1
|
Hiron A, Melet M, Guerry C, Dubois I, Rong V, Gilot P. Characterization of galactose catabolic pathways in Streptococcus agalactiae and identification of a major galactose: phosphotransferase importer. J Bacteriol 2024; 206:e0015524. [PMID: 39297619 PMCID: PMC11500514 DOI: 10.1128/jb.00155-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 09/06/2024] [Indexed: 10/25/2024] Open
Abstract
We identified and characterized genomic regions of Streptococcus agalactiae that are involved in the Leloir and the tagatose-6-phosphate pathways for D-galactose catabolism. The accumulation of mutations in genes coding the Leloir pathway and the absence of these genes in a significant proportion of the strains suggest that this pathway may no longer be necessary for S. agalactiae and is heading toward extinction. In contrast, a genomic region containing genes coding for intermediates of the tagatose-6-phosphate pathway, a Gat family PTS transporter, and a DeoR/GlpR family regulator is present in the vast majority of strains. By deleting genes that code for intermediates of each of these two pathways in three selected strains, we demonstrated that the tagatose-6-phosphate pathway is their sole route for galactose catabolism. Furthermore, we showed that the Gat family PTS transporter acts as the primary importer of galactose in S. agalactiae. Finally, we proved that the DeoR/GlpR family regulator is a repressor of the tagatose-6-phosphate pathway and that galactose triggers the induction of this biochemical mechanism.IMPORTANCES. agalactiae, a significant pathogen for both humans and animals, encounters galactose and galactosylated components within its various ecological niches. We highlighted the capability of this bacterium to metabolize D-galactose and showed the role of the tagatose-6-phosphate pathway and of a PTS importer in this biochemical process. Since S. agalactiae relies on carbohydrate fermentation for energy production, its ability to uptake and metabolize D-galactose could enhance its persistence and its competitiveness within the microbiome.
Collapse
Affiliation(s)
- Aurelia Hiron
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Morgane Melet
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Capucine Guerry
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Ilona Dubois
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Vanessa Rong
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| | - Philippe Gilot
- ISP, Bactéries et Risque Materno-Foetal, Université de Tours, INRAE, Tours, France
| |
Collapse
|
2
|
Kareem BO, Gazioglu O, Mueller Brown K, Habtom M, Glanville DG, Oggioni MR, Andrew PW, Ulijasz AT, Hiller NL, Yesilkaya H. Environmental and genetic regulation of Streptococcus pneumoniae galactose catabolic pathways. Nat Commun 2024; 15:5171. [PMID: 38886409 PMCID: PMC11183247 DOI: 10.1038/s41467-024-49619-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
Efficient utilization of nutrients is crucial for microbial survival and virulence. The same nutrient may be utilized by multiple catabolic pathways, indicating that the physical and chemical environments for induction as well as their functional roles may differ. Here, we study the tagatose and Leloir pathways for galactose catabolism of the human pathogen Streptococcus pneumoniae. We show that galactose utilization potentiates pneumococcal virulence, the induction of galactose catabolic pathways is influenced differentially by the concentration of galactose and temperature, and sialic acid downregulates galactose catabolism. Furthermore, the genetic regulation and in vivo induction of each pathway differ, and both galactose catabolic pathways can be turned off with a galactose analogue in a substrate-specific manner, indicating that galactose catabolic pathways can be potential drug targets.
Collapse
Affiliation(s)
- Banaz O Kareem
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Basic Medical Sciences, College of Medicine, University of Sulaimani, Sulaimani, Iraq
| | - Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Karina Mueller Brown
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - David G Glanville
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - Marco R Oggioni
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
- Department of Pharmacy and Biotechnology, Bologna, Italy
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Andrew T Ulijasz
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL, USA
| | - N Luisa Hiller
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK.
| |
Collapse
|
3
|
Yousif D, Wu Y, Gonzales AA, Mathieu C, Zeng Y, Sample L, Terando S, Li T, Xiao J. Anti-Cariogenic Effects of S. cerevisiae and S. boulardii in S. mutans-C. albicans Cross-Kingdom In Vitro Models. Pharmaceutics 2024; 16:215. [PMID: 38399269 PMCID: PMC10891968 DOI: 10.3390/pharmaceutics16020215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 01/22/2024] [Accepted: 01/24/2024] [Indexed: 02/25/2024] Open
Abstract
Despite the well-documented health benefits of the probiotic Saccharomyces, its application in oral health has not been comprehensively assessed. Dental caries is a transmissible disease initiated by acid production of cariogenic bacteria and yeast, such as Streptococcus mutans and Candida albicans, on tooth enamel and followed by subsequent enamel demineralization. Here, we investigated the effect of two Saccharomyces strains (Saccharomyces boulardii and Saccharomyces cerevisiae) on S. mutans-C. albicans cross-kingdom interactions using a cariogenic planktonic model. Viable cells, pH changes, and gene expression were measured. S. cerevisiae and S. boulardii inhibited the growth of C. albicans in dual- and multi-species conditions at 4, 6, and 20 h. Saccharomyces also inhibited C. albicans hyphal formation. Furthermore, Saccharomyces reduced the acidity of the culture medium, which usually plummeted below pH 5 when S. mutans and C. albicans were present in the model. The presence of Saccharomyces maintained the culture medium above 6 even after overnight incubation, demonstrating a protective potential against dental enamel demineralization. S. boulardii significantly down-regulated S. mutans atpD and eno gene expression. Overall, our results shed light on a new promising candidate, Saccharomyces, for dental caries prevention due to its potential to create a less cariogenic environment marked by a neutral pH and reduced growth of C. albicans.
Collapse
Affiliation(s)
- Dina Yousif
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Yan Wu
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430042, China
| | - Alexandria Azul Gonzales
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Christa Mathieu
- VCU College of Health Professions, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | - Yan Zeng
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Lee Sample
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| | - Sabrina Terando
- School of Arts & Sciences, University of Rochester, Rochester, NY 14627, USA;
| | - Ting Li
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, Chongqing Medical University, Chongqing 400016, China
| | - Jin Xiao
- Eastman Institute for Oral Health, University of Rochester Medical Center, Rochester, NY 14642, USA; (D.Y.); (Y.W.); (Y.Z.); (L.S.); (T.L.)
| |
Collapse
|
4
|
Andresen S, de Mojana di Cologna N, Archer-Hartmann S, Rogers AM, Samaddar S, Ganguly T, Black IM, Glushka J, Ng KKS, Azadi P, Lemos JA, Abranches J, Szymanski CM. Involvement of the Streptococcus mutans PgfE and GalE 4-epimerases in protein glycosylation, carbon metabolism, and cell division. Glycobiology 2023; 33:245-259. [PMID: 36637425 PMCID: PMC10114643 DOI: 10.1093/glycob/cwad004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 01/14/2023] Open
Abstract
Streptococcus mutans is a key pathogen associated with dental caries and is often implicated in infective endocarditis. This organism forms robust biofilms on tooth surfaces and can use collagen-binding proteins (CBPs) to efficiently colonize collagenous substrates, including dentin and heart valves. One of the best characterized CBPs of S. mutans is Cnm, which contributes to adhesion and invasion of oral epithelial and heart endothelial cells. These virulence properties were subsequently linked to post-translational modification (PTM) of the Cnm threonine-rich repeat region by the Pgf glycosylation machinery, which consists of 4 enzymes: PgfS, PgfM1, PgfE, and PgfM2. Inactivation of the S. mutans pgf genes leads to decreased collagen binding, reduced invasion of human coronary artery endothelial cells, and attenuated virulence in the Galleria mellonella invertebrate model. The present study aimed to better understand Cnm glycosylation and characterize the predicted 4-epimerase, PgfE. Using a truncated Cnm variant containing only 2 threonine-rich repeats, mass spectrometric analysis revealed extensive glycosylation with HexNAc2. Compositional analysis, complemented with lectin blotting, identified the HexNAc2 moieties as GlcNAc and GalNAc. Comparison of PgfE with the other S. mutans 4-epimerase GalE through structural modeling, nuclear magnetic resonance, and capillary electrophoresis demonstrated that GalE is a UDP-Glc-4-epimerase, while PgfE is a GlcNAc-4-epimerase. While PgfE exclusively participates in protein O-glycosylation, we found that GalE affects galactose metabolism and cell division. This study further emphasizes the importance of O-linked protein glycosylation and carbohydrate metabolism in S. mutans and identifies the PTM modifications of the key CBP, Cnm.
Collapse
Affiliation(s)
- Silke Andresen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | - Ashley M Rogers
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Sandip Samaddar
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Tridib Ganguly
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Ian M Black
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - John Glushka
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Kenneth K S Ng
- Department of Chemistry and Biochemistry, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - José A Lemos
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Jacqueline Abranches
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32603, USA
| | - Christine M Szymanski
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
- Department of Microbiology and Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
5
|
Li K, Wang J, Du N, Sun Y, Sun Q, Yin W, Li H, Meng L, Liu X. Salivary microbiome and metabolome analysis of severe early childhood caries. BMC Oral Health 2023; 23:30. [PMID: 36658579 PMCID: PMC9850820 DOI: 10.1186/s12903-023-02722-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Severe early childhood caries (SECC) is an inflammatory disease with complex pathology. Although changes in the oral microbiota and metabolic profile of patients with SECC have been identified, the salivary metabolites and the relationship between oral bacteria and biochemical metabolism remains unclear. We aimed to analyse alterations in the salivary microbiome and metabolome of children with SECC as well as their correlations. Accordingly, we aimed to explore potential salivary biomarkers in order to gain further insight into the pathophysiology of dental caries. METHODS We collected 120 saliva samples from 30 children with SECC and 30 children without caries. The microbial community was identified through 16S ribosomal RNA (rRNA) gene high-throughput sequencing. Additionally, we conducted non-targeted metabolomic analysis through ultra-high-performance liquid chromatography combined with quadrupole time-of-flight mass spectrometry to determine the relative metabolite levels and their correlation with the clinical caries status. RESULTS There was a significant between-group difference in 8 phyla and 32 genera in the microbiome. Further, metabolomic and enrichment analyses revealed significantly altered 32 salivary metabolites in children with dental caries, which involved pathways such as amino acid metabolism, pyrimidine metabolism, purine metabolism, ATP-binding cassette transporters, and cyclic adenosine monophosphate signalling pathway. Moreover, four in vivo differential metabolites (2-benzylmalate, epinephrine, 2-formaminobenzoylacetate, and 3-Indoleacrylic acid) might be jointly applied as biomarkers (area under the curve = 0.734). Furthermore, the caries status was correlated with microorganisms and metabolites. Additionally, Spearman's correlation analysis of differential microorganisms and metabolites revealed that Veillonella, Staphylococcus, Neisseria, and Porphyromonas were closely associated with differential metabolites. CONCLUSION This study identified different microbial communities and metabolic profiles in saliva, which may be closely related to caries status. Our findings could inform future strategies for personalized caries prevention, detection, and treatment.
Collapse
Affiliation(s)
- Kai Li
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Jinmei Wang
- grid.256883.20000 0004 1760 8442Department of Prosthodontics, Hospital of Stomatology Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Ning Du
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Yanjie Sun
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Qi Sun
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Weiwei Yin
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Huiying Li
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| | - Lingqiang Meng
- grid.256883.20000 0004 1760 8442Department of Prosthodontics, Hospital of Stomatology Hebei Medical University, Hebei Medical University, Shijiazhuang, China
| | - Xuecong Liu
- grid.256883.20000 0004 1760 8442Department of Stomatology, Children’s Hospital of Hebei Province, Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
6
|
Guo M, Yang K, Zhou Z, Chen Y, Zhou Z, Chen P, Huang R, Wang X. Inhibitory effects of Stevioside on Streptococcus mutans and Candida albicans dual-species biofilm. Front Microbiol 2023; 14:1128668. [PMID: 37089575 PMCID: PMC10113668 DOI: 10.3389/fmicb.2023.1128668] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 03/17/2023] [Indexed: 04/25/2023] Open
Abstract
Introduction Streptococcus mutans is the most prevalent biofilm-forming pathogen in dental caries, while Candida albicans is often detected in the presence of S. mutans. Methods We aimed to evaluate the anti-caries effect of stevioside in medium trypticase soy broth (TSB) with or without sucrose supplementation compared with the same sweetness sucrose and xylitol in a dual-species model of S. mutans and C. albicans, based on planktonic growth, crystal violet assay, acid production, biofilm structural imaging, confocal laser scanning microscopy, and RNA sequencing. Results Our results showed that compared with sucrose, stevioside significantly inhibited planktonic growth and acid production, changed the structure of the mixed biofilm, and reduced the viability of biofilm and the production of extracellular polysaccharides in dual-species biofilm. Through RNA-seq, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway impact analysis showed that stevioside decreased sucrose metabolism and increased galactose and intracellular polysaccharide metabolism in S. mutans, and decreased genes related to GPI-modified proteins and secreted aspartyl proteinase (SAP) family in C. albicans. In contrast to xylitol, stevioside also inhibited the transformation of fungal morphology of C. albicans, which did not form mycelia and thus had reduced pathogenicity. Stevioside revealed a superior suppression of dual-species biofilm formation compared to sucrose and a similar anti-caries effect with xylitol. However, sucrose supplementation diminished the suppression of stevioside on S. mutans and C. albicans. Conclusions Our study is the first to confirm that stevioside has anticariogenic effects on S. mutans and C. albicans in a dual-species biofilm. As a substitute for sucrose, it may help reduce the risk of developing dental caries.
Collapse
Affiliation(s)
- Mingzhu Guo
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Kuan Yang
- Department of Orthodontics, The Affiliated Hospital of Qingdao University, Qingdao, China
- School of Stomatology, Qingdao University, Qingdao, China
| | - Zhifei Zhou
- Department of Stomatology, General Hospital of Tibet Military Region, Chinese People’s Liberation Army, Lhasa, Tibet, China
| | - Yujiang Chen
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ziye Zhou
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Peng Chen
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
| | - Ruizhe Huang
- Department of Oral Prevention, College of Stomatology, Xi’an Jiaotong University, Xi’an, China
- *Correspondence: Ruizhe Huang,
| | - Xiaojing Wang
- Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Pediatric Dentistry, School of Stomatology, The Fourth Military Medical University, Xi’an, China
- Xiaojing Wang,
| |
Collapse
|
7
|
Sun Y, Chen H, Xu M, He L, Mao H, Yang S, Qiao X, Yang D. Exopolysaccharides metabolism and cariogenesis of Streptococcus mutans biofilm regulated by antisense vicK RNA. J Oral Microbiol 2023; 15:2204250. [PMID: 37138664 PMCID: PMC10150615 DOI: 10.1080/20002297.2023.2204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
Background Streptococcus mutans (S. mutans) is a pivotal cariogenic pathogen contributing to its multiple virulence factors, one of which is synthesizing exopolysaccharides (EPS). VicK, a sensor histidine kinase, plays a major role in regulating genes associated with EPS synthesis and adhesion. Here we first identified an antisense vicK RNA (ASvicK) bound with vicK into double-stranded RNA (dsRNA). Objective This study aims to investigate the effect and mechanism of ASvicK in the EPS metabolism and cariogenesis of S. mutans. Methods The phenotypes of biofilm were detected by scanning electron microscopy (SEM), gas chromatography-mass spectrometery (GC-MS) , gel permeation chromatography (GPC) , transcriptome analysis and Western blot. Co-immunoprecipitation (Co-ip) assay and enzyme activity experiment were adopted to investigate the mechanism of ASvicK regulation. Caries animal models were developed to study the relationship between ASvicK and cariogenicity of S. mutans. Results Overexpression of ASvicK can inhibit the growth of biofilm, reduce the production of EPS and alter genes and protein related to EPS metabolism. ASvicK can adsorb RNase III to regulate vicK and affect the cariogenicity of S. mutans. Conclusions ASvicK regulates vicK at the transcriptional and post-transcriptional levels, effectively inhibits EPS synthesis and biofilm formation and reduces its cariogenicity in vivo.
Collapse
Affiliation(s)
- Yuting Sun
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hong Chen
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Mengmeng Xu
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Liwen He
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Hongchen Mao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Shiyao Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Xin Qiao
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Deqin Yang
- Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
- CONTACT Deqin Yang Department of Endodontics, Stomatological Hospital of Chongqing Medical University, Chongqing4404100, China
| |
Collapse
|
8
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
9
|
Lu Y, Zhang H, Li M, Mao M, Song J, Deng Y, Lei L, Yang Y, Hu T. The rnc gene regulates the microstructure of exopolysaccharide in the biofilm of Streptococcus mutans through the β-monosaccharides. Caries Res 2021; 55:534-545. [PMID: 34348276 DOI: 10.1159/000518462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 07/11/2021] [Indexed: 11/19/2022] Open
Affiliation(s)
- Yangyu Lu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Hongyu Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Meng Li
- Department of Pediatric Dentistry, Orange Dental Technology Co., Ltd., Shanghai, China
| | - Mengying Mao
- Shanghai Key Laboratory of Stomatology, Department of Endodontics, Ninth People's Hospital, School of Medicine, Shanghai JiaoTong University, Shanghai, China
| | - Jiaqi Song
- Department of Health Statistics, Second Military Medical University, Shanghai, China
| | - Yalan Deng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Yingming Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| | - Tao Hu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Sichuan, China
| |
Collapse
|
10
|
Hirschmann S, Gómez-Mejia A, Kohler TP, Voß F, Rohde M, Brendel M, Hammerschmidt S. The Two-Component System 09 of Streptococcus pneumoniae Is Important for Metabolic Fitness and Resistance during Dissemination in the Host. Microorganisms 2021; 9:microorganisms9071365. [PMID: 34201716 PMCID: PMC8306541 DOI: 10.3390/microorganisms9071365] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/12/2021] [Accepted: 06/18/2021] [Indexed: 11/24/2022] Open
Abstract
The two-component regulatory system 09 of Streptococcus pneumoniae has been shown to modulate resistance against oxidative stress as well as capsule expression. These data and the implication of TCS09 in cell wall integrity have been shown for serotype 2 strain D39. Other data have suggested strain-specific regulatory effects of TCS09. Contradictory data are known on the impact of TCS09 on virulence, but all have been explored using only the rr09-mutant. In this study, we have therefore deleted one or both components of the TCS09 (SP_0661 and SP_0662) in serotype 4 S. pneumoniae TIGR4. In vitro growth assays in chemically defined medium (CDM) using sucrose or lactose as a carbon source indicated a delayed growth of nonencapsulated tcs09-mutants, while encapsulated wild-type TIGR4 and tcs09-mutants have reduced growth in CDM with glucose. Using a set of antigen-specific antibodies, immunoblot analysis showed that only the pilus 1 backbone protein RrgB is significantly reduced in TIGR4ΔcpsΔhk09. Electron microscopy, adherence and phagocytosis assays showed no impact of TCS09 on the TIGR4 cell morphology and interaction with host cells. In contrast, in vivo infections and in particular competitive co-infection experiments demonstrated that TCS09 enhances robustness during dissemination in the host by maintaining bacterial fitness.
Collapse
Affiliation(s)
- Stephanie Hirschmann
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Alejandro Gómez-Mejia
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Thomas P. Kohler
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Franziska Voß
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | - Max Brendel
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
| | - Sven Hammerschmidt
- Center for Functional Genomics of Microbes, Department of Molecular Genetics and Infection Biology, Interfaculty Institute for Genetics and Functional Genomics, University of Greifswald, 17487 Greifswald, Germany; (S.H.); (A.G.-M.); (T.P.K.); (F.V.); (M.B.)
- Correspondence:
| |
Collapse
|
11
|
Quorum Sensing in Streptococcus mutans Regulates Production of Tryglysin, a Novel RaS-RiPP Antimicrobial Compound. mBio 2021; 12:mBio.02688-20. [PMID: 33727351 PMCID: PMC8092268 DOI: 10.1128/mbio.02688-20] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria interact and compete with a large community of organisms in their natural environment. Streptococcus mutans is one such organism, and it is an important member of the oral microbiota. We found that S. mutans uses a quorum-sensing system to regulate production of a novel posttranslationally modified peptide capable of inhibiting growth of several streptococcal species. The genus Streptococcus encompasses a large bacterial taxon that commonly colonizes mucosal surfaces of vertebrates and is capable of disease etiologies originating from diverse body sites, including the respiratory, digestive, and reproductive tracts. Identifying new modes of treating infections is of increasing importance, as antibiotic resistance has escalated. Streptococcus mutans is an important opportunistic pathogen that is an agent of dental caries and is capable of systemic diseases such as endocarditis. As such, understanding how it regulates virulence and competes in the oral niche is a priority in developing strategies to defend from these pathogens. We determined that S. mutans UA159 possesses a bona fide short hydrophobic peptide (SHP)/Rgg quorum-sensing system that regulates a specialized biosynthetic operon featuring a radical-SAM (S-adenosyl-l-methionine) (RaS) enzyme and produces a ribosomally synthesized and posttranslationally modified peptide (RiPP). The pairing of SHP/Rgg regulatory systems with RaS biosynthetic operons is conserved across streptococci, and a locus similar to that in S. mutans is found in Streptococcus ferus, an oral streptococcus isolated from wild rats. We identified the RaS-RiPP product from this operon and solved its structure using a combination of analytical methods; we term these RiPPs tryglysin A and B for the unusual Trp-Gly-Lys linkage. We report that tryglysins specifically inhibit the growth of other streptococci, but not other Gram-positive bacteria such as Enterococcus faecalis or Lactococcus lactis. We predict that tryglysin is produced by S. mutans in its oral niche, thus inhibiting the growth of competing species, including several medically relevant streptococci.
Collapse
|
12
|
Pan-GWAS of Streptococcus agalactiae Highlights Lineage-Specific Genes Associated with Virulence and Niche Adaptation. mBio 2020; 11:mBio.00728-20. [PMID: 32518186 PMCID: PMC7373188 DOI: 10.1128/mbio.00728-20] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
GBS is a leading cause of mortality in newborn babies in high- and low-income countries worldwide. Different strains of GBS are characterized by different degrees of virulence, where some are harmlessly carried by humans or animals and others are much more likely to cause disease.
The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host.
These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted. Streptococcus agalactiae (group B streptococcus; GBS) is a colonizer of the gastrointestinal and urogenital tracts, and an opportunistic pathogen of infants and adults. The worldwide population of GBS is characterized by clonal complexes (CCs) with different invasive potentials. CC17, for example, is a hypervirulent lineage commonly associated with neonatal sepsis and meningitis, while CC1 is less invasive in neonates and more commonly causes invasive disease in adults with comorbidities. The genetic basis of GBS virulence and the extent to which different CCs have adapted to different host environments remain uncertain. We have therefore applied a pan-genome-wide association study (GWAS) approach to 1,988 GBS strains isolated from different hosts and countries. Our analysis identified 279 CC-specific genes associated with virulence, disease, metabolism, and regulation of cellular mechanisms that may explain the differential virulence potential of particular CCs. In CC17 and CC23, for example, we have identified genes encoding pilus, quorum-sensing proteins, and proteins for the uptake of ions and micronutrients which are absent in less invasive lineages. Moreover, in CC17, carriage and disease strains were distinguished by the allelic variants of 21 of these CC-specific genes. Together our data highlight the lineage-specific basis of GBS niche adaptation and virulence. The genome sequences of almost 2,000 GBS samples isolated from both animals and humans in high- and low- income countries were analyzed using a pan-genome-wide association study approach. This allowed us to identify 279 genes which are associated with different lineages of GBS, characterized by a different virulence and preferred host. Additionally, we propose that the GBS now carried in humans may have first evolved in animals before expanding clonally once adapted to the human host. These findings are essential to help understand what is causing GBS disease and how the bacteria have evolved and are transmitted.
Collapse
|
13
|
Ryu EJ, An SJ, Sim J, Sim J, Lee J, Choi BK. Use of d-galactose to regulate biofilm growth of oral streptococci. Arch Oral Biol 2020; 111:104666. [PMID: 31955046 DOI: 10.1016/j.archoralbio.2020.104666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/12/2019] [Accepted: 01/12/2020] [Indexed: 12/31/2022]
Abstract
In the oral microbial community, commensals can compete with pathogens and reduce their colonization in the oral cavity. A substance that can inhibit harmful bacteria and enrich beneficial bacteria is required to maintain oral health. The purpose of this study was to examine the effect of d-galactose on the biofilm formation of the cariogenic bacteria Streptococcus mutans and oral commensal streptococci and to evaluate their use in solution and in paste form. Biofilms of S. mutans, Streptococcus oralis, and Streptococcus mitis were formed on saliva-coated glass slips in the absence or presence of d-galactose and evaluated by staining with 1 % crystal violet. d-Galactose significantly inhibited the biofilm formation of S. mutans at concentrations ranging from 2 μM to 200 mM but increased the biofilm formation of S. oralis and S. mitis at concentrations of 2-200 mM. d-Galactose significantly inhibited three glucosyltransferase genes, gtfB, gtfC, and gtfD. The effect of d-galactose in the form of solution and paste was evaluated using bovine teeth. Pretreatment with 100 mM d-galactose on bovine teeth resulted in significantly reduced S. mutans biofilm formation. Our results suggest that d-galactose can be a candidate substance for the development of oral hygiene products to prevent caries by inhibiting the biofilm formation of S. mutans and simultaneously increasing the biofilm formation of commensal oral streptococci.
Collapse
Affiliation(s)
- Eun-Ju Ryu
- Quorum Bio Co., Ltd, Bioresearch Center 501-1, Seoul National University, Republic of Korea
| | - Sun-Jin An
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Republic of Korea
| | - Jaehyun Sim
- Quorum Bio Co., Ltd, Bioresearch Center 501-1, Seoul National University, Republic of Korea
| | - Jun Sim
- Quorum Bio Co., Ltd, Bioresearch Center 501-1, Seoul National University, Republic of Korea
| | - Julian Lee
- Department of Bioinformatics and Life Science, Soongsil University, Seoul 06978, Republic of Korea
| | - Bong-Kyu Choi
- Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Republic of Korea.
| |
Collapse
|
14
|
Lei L, Zhang B, Mao M, Chen H, Wu S, Deng Y, Yang Y, Zhou H, Hu T. Carbohydrate Metabolism Regulated by Antisense vicR RNA in Cariogenicity. J Dent Res 2019; 99:204-213. [PMID: 31821772 DOI: 10.1177/0022034519890570] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Streptococcus mutans is a major cariogenic pathogen that resides in multispecies oral microbial biofilms. The VicRK 2-component system is crucial for bacterial adaptation, virulence, and biofilm organization and contains a global and vital response regulator, VicR. Notably, we identified an antisense vicR RNA (AS vicR) associated with an adjacent RNase III–encoding ( rnc) gene that was relevant to microRNA-size small RNAs (msRNAs). Here, we report that ASvicR overexpression significantly impeded bacterial growth, biofilm exopolysaccharide synthesis, and cariogenicity in vivo. Transcriptome analysis revealed that the AS vicR RNA mainly regulated carbohydrate metabolism. In particular, overproducing AS vicR demonstrated a reduction in galactose and glucose metabolism by monosaccharide composition analysis. The results of high-performance gel permeation chromatography revealed that the water-insoluble glucans isolated from AS vicR presented much lower molecular weights. Furthermore, direct evidence showed that total RNAs were disrupted by rnc-encoded RNase III. With the coexpression of T4 RNA ligase, putative msRNA1657, which is an rnc-related messenger RNA, was verified to bind to the 5′-UTR regions of the vicR gene. Furthermore, AS vicR regulation revealed a sponge regulatory-mediated network for msRNA associated with adjacent RNase III–encoding genes. There was an increase in AS vicR transcript levels in clinical S. mutans strains from caries-free children, while the expression of AS vicR was decreased in early childhood caries patients; this outcome may be explored as a potential strategy contributing to the management of dental caries. Taken together, our findings suggest an important role of AS vicR-mediated sponge regulation in S. mutans, indicating the characterization of lactose metabolism by a vital response regulator in cariogenicity. These findings have a number of implications and have reshaped our understanding of bacterial gene regulation from its transcriptional conception to the key roles of regulatory RNAs.
Collapse
Affiliation(s)
- L. Lei
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - B. Zhang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - M. Mao
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Endodontics, College of Stomatology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - H. Chen
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - S. Wu
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Y. Deng
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Y. Yang
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - H. Zhou
- Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - T. Hu
- State Key Laboratory of Oral Diseases, Department of Preventive Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Abstract
Streptococcus mutans is a Gram-positive bacterium that thrives under acidic conditions and is a primary cause of tooth decay (dental caries). To better understand the metabolism of S. mutans on a systematic level, we manually constructed a genome-scale metabolic model of the S. mutans type strain UA159. The model, called iSMU, contains 675 reactions involving 429 metabolites and the products of 493 genes. We validated iSMU by comparing simulations with growth experiments in defined medium. The model simulations matched experimental results for 17 of 18 carbon source utilization assays and 47 of 49 nutrient depletion assays. We also simulated the effects of single gene deletions. The model's predictions agreed with 78.1% and 84.4% of the gene essentiality predictions from two experimental data sets. Our manually curated model is more accurate than S. mutans models generated from automated reconstruction pipelines and more complete than other manually curated models. We used iSMU to generate hypotheses about the S. mutans metabolic network. Subsequent genetic experiments confirmed that (i) S. mutans catabolizes sorbitol via a sorbitol-6-phosphate 2-dehydrogenase (SMU_308) and (ii) the Leloir pathway is required for growth on complex carbohydrates such as raffinose. We believe the iSMU model is an important resource for understanding the metabolism of S. mutans and guiding future experiments.IMPORTANCE Tooth decay is the most prevalent chronic disease in the United States. Decay is caused by the bacterium Streptococcus mutans, an oral pathogen that ferments sugars into tooth-destroying lactic acid. We constructed a complete metabolic model of S. mutans to systematically investigate how the bacterium grows. The model provides a valuable resource for understanding and targeting S. mutans' ability to outcompete other species in the oral microbiome.
Collapse
|
16
|
Schoenenberger B, Kind S, Meier R, Eggert T, Obkircher M, Wohlgemuth R. Efficient biocatalytic synthesis of D-tagatose 1,6-diphosphate by LacC-catalysed phosphorylation of D-tagatose 6-phosphate. BIOCATAL BIOTRANSFOR 2019. [DOI: 10.1080/10242422.2019.1634694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | | | | | | | - Roland Wohlgemuth
- Sigma-Aldrich/Merck KGaA, Buchs, Switzerland
- Institute of Technical Biochemistry, Technical University Lodz, Lodz, Poland
| |
Collapse
|
17
|
Iskandar CF, Cailliez-Grimal C, Borges F, Revol-Junelles AM. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.03.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Shi Y, Li R, White DJ, Biesbrock AR. Stannous Fluoride Effects on Gene Expression of Streptococcus mutans and Actinomyces viscosus. Adv Dent Res 2018; 29:124-130. [PMID: 29355427 DOI: 10.1177/0022034517737027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A genome-wide transcriptional analysis was performed to elucidate the bacterial cellular response of Streptococcus mutans and Actinomyces viscosus to NaF and SnF2. The minimal inhibitory concentration (MIC) and minimal bactericidal concentration (MBC) of SnF2 were predetermined before microarray study. Gene expression profiling microarray experiments were carried out in the absence (control) and presence (experimental) of 10 ppm and 100 ppm Sn2+ (in the form of SnF2) and fluoride controls for 10-min exposures (4 biological replicates/treatment). These Sn2+ levels and treatment time were chosen because they have been shown to slow bacterial growth of S. mutans (10 ppm) and A. viscosus (100 ppm) without affecting cell viability. All data generated by microarray experiments were analyzed with bioinformatics tools by applying the following criteria: 1) a q value should be ≤0.05, and 2) an absolute fold change in transcript level should be ≥1.5. Microarray results showed SnF2 significantly inhibited several genes encoding enzymes of the galactose pathway upon a 10-min exposure versus a negative control: lacA and lacB (A and B subunits of the galactose-6-P isomerase), lacC (tagatose-6-P kinase), lacD (tagatose-1,6-bP adolase), galK (galactokinase), galT (galactose-1-phosphate uridylyltransferase), and galE (UDP-glucose 4-epimerase). A gene fruK encoding fructose-1-phosphate kinase in the fructose pathway was also significantly inhibited. Several genes encoding fructose/mannose-specific enzyme IIABC components in the phosphotransferase system (PTS) were also downregulated, as was ldh encoding lactate dehydrogenase, a key enzyme involved in lactic acid synthesis. SnF2 downregulated the transcription of most key enzyme genes involved in the galactose pathway and also suppressed several key genes involved in the PTS, which transports sugars into the cell in the first step of glycolysis.
Collapse
Affiliation(s)
- Y Shi
- 1 The Procter and Gamble Company, Beijing Technical Center, Beijing, China
| | - R Li
- 2 The Procter and Gamble Company, International Operations SA SG Branch, Singapore
| | - D J White
- 3 The Procter and Gamble Company, Mason Business Center, Mason, OH, USA
| | - A R Biesbrock
- 3 The Procter and Gamble Company, Mason Business Center, Mason, OH, USA
| |
Collapse
|
19
|
Pan Y, An H, Fu T, Zhao S, Zhang C, Xiao G, Zhang J, Zhao X, Hu G. Characterization of Streptococcus pluranimalium from a cattle with mastitis by whole genome sequencing and functional validation. BMC Microbiol 2018; 18:182. [PMID: 30419812 PMCID: PMC6233522 DOI: 10.1186/s12866-018-1327-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/29/2018] [Indexed: 11/17/2022] Open
Abstract
Background Streptococcus pluranimalium is a new member of the Streptococcus genus isolated from multiple different animal hosts. It has been identified as a pathogen associated with subclinical mastitis, valvular endocarditis and septicaemia in animals. Moreover, this bacterium has emerged as a new pathogen for human infective endocarditis and brain abscess. However, the patho-biological properties of S. pluranimalium remain virtually unknown. The aim of this study was to determine the complete genome sequence of S. pluranimalium strain TH11417 isolated from a cattle with mastitis, and to characterize its antimicrobial resistance, virulence, and carbon catabolism. Results The genome of S. pluranimalium TH11417, determined by single-molecule real-time (SMRT) sequencing, consists of 2,065,522 base pair (bp) with a G + C content of 38.65%, 2,007 predicted coding sequence (CDS), 58 transfer RNA (tRNA) genes and five ribosome RNA (rRNA) operons. It contains a novel ISSpl1 element (a memeber of the IS3 family) and a Ф11417.1 prophage that carries the mef(A), msr(D) and lnu(C) genes. Consistently, our antimicrobial susceptibility test confirmed that S. pluranimalium TH11417 was resistant to erythromycin and lincomycin. However, this strain did not show virulence in murine pneumonia (intranasal inoculation, 107 colony forming unit – CFU) and sepsis (intraperitoneal inoculation, 107 CFU) models. Additionally, this strain is able to grow with glucose, lactose or galactose as the sole carbon source, and possesses a lactose-specific phosphoenolpyruvate-dependent phosphotransferase system (PTS). Conclusions We reported the first whole genome sequence of S. pluranimalium isolated from a cattle with mastitis. It harbors a prophage carrying the mef(A), msr(D) and lnu(C) genes, and is avirulent in the murine infection model.
Collapse
Affiliation(s)
- Yushan Pan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China. .,Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Science, School of Medicine, Tsinghua University, Beijing, China
| | - Tong Fu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Shiyu Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Chengwang Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Genhui Xiao
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jingren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Xinfang Zhao
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
20
|
Colomer-Winter C, Flores-Mireles AL, Baker SP, Frank KL, Lynch AJL, Hultgren SJ, Kitten T, Lemos JA. Manganese acquisition is essential for virulence of Enterococcus faecalis. PLoS Pathog 2018; 14:e1007102. [PMID: 30235334 PMCID: PMC6147510 DOI: 10.1371/journal.ppat.1007102] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/08/2018] [Indexed: 01/20/2023] Open
Abstract
Manganese (Mn) is an essential micronutrient that is not readily available to pathogens during infection due to an active host defense mechanism known as nutritional immunity. To overcome this nutrient restriction, bacteria utilize high-affinity transporters that allow them to compete with host metal-binding proteins. Despite the established role of Mn in bacterial pathogenesis, little is known about the relevance of Mn in the pathophysiology of E. faecalis. Here, we identified and characterized the major Mn acquisition systems of E. faecalis. We discovered that the ABC-type permease EfaCBA and two Nramp-type transporters, named MntH1 and MntH2, work collectively to promote cell growth under Mn-restricted conditions. The simultaneous inactivation of EfaCBA, MntH1 and MntH2 (ΔefaΔmntH1ΔmntH2 strain) led to drastic reductions (>95%) in cellular Mn content, severe growth defects in body fluids (serum and urine) ex vivo, significant loss of virulence in Galleria mellonella, and virtually complete loss of virulence in rabbit endocarditis and murine catheter-associated urinary tract infection (CAUTI) models. Despite the functional redundancy of EfaCBA, MntH1 and MntH2 under in vitro or ex vivo conditions and in the invertebrate model, dual inactivation of efaCBA and mntH2 (ΔefaΔmntH2 strain) was sufficient to prompt maximal sensitivity to calprotectin, a Mn- and Zn-chelating host antimicrobial protein, and for the loss of virulence in mammalian models. Interestingly, EfaCBA appears to play a prominent role during systemic infection, whereas MntH2 was more important during CAUTI. The different roles of EfaCBA and MntH2 in these sites could be attributed, at least in part, to the differential expression of efaA and mntH2 in cells isolated from hearts or from bladders. Collectively, this study demonstrates that Mn acquisition is essential for the pathogenesis of E. faecalis and validates Mn uptake systems as promising targets for the development of new antimicrobials.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| | - Ana L. Flores-Mireles
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Shannon P. Baker
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Kristi L. Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland, United States of America
| | - Aaron J. L. Lynch
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Scott J. Hultgren
- Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, United States of America
| |
Collapse
|
21
|
Solopova A, Bachmann H, Teusink B, Kok J, Kuipers OP. Further Elucidation of Galactose Utilization in Lactococcus lactis MG1363. Front Microbiol 2018; 9:1803. [PMID: 30123211 PMCID: PMC6085457 DOI: 10.3389/fmicb.2018.01803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/17/2018] [Indexed: 11/20/2022] Open
Abstract
Since the 1970s, galactose metabolism in Lactococcus lactis has been in debate. Different studies led to diverse outcomes making it difficult to conclude whether galactose uptake was PEP- or ATP- dependent and decide what the exact connection was between galactose and lactose uptake and metabolism. It was shown that some Lactococcus strains possess two galactose-specific systems – a permease and a PTS, even if they lack the lactose utilization plasmid, proving that a lactose-independent PTSGal exists. However, the PTSGal transporter was never identified. Here, with the help of transcriptome analyses and genetic knock-out mutants, we reveal the identities of two low-affinity galactose PTSs. A novel plant-niche-related PTS component Llmg_0963 forming a hybrid transporter Llmg_0963PtcBA and a glucose/mannose-specific PTS are shown to be involved in galactose transport in L. lactis MG1363.
Collapse
Affiliation(s)
- Ana Solopova
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Herwig Bachmann
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bas Teusink
- Faculty of Earth and Life Sciences, Systems Bioinformatics IBIVU/NISB, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Kok
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| |
Collapse
|
22
|
Avilés-Reyes A, Freires IA, Kajfasz JK, Barbieri D, Miller JH, Lemos JA, Abranches J. Whole genome sequence and phenotypic characterization of a Cbm + serotype e strain of Streptococcus mutans. Mol Oral Microbiol 2018; 33:257-269. [PMID: 29524318 PMCID: PMC5945312 DOI: 10.1111/omi.12222] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2018] [Indexed: 12/27/2022]
Abstract
We report the whole genome sequence of the serotype e Cbm+ strain LAR01 of Streptococcus mutans, a dental pathogen frequently associated with extra-oral infections. The LAR01 genome is a single circular chromosome of 2.1 Mb with a GC content of 36.96%. The genome contains 15 phosphotransferase system gene clusters, seven cell wall-anchored (LPxTG) proteins, all genes required for the development of natural competence and genes coding for mutacins VI and K8. Interestingly, the cbm gene is genetically linked to a putative type VII secretion system that has been found in Mycobacteria and few other Gram-positive bacteria. When compared with the UA159 type strain, phenotypic characterization of LAR01 revealed increased biofilm formation in the presence of either glucose or sucrose but similar abilities to withstand acid and oxidative stresses. LAR01 was unable to inhibit the growth of Strpetococcus gordonii, which is consistent with the genomic data that indicate absence of mutacins that can kill mitis streptococci. On the other hand, LAR01 effectively inhibited growth of other S. mutans strains, suggesting that it may be specialized to outcompete strains from its own species. In vitro and in vivo studies using mutational and heterologous expression approaches revealed that Cbm is a virulence factor of S. mutans by mediating binding to extracellular matrix proteins and intracellular invasion. Collectively, the whole genome sequence analysis and phenotypic characterization of LAR01 provides new insights on the virulence properties of S. mutans and grants further opportunities to understand the genomic fluidity of this important human pathogen.
Collapse
Affiliation(s)
- Alejandro Avilés-Reyes
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL
| | - Irlan Almeida Freires
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL
| | - Jessica K. Kajfasz
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL
| | - Dicler Barbieri
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - James H. Miller
- Center for Oral Biology, University of Rochester School of Medicine and Dentistry, Rochester, NY
| | - José A. Lemos
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL
| | - Jacqueline Abranches
- Department of Oral Biology, University of Florida, College of Dentistry, Gainesville, FL
| |
Collapse
|
23
|
Coupling Fluxes, Enzymes, and Regulation in Genome-Scale Metabolic Models. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2017; 1716:337-351. [PMID: 29222761 DOI: 10.1007/978-1-4939-7528-0_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Genome-scale models have expanded beyond their metabolic origins. Multiple modeling frameworks are required to combine metabolism with enzymatic networks, transcription, translation, and regulation. Mathematical programming offers a powerful set of tools for tackling these "multi-modality" models, although special attention must be paid to the connections between modeling types. This chapter reviews common methods for combining metabolic and discrete logical models into a single mathematical programming framework. Best practices, caveats, and recommendations are presented for the most commonly used software packages. Methods for troubleshooting large sets of logical rules are also discussed.
Collapse
|
24
|
Association of Metal Homeostasis and (p)ppGpp Regulation in the Pathophysiology of Enterococcus faecalis. Infect Immun 2017; 85:IAI.00260-17. [PMID: 28483855 DOI: 10.1128/iai.00260-17] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/02/2017] [Indexed: 01/30/2023] Open
Abstract
In Enterococcus faecalis, the regulatory nucleotides pppGpp and ppGpp, collectively, (p)ppGpp, are required for growth in blood, survival within macrophages, and virulence. However, a clear understanding of how (p)ppGpp promotes virulence in E. faecalis and other bacterial pathogens is still lacking. In the host, the essential transition metals iron (Fe) and manganese (Mn) are not readily available to invading pathogens because of a host-driven process called nutritional immunity. Considering its central role in adaptation to nutritional stresses, we hypothesized that (p)ppGpp mediates E. faecalis virulence through regulation of metal homeostasis. Indeed, supplementation of serum with either Fe or Mn restored growth and survival of the Δrel ΔrelQ [(p)ppGpp0] strain to wild-type levels. Using a chemically defined medium, we found that (p)ppGpp accumulates in response to either Fe depletion or Mn depletion and that the (p)ppGpp0 strain has a strong growth requirement for Mn that is alleviated by Fe supplementation. Although inactivation of the nutrient-sensing regulator codY restored some phenotypes of the (p)ppGpp0 strain, transcriptional analysis showed that the (p)ppGpp/CodY network does not promote transcription of known metal transporters. Interestingly, physiologic and enzymatic investigations suggest that the (p)ppGpp0 strain requires higher levels of Mn in order to cope with high levels of endogenously produced reactive oxygen species (ROS). Because (p)ppGpp mediates antibiotic persistence and virulence in several bacteria, our findings have broad implications and provide new leads for the development of novel therapeutic and preventive strategies against E. faecalis and beyond.
Collapse
|
25
|
He J, Kim D, Zhou X, Ahn SJ, Burne RA, Richards VP, Koo H. RNA-Seq Reveals Enhanced Sugar Metabolism in Streptococcus mutans Co-cultured with Candida albicans within Mixed-Species Biofilms. Front Microbiol 2017. [PMID: 28642749 PMCID: PMC5462986 DOI: 10.3389/fmicb.2017.01036] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Early childhood caries (ECC), which can lead to rampant tooth-decay that is painful and costly to treat, is one of the most prevalent infectious diseases affecting children worldwide. Previous studies support that interactions between Streptococcus mutans and Candida albicans are associated with the pathogenesis of ECC. The presence of Candida enhances S. mutans growth, fitness and accumulation within biofilms in vitro, although the molecular basis for these behaviors is undefined. Using an established co-cultivation biofilm model and RNA-Seq, we investigated how C. albicans influences the transcriptome of S. mutans. The presence of C. albicans dramatically altered gene expression in S. mutans in the dual-species biofilm, resulting in 393 genes differentially expressed, compared to mono-species biofilms of S. mutans. By Gene Ontology analysis, the majority of up-regulated genes were related to carbohydrate transport and metabolic/catabolic processes. KEGG pathway impact analysis showed elevated pyruvate and galactose metabolism, suggesting that co-cultivation with C. albicans influences carbohydrate utilization by S. mutans. Analysis of metabolites confirmed the increases in carbohydrate metabolism, with elevated amounts of formate in the culture medium of co-cultured biofilms. Moreover, co-cultivation with C. albicans altered transcription of S. mutans signal transduction (comC and ciaRH) genes associated with fitness and virulence. Interestingly, the expression of genes for mutacins (bacteriocins) and CRISPR were down-regulated. Collectively, the data provide a comprehensive insight into S. mutans transcriptomic changes induced by C. albicans, and offer novel insights into how bacterial–fungal interactions may enhance the severity of dental caries.
Collapse
Affiliation(s)
- Jinzhi He
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China.,Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Dongyeop Kim
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, Department of Endodontics, West China Hospital of Stomatology, Sichuan UniversityChengdu, China
| | - Sang-Joon Ahn
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Robert A Burne
- Department of Oral Biology, College of Dentistry, University of Florida, GainesvilleFL, United States
| | - Vincent P Richards
- Department of Biological Sciences, Clemson University, ClemsonSC, United States
| | - Hyun Koo
- Biofilm Research Labs, Levy Center for Oral Health, Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, PhiladelphiaPA, United States
| |
Collapse
|
26
|
Warda AK, Siezen RJ, Boekhorst J, Wells-Bennik MHJ, de Jong A, Kuipers OP, Nierop Groot MN, Abee T. Linking Bacillus cereus Genotypes and Carbohydrate Utilization Capacity. PLoS One 2016; 11:e0156796. [PMID: 27272929 PMCID: PMC4896439 DOI: 10.1371/journal.pone.0156796] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Accepted: 05/19/2016] [Indexed: 11/19/2022] Open
Abstract
We characterised carbohydrate utilisation of 20 newly sequenced Bacillus cereus strains isolated from food products and food processing environments and two laboratory strains, B. cereus ATCC 10987 and B. cereus ATCC 14579. Subsequently, genome sequences of these strains were analysed together with 11 additional B. cereus reference genomes to provide an overview of the different types of carbohydrate transporters and utilization systems found in B. cereus strains. The combined application of API tests, defined growth media experiments and comparative genomics enabled us to link the carbohydrate utilisation capacity of 22 B. cereus strains with their genome content and in some cases to the panC phylogenetic grouping. A core set of carbohydrates including glucose, fructose, maltose, trehalose, N-acetyl-glucosamine, and ribose could be used by all strains, whereas utilisation of other carbohydrates like xylose, galactose, and lactose, and typical host-derived carbohydrates such as fucose, mannose, N-acetyl-galactosamine and inositol is limited to a subset of strains. Finally, the roles of selected carbohydrate transporters and utilisation systems in specific niches such as soil, foods and the human host are discussed.
Collapse
Affiliation(s)
- Alicja K. Warda
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Roland J. Siezen
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- Microbial Bioinformatics, Ede, The Netherlands
| | - Jos Boekhorst
- TI Food and Nutrition, Wageningen, The Netherlands
- Center for Molecular and Biomolecular Informatics, RadboudUMC, Nijmegen, The Netherlands
- NIZO Food Research B.V., Ede, The Netherlands
| | | | - Anne de Jong
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Oscar P. Kuipers
- TI Food and Nutrition, Wageningen, The Netherlands
- Department of Molecular Genetics, University of Groningen, Groningen, The Netherlands
| | - Masja N. Nierop Groot
- TI Food and Nutrition, Wageningen, The Netherlands
- Wageningen UR Food & Biobased Research, Wageningen, The Netherlands
| | - Tjakko Abee
- TI Food and Nutrition, Wageningen, The Netherlands
- Laboratory of Food Microbiology, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
27
|
Genes associated to lactose metabolism illustrate the high diversity of Carnobacterium maltaromaticum. Food Microbiol 2016; 58:79-86. [PMID: 27217362 DOI: 10.1016/j.fm.2016.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 03/02/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022]
Abstract
The dairy population of Carnobacterium maltaromaticum is characterized by a high diversity suggesting a high diversity of the genetic traits linked to the dairy process. As lactose is the main carbon source in milk, the genetics of lactose metabolism was investigated in this LAB. Comparative genomic analysis revealed that the species C. maltaromaticum exhibits genes related to the Leloir and the tagatose-6-phosphate (Tagatose-6P) pathways. More precisely, strains can bear genes related to one or both pathways and several strains apparently do not contain homologs related to these pathways. Analysis at the population scale revealed that the Tagatose-6P and the Leloir encoding genes are disseminated in multiple phylogenetic lineages of C. maltaromaticum: genes of the Tagatose-6P pathway are present in the lineages I, II and III, and genes of the Leloir pathway are present in the lineages I, III and IV. These data suggest that these genes evolved thanks to horizontal transfer, genetic duplication and translocation. We hypothesize that the lac and gal genes evolved in C. maltaromaticum according to a complex scenario that mirrors the high population diversity.
Collapse
|
28
|
Afzal M, Shafeeq S, Manzoor I, Kuipers OP. GalR Acts as a Transcriptional Activator of galKT in the Presence of Galactose in Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2015; 25:363-71. [PMID: 26544195 DOI: 10.1159/000439429] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We explored the regulatory mechanism of Leloir pathway genes in Streptococcus pneumoniae D39. Here, we demonstrate that the expression of galKT is galactose dependent. By microarray analysis and quantitative RT-PCR, we further show the role of the transcriptional regulator GalR, present upstream of galKT, as a transcriptional activator of galKT in the presence of galactose. Moreover, we predict a 19-bp regulatory site (5'-GATAGTTTAGTAAAATTTT-3') for the transcriptional regulator GalR in the promoter region of galK, which is also highly conserved in other streptococci. Growth comparison of D39 ΔgalK with the D39 wild type grown in the presence of galactose shows that galK is required for the proper growth of S. pneumoniae on galactose.
Collapse
Affiliation(s)
- Muhammad Afzal
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
29
|
Bitoun JP, Wen ZT. Transcription factor Rex in regulation of pathophysiology in oral pathogens. Mol Oral Microbiol 2015; 31:115-24. [PMID: 26172563 DOI: 10.1111/omi.12114] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/29/2015] [Indexed: 11/29/2022]
Abstract
The NAD(+) and NADH-sensing transcriptional regulator Rex is widely conserved across gram-positive bacteria. Rex monitors cellular redox poise and controls the expression of genes/operons involved in diverse pathways including alternative fermentation, oxidative stress responses, and biofilm formation. The oral cavity undergoes frequent and drastic fluctuations in nutrient availability, pH, temperature, oxygen tension, saliva, and shear forces. The oral streptococci are major colonizers of oral mucosa and tooth surfaces and include commensals as well as opportunistic pathogens, including the primary etiological agent of dental caries, Streptococcus mutans. Current understanding of the Rex regulon in oral bacteria is mostly based on studies in S. mutans and endodontic pathogen Enterococcus faecalis. Indeed, other oral bacteria encode homologs of the Rex protein and much is to be gleaned from more in-depth studies. Our current understanding has Rex positioned at the interface of oxygen and energy metabolism. In biofilms, heterogeneous oxygen tension influences the ratio of intracellular NADH and NAD(+) , which is finely tuned through glycolysis and fermentation. In S. mutans, Rex regulates the expression of glycolytic enzyme NAD(+) -dependent glyceraldehyde 3-phosphate dehydrogenase, and NADH-dependent fermentation enzymes/complexes lactate dehydrogenase, pyruvate dehydrogenase, alcohol-acetaldehyde dehydrogenase, and fumarate reductase. In addition, Rex controls the expression of NADH oxidase, a major enzyme used to eliminate oxidative stress and regenerate NAD(+) . Here, we summarize recent studies carried out on the Rex regulators in S. mutans and E. faecalis. This research has important implications for understanding how Rex monitors redox balance and optimizes fermentation pathways for survival and subsequent pathogenicity.
Collapse
Affiliation(s)
- J P Bitoun
- Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Z T Wen
- Department of Comprehensive Dentistry and Biomaterials, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Center of Oral and Craniofacial Biology, Louisiana State University Health Sciences Center, New Orleans, LA, USA.,Department of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
30
|
Fleming E, Lazinski DW, Camilli A. Carbon catabolite repression by seryl phosphorylated HPr is essential to Streptococcus pneumoniae in carbohydrate-rich environments. Mol Microbiol 2015; 97:360-80. [PMID: 25898857 PMCID: PMC4836947 DOI: 10.1111/mmi.13033] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/16/2015] [Indexed: 11/29/2022]
Abstract
Carbon catabolite repression (CCR) is a regulatory phenomenon implemented by bacteria to hierarchically organize carbohydrate utilization in order to achieve maximal growth. CCR is likely of great importance to Streptococcus pneumoniae because the human host sites inhabited by this pathogen represent complex carbohydrate environments. In this species, inactivation of the prototypical Gram-positive CCR master regulator, ccpA, attenuates virulence in mice but does not relieve CCR of most metabolic enzymes, suggesting CcpA-independent CCR mechanisms predominate. Here we show the activities of three transcriptional regulators constitute the majority of transcriptional CCR of galactose metabolism operons. We determined seryl-phosphorylated histidine phosphocarrier protein (HPr-Ser∼P)-mediated regulation is a major CCR mechanism and an essential activity in the pneumococcus, as an HPr point mutation abolishing HPrK/P-dependent phosphorylation was not tolerated nor was deletion of hprk/p. The HPr-Ser∼P phosphomimetic mutant HPr S46D had reduced phosphotransferase system transport rates and limited induction of CCR-repressed genes. These results support a model of pneumococcal CCR in which HPr-Ser∼P directly affects the activity of CcpA while indirectly affecting the activity of pathway-specific transactional regulators. This report describes the first CcpA-independent CCR mechanism identified in the pneumococcus and the first example of lethality from loss of HPr-Ser∼P-mediated CCR in any species.
Collapse
Affiliation(s)
- Eleanor Fleming
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - David W Lazinski
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Andrew Camilli
- Howard Hughes Medical Institute and Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
31
|
|
32
|
Assessment of expression of Leloir pathway genes in wild-type galactose-fermenting Streptococcus thermophilus by real-time PCR. Eur Food Res Technol 2014. [DOI: 10.1007/s00217-014-2286-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
LacR is a repressor of lacABCD and LacT is an activator of lacTFEG, constituting the lac gene cluster in Streptococcus pneumoniae. Appl Environ Microbiol 2014; 80:5349-58. [PMID: 24951784 DOI: 10.1128/aem.01370-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Comparison of the transcriptome of Streptococcus pneumoniae strain D39 grown in the presence of either lactose or galactose with that of the strain grown in the presence of glucose revealed the elevated expression of various genes and operons, including the lac gene cluster, which is organized into two operons, i.e., lac operon I (lacABCD) and lac operon II (lacTFEG). Deletion of the DeoR family transcriptional regulator lacR that is present downstream of the lac gene cluster revealed elevated expression of lac operon I even in the absence of lactose. This suggests a function of LacR as a transcriptional repressor of lac operon I, which encodes enzymes involved in the phosphorylated tagatose pathway in the absence of lactose or galactose. Deletion of lacR did not affect the expression of lac operon II, which encodes a lactose-specific phosphotransferase. This finding was further confirmed by β-galactosidase assays with PlacA-lacZ and PlacT-lacZ in the presence of either lactose or glucose as the sole carbon source in the medium. This suggests the involvement of another transcriptional regulator in the regulation of lac operon II, which is the BglG-family transcriptional antiterminator LacT. We demonstrate the role of LacT as a transcriptional activator of lac operon II in the presence of lactose and CcpA-independent regulation of the lac gene cluster in S. pneumoniae.
Collapse
|
34
|
Mothey D, Buttaro BA, Piggot PJ. Mucin can enhance growth, biofilm formation, and survival of Streptococcus mutans. FEMS Microbiol Lett 2013; 350:161-7. [PMID: 24261873 DOI: 10.1111/1574-6968.12336] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/10/2013] [Accepted: 11/12/2013] [Indexed: 11/30/2022] Open
Abstract
Streptococcus mutans is a member of the dental plaque and is the primary causative agent of dental caries. It can survive extended periods of starvation, which may occur in different niches within the oral cavity. We have found that mucin compensated for the absence of amino acids to promote exponential growth and biofilm formation of S. mutans in minimal medium supplemented with glucose and sucrose, respectively. Mucin extended survival in conditions where there was no net growth provided the operon encoding the pyruvate dehydrogenase complex was intact. Mucin extended survival in conditions of amino acid sufficiency provided the tagatose pathway for galactose utilization was intact, suggesting that S. mutans can scavenge sufficient galactose from mucin to enhance survival, although not to serve as a primary carbon and energy source. The results suggest that mucin has a metabolic role in promoting survival of S. mutans.
Collapse
Affiliation(s)
- Deepa Mothey
- Department of Microbiology and Immunology, Temple University School of Medicine, Philadelphia, PA, USA
| | | | | |
Collapse
|
35
|
Asención Diez MD, Demonte AM, Guerrero SA, Ballicora MA, Iglesias AA. The ADP-glucose pyrophosphorylase from Streptococcus mutans provides evidence for the regulation of polysaccharide biosynthesis in Firmicutes. Mol Microbiol 2013; 90:1011-27. [PMID: 24112771 DOI: 10.1111/mmi.12413] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2013] [Indexed: 11/28/2022]
Abstract
Streptococcus mutans is the leading cause of dental caries worldwide. The bacterium accumulates a glycogen-like internal polysaccharide, which mainly contributes to its carionegic capacity. S.mutans has two genes (glgC and glgD) respectively encoding putative ADP-glucose pyrophosphorylases (ADP-Glc PPase), a key enzyme for glycogen synthesis in most bacteria. Herein, we report the molecular cloning and recombinant expression of both genes (separately or together) followed by the characterization of the respective enzymes. When expressed individually GlgC had ADP-Glc PPase activity, whereas GlgD was inactive. Interestingly, the coexpressed GlgC/GlgD protein was one order of magnitude more active than GlgC alone. Kinetic characterization of GlgC and GlgC/GlgD pointed out remarkable differences between them. Fructose-1,6-bis-phosphate activated GlgC by twofold, but had no effect on GlgC/GlgD. Conversely, phospho-enol-pyruvate and inorganic salts inhibited GlgC/GlgD without affecting GlgC. However, in the presence of fructose-1,6-bis-phosphate GlgC acquired a GlgC/GlgD-like behaviour, becoming sensitive to the stated inhibitors. Results indicate that S. mutans ADP-Glc PPase is an allosteric regulatory enzyme exhibiting sensitivity to modulation by key intermediates of carbohydrates metabolism in the cell. The particular regulatory properties of the S.mutans enzyme agree with phylogenetic analysis, where GlgC and GlgD proteins found in other Firmicutes arrange in distinctive clusters.
Collapse
Affiliation(s)
- Matías D Asención Diez
- Instituto de Agrobiotecnología del Litoral (UNL-CONICET), Facultad de Bioquímica y Ciencias Biológicas, Paraje 'El Pozo' CC 242, S3000ZAA, Santa Fe, Argentina; Department of Chemistry and Biochemistry, Loyola University Chicago, 1068, W Sheridan Rd., Chicago, IL, 60660, USA
| | | | | | | | | |
Collapse
|
36
|
Yan S, Wang N, Chen Z, Wang Y, He N, Peng Y, Li Q, Deng X. Genes encoding the production of extracellular polysaccharide bioflocculant are clustered on a 30-kb DNA segment in Bacillus licheniformis. Funct Integr Genomics 2013; 13:425-34. [DOI: 10.1007/s10142-013-0333-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 07/18/2013] [Accepted: 08/12/2013] [Indexed: 10/26/2022]
|
37
|
Zeng L, Xue P, Stanhope MJ, Burne RA. A galactose-specific sugar: phosphotransferase permease is prevalent in the non-core genome of Streptococcus mutans. Mol Oral Microbiol 2013; 28:292-301. [PMID: 23421335 DOI: 10.1111/omi.12025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2013] [Indexed: 12/01/2022]
Abstract
Three genes predicted to encode the A, B and C domains of a sugar : phosphotransferase system (PTS) permease specific for galactose\(EII(Gal) ) were identified in the genomes of 35 of 57 recently sequenced isolates of Streptococcus mutans, the primary etiological agent of human dental caries. Mutants defective in the EII(Gal) complex were constructed in six of the isolates and showed markedly reduced growth rates on galactose-based medium relative to the parental strains. An EII(Gal) -deficient strain constructed using the invasive serotype f strain OMZ175 (OMZ/IIGal) expressed significantly lower PTS activity when galactose was present as the substrate. Galactose was shown to be an effective inducer of catabolite repression in OMZ175, but not in the EII(Gal) -deficient strain. In a mixed-species competition assay with galactose as the sole carbohydrate source, OMZ/IIGal was less effective than the parental strain at competing with the oral commensal bacterium Streptococcus gordonii, which has a high-affinity galactose transporter. Hence, a significant proportion of S. mutans strains encode a galactose PTS permease that could enhance the ability of these isolates to compete more effectively with commensal streptococci for galactose in salivary constituents and the diet.
Collapse
Affiliation(s)
- L Zeng
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|
38
|
Hitzmann A, Bergmann S, Rohde M, Chhatwal GS, Fulde M. Identification and characterization of the arginine deiminase system of Streptococcus canis. Vet Microbiol 2012; 162:270-7. [PMID: 22939986 DOI: 10.1016/j.vetmic.2012.08.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Revised: 08/06/2012] [Accepted: 08/09/2012] [Indexed: 11/15/2022]
Abstract
Although Streptococcus (S.) canis is known to cause severe infections in dogs and cats and harbors a clear zoonotic potential, knowledge about physiology and pathogenesis is mostly elusive. The arginine deiminase system (ADS) has been described in certain streptococcal species and its role in the establishment of infection has been suggested. In this study we focused on the identification and characterization of the ADS in S. canis. Using genome sequencing and subsequent in silico analysis we identified the ADS of S. canis as a gene cluster composed of seven genes. RT-PCR analysis revealed that the ADS of S. canis is transcribed in four transcriptional units, comprising three monocistronical mRNAs and one operon structure. As a secondary metabolic pathway, the ADS of S. canis is strictly regulated by carbon catabolite repression (CCR) and arginine as demonstrated on transcriptional, translational, and enzymatical level, respectively. Furthermore, growth kinetics with a chemically defined medium clearly showed that arginine, the substrate of the ADS, is essential for the biological fitness of S. canis. Using Immuno-electron microscopy analysis, we observed a surface-exposed localization of the ADS enzymes arginine deiminase (ArcA), ornithine carbamoyltransferase (ArcB), and carbamate kinase (ArcC), respectively, which might suggest the contribution of the ADS to the development of streptococcal infections.
Collapse
Affiliation(s)
- A Hitzmann
- Department of Medical Microbiology, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
39
|
Xue X, Li J, Wang W, Sztajer H, Wagner-Döbler I. The global impact of the delta subunit RpoE of the RNA polymerase on the proteome of Streptococcus mutans. Microbiology (Reading) 2012; 158:191-206. [DOI: 10.1099/mic.0.047936-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Xiaoli Xue
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Jinshan Li
- Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, 100101 Beijing, PR China
- Institute of Bioprocess and Biosystems Engineering, Technical University Hamburg-Harburg, Denickestr. 15, D-21071 Hamburg, Germany
| | - Wei Wang
- Institute of Bioprocess and Biosystems Engineering, Technical University Hamburg-Harburg, Denickestr. 15, D-21071 Hamburg, Germany
| | - Helena Sztajer
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| | - Irene Wagner-Döbler
- Research Group Microbial Communication, Division of Cell Biology, Helmholtz Centre for Infection Research, Inhoffenstr. 7, D-38124 Braunschweig, Germany
| |
Collapse
|
40
|
Abstract
Accumulation of galactose in dairy products due to partial lactose fermentation by lactic acid bacteria yields poor-quality products and precludes their consumption by individuals suffering from galactosemia. This study aimed at extending our knowledge of galactose metabolism in Lactococcus lactis, with the final goal of tailoring strains for enhanced galactose consumption. We used directed genetically engineered strains to examine galactose utilization in strain NZ9000 via the chromosomal Leloir pathway (gal genes) or the plasmid-encoded tagatose 6-phosphate (Tag6P) pathway (lac genes). Galactokinase (GalK), but not galactose permease (GalP), is essential for growth on galactose. This finding led to the discovery of an alternative route, comprising a galactose phosphotransferase system (PTS) and a phosphatase, for galactose dissimilation in NZ9000. Introduction of the Tag6P pathway in a galPMK mutant restored the ability to metabolize galactose but did not sustain growth on this sugar. The latter strain was used to prove that lacFE, encoding the lactose PTS, is necessary for galactose metabolism, thus implicating this transporter in galactose uptake. Both PTS transporters have a low affinity for galactose, while GalP displays a high affinity for the sugar. Furthermore, the GalP/Leloir route supported the highest galactose consumption rate. To further increase this rate, we overexpressed galPMKT, but this led to a substantial accumulation of α-galactose 1-phosphate and α-glucose 1-phosphate, pointing to a bottleneck at the level of α-phosphoglucomutase. Overexpression of a gene encoding α-phosphoglucomutase alone or in combination with gal genes yielded strains with galactose consumption rates enhanced up to 50% relative to that of NZ9000. Approaches to further improve galactose metabolism are discussed.
Collapse
|
41
|
The delta subunit of RNA polymerase, RpoE, is a global modulator of Streptococcus mutans environmental adaptation. J Bacteriol 2010; 192:5081-92. [PMID: 20675470 DOI: 10.1128/jb.00653-10] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The delta subunit of RNA polymerase, RpoE, is widespread in low-G+C Gram-positive bacteria and is thought to play a role in enhancing transcriptional specificity by blocking RNA polymerase binding at weak promoter sites and stimulating RNA synthesis by accelerating core enzyme recycling. Despite the well-studied biochemical properties of RpoE, a role for this protein in vivo has not been defined in depth. In this study, we show that inactivation of rpoE in the human dental caries pathogen Streptococcus mutans causes impaired growth and loss of important virulence traits, including biofilm formation, resistance to antibiotics, and tolerance to environmental stresses. Complementation of the mutant with rpoE expressed in trans restored its phenotype to wild type. The luciferase fusion reporter showed that rpoE was highly transcribed throughout growth and that acid and hydrogen peroxide stresses repressed rpoE expression. Transcriptome profiling of wild-type and ΔrpoE cells in the exponential and early stationary phase of growth, under acid and hydrogen peroxide stress and under both stresses combined, revealed that genes involved in histidine synthesis, malolactic fermentation, biofilm formation, and antibiotic resistance were downregulated in the ΔrpoE mutant under all conditions. Moreover, the loss of RpoE resulted in dramatic changes in transport and metabolism of carbohydrates and amino acids. Interestingly, differential expression, mostly upregulation, of 330 noncoding regions was found. In conclusion, this study demonstrates that RpoE is an important global modulator of gene expression in S. mutans which is required for optimal growth and environmental adaptation.
Collapse
|
42
|
Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol 2010. [PMID: 20190045 DOI: 10.1128/jb.01624–09] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abundant in milk and other dairy products, lactose is considered to have an important role in oral microbial ecology and can contribute to caries development in both adults and young children. To better understand the metabolism of lactose and galactose by Streptococcus mutans, the major etiological agent of human tooth decay, a genetic analysis of the tagatose-6-phosphate (lac) and Leloir (gal) pathways was performed in strain UA159. Deletion of each gene in the lac operon caused various alterations in expression of a P(lacA)-cat promoter fusion and defects in growth on either lactose (lacA, lacB, lacF, lacE, and lacG), galactose (lacA, lacB, lacD, and lacG) or both sugars (lacA, lacB, and lacG). Failure to grow in the presence of galactose or lactose by certain lac mutants appeared to arise from the accumulation of intermediates of galactose metabolism, particularly galatose-6-phosphate. The glucose- and lactose-PTS permeases, EII(Man) and EII(Lac), respectively, were shown to be the only effective transporters of galactose in S. mutans. Furthermore, disruption of manL, encoding EIIAB(Man), led to increased resistance to glucose-mediated CCR when lactose was used to induce the lac operon, but resulted in reduced lac gene expression in cells growing on galactose. Collectively, the results reveal a remarkably high degree of complexity in the regulation of lactose/galactose catabolism.
Collapse
|
43
|
Utilization of lactose and galactose by Streptococcus mutans: transport, toxicity, and carbon catabolite repression. J Bacteriol 2010; 192:2434-44. [PMID: 20190045 DOI: 10.1128/jb.01624-09] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abundant in milk and other dairy products, lactose is considered to have an important role in oral microbial ecology and can contribute to caries development in both adults and young children. To better understand the metabolism of lactose and galactose by Streptococcus mutans, the major etiological agent of human tooth decay, a genetic analysis of the tagatose-6-phosphate (lac) and Leloir (gal) pathways was performed in strain UA159. Deletion of each gene in the lac operon caused various alterations in expression of a P(lacA)-cat promoter fusion and defects in growth on either lactose (lacA, lacB, lacF, lacE, and lacG), galactose (lacA, lacB, lacD, and lacG) or both sugars (lacA, lacB, and lacG). Failure to grow in the presence of galactose or lactose by certain lac mutants appeared to arise from the accumulation of intermediates of galactose metabolism, particularly galatose-6-phosphate. The glucose- and lactose-PTS permeases, EII(Man) and EII(Lac), respectively, were shown to be the only effective transporters of galactose in S. mutans. Furthermore, disruption of manL, encoding EIIAB(Man), led to increased resistance to glucose-mediated CCR when lactose was used to induce the lac operon, but resulted in reduced lac gene expression in cells growing on galactose. Collectively, the results reveal a remarkably high degree of complexity in the regulation of lactose/galactose catabolism.
Collapse
|
44
|
CcpA regulates central metabolism and virulence gene expression in Streptococcus mutans. J Bacteriol 2008; 190:2340-9. [PMID: 18223086 DOI: 10.1128/jb.01237-07] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CcpA globally regulates transcription in response to carbohydrate availability in many gram-positive bacteria, but its role in Streptococcus mutans remains enigmatic. Using the fructan hydrolase (fruA) gene of S. mutans as a model, we demonstrated that CcpA plays a direct role in carbon catabolite repression (CCR). Subsequently, the expression of 170 genes was shown to be differently expressed (> or = 2-fold) in glucose-grown wild-type (UA159) and CcpA-deficient (TW1) strains (P < or = 0.001). However, there were differences in expression of only 96 genes between UA159 and TW1 when cells were cultivated with the poorly repressing substrate galactose. Interestingly, 90 genes were expressed differently in wild-type S. mutans when glucose- and galactose-grown cells were compared, but the expression of 515 genes was altered in the CcpA-deficient strain in a similar comparison. Overall, our results supported the hypothesis that CcpA has a major role in CCR and regulation of gene expression but revealed that in S. mutans there is a substantial CcpA-independent network that regulates gene expression in response to the carbohydrate source. Based on the genetic studies, biochemical and physiological experiments demonstrated that loss of CcpA impacts the ability of S. mutans to transport and grow on selected sugars. Also, the CcpA-deficient strain displayed an enhanced capacity to produce acid from intracellular stores of polysaccharides, could grow faster at pH 5.5, and could acidify the environment more rapidly and to a greater extent than the parental strain. Thus, CcpA directly modulates the pathogenic potential of S. mutans through global control of gene expression.
Collapse
|
45
|
Ajdić D, Pham VTT. Global transcriptional analysis of Streptococcus mutans sugar transporters using microarrays. J Bacteriol 2007; 189:5049-59. [PMID: 17496079 PMCID: PMC1951856 DOI: 10.1128/jb.00338-07] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transport of carbohydrates by Streptococcus mutans is accomplished by the phosphoenolpyruvate-phosphotransferase system (PTS) and ATP-binding cassette (ABC) transporters. To undertake a global transcriptional analysis of all S. mutans sugar transporters simultaneously, we used a whole-genome expression microarray. Global transcription profiles of S. mutans UA159 were determined for several monosaccharides (glucose, fructose, galactose, and mannose), disaccharides (sucrose, lactose, maltose, and trehalose), a beta-glucoside (cellobiose), oligosaccharides (raffinose, stachyose, and maltotriose), and a sugar alcohol (mannitol). The results revealed that PTSs were responsible for transport of monosaccharides, disaccharides, beta-glucosides, and sugar alcohol. Six PTSs were transcribed only if a specific sugar was present in the growth medium; thus, they were regulated at the transcriptional level. These included transporters for fructose, lactose, cellobiose, and trehalose and two transporters for mannitol. Three PTSs were repressed under all conditions tested. Interestingly, five PTSs were always highly expressed regardless of the sugar source used, presumably suggesting their availability for immediate uptake of most common dietary sugars (glucose, fructose, maltose, and sucrose). The ABC transporters were found to be specific for oligosaccharides, raffinose, stachyose, and isomaltosaccharides. Compared to the PTSs, the ABC transporters showed higher transcription under several tested conditions, suggesting that they might be transporting multiple substrates.
Collapse
Affiliation(s)
- Dragana Ajdić
- University of Oklahoma Health Sciences Center, Department of Microbiology and Immunology, 940 S. L. Young Blvd., Oklahoma City, OK 73104, USA.
| | | |
Collapse
|
46
|
Merritt J, Tsang P, Zheng L, Shi W, Qi F. Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans. ACTA ACUST UNITED AC 2007; 22:95-102. [PMID: 17311632 DOI: 10.1111/j.1399-302x.2007.00329.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic studies of Streptococcus mutans have benefited greatly from the numerous techniques that have been successfully adapted for use in this organism. One notable exception is the lack of a negative selection system that can be employed for the easy isolation of markerless in-frame deletions. In this study, we report the development of a galK/galactose-based negative selection system in S. mutans for this purpose. This system consists of a recipient strain (IFD140) that contains a deletion in the galKTE operon and a suicide vector (pIFD-Sm) that carries the S. mutans galK open reading frame fused to the constitutive lactate dehydrogenase (ldh) promoter. Using this system we created a markerless in-frame deletion in the beta-galactosidase (lacG) gene within the S. mutans lactose operon. After vector integration, plasmid excision after counterselection appeared to have occurred in 100% of the galactose-resistant colonies and resulted in in-frame deletions in 50% of the screened isolates. Based on the ratio of galactose-resistant cells to total cells, we determined that plasmid excision occurred at a frequency of approximately 1/3000 cells. Furthermore, the simplicity of this system should make it adaptable for use in numerous other gram-positive and gram-negative organisms.
Collapse
Affiliation(s)
- J Merritt
- Department of Oral Biology, UCLA School of Dentistry, Los Angeles, CA 90095-1668, USA.
| | | | | | | | | |
Collapse
|
47
|
Abranches J, Candella MM, Wen ZT, Baker HV, Burne RA. Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans. J Bacteriol 2006; 188:3748-56. [PMID: 16707667 PMCID: PMC1482907 DOI: 10.1128/jb.00169-06] [Citation(s) in RCA: 124] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2006] [Accepted: 03/21/2006] [Indexed: 11/20/2022] Open
Abstract
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is the major carbohydrate transport system in oral streptococci. The mannose-PTS of Streptococcus mutans, which transports mannose and glucose, is involved in carbon catabolite repression (CCR) and regulates the expression of known virulence genes. In this study, we investigated the role of EII(Glc) and EIIAB(Man) in sugar metabolism, gene regulation, biofilm formation, and competence. The results demonstrate that the inactivation of ptsG, encoding a putative EII(Glc), did not lead to major changes in sugar metabolism or affect the phenotypes of interest. However, the loss of EII(Glc) was shown to have a significant impact on the proteome and to affect the expression of a known virulence factor, fructan hydrolase (fruA). JAM1, a mutant strain lacking EIIAB(Man), had an impaired capacity to form biofilms in the presence of glucose and displayed a decreased ability to be transformed with exogenous DNA. Also, the lactose- and cellobiose-PTSs were positively and negatively regulated by EIIAB(Man), respectively. Microarrays were used to investigate the profound phenotypic changes displayed by JAM1, revealing that EIIAB(Man) of S. mutans has a key regulatory role in energy metabolism, possibly by sensing the energy levels of the cells or the carbohydrate availability and, in response, regulating the activity of transcription factors and carbohydrate transporters.
Collapse
Affiliation(s)
- Jacqueline Abranches
- Department of Oral Biology, University of Florida College of Dentistry, P.O. Box 100424, Gainesville, FL 32610, USA
| | | | | | | | | |
Collapse
|
48
|
Wen ZT, Baker HV, Burne RA. Influence of BrpA on critical virulence attributes of Streptococcus mutans. J Bacteriol 2006; 188:2983-92. [PMID: 16585759 PMCID: PMC1447002 DOI: 10.1128/jb.188.8.2983-2992.2006] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2005] [Accepted: 01/23/2006] [Indexed: 11/20/2022] Open
Abstract
Streptococcus mutans, the primary etiological agent of human dental caries, has developed multiple mechanisms to colonize and form biofilms on the tooth surface. The brpA gene codes for a predicted surface-associated protein with apparent roles in biofilm formation, autolysis, and cell division. In this study, we used two models to further characterize the biofilm-forming characteristics of a BrpA-deficient mutant, strain TW14. Compared to those of the parent strain, UA159, TW14 formed long chains and sparse microcolonies on hydroxylapatite disks but failed to accumulate and form three-dimensional biofilms when grown on glucose as the carbohydrate source. The biofilm formation defect was also readily apparent by confocal laser scanning microscopy when flow cells were used to grow biofilms. When subjected to acid killing at pH 2.8 for 45 min, the survival rate of strain TW14 was more than 1 log lower than that of the wild-type strain. TW14 was at least 3 logs more susceptible to killing by 0.2% hydrogen peroxide than was UA159. The expression of more than 200 genes was found by microarray analysis to be altered in cells lacking BrpA (P < 0.01). These results suggest that the loss of BrpA can dramatically influence the transcriptome and significantly affects the regulation of acid and oxidative stress tolerance and biofilm formation in S. mutans, which are key virulence attributes of the organism.
Collapse
Affiliation(s)
- Zezhang T Wen
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
49
|
Martín-Galiano AJ, Overweg K, Ferrándiz MJ, Reuter M, Wells JM, de la Campa AG. Transcriptional analysis of the acid tolerance response in Streptococcus pneumoniae. Microbiology (Reading) 2005; 151:3935-3946. [PMID: 16339938 DOI: 10.1099/mic.0.28238-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pneumoniae, one of the major causes of morbidity and mortality in humans, faces a range of potentially acidic conditions in the middle and late stages of growthin vitro, in diverse human fluids during the infection process, and in biofilms present in the nasopharynx of carriers.S. pneumoniaewas shown to develop a weak acid tolerance response (ATR), where cells previously exposed to sublethal pHs (5·8–6·6) showed an increased survival rate of up to one order of magnitude after challenge at the lethal pH (4·4, survival rate of 10−4). Moreover, the survival after challenge of stationary phase cells at pH 4·4 was three orders of magnitude higher than that of cells taken from the exponential phase, due to the production of lactic acid during growth and increasing acidification of the growth medium until stationary phase. Global expression analysis after short-term (5, 15 and 30 min, the adaptation phase) and long-term (the maintenance phase) acidic shock (pH 6·0) was performed by microarray experiments, and the results were validated by real-time RT-PCR. Out of a total of 126 genes responding to acidification, 59 and 37 were specific to the adaptation phase and maintenance phase, respectively, and 30 were common to both periods. In the adaptation phase, both up- and down-regulation of gene transcripts was observed (38 and 21 genes, respectively), whereas in the maintenance phase most of the affected genes were down-regulated (34 out of 37). Genes involved in protein fate (including those involved in the protection of the protein native structure) and transport (including transporters of manganese and iron) were overrepresented among the genes affected by acidification, 8·7 and 24·6 % of the acid-responsive genes compared to 2·8 % and 9·6 % of the genome complement, respectively. Cross-regulation with the response to oxidative and osmotic stress was observed. Potential regulatory motifs involved in the ATR were identified in the promoter regions of some of the regulated genes.
Collapse
Affiliation(s)
- Antonio J Martín-Galiano
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Karin Overweg
- Bacterial Infection and Immunity Group, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Maria J Ferrándiz
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Mark Reuter
- Bacterial Infection and Immunity Group, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Jerry M Wells
- Bacterial Infection and Immunity Group, Institute of Food Research, Norwich Research Park, Norwich NR4 7UA, UK
| | - Adela G de la Campa
- Unidad de Genética Bacteriana, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220, Majadahonda, Madrid, Spain
| |
Collapse
|