1
|
Wang Y, Shen X, Bian R, Liu X, Zheng J, Cheng K, Xuhui Z, Li L, Pan G. Effect of pyrolysis temperature of biochar on Cd, Pb and As bioavailability and bacterial community composition in contaminated paddy soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 247:114237. [PMID: 36306610 DOI: 10.1016/j.ecoenv.2022.114237] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
To further investigate the effect of pyrolysis temperature on bioavailable Cd, Pb and As, as well as the bacterial community structure in multi-metal(loid) contaminated paddy soil, six types of biochar derived from wood sawdust and peanut shell at 300 °C, 500 °C and 700 °C were prepared and incubated with Cd, Pb and As contaminated paddy soil for 45 days. The results showed that adding biochar decreased bioavailable Cd by 31.3%- 42.9%, Pb by 0.61-56.1%, while bioavailable As changed from 9.68 mg kg-1 to 9.55-10.84 mg kg-1. We found that pyrolysis temperature of biochar had no significant effect on Cd bioavailability while Pb bioavailability decreased obviously with pyrolysis temperature raising. Biochar reduced the proportion of soluble and exchangeable Cd from 45.0% to 11.2-15.4% in comparison with the control, while no significant effect on the speciation of Pb and As. Wood sawdust biochar (WSBs) had more potential in decreasing bioavailable Cd and Pb than peanut shell biochar (PSBs). Although high-temperature biochar resulted a larger increase in bacterial species than low-and mid- temperature biochar, feedstock played a more important role in altering soil bacterial diversity and community composition than pyrolysis temperature. PSBs increased the diversity of soil bacteria through elevating soil dissolved carbon (DOC). Biochar altered soil bacterial community structure mainly by altering the level of soil electricity conductivity, DOC and bioavailable Cd. In addition, applying high-temperature PSBs increased the genus of bacteria that relevant to nitrogen cycling, such as Nitrospira, Nitrosotaleaceae and Candidatus_Nitrosotalea.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China.
| | - Xinyue Shen
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Rongjun Bian
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Xiaoyu Liu
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Jufeng Zheng
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Kun Cheng
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Zhang Xuhui
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Lianqing Li
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| | - Genxing Pan
- Institute of Resource, Ecosystem and Environment of Agriculture, department of Soil Science, College of Resources and Environmental Sciences, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Center of Biomass Green Technology, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China; Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, 1 Weigang, Nanjing 210095, China
| |
Collapse
|
2
|
Gou Y, Song Y, Yang S, Yang Y, Cheng Y, Li J, Zhang T, Cheng Y, Wang H. Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 313:120023. [PMID: 36030953 DOI: 10.1016/j.envpol.2022.120023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/21/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO2 as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO3 (CO2) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO2 addition (EC2000) promoted PAH degradation compared to soil without added CO2 (EC0), with 4.18%, 9.01%-8.05%, and 6.19%-12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 108 g-1 soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO2 application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Collapse
Affiliation(s)
- Yaling Gou
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yun Song
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Sucai Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yan Yang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanan Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Jiabin Li
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Tengfei Zhang
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Yanjun Cheng
- Beijing Key Laboratory of Remediation of Industrial Pollution Sites, Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Hongqi Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
3
|
Wang Z, Wang L, Liu R, Li Z, Wu J, Wei X, Wei W, Fang J, Cao J, Wei Y, Xie Z. Community structure and activity potentials of archaeal communities in hadal sediments of the Mariana and Mussau trenches. MARINE LIFE SCIENCE & TECHNOLOGY 2022; 4:150-161. [PMID: 37073355 PMCID: PMC10077302 DOI: 10.1007/s42995-021-00105-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/16/2021] [Indexed: 05/03/2023]
Abstract
Hadal trenches are the least explored marine habitat on earth. Archaea has been shown to be the dominant group in trench sediments. However, the activity potentials and detailed diversity of these communities as well as their inter-trench variations are still not known. In this study, we combined datasets from two pairs of primers to investigate at high resolution the structure and activity potentials of the archaeal communities in vertically sectioned sediment cores taken from the deepest points of the Mariana (10,853 m) and Mussau (7011 m) trenches. The compositions of the potentially active communities revealed, via 16S ribosomal RNA gene (rDNA) and RNA (rRNA), significant differences between samples. Marine Group I (MGI), with nine identified subgroups, was the most dominant class in the active archaeal communities of the two trenches. Significantly different species composition and vertical variations were observed between the two trenches. Vertical transitions from aerobic MGI α to anaerobic MGI η and υ subgroups were observed in MST but not in MT sediments, which might be related to the faster microbial oxygen consumption in MST. These results provide a better understanding on archaeal activity and diversity in trench sediments. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00105-y.
Collapse
Affiliation(s)
- Zixuan Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Zhenzhen Li
- State Key Laboratory of Geological Process and Mineral Resources, Department of Earth Sciences, China University of Geosciences, Wuhan, 430074 China
| | - JiaXin Wu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Xing Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Wenxia Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237 China
- Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI 96813 USA
| | - Junwei Cao
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Yuli Wei
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| | - Zhe Xie
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306 China
| |
Collapse
|
4
|
Ma M, Gao W, Li Q, Han B, Zhu A, Yang H, Zheng L. Biodiversity and oil degradation capacity of oil-degrading bacteria isolated from deep-sea hydrothermal sediments of the South Mid-Atlantic Ridge. MARINE POLLUTION BULLETIN 2021; 171:112770. [PMID: 34492563 DOI: 10.1016/j.marpolbul.2021.112770] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 06/13/2023]
Abstract
Studies have reported that various hydrocarbons and hydrocarbon-degrading bacteria are found in global deep-sea hydrothermal regions. However, little is known about degradation characteristics of culturable hydrocarbon-degrading bacteria from these regions. We speculate that these bacteria can be used as resources for the bioremediation of oil pollution. In this study, six oil-degrading consortia were obtained from the hydrothermal region of the Southern Mid-Atlantic Ridge through room-temperature enrichment experiments. The dominant oil-degrading bacteria belonged to Nitratireductor, Pseudonocardia, Brevundimonas and Acinetobacter. More varieties of hydrocarbon-degrading bacteria were obtained from sediments (preserved at 4 °C) near hydrothermal vents. Most strains had the ability to degrade high molecular weight petroleum components. In addition, Pseudonocardia was shown to exhibit a high degradation ability for phytane and pristine for the first time. This study may provide new insights into the community structure and biodiversity of culturable oil-degrading bacteria in deep-sea hydrothermal regions.
Collapse
Affiliation(s)
- Meng Ma
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China.
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China
| | - Aimei Zhu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao 266071, China.
| |
Collapse
|
5
|
Garcia AK, Cavanaugh CM, Kacar B. The curious consistency of carbon biosignatures over billions of years of Earth-life coevolution. THE ISME JOURNAL 2021; 15:2183-2194. [PMID: 33846565 PMCID: PMC8319343 DOI: 10.1038/s41396-021-00971-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 03/12/2021] [Accepted: 03/25/2021] [Indexed: 11/09/2022]
Abstract
The oldest and most wide-ranging signal of biological activity (biosignature) on our planet is the carbon isotope composition of organic materials preserved in rocks. These biosignatures preserve the long-term evolution of the microorganism-hosted metabolic machinery responsible for producing deviations in the isotopic compositions of inorganic and organic carbon. Despite billions of years of ecosystem turnover, evolutionary innovation, organismic complexification, and geological events, the organic carbon that is a residuum of the global marine biosphere in the rock record tells an essentially static story. The ~25‰ mean deviation between inorganic and organic 13C/12C values has remained remarkably unchanged over >3.5 billion years. The bulk of this record is conventionally attributed to early-evolved, RuBisCO-mediated CO2 fixation that, in extant oxygenic phototrophs, produces comparable isotopic effects and dominates modern primary production. However, billions of years of environmental transition, for example, in the progressive oxygenation of the Earth's atmosphere, would be expected to have accompanied shifts in the predominant RuBisCO forms as well as enzyme-level adaptive responses in RuBisCO CO2-specificity. These factors would also be expected to result in preserved isotopic signatures deviating from those produced by extant RuBisCO in oxygenic phototrophs. Why does the bulk carbon isotope record not reflect these expected environmental transitions and evolutionary innovations? Here, we discuss this apparent discrepancy and highlight the need for greater quantitative understanding of carbon isotope fractionation behavior in extant metabolic pathways. We propose novel, laboratory-based approaches to reconstructing ancestral states of carbon metabolisms and associated enzymes that can constrain isotopic biosignature production in ancient biological systems. Together, these strategies are crucial for integrating the complementary toolsets of biological and geological sciences and for interpretation of the oldest record of life on Earth.
