, Daligault HE, Detter JC, Freitas TA, Gleasner CD, Green LD, Han CS, McMurry KK, Meincke LJ, Shen X, Zeytun A. Genomics for Key Players in the N Cycle. Methods Enzymol 2011; 496:289-318. [DOI: 10.1016/b978-0-12-386489-5.00012-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
39
|
Santoro AE, Casciotti KL, Francis CA. Activity, abundance and diversity of nitrifying archaea and bacteria in the central California Current. Environ Microbiol 2010; 12:1989-2006. [PMID: 20345944 DOI: 10.1111/j.1462-2920.2010.02205.x] [Citation(s) in RCA: 183] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A combination of stable isotope and molecular biological approaches was used to determine the activity, abundance and diversity of nitrifying organisms in the central California Current. Using (15)NH(4)(+) incubations, nitrification was detectable in the upper water column down to 500 m; maximal rates were observed just below the euphotic zone. Crenarchaeal and betaproteobacterial ammonia monooxygenase subunit A genes (amoA), and 16S ribosomal RNA (rRNA) genes of Marine Group I Crenarchaeota and a putative nitrite-oxidizing genus, Nitrospina, were quantified using quantitative PCR. Crenarchaeal amoA abundance ranged from three to six genes ml(-1) in oligotrophic surface waters to > 8.7 x 10(4) genes ml(-1) just below the core of the California Current at 200 m depth. Bacterial amoA abundance was lower than archaeal amoA and ranged from below detection levels to 400 genes ml(-1). Nitrification rates were not directly correlated to bacterial or archaeal amoA abundance. Archaeal amoA and Marine Group I crenarchaeal 16S rRNA gene abundances were correlated with Nitrospina 16S rRNA gene abundance at all stations, indicating that similar factors may control the distribution of these two groups. Putatively shallow water-associated archaeal amoA types ('Cluster A') decreased in relative abundance with depth, while a deep water-associated amoA type ('Cluster B') increased with depth. Although some Cluster B amoA sequences were found in surface waters, expressed amoA gene sequences were predominantly from Cluster A. Cluster B amoA transcripts were detected between 100 and 500 m depths, suggesting an active role in ammonia oxidation in the mesopelagic. Expression of marine Nitrosospira-like bacterial amoA genes was detected throughout the euphotic zone down to 200 m. Natural abundance stable isotope ratios (delta(15)N and delta(18)O) in nitrate (NO(3)(-)) and nitrous oxide (N(2)O) were used to evaluate the importance of nitrification over longer time scales. Using an isotope mass balance model, we calculate that nitrification could produce between 0.45 and 2.93 micromol m(-2) day(-1) N(2)O in the central California Current, or approximately 1.5-4 times the local N(2)O flux from deep water.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| | | | | |
Collapse
|
40
|
Lam P, Cowen JP, Jones RD. Autotrophic ammonia oxidation in a deep-sea hydrothermal plume. FEMS Microbiol Ecol 2009; 47:191-206. [PMID: 19712334 DOI: 10.1016/s0168-6496(03)00256-3] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Direct evidence for autotrophic ammonia oxidation is documented for the first time in a deep-sea hydrothermal plume. Elevated NH(4) (+) concentrations of up to 341+/-136 nM were recorded in the plume core at Main Endeavour Field, Juan de Fuca Ridge. This fueled autotrophic ammonia oxidation rates as high as 91 nM day(-1), or 92% of the total net NH(4) (+) removal. High abundance of ammonia-oxidizing bacteria was detected using fluorescence in situ hybridization. Ammonia-oxidizing bacteria within the plume core (1.0-1.4x10(4) cells ml(-1)) accounted for 7.0-7.5% of the total microbial community, and were at least as abundant as methanotrophs. Ammonia-oxidizing bacteria were a substantial component of the particle-associated communities (up to 51%), with a predominance of the r-strategist Nitrosomonas-like cells. In situ chemolithoautotrophic organic carbon production via ammonia oxidation may yield 3.9-18 mg C m(-2) day(-1) within the plume directly over Main Endeavour Field. This rate was comparable to that determined for methane oxidation in a previous study, or at least four-fold greater than the flux of photosynthetic carbon reaching plume depths measured in another study. Hence, autotrophic ammonia oxidation in the neutrally buoyant hydrothermal plume is significant to both carbon and nitrogen cycling in the deep-sea water column at Endeavour, and represents another important link between seafloor hydrothermal systems and deep-sea biogeochemistry.
Collapse
Affiliation(s)
- Phyllis Lam
- Department of Oceanography, University of Hawaii, Honolulu, 96822, USA.
| | | | | |
Collapse
|
41
|
Molina-Muñoz M, Poyatos JM, Sánchez-Peinado M, Hontoria E, González-López J, Rodelas B. Microbial community structure and dynamics in a pilot-scale submerged membrane bioreactor aerobically treating domestic wastewater under real operation conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2009; 407:3994-4003. [PMID: 19394070 DOI: 10.1016/j.scitotenv.2009.03.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Revised: 03/17/2009] [Accepted: 03/22/2009] [Indexed: 05/27/2023]
Abstract
A pilot scale submerged ultra-filtration membrane bioreactor (MBR) was used for the aerobic treatment of domestic wastewater over 9 months of year 2006 (28th March to 21st December). The MBR was installed at a municipal wastewater facility (EMASAGRA, Granada, Spain) and was fed with real wastewater. The experimental work was divided in 4 stages run under different sets of operation conditions. Operation parameters (total and volatile suspended solids, dissolved oxygen concentration) and environmental variables (temperature, pH, COD and BOD(5) of influent water) were daily monitored. In all the experiments conducted, the MBR generated an effluent of optimal quality complying with the requirements of the European Law (91/271/CEE 1991). A cultivation-independent approach (polymerase chain reaction-temperature gradient gel electrophoresis, PCR-TGGE) was used to analyze changes in the structure of the bacterial communities in the sludge. Cluster analysis of TGGE profiles demonstrated significant differences in community structure related to variations of the operation parameters and environmental factors. Canonical correspondence analysis (CCA) suggested that temperature, hydraulic retention time and concentration of volatile suspended solids were the factors mostly influencing community structure. 23 prominent TGGE bands were successfully reamplified and sequenced, allowing gaining insight into the identities of predominantly present bacterial populations in the sludge. Retrieved partial 16S-rRNA gene sequences were mostly related to the alpha-Proteobacteria, beta-Proteobacteria and gamma-Proteobacteria classes. The community established in the MBR in each of the four stages of operation significantly differed in species composition and the sludge generated displayed dissimilar rates of mineralization, but these differences did not influence the performance of the bioreactor (quality of the permeate). These data indicate that the flexibility of the bacterial community in the sludge and its ability to get adapted to environmental changes play an important role for the stable performance of MBRs.
Collapse
Affiliation(s)
- M Molina-Muñoz
- Institute of Water Research, University of Granada, Granada, Spain
| | | | | | | | | | | |
Collapse
|
42
|
Humbert JF, Dorigo U, Cecchi P, Le Berre B, Debroas D, Bouvy M. Comparison of the structure and composition of bacterial communities from temperate and tropical freshwater ecosystems. Environ Microbiol 2009; 11:2339-50. [PMID: 19508336 DOI: 10.1111/j.1462-2920.2009.01960.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We used a partial 16S rRNA sequencing approach to compare the structure and composition of the bacterial communities in three large, deep subalpine lakes in France with those of communities in six shallow tropical reservoirs in Burkina Faso. Despite the very different characteristics of these ecosystems, we found that their bacterial communities share the same composition in regard to the relative proportions of the different phyla, suggesting that freshwater environmental conditions lead to convergence in this composition. In the same way, we found no significant difference in the richness and diversity of the bacterial communities in France and Burkina Faso. We defined core and satellite operational taxonomic units (OTUs) (sequences sharing at least 98% identity) on the basis of their abundance and their geographical distribution. The core OTUs were found either ubiquitously or only in temperate or tropical and subtropical areas, and they contained more than 70% of all the sequences retrieved in this study. In contrast, satellite OTUs were characterized by having a more restricted geographical distribution and by lower abundance. Finally, the bacterial community composition of these freshwater ecosystems in France and Burkina Faso was markedly different, showing that the history of these ecosystems and regional environmental parameters have a greater impact on the relative abundances of the different OTUs in each bacterial community than the local environmental conditions.
Collapse
Affiliation(s)
- Jean-F Humbert
- Institut National de la Recherche Agronomique-UMR 42, BP 511, Thonon Cedex, France.
| | | | | | | | | | | |
Collapse
|
43
|
Mosier AC, Francis CA. Relative abundance and diversity of ammonia-oxidizing archaea and bacteria in the San Francisco Bay estuary. Environ Microbiol 2008; 10:3002-16. [DOI: 10.1111/j.1462-2920.2008.01764.x] [Citation(s) in RCA: 304] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
El Sheikh AF, Klotz MG. Ammonia-dependent differential regulation of the gene cluster that encodes ammonia monooxygenase inNitrosococcus oceaniATCC 19707. Environ Microbiol 2008; 10:3026-35. [DOI: 10.1111/j.1462-2920.2008.01766.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
45
|
Molecular analysis of enrichment cultures of ammonia oxidizers from the Salar de Huasco, a high altitude saline wetland in northern Chile. Extremophiles 2008; 12:405-14. [PMID: 18305895 PMCID: PMC2757604 DOI: 10.1007/s00792-008-0146-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2007] [Accepted: 01/22/2008] [Indexed: 11/25/2022]
Abstract
We analyzed enrichment cultures of ammonia-oxidizing bacteria (AOB) collected from different areas of Salar de Huasco, a high altitude, saline, pH-neutral water body in the Chilean Altiplano. Samples were inoculated into mineral media with 10 mM NH4+ at five different salt concentrations (10, 200, 400, 800 and 1,400 mM NaCl). Low diversity (up to three phylotypes per enrichment) of beta-AOB was detected using 16S rDNA and amoA clone libraries. Growth of beta-AOB was only recorded in a few enrichment cultures and varied according to site or media salinity. In total, five 16S rDNA and amoA phylotypes were found which were related to Nitrosomonas europaea/Nitrosococcus mobilis, N. marina and N. communis clusters. Phylotype 1-16S was 97% similar with N. halophila, previously isolated from Mongolian soda lakes, and phylotypes from amoA sequences were similar with yet uncultured beta-AOB from different biofilms. Sequences related to N. halophila were frequently found at all salinities. Neither gamma-AOB nor ammonia-oxidizing Archaea were recorded in these enrichment cultures.
Collapse
|
46
|
Santoro AE, Francis CA, de Sieyes NR, Boehm AB. Shifts in the relative abundance of ammonia-oxidizing bacteria and archaea across physicochemical gradients in a subterranean estuary. Environ Microbiol 2008; 10:1068-79. [PMID: 18266758 DOI: 10.1111/j.1462-2920.2007.01547.x] [Citation(s) in RCA: 202] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Submarine groundwater discharge to coastal waters can be a significant source of both contaminants and biologically limiting nutrients. Nitrogen cycling across steep gradients in salinity, oxygen and dissolved inorganic nitrogen in sandy 'subterranean estuaries' controls both the amount and form of nitrogen discharged to the coastal ocean. We determined the effect of these gradients on betaproteobacterial ammonia-oxidizing bacteria (beta-AOB) and ammonia-oxidizing archaea (AOA) in a subterranean estuary using the functional gene encoding ammonia monooxygenase subunit A (amoA). The abundance of beta-AOB was dramatically lower in the freshwater stations compared with saline stations, while AOA abundance remained nearly constant across the study site. This differing response to salinity altered the ratio of beta-AOB to AOA such that bacterial amoA was 30 times more abundant than crenarchaeal amoA at the oxic marine station, but nearly 10 times less abundant at the low-oxygen fresh and brackish stations. As the location of the brackish mixing zone within the aquifer shifted from landward in winter to oceanward in summer, the location of the transition from a beta-AOB-dominated to an AOA-dominated community also shifted, demonstrating the intimate link between microbial communities and coastal hydrology. Analysis of ammonia-oxidizing enrichment cultures at a range of salinities revealed that AOA persisted solely in the freshwater enrichments where they actively express amoA. Diversity (as measured by total richness) of crenarchaeal amoA was high at all stations and time points, in sharp contrast to betaproteobacterial amoA for which only two sequence types were found. These results offer new insights into the ecology of AOA and beta-AOB by elucidating conditions that may favour the numerical dominance of beta-AOB over AOA in coastal sediments.
Collapse
Affiliation(s)
- Alyson E Santoro
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA 94305, USA.
| | | | | | | |
Collapse
|
47
|
Molecular and biogeochemical evidence for ammonia oxidation by marine Crenarchaeota in the Gulf of California. ISME JOURNAL 2008; 2:429-41. [PMID: 18200070 DOI: 10.1038/ismej.2007.118] [Citation(s) in RCA: 228] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nitrification plays an important role in marine biogeochemistry, yet efforts to link this process to the microorganisms that mediate it are surprisingly limited. In particular, ammonia oxidation is the first and rate-limiting step of nitrification, yet ammonia oxidation rates and the abundance of ammonia-oxidizing bacteria (AOB) have rarely been measured in tandem. Ammonia oxidation rates have not been directly quantified in conjunction with ammonia-oxidizing archaea (AOA), although mounting evidence indicates that marine Crenarchaeota are capable of ammonia oxidation, and they are among the most abundant microbial groups in the ocean. Here, we have directly quantified ammonia oxidation rates by 15N labeling, and AOA and AOB abundances by quantitative PCR analysis of ammonia monooxygenase subunit A (amoA) genes, in the Gulf of California. Based on markedly different archaeal amoA sequence types in the upper water column (60 m) and oxygen minimum zone (OMZ; 450 m), novel amoA PCR primers were designed to specifically target and quantify 'shallow' (group A) and 'deep' (group B) clades. These primers recovered extensive variability with depth. Within the OMZ, AOA were most abundant where nitrification may be coupled to denitrification. In the upper water column, group A tracked variations in nitrogen biogeochemistry with depth and between basins, whereas AOB were present in relatively low numbers or undetectable. Overall, 15NH4+ oxidation rates were remarkably well correlated with AOA group A amoA gene copies (r2=0.90, P<0.001), and with 16S rRNA gene copies from marine Crenarchaeota (r2=0.85, P<0.005). These findings represent compelling evidence for an archaeal role in oceanic nitrification.
Collapse
|
48
|
|
49
|
Arp DJ, Chain PSG, Klotz MG. The impact of genome analyses on our understanding of ammonia-oxidizing bacteria. Annu Rev Microbiol 2007; 61:503-28. [PMID: 17506671 DOI: 10.1146/annurev.micro.61.080706.093449] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The availability of whole-genome sequences for ammonia-oxidizing bacteria (AOB) has led to dramatic increases in our understanding of these environmentally important microorganisms. Their genomes are smaller than many other members of the proteobacteria and may indicate genome reductions consistent with their limited lifestyle. The genomes have a surprising level of gene repetition including genes for ammonia catabolism, iron acquisition, and insertion sequences. The gene profiles reveal limited genes for catabolism and transport of complex organic compounds, but complete pathways for some other compounds. This led to the observation of chemolithoheterotrophic growth of Nitrosomonas europaea. Genes for sucrose synthesis/degradation were identified. The core metabolic module of aerobic ammonia oxidation, the extraction of electrons from hydroxylamine to generate proton-motive force and reductant, has evolutionary roots in the denitrification inventory of anaerobic sulfur-dependent bacteria. The extension by ammonia monooxygenase provides a mechanism to feed this module using ammonia and O(2).
Collapse
Affiliation(s)
- Daniel J Arp
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon 97331, USA.
| | | | | |
Collapse
|
50
|
Schmid MC, Risgaard-Petersen N, van de Vossenberg J, Kuypers MMM, Lavik G, Petersen J, Hulth S, Thamdrup B, Canfield D, Dalsgaard T, Rysgaard S, Sejr MK, Strous M, den Camp HJMO, Jetten MSM. Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. Environ Microbiol 2007; 9:1476-84. [PMID: 17504485 DOI: 10.1111/j.1462-2920.2007.01266.x] [Citation(s) in RCA: 262] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Laboratory and field studies have indicated that anaerobic ammonium oxidation (anammox) is an important process in the marine nitrogen cycle. In this study 11 additional anoxic marine sediment and water column samples were studied to substantiate this claim. In a combined approach using the molecular methods, polymerase chain reaction (PCR), qualitative and quantitative fluorescence in situ hybridization (FISH), as well as (15)N stable isotope activity measurements, it was shown that anammox bacteria were present and active in all samples investigated. The anammox activity measured in the sediment samples ranged from 0.08 fmol cell(-1) day(-1) N(2) in the Golfo Dulce (Pacific Ocean, Costa Rica) sediment to 0.98 fmol cell(-1) day(-1) N(2) in the Gullmarsfjorden (North Sea, Sweden) sediment. The percentage of anammox cell of the total population (stained with DAPI) as assessed by quantitative FISH was highest in the Barents Sea (9% +/- 4%) and in most of the samples well over 2%. Fluorescence in situ hybridization and phylogenetic analysis of the PCR products derived from the marine samples indicated the exclusive presence of members of the Candidatus'Scalindua' genus. This study showed the ubiquitous presence of anammox bacteria in anoxic marine ecosystems, supporting previous observations on the importance of anammox for N cycling in marine environments.
Collapse
MESH Headings
- Anaerobiosis
- Bacteria, Anaerobic/classification
- Bacteria, Anaerobic/metabolism
- Bacteria, Anaerobic/physiology
- DNA, Bacterial/chemistry
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/isolation & purification
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Oxidation-Reduction
- Quaternary Ammonium Compounds/metabolism
- RNA, Ribosomal, 16S/analysis
- RNA, Ribosomal, 16S/genetics
- Seawater/chemistry
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- Markus C Schmid
- Department of Microbiology, IWWR, Radboud University Nijmegen, Toernooiveld 1, NL-6525 ED Nijmegen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|