Collapse
Affiliation(s)
- Amanda K Garcia
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA
| | - Colleen M Cavanaugh
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Betul Kacar
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
- Lunar and Planetary Laboratory and Steward Observatory, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
6
|
Pillot G, Amin Ali O, Davidson S, Shintu L, Godfroy A, Combet-Blanc Y, Bonin P, Liebgott PP. Identification of enriched hyperthermophilic microbial communities from a deep-sea hydrothermal vent chimney under electrolithoautotrophic culture conditions. Sci Rep 2021; 11:14782. [PMID: 34285254 PMCID: PMC8292307 DOI: 10.1038/s41598-021-94135-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/28/2021] [Indexed: 02/06/2023] Open
Abstract
Deep-sea hydrothermal vents are extreme and complex ecosystems based on a trophic chain. We are still unsure of the identities of the first colonizers of these environments and their metabolism, but they are thought to be (hyper)thermophilic autotrophs. Here we investigate whether the electric potential observed across hydrothermal chimneys could serve as an energy source for these first colonizers. Experiments were performed in a two-chamber microbial electrochemical system inoculated with deep-sea hydrothermal chimney samples, with a cathode as sole electron donor, CO2 as sole carbon source, and nitrate, sulfate, or oxygen as electron acceptors. After a few days of culturing, all three experiments showed growth of electrotrophic biofilms consuming the electrons (directly or indirectly) and producing organic compounds including acetate, glycerol, and pyruvate. Within the biofilms, the only known autotroph species retrieved were members of Archaeoglobales. Various heterotrophic phyla also grew through trophic interactions, with Thermococcales growing in all three experiments as well as other bacterial groups specific to each electron acceptor. This electrotrophic metabolism as energy source driving initial microbial colonization of conductive hydrothermal chimneys is discussed.
Collapse
Affiliation(s)
- Guillaume Pillot
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Oulfat Amin Ali
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Sylvain Davidson
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Laetitia Shintu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Marseille, France
| | - Anne Godfroy
- IFREMER, CNRS, Université de Bretagne Occidentale, Laboratoire de Microbiologie des Environnements Extrêmes-UMR6197, Ifremer, Centre de Brest CS10070, Plouzané, France
| | - Yannick Combet-Blanc
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Patricia Bonin
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France
| | - Pierre-Pol Liebgott
- Aix Marseille Université, Université de Toulon, IRD, CNRS, MIO UM 110, 13288, Marseille Cedex 09, France.
| |
Collapse
|
7
|
Zeng X, Alain K, Shao Z. Microorganisms from deep-sea hydrothermal vents. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:204-230. [PMID: 37073341 PMCID: PMC10077256 DOI: 10.1007/s42995-020-00086-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/17/2020] [Indexed: 05/03/2023]
Abstract
With a rich variety of chemical energy sources and steep physical and chemical gradients, hydrothermal vent systems offer a range of habitats to support microbial life. Cultivation-dependent and independent studies have led to an emerging view that diverse microorganisms in deep-sea hydrothermal vents live their chemolithoautotrophic, heterotrophic, or mixotrophic life with versatile metabolic strategies. Biogeochemical processes are mediated by microorganisms, and notably, processes involving or coupling the carbon, sulfur, hydrogen, nitrogen, and metal cycles in these unique ecosystems. Here, we review the taxonomic and physiological diversity of microbial prokaryotic life from cosmopolitan to endemic taxa and emphasize their significant roles in the biogeochemical processes in deep-sea hydrothermal vents. According to the physiology of the targeted taxa and their needs inferred from meta-omics data, the media for selective cultivation can be designed with a wide range of physicochemical conditions such as temperature, pH, hydrostatic pressure, electron donors and acceptors, carbon sources, nitrogen sources, and growth factors. The application of novel cultivation techniques with real-time monitoring of microbial diversity and metabolic substrates and products are also recommended. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-020-00086-4.
Collapse
Affiliation(s)
- Xiang Zeng
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E UMR6197, Univ Brest, CNRS, IFREMER, F-29280 Plouzané, France
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, 361005 China
- LIA/IRP 1211 MicrobSea, Sino-French International Laboratory of Deep-Sea Microbiology, 29280 Plouzané, France
| |
Collapse
|
8
|
Ma M, Zheng L, Yin X, Gao W, Han B, Li Q, Zhu A, Chen H, Yang H. Reconstruction and evaluation of oil-degrading consortia isolated from sediments of hydrothermal vents in the South Mid-Atlantic Ridge. Sci Rep 2021; 11:1456. [PMID: 33446871 PMCID: PMC7809451 DOI: 10.1038/s41598-021-80991-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 12/23/2020] [Indexed: 11/11/2022] Open
Abstract
In this study, sediments were collected from two different sites in the deep-sea hydrothermal region of the South Atlantic Ocean. Two microbial enrichment cultures (H7S and H11S), which were enriched from the sediments collected at two sample sites, could effectively degrade petroleum hydrocarbons. The bacterial diversity was analyzed by high-throughput sequencing method. The petroleum degradation ability were evaluated by gas chromatography–mass spectrometry and gravimetric analysis. We found that the dominant oil-degrading bacteria of enrichment cultures from the deep-sea hydrothermal area belonged to the genera Pseudomonas, Nitratireductor, Acinetobacter, and Brevundimonas. After a 14-day degradation experiment, the enrichment culture H11S, which was obtained near a hydrothermal vent, exhibited a higher degradation efficiency for alkanes (95%) and polycyclic aromatic hydrocarbons (88%) than the enrichment culture H7S. Interestingly, pristane and phytane as biomarkers were degraded up to 90% and 91% respectively by the enrichment culture H11S, and six culturable oil-degrading bacterial strains were isolated. Acinetobacter junii strain H11S-25, Nitratireductor sp. strain H11S-31 and Pseudomonas sp. strain H11S-28 were used at a density ratio of 95:4:1 to construct high-efficiency oil-degrading consortium H. After a three-day biodegradation experiment, consortium H showed high degradation efficiencies of 74.2% and 65.7% for total alkanes and PAHs, respectively. The degradation efficiency of biomarkers such as pristane and high-molecular-weight polycyclic aromatic hydrocarbons (such as CHR) reached 84.5% and 80.48%, respectively. The findings of this study indicate that the microorganisms in the deep-sea hydrothermal area are potential resources for degrading petroleum hydrocarbons. Consortium H, which was artificially constructed, showed a highly efficient oil-degrading capacity and has significant application prospects in oil pollution bioremediation.
Collapse
Affiliation(s)
- Meng Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.,Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Li Zheng
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China. .,Laboratory for Marine Ecology and Environmental Science, Pilot National Laboratory for Marine Science and Technology (Qingdao), Qingdao, 266071, China.
| | - Xiaofei Yin
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Wei Gao
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Bin Han
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Qian Li
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Aimei Zhu
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Hao Chen
- Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, Ministry of Natural Resources, Qingdao, 266061, China
| | - Huanghao Yang
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, 350108, China.
| |
Collapse
|
9
|
Phylogenetic Diversity of Archaea in Shallow Hydrothermal Vents of Eolian Islands, Italy. DIVERSITY 2019. [DOI: 10.3390/d11090156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Shallow hydrothermal systems (SHS) around the Eolian Islands (Italy), related to both active and extinct volcanism, are characterized by high temperatures, high concentrations of CO2 and H2S, and low pH, prohibitive for the majority of eukaryotes which are less tolerant to the extreme conditions than prokaryotes. Archaea and bacteria are the key elements for the functioning of these ecosystems, as they are involved in the transformation of inorganic compounds released from the vent emissions and are at the basis of the hydrothermal system food web. New extremophilic archaea (thermophilic, hyperthermophilic, acidophilic, alkalophilic, etc.) have been isolated from vents of Vulcano Island, exhibiting interesting features potentially valuable in biotechnology. Metagenomic analyses, which mainly involved molecular studies of the 16S rRNA gene, provided different insights into microbial composition associated with Eolian SHS. Archaeal community composition at Eolian vent sites results greatly affected by the geochemistry of the studied vents, principally by hypersaline conditions and declining temperatures. Archaeal community in sediments was mostly composed by hyperthermophilic members of Crenarchaeota (class Thermoprotei) and Euryarchaeota (Thermococci and Methanococci) at the highest temperature condition. Mesophilic Euryarchaeota (Halobacteria, Methanomicrobia, and Methanobacteria) increased with decreasing temperatures. Eolian SHS harbor a high diversity of largely unknown archaea, and the studied vents may be an important source of new isolates potentially useful for biotechnological purposes.
Collapse
|
10
|
Wang Y, Huang JM, Cui GJ, Nunoura T, Takaki Y, Li WL, Li J, Gao ZM, Takai K, Zhang AQ, Stepanauskas R. Genomics insights into ecotype formation of ammonia-oxidizing archaea in the deep ocean. Environ Microbiol 2019; 21:716-729. [PMID: 30592124 DOI: 10.1111/1462-2920.14518] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 12/18/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023]
Abstract
Various lineages of ammonia-oxidizing archaea (AOA) are present in deep waters, but the mechanisms that determine ecotype formation are obscure. We studied 18 high-quality genomes of the marine group I AOA lineages (alpha, gamma and delta) from the Mariana and Ogasawara trenches. The genomes of alpha AOA resembled each other, while those of gamma and delta lineages were more divergent and had even undergone insertion of some phage genes. The instability of the gamma and delta AOA genomes could be partially due to the loss of DNA polymerase B (polB) and methyladenine DNA glycosylase (tag) genes responsible for the repair of point mutations. The alpha AOA genomes harbour genes encoding a thrombospondin-like outer membrane structure that probably serves as a barrier to gene flow. Moreover, the gamma and alpha AOA lineages rely on vitamin B12 -independent MetE and B12 -dependent MetH, respectively, for methionine synthesis. The delta AOA genome contains genes involved in uptake of sugar and peptide perhaps for heterotrophic lifestyle. Our study provides insights into co-occurrence of cladogenesis and anagenesis in the formation of AOA ecotypes that perform differently in nitrogen and carbon cycling in dark oceans.
Collapse
Affiliation(s)
- Yong Wang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Jiao-Mei Huang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Guo-Jie Cui
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Takuro Nunoura
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Yoshihiro Takaki
- Research and Development Center for Marine Biosciences, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Wen-Li Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China.,University of the Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Zhao-Ming Gao
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ken Takai
- Department of Subsurface Geobiological Analysis and Research, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Ai-Qun Zhang
- Institute of Deep-Sea Science and Engineering, Chinese Academy of Sciences, Sanya, Hainan, China
| | - Ramunas Stepanauskas
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Drive, East Boothbay, ME, 04544, USA
| |
Collapse
|
11
|
Jing H, Zhu W, Liu H, Zheng L, Zhang Y. Particle-Attached and Free-Living Archaeal Communities in the Benthic Boundary Layer of the Mariana Trench. Front Microbiol 2018; 9:2821. [PMID: 30519228 PMCID: PMC6258811 DOI: 10.3389/fmicb.2018.02821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/02/2018] [Indexed: 01/29/2023] Open
Abstract
The benthic boundary layer (BBL) is the part of the water column that is situated near to the sediment surface, where active oceanic biogeochemical cycling occurs. Archaea play an important role in mediating this cycling, however, their composition and diversity in the BBL remain largely unknown. We investigated the community composition and abundance of both particle-attached (PA) and free-living (FL) archaea in the BBL on the slopes of the Mariana Trench using Illumina sequencing and quantitative PCR (qPCR), at both the DNA and RNA levels. Our results showed that Thaumarchaeota (>90%) and Woesearchaeota (1–10%) dominated in all the BBL samples, and that the former was composed mainly of Marine Group I (MGI). A clear separation of PA and FL samples was observed, and they showed a high level of similarity to the subsurface sediments and the water column, respectively. No significant differences were detected in the archaeal communities located in the southern and northern slopes of the Mariana Trench, or between the levels of DNA and RNA. However, lower RNA/DNA ratios (estimated by qPCR) were found in the PA samples than in the FL samples, indicating higher transcriptional activities in the FL fractions. A distinct archaeal community structure was found in the middle of the trench when compared with samples collected at the same depth at other stations along the trench slopes. This indicates that a dynamic deep current might affect the distribution of organic matter on the slopes. Our study provides direct information regarding the archaeal communities in the BBL of the Mariana Trench. We suggest that this might promote further exploration of the ecological roles and microbial processes of such communities located in deep-sea ecosystems.
Collapse
Affiliation(s)
- Hongmei Jing
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Wenda Zhu
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Hongbin Liu
- Division of Life Science, The Hong Kong University of Science and Technology, Kowloon, China
| | - Liping Zheng
- CAS Key Lab for Experimental Study Under Deep-sea Extreme Conditions, Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya, China
| | - Yu Zhang
- State Key Laboratory of Ocean Engineering, Institute of Oceanography, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
12
|
Wang H, Zeng Y, Guo C, Bao Y, Lu G, Reinfelder JR, Dang Z. Bacterial, archaeal, and fungal community responses to acid mine drainage-laden pollution in a rice paddy soil ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:107-116. [PMID: 29107775 DOI: 10.1016/j.scitotenv.2017.10.224] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 10/17/2017] [Accepted: 10/21/2017] [Indexed: 05/21/2023]
Abstract
Lacking sufficient clean water, the paddy soils along the Hengshi River have suffered from long-term acid mine drainage (AMD) contamination. The impacted cropland is too heavily contaminated to grow food safely. The microbial communities inhabiting the environment play pivotal roles in the crop growth, health, and ecological services. In this study, the bacterial, archaeal, and fungal communities in the impacted paddy soil were examined using high-throughput Illumina MiSeq sequencing. The results showed that AMD irrigation considerably enriched the bacterial phylum Acidobacteria and the archaeal phylum Crenarchaeota, while the fungal community was more stable. The abundances of Acidobacteria and Crenarchaeota were significantly positively correlated with the AMD-related environmental factors of pH and heavy metals (Cu, Pb, and Zn). In the most contaminated samples, communities were dominated by the bacteria Candidatus Solibacter and Candidatus Koribacter from the Acidobacteria family. Functional gene profile analysis demonstrated that the energy metabolic processes of the microbial communities, especially C/N related pathways, have adjusted and are well-adapted to tolerating AMD contamination. The present study described the structural and functional differentiation of microbial communities in the rice paddy soil under AMD irrigation. The results are useful for the development of bioremediation strategies using native microbes in the cleanup and biorestoration of AMD-contaminated agriculture soil.
Collapse
Affiliation(s)
- Han Wang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Yufei Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chuling Guo
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| | - Yanping Bao
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Guining Lu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - John R Reinfelder
- Department of Environmental Sciences, Rutgers University, New Brunswick, NJ 08901, USA
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
13
|
Microbiota in the coelomic fluid of two common coastal starfish species and characterization of an abundant Helicobacter-related taxon. Sci Rep 2017; 7:8764. [PMID: 28821872 PMCID: PMC5562702 DOI: 10.1038/s41598-017-09355-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/26/2017] [Indexed: 12/24/2022] Open
Abstract
Marine invertebrates associate with diverse microorganisms. Microorganisms even inhabit coelomic fluid (CF), namely, the fluid filling the main body cavity of echinoderms. The CF microbiota potentially impacts host health and disease. Here, we analysed the CF microbiota in two common coastal starfish species, Patiria pectinifera and Asterias amurensis. Although microbial community structures were highly variable among individual starfish, those of P. pectinifera were compositionally similar to those in the surrounding seawater. By contrast, many A. amurensis individuals harboured unique microbes in the CF, which was dominated by the unclassified Thiotrichales or previously unknown Helicobacter-related taxon. In some individuals, the Helicobacter-related taxon was the most abundant genus-level taxon, accounting for up to 97.3% of reads obtained from the CF microbial community. Fluorescence in situ hybridization using a Helicobacter-related-taxon-specific probe suggested that probe-reactive cells in A. amurensis were spiral-shaped, morphologically similar to known Helicobacter species. Electron microscopy revealed that the spiral cells had a prosthecate-like polar appendage that has never been reported in Helicobacter species. Although culture of Helicobacter-related taxon was unsuccessful, this is the first report of the dominance of a Helicobacter-related taxon in invertebrates and non-digestive organs, reshaping our knowledge of the phylogeography of Helicobacter-related taxa.
Collapse
|
14
|
Wang L, Cheung MK, Liu R, Wong CK, Kwan HS, Hwang JS. Diversity of Total Bacterial Communities and Chemoautotrophic Populations in Sulfur-Rich Sediments of Shallow-Water Hydrothermal Vents off Kueishan Island, Taiwan. MICROBIAL ECOLOGY 2017; 73:571-582. [PMID: 27909749 DOI: 10.1007/s00248-016-0898-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 11/10/2016] [Indexed: 06/06/2023]
Abstract
Shallow-water hydrothermal vents (HTVs) are an ecologically important habitat with a geographic origin similar to that of deep-sea HTVs. Studies on shallow-water HTVs have not only facilitated understanding of the influences of vents on local ecosystems but also helped to extend the knowledge on deep-sea vents. In this study, the diversity of bacterial communities in the sediments of shallow-water HTVs off Kueishan Island, Taiwan, was investigated by examining the 16S ribosomal RNA gene as well as key functional genes involved in chemoautotrophic carbon fixation (aclB, cbbL and cbbM). In the vent area, Sulfurovum and Sulfurimonas of Epsilonproteobacteria appeared to dominate the benthic bacterial community. Results of aclB gene analysis also suggested involvement of these bacteria in carbon fixation using the reductive tricarboxylic acid (rTCA) cycle. Analysis of the cbbM gene showed that Alphaproteobacterial members such as the purple non-sulfur bacteria were the major chemoautotrophic bacteria involving in carbon fixation via the Calvin-Benson-Bassham (CBB) cycle. However, they only accounted for <2% of the total bacterial community in the vent area. These findings suggest that the rTCA cycle is the major chemoautotrophic carbon fixation pathway in sediments of the shallow-water HTVs off Kueishan Island.
Collapse
Affiliation(s)
- Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China.
| | - Man Kit Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, 201306, People's Republic of China
| | - Chong Kim Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Hoi Shan Kwan
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, People's Republic of China
| | - Jiang-Shiou Hwang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| |
Collapse
|
15
|
Lauer A, Sørensen KB, Teske A. Phylogenetic Characterization of Marine Benthic Archaea in Organic-Poor Sediments of the Eastern Equatorial Pacific Ocean (ODP Site 1225). Microorganisms 2016; 4:microorganisms4030032. [PMID: 27681926 PMCID: PMC5039592 DOI: 10.3390/microorganisms4030032] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/16/2016] [Accepted: 08/22/2016] [Indexed: 11/16/2022] Open
Abstract
Sequencing surveys of microbial communities in marine subsurface sediments have focused on organic-rich, continental margins; the database for organic-lean deep-sea sediments from mid-ocean regions is underdeveloped. The archaeal community in subsurface sediments of ODP Site 1225 in the eastern equatorial Pacific (3760 m water depth; 1.1 and 7.8 m sediment depth) was analyzed by PCR, cloning and sequencing, and by denaturant gradient gel electrophoresis (DGGE) of 16S rRNA genes. Three uncultured archaeal lineages with different depth distributions were found: Marine Group I (MG-I) within the Thaumarchaeota, its sister lineage Marine Benthic Group A (MBG-A), the phylum-level archaeal lineage Marine Benthic Group B (also known as Deep-Sea Archaeal Group or Lokiarchaeota), and the Deep-Sea Euryarchaeotal Group 3. The MG-I phylotypes included representatives of sediment clusters that are distinct from the pelagic members of this phylum. On the scale from fully oxidized, extremely organic carbon-depleted sediments (for example, those the South Pacific Gyre) to fully reduced, organic carbon-rich marine subsurface sediments (such as those of the Peru Margin), Ocean Drilling Program (ODP) Site 1225 falls into the non-extreme organic carbon-lean category, and harbors archaeal communities from both ends of the spectrum.
Collapse
Affiliation(s)
- Antje Lauer
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Biology Department, California State University Bakersfield, Bakersfield, CA 93311-1022, USA.
| | - Ketil Bernt Sørensen
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
- Ramboll, Copenhagen DK-2300, Denmark.
| | - Andreas Teske
- Department of Marine Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
16
|
Sun QL, Zeng ZG, Chen S, Sun L. First Comparative Analysis of the Community Structures and Carbon Metabolic Pathways of the Bacteria Associated with Alvinocaris longirostris in a Hydrothermal Vent of Okinawa Trough. PLoS One 2016; 11:e0154359. [PMID: 27111851 PMCID: PMC4844111 DOI: 10.1371/journal.pone.0154359] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 04/12/2016] [Indexed: 11/19/2022] Open
Abstract
Alvinocaris longirostris is a species of shrimp existing in the hydrothermal fields of Okinawa Trough. To date the structure and function of the microbial community associated with A. longirostris are essentially unknown. In this study, by employment of the techniques of high through-put sequencing and clone library construction and analysis, we compared for the first time the community structures and metabolic profiles of microbes associated with the gill and gut of A. longirostris in a hydrothermal field of Okinawa Trough. Fourteen phyla were detected in the gill and gut communities, of which 11 phyla were shared by both tissues. Proteobacteria made up a substantial proportion in both tissues, while Firmicutes was abundant only in gut. Although gill and gut communities were similar in bacterial diversities, the bacterial community structures in these two tissues were significantly different. Further, we discovered for the first time the existence in the gill and gut communities of A. longirostris the genes (cbbM and aclB) encoding the key enzymes of Calvin-Benson-Bassham (CBB) cycle and the reductive tricarboxylic acid (rTCA) cycle, and that both cbbM and aclB were significantly more abundant in gill than in gut. Taken together, these results provide the first evidence that at least two carbon fixation pathways are present in both the gill and the gut communities of A. longirostris, and that the communities in different tissues likely differ in autotrophic productivity.
Collapse
Affiliation(s)
- Qing-lei Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhi-gang Zeng
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Shuai Chen
- Key Laboratory of Marine Geology and Environment, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- * E-mail:
| |
Collapse
|
17
|
Microbial diversity in deep-sea sediments from the Menez Gwen hydrothermal vent system of the Mid-Atlantic Ridge. Mar Genomics 2015; 24 Pt 3:343-55. [DOI: 10.1016/j.margen.2015.09.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 09/03/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022]
|
18
|
Characteristics of the cultivable bacteria from sediments associated with two deep-sea hydrothermal vents in Okinawa Trough. World J Microbiol Biotechnol 2015; 31:2025-37. [PMID: 26410427 DOI: 10.1007/s11274-015-1953-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 09/23/2015] [Indexed: 10/23/2022]
Abstract
In this study, different culture-dependent methods were used to examine the cultivable heterotrophic bacteria in the sediments associated with two deep-sea hydrothermal vents (named HV1 and HV2) located at Iheya Ridge and Iheya North in Okinawa Trough. The two vents differed in morphology, with HV1 exhibiting diffuse flows while HV2 being a black smoker with a chimney-like structure. A total of 213 isolates were identified by near full-length 16S rRNA gene sequence analysis. Of these isolates, 128 were from HV1 and 85 were from HV2. The bacterial community structures were, in large parts, similar between HV1 and HV2. Nevertheless, differences between HV1 and HV2 were observed in one phylum, one class, 4 orders, 10 families, and 20 genera. Bioactivity analysis revealed that 25 isolates belonging to 9 different genera exhibited extracellular protease activities, 21 isolates from 11 genera exhibited extracellular lipase activities, and 13 isolates of 8 genera displayed antimicrobial activities. This is the first observation of a large population of bacteria with extracellular bioactivities existing in deep-sea hydrothermal vents. Taken together, the results of this study provide new insights into the characteristics of the cultivable heterotrophic bacteria in deep-sea hydrothermal ecosystems.
Collapse
|
19
|
Fillol M, Sànchez-Melsió A, Gich F, M. Borrego C. Diversity of Miscellaneous Crenarchaeotic Group archaea in freshwater karstic lakes and their segregation between planktonic and sediment habitats. FEMS Microbiol Ecol 2015; 91:fiv020. [DOI: 10.1093/femsec/fiv020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/17/2015] [Indexed: 02/06/2023] Open
|
20
|
Liu J, Yu S, Zhao M, He B, Zhang XH. Shifts in archaeaplankton community structure along ecological gradients of Pearl Estuary. FEMS Microbiol Ecol 2014; 90:424-35. [PMID: 25098621 DOI: 10.1111/1574-6941.12404] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 07/29/2014] [Accepted: 07/31/2014] [Indexed: 11/28/2022] Open
Abstract
The significance of archaea in regulating biogeochemical processes has led to an interest in their community compositions. Using 454 pyrosequencing, the present study examined the archaeal communities along a subtropical estuary, Pearl Estuary, China. Marine Group I Thaumarchaeota (MG-I) were predominant in freshwater sites and one novel subgroup of MG-I, that is MG-Iν, was proposed. In addition, the previously defined MG-Iα II was grouped into two clusters (MG-Iα II-1, II-2). MG-Iα II-1 and MG-Iλ II were both freshwater-specific, with MG-Iα II-1 being prevalent in the oxic water and MG-Iλ II in the hypoxic water. Salinity, dissolved oxygen, nutrients and pH were the most important determinants that shaped the differential distribution of MG-I subgroups along Pearl Estuary. Marine Group II Euryarchaeota (MG-II) dominated the saltwater sites, but their abundance was higher in surface waters. The phylogenetic patterns of MG-I subgroups and their habitat preferences provide insight into their phylogeographic relationships. These results highlight the diversification of various ecotypes of archaea, especially of MG-I, under distinct environmental factors in Pearl Estuary, which are of great value for further exploring their ecological functions.
Collapse
Affiliation(s)
- Jiwen Liu
- College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | | | | | | | | |
Collapse
|
21
|
Microbial community stratification controlled by the subseafloor fluid flow and geothermal gradient at the Iheya North hydrothermal field in the Mid-Okinawa Trough (Integrated Ocean Drilling Program Expedition 331). Appl Environ Microbiol 2014; 80:6126-35. [PMID: 25063666 DOI: 10.1128/aem.01741-14] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The impacts of lithologic structure and geothermal gradient on subseafloor microbial communities were investigated at a marginal site of the Iheya North hydrothermal field in the Mid-Okinawa Trough. Subsurface marine sediments composed of hemipelagic muds and volcaniclastic deposits were recovered through a depth of 151 m below the seafloor at site C0017 during Integrated Ocean Drilling Program Expedition 331. Microbial communities inferred from 16S rRNA gene clone sequencing in low-temperature hemipelagic sediments were mainly composed of members of the Chloroflexi and deep-sea archaeal group. In contrast, 16S rRNA gene sequences of marine group I Thaumarchaeota dominated the microbial phylotype communities in the coarse-grained pumiceous gravels interbedded between the hemipelagic sediments. Based on the physical properties of sediments such as temperature and permeability, the porewater chemistry, and the microbial phylotype compositions, the shift in the physical properties of the sediments is suggested to induce a potential subseafloor recharging flow of oxygenated seawater in the permeable zone, leading to the generation of variable chemical environments and microbial communities in the subseafloor habitats. In addition, the deepest section of sediments under high-temperature conditions (∼90°C) harbored the sequences of an uncultivated archaeal lineage of hot water crenarchaeotic group IV that may be associated with the high-temperature hydrothermal fluid flow. These results indicate that the subseafloor microbial community compositions and functions at the marginal site of the hydrothermal field are highly affected by the complex fluid flow structure, such as recharging seawater and underlying hydrothermal fluids, coupled with the lithologic transition of sediments.
Collapse
|
22
|
Campbell BJ, Polson SW, Zeigler Allen L, Williamson SJ, Lee CK, Wommack KE, Cary SC. Diffuse flow environments within basalt- and sediment-based hydrothermal vent ecosystems harbor specialized microbial communities. Front Microbiol 2013; 4:182. [PMID: 23898323 PMCID: PMC3721025 DOI: 10.3389/fmicb.2013.00182] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 06/17/2013] [Indexed: 02/01/2023] Open
Abstract
Hydrothermal vents differ both in surface input and subsurface geochemistry. The effects of these differences on their microbial communities are not clear. Here, we investigated both alpha and beta diversity of diffuse flow-associated microbial communities emanating from vents at a basalt-based hydrothermal system along the East Pacific Rise (EPR) and a sediment-based hydrothermal system, Guaymas Basin. Both Bacteria and Archaea were targeted using high throughput 16S rRNA gene pyrosequencing analyses. A unique aspect of this study was the use of a universal set of 16S rRNA gene primers to characterize total and diffuse flow-specific microbial communities from varied deep-sea hydrothermal environments. Both surrounding seawater and diffuse flow water samples contained large numbers of Marine Group I (MGI) Thaumarchaea and Gammaproteobacteria taxa previously observed in deep-sea systems. However, these taxa were geographically distinct and segregated according to type of spreading center. Diffuse flow microbial community profiles were highly differentiated. In particular, EPR dominant diffuse flow taxa were most closely associated with chemolithoautotrophs, and off axis water was dominated by heterotrophic-related taxa, whereas the opposite was true for Guaymas Basin. The diversity and richness of diffuse flow-specific microbial communities were strongly correlated to the relative abundance of Epsilonproteobacteria, proximity to macrofauna, and hydrothermal system type. Archaeal diversity was higher than or equivalent to bacterial diversity in about one third of the samples. Most diffuse flow-specific communities were dominated by OTUs associated with Epsilonproteobacteria, but many of the Guaymas Basin diffuse flow samples were dominated by either OTUs within the Planctomycetes or hyperthermophilic Archaea. This study emphasizes the unique microbial communities associated with geochemically and geographically distinct hydrothermal diffuse flow environments.
Collapse
Affiliation(s)
- Barbara J Campbell
- Department of Biological Sciences, Life Science Facility, Clemson University Clemson, SC, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Breuker A, Stadler S, Schippers A. Microbial community analysis of deeply buried marine sediments of the New Jersey shallow shelf (IODP Expedition 313). FEMS Microbiol Ecol 2013; 85:578-92. [DOI: 10.1111/1574-6941.12146] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 05/02/2013] [Accepted: 05/02/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Anja Breuker
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| | - Susanne Stadler
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| | - Axel Schippers
- Bundesanstalt für Geowissenschaften und Rohstoffe; Hannover Germany
| |
Collapse
|
24
|
Nunoura T, Nishizawa M, Kikuchi T, Tsubouchi T, Hirai M, Koide O, Miyazaki J, Hirayama H, Koba K, Takai K. Molecular biological and isotopic biogeochemical prognoses of the nitrification-driven dynamic microbial nitrogen cycle in hadopelagic sediments. Environ Microbiol 2013; 15:3087-107. [PMID: 23718903 DOI: 10.1111/1462-2920.12152] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 04/08/2013] [Accepted: 04/28/2013] [Indexed: 11/30/2022]
Abstract
There has been much progress in understanding the nitrogen cycle in oceanic waters including the recent identification of ammonia-oxidizing archaea and anaerobic ammonia oxidizing (anammox) bacteria, and in the comprehensive estimation in abundance and activity of these microbial populations. However, compared with the nitrogen cycle in oceanic waters, there are fewer studies concerning the oceanic benthic nitrogen cycle. To further elucidate the dynamic nitrogen cycle in deep-sea sediments, a sediment core obtained from the Ogasawara Trench at a water depth of 9760 m was analysed in this study. The profiles obtained for the pore-water chemistry, and nitrogen and oxygen stable isotopic compositions of pore-water nitrate in the hadopelagic sediments could not be explained by the depth segregation of nitrifiers and nitrate reducers, suggesting the co-occurrence of nitrification and nitrate reduction in the shallowest nitrate reduction zone. The abundance of SSU rRNA and functional genes related to nitrification and denitrification are consistent with the co-occurrence of nitrification and nitrate reduction observed in the geochemical analyses. This study presents the first example of cooperation between aerobic and anaerobic nitrogen metabolism in the deep-sea sedimentary environments.
Collapse
Affiliation(s)
- Takuro Nunoura
- Subsurface Geobiology & Advanced Research Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology, 2-15 Natsushima-cho, Yokosuka 237-0061, Japan.
| | - Manabu Nishizawa
- Precambrian Ecosystem Laboratory, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Tohru Kikuchi
- Environmental Biosciences, International Graduate School of Arts and Sciences, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, 236-0027, Japan
| | - Taishi Tsubouchi
- Marine Bioresource Exploration Research Team, Marine Biodiversity Research Program, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Miho Hirai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Osamu Koide
- Soft Matter and Extremophiles Research Team, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Junichi Miyazaki
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Precambrian Ecosystem Laboratory, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Hisako Hirayama
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| | - Keisuke Koba
- Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo, 183-8509, Japan
| | - Ken Takai
- Subsurface Geobiology & Advanced Research (SUGAR) Project, Extremobiosphere Research Program, Institute of Biogeosciences, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan.,Precambrian Ecosystem Laboratory, Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, 237-0061, Japan
| |
Collapse
|
25
|
Dick GJ, Anantharaman K, Baker BJ, Li M, Reed DC, Sheik CS. The microbiology of deep-sea hydrothermal vent plumes: ecological and biogeographic linkages to seafloor and water column habitats. Front Microbiol 2013; 4:124. [PMID: 23720658 PMCID: PMC3659317 DOI: 10.3389/fmicb.2013.00124] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 04/30/2013] [Indexed: 11/24/2022] Open
Abstract
Hydrothermal plumes are an important yet understudied component of deep-sea vent microbial ecosystems. The significance of plume microbial processes can be appreciated from three perspectives: (1) mediation of plume biogeochemistry, (2) dispersal of seafloor hydrothermal vent microbes between vents sites, (3) as natural laboratories for understanding the ecology, physiology, and function of microbial groups that are distributed throughout the pelagic deep sea. Plume microbiology has been largely neglected in recent years, especially relative to the extensive research conducted on seafloor and subseafloor systems. Rapidly advancing technologies for investigating microbial communities provide new motivation and opportunities to characterize this important microbial habitat. Here we briefly highlight microbial contributions to plume and broader ocean (bio)geochemistry and review recent work to illustrate the ecological and biogeographic linkages between plumes, seafloor vent habitats, and other marine habitats such as oxygen minimum zones (OMZs), cold seeps, and oil spills. 16S rRNA gene surveys and metagenomic/-transcriptomic data from plumes point to dominant microbial populations, genes, and functions that are also operative in OMZs (SUP05, ammonia-oxidizing Archaea, and SAR324 Deltaproteobacteria) and hydrocarbon-rich environments (methanotrophs). Plume microbial communities are distinct from those on the seafloor or in the subsurface but contain some signatures of these habitats, consistent with the notion that plumes are potential vectors for dispersal of microorganisms between seafloor vent sites. Finally, we put forward three pressing questions for the future of deep-sea hydrothermal plume research and consider interactions between vents and oceans on global scales.
Collapse
Affiliation(s)
- Gregory J Dick
- Department of Earth and Environmental Sciences, University of Michigan Ann Arbor, MI, USA ; Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, MI, USA ; Center for Computational Medicine and Bioinformatics, University of Michigan Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
26
|
Jaeschke A, Jørgensen SL, Bernasconi SM, Pedersen RB, Thorseth IH, Früh-Green GL. Microbial diversity of Loki's Castle black smokers at the Arctic Mid-Ocean Ridge. GEOBIOLOGY 2012; 10:548-561. [PMID: 23006788 DOI: 10.1111/gbi.12009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2012] [Accepted: 08/16/2012] [Indexed: 06/01/2023]
Abstract
Hydrothermal vent systems harbor rich microbial communities ranging from aerobic mesophiles to anaerobic hyperthermophiles. Among these, members of the archaeal domain are prevalent in microbial communities in the most extreme environments, partly because of their temperature-resistant and robust membrane lipids. In this study, we use geochemical and molecular microbiological methods to investigate the microbial diversity in black smoker chimneys from the newly discovered Loki's Castle hydrothermal vent field on the Arctic Mid-Ocean Ridge (AMOR) with vent fluid temperatures of 310-320 °C and pH of 5.5. Archaeal glycerol dialkyl glycerol tetraether lipids (GDGTs) and H-shaped GDGTs with 0-4 cyclopentane moieties were dominant in all sulfide samples and are most likely derived from both (hyper)thermophilic Euryarchaeota and Crenarchaeota. Crenarchaeol has been detected in low abundances in samples derived from the chimney exterior indicating the presence of Thaumarchaeota at lower ambient temperatures. Aquificales and members of the Epsilonproteobacteria were the dominant bacterial groups detected. Our observations based on the analysis of 16S rRNA genes and biomarker lipid analysis provide insight into microbial communities thriving within the porous sulfide structures of active and inactive deep-sea hydrothermal vents. Microbial cycling of sulfur, hydrogen, and methane by archaea in the chimney interior and bacteria in the chimney exterior may be the prevailing biogeochemical processes in this system.
Collapse
MESH Headings
- Arctic Regions
- Atlantic Ocean
- Biota
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Genes, rRNA
- Hot Temperature
- Hydrogen-Ion Concentration
- Hydrothermal Vents/microbiology
- Lipids/analysis
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- A Jaeschke
- Department of Earth Sciences, ETH Zurich, Zurich, Switzerland.
| | | | | | | | | | | |
Collapse
|
27
|
Håvelsrud OE, Haverkamp THA, Kristensen T, Jakobsen KS, Rike AG. Metagenomic and geochemical characterization of pockmarked sediments overlaying the Troll petroleum reservoir in the North Sea. BMC Microbiol 2012; 12:203. [PMID: 22966776 PMCID: PMC3478177 DOI: 10.1186/1471-2180-12-203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2011] [Accepted: 06/28/2012] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Pockmarks (depressions in the seabed) have been discovered throughout the world's oceans and are often related to hydrocarbon seepage. Although high concentrations of pockmarks are present in the seabed overlaying the Troll oil and gas reservoir in the northern North Sea, geological surveys have not detected hydrocarbon seepage in this area at the present time. In this study we have used metagenomics to characterize the prokaryotic communities inhabiting the surface sediments in the Troll area in relation to geochemical parameters, particularly related to hydrocarbon presence. We also investigated the possibility of increased potential for methane oxidation related to the pockmarks. Five metagenomes from pockmarks and plain seabed sediments were sequenced by pyrosequencing (Roche/454) technology. In addition, two metagenomes from seabed sediments geologically unlikely to be influenced by hydrocarbon seepage (the Oslofjord) were included. The taxonomic distribution and metabolic potential of the metagenomes were analyzed by multivariate analysis and statistical comparisons to reveal variation within and between the two sampling areas. RESULTS The main difference identified between the two sampling areas was an overabundance of predominantly autotrophic nitrifiers, especially Nitrosopumilus, and oligotrophic marine Gammaproteobacteria in the Troll metagenomes compared to the Oslofjord. Increased potential for degradation of hydrocarbons, especially aromatic hydrocarbons, was detected in two of the Troll samples: one pockmark sample and one from the plain seabed. Although presence of methanotrophic organisms was indicated in all samples, no overabundance in pockmark samples compared to the Oslofjord samples supports no, or only low level, methane seepage in the Troll pockmarks at the present time. CONCLUSIONS Given the relatively low content of total organic carbon and great depths of hydrocarbon containing sediments in the Troll area, it is possible that at least part of the carbon source available for the predominantly autotrophic nitrifiers thriving in this area originates from sequential prokaryotic degradation and oxidation of hydrocarbons to CO2. By turning CO2 back into organic carbon this subcommunity could play an important environmental role in these dark oligotrophic sediments. The oxidation of ammonia to nitrite and nitrate in this process could further increase the supply of terminal electron acceptors for hydrocarbon degradation.
Collapse
Affiliation(s)
- Othilde Elise Håvelsrud
- Norwegian Geotechnical Institute, Sognsveien 72, P.O. Box 3930, Ullevål Stadion N-0806, Oslo, Norway
- Department of Molecular Biosciences, University of Oslo, Blindernveien 31, P.O. Box 1041, Blindern N-0316, Oslo, Norway
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Thomas HA Haverkamp
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
- Centre for Evolutionary and Ecological Synthesis (CEES), Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Tom Kristensen
- Department of Molecular Biosciences, University of Oslo, Blindernveien 31, P.O. Box 1041, Blindern N-0316, Oslo, Norway
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Kjetill S Jakobsen
- Microbial Evolution Research Group, MERG, Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
- Centre for Evolutionary and Ecological Synthesis (CEES), Department of Biology, University of Oslo, Blindernveien 31, P.O. Box 1066, Blindern N-0316, Oslo, Norway
| | - Anne Gunn Rike
- Norwegian Geotechnical Institute, Sognsveien 72, P.O. Box 3930, Ullevål Stadion N-0806, Oslo, Norway
| |
Collapse
|
28
|
Lesniewski RA, Jain S, Anantharaman K, Schloss PD, Dick GJ. The metatranscriptome of a deep-sea hydrothermal plume is dominated by water column methanotrophs and lithotrophs. ISME JOURNAL 2012; 6:2257-68. [PMID: 22695860 DOI: 10.1038/ismej.2012.63] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microorganisms mediate geochemical processes in deep-sea hydrothermal vent plumes, which are a conduit for transfer of elements and energy from the subsurface to the oceans. Despite this important microbial influence on marine geochemistry, the ecology and activity of microbial communities in hydrothermal plumes is largely unexplored. Here, we use a coordinated metagenomic and metatranscriptomic approach to compare microbial communities in Guaymas Basin hydrothermal plumes to background waters above the plume and in the adjacent Carmen Basin. Despite marked increases in plume total RNA concentrations (3-4 times) and microbially mediated manganese oxidation rates (15-125 times), plume and background metatranscriptomes were dominated by the same groups of methanotrophs and chemolithoautotrophs. Abundant community members of Guaymas Basin seafloor environments (hydrothermal sediments and chimneys) were not prevalent in the plume metatranscriptome. De novo metagenomic assembly was used to reconstruct genomes of abundant populations, including Marine Group I archaea, Methylococcaceae, SAR324 Deltaproteobacteria and SUP05 Gammaproteobacteria. Mapping transcripts to these genomes revealed abundant expression of genes involved in the chemolithotrophic oxidation of ammonia (amo), methane (pmo) and sulfur (sox). Whereas amo and pmo gene transcripts were abundant in both plume and background, transcripts of sox genes for sulfur oxidation from SUP05 groups displayed a 10-20-fold increase in plumes. We conclude that the biogeochemistry of Guaymas Basin hydrothermal plumes is mediated by microorganisms that are derived from seawater rather than from seafloor hydrothermal environments such as chimneys or sediments, and that hydrothermal inputs serve as important electron donors for primary production in the deep Gulf of California.
Collapse
Affiliation(s)
- Ryan A Lesniewski
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI 48109-1005, USA
| | | | | | | | | |
Collapse
|
29
|
Genome-enabled transcriptomics reveals archaeal populations that drive nitrification in a deep-sea hydrothermal plume. ISME JOURNAL 2012; 6:2269-79. [PMID: 22695863 DOI: 10.1038/ismej.2012.64] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Ammonia-oxidizing Archaea (AOA) are among the most abundant microorganisms in the oceans and have crucial roles in biogeochemical cycling of nitrogen and carbon. To better understand AOA inhabiting the deep sea, we obtained community genomic and transcriptomic data from ammonium-rich hydrothermal plumes in the Guaymas Basin (GB) and from surrounding deep waters of the Gulf of California. Among the most abundant and active lineages in the sequence data were marine group I (MGI) Archaea related to the cultured autotrophic ammonia-oxidizer, Nitrosopumilus maritimus. Assembly of MGI genomic fragments yielded 2.9 Mb of sequence containing seven 16S rRNA genes (95.4-98.4% similar to N. maritimus), including two near-complete genomes and several lower-abundance variants. Equal copy numbers of MGI 16S rRNA genes and ammonia monooxygenase genes and transcription of ammonia oxidation genes indicates that all of these genotypes actively oxidize ammonia. De novo genomic assembly revealed the functional potential of MGI populations and enhanced interpretation of metatranscriptomic data. Physiological distinction from N. maritimus is evident in the transcription of novel genes, including genes for urea utilization, suggesting an alternative source of ammonia. We were also able to determine which genotypes are most active in the plume. Transcripts involved in nitrification were more prominent in the plume and were among the most abundant transcripts in the community. These unique data sets reveal populations of deep-sea AOA thriving in the ammonium-rich GB that are related to surface types, but with key genomic and physiological differences.
Collapse
|
30
|
Ray J, Dondrup M, Modha S, Steen IH, Sandaa RA, Clokie M. Finding a needle in the virus metagenome haystack--micro-metagenome analysis captures a snapshot of the diversity of a bacteriophage armoire. PLoS One 2012; 7:e34238. [PMID: 22509283 PMCID: PMC3324506 DOI: 10.1371/journal.pone.0034238] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/24/2012] [Indexed: 12/12/2022] Open
Abstract
Viruses are ubiquitous in the oceans and critical components of marine microbial communities, regulating nutrient transfer to higher trophic levels or to the dissolved organic pool through lysis of host cells. Hydrothermal vent systems are oases of biological activity in the deep oceans, for which knowledge of biodiversity and its impact on global ocean biogeochemical cycling is still in its infancy. In order to gain biological insight into viral communities present in hydrothermal vent systems, we developed a method based on deep-sequencing of pulsed field gel electrophoretic bands representing key viral fractions present in seawater within and surrounding a hydrothermal plume derived from Loki's Castle vent field at the Arctic Mid-Ocean Ridge. The reduction in virus community complexity afforded by this novel approach enabled the near-complete reconstruction of a lambda-like phage genome from the virus fraction of the plume. Phylogenetic examination of distinct gene regions in this lambdoid phage genome unveiled diversity at loci encoding superinfection exclusion- and integrase-like proteins. This suggests the importance of fine-tuning lyosgenic conversion as a viral survival strategy, and provides insights into the nature of host-virus and virus-virus interactions, within hydrothermal plumes. By reducing the complexity of the viral community through targeted sequencing of prominent dsDNA viral fractions, this method has selectively mimicked virus dominance approaching that hitherto achieved only through culturing, thus enabling bioinformatic analysis to locate a lambdoid viral "needle" within the greater viral community "haystack". Such targeted analyses have great potential for accelerating the extraction of biological knowledge from diverse and poorly understood environmental viral communities.
Collapse
Affiliation(s)
- Jessica Ray
- Department of Biology, University of Bergen, Bergen, Norway
| | | | - Sejal Modha
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | | | - Ruth-Anne Sandaa
- Department of Biology, University of Bergen, Bergen, Norway
- * E-mail:
| | - Martha Clokie
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
31
|
Enomoto M, Nakagawa S, Sawabe T. Microbial communities associated with holothurians: presence of unique bacteria in the coelomic fluid. Microbes Environ 2012; 27:300-5. [PMID: 22446312 PMCID: PMC4036045 DOI: 10.1264/jsme2.me12020] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Marine invertebrates interact with various microorganisms ranging from pathogens to symbionts. One-to-one symbiosis between a single microbial species and a single host animal has served as a model for the study of host-microbe interactions. In addition, increasing attention has recently been focused on the complex symbiotic associations, e.g., associations between sponges and their symbionts, due to their biotechnological potential; however, relatively little is known about the microbial diversity associated with members of the phylum Echinodermata. Here, for the first time, we investigated microbial communities associated with a commercially important holothurian species, Apostichopus japonicus, using culture-dependent and -independent methods. Diverse and abundant heterotrophs, mostly Gammaproteobacteria members, were cultured semi-quantitatively. Using the cloning and sequencing technique, different microbial communities were found in different holothurian tissues. In the holothurian coelomic fluid, potentially metabolically active and phylogenetically unique members of Epsilonproteobacteria and Rickettsiales were discovered. This study suggests that coelomic fluids of marine invertebrates, at least those inhabiting intertidal areas where physical and chemical conditions fluctuate, provide microbes with unique and stable habitats.
Collapse
Affiliation(s)
- Masaki Enomoto
- Laboratory of Microbiology, Faculty of Fisheries Sciences, Hokkaido University, Hakodate 041-8611, Japan
| | | | | |
Collapse
|
32
|
Spatial distribution of viruses associated with planktonic and attached microbial communities in hydrothermal environments. Appl Environ Microbiol 2011; 78:1311-20. [PMID: 22210205 DOI: 10.1128/aem.06491-11] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Viruses play important roles in marine surface ecosystems, but little is known about viral ecology and virus-mediated processes in deep-sea hydrothermal microbial communities. In this study, we examined virus-like particle (VLP) abundances in planktonic and attached microbial communities, which occur in physical and chemical gradients in both deep and shallow submarine hydrothermal environments (mixing waters between hydrothermal fluids and ambient seawater and dense microbial communities attached to chimney surface areas or macrofaunal bodies and colonies). We found that viruses were widely distributed in a variety of hydrothermal microbial habitats, with the exception of the interior parts of hydrothermal chimney structures. The VLP abundance and VLP-to-prokaryote ratio (VPR) in the planktonic habitats increased as the ratio of hydrothermal fluid to mixing water increased. On the other hand, the VLP abundance in attached microbial communities was significantly and positively correlated with the whole prokaryotic abundance; however, the VPRs were always much lower than those for the surrounding hydrothermal waters. This is the first report to show VLP abundance in the attached microbial communities of submarine hydrothermal environments, which presented VPR values significantly lower than those in planktonic microbial communities reported before. These results suggested that viral lifestyles (e.g., lysogenic prevalence) and virus interactions with prokaryotes are significantly different among the planktonic and attached microbial communities that are developing in the submarine hydrothermal environments.
Collapse
|
33
|
Schauer R, Røy H, Augustin N, Gennerich HH, Peters M, Wenzhoefer F, Amann R, Meyerdierks A. Bacterial sulfur cycling shapes microbial communities in surface sediments of an ultramafic hydrothermal vent field. Environ Microbiol 2011; 13:2633-48. [PMID: 21895907 DOI: 10.1111/j.1462-2920.2011.02530.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ultramafic-hosted Logatchev hydrothermal field (LHF) is characterized by vent fluids, which are enriched in dissolved hydrogen and methane compared with fluids from basalt-hosted systems. Thick sediment layers in LHF are partly covered by characteristic white mats. In this study, these sediments were investigated in order to determine biogeochemical processes and key organisms relevant for primary production. Temperature profiling at two mat-covered sites showed a conductive heating of the sediments. Elemental sulfur was detected in the overlying mat and metal-sulfides in the upper sediment layer. Microprofiles revealed an intensive hydrogen sulfide flux from deeper sediment layers. Fluorescence in situ hybridization showed that filamentous and vibrioid, Arcobacter-related Epsilonproteobacteria dominated the overlying mats. This is in contrast to sulfidic sediments in basalt-hosted fields where mats of similar appearance are composed of large sulfur-oxidizing Gammaproteobacteria. Epsilonproteobacteria (7-21%) and Deltaproteobacteria (20-21%) were highly abundant in the surface sediment layer. The physiology of the closest cultivated relatives, revealed by comparative 16S rRNA sequence analysis, was characterized by the capability to metabolize sulfur components. High sulfate reduction rates as well as sulfide depleted in (34)S further confirmed the importance of the biogeochemical sulfur cycle. In contrast, methane was found to be of minor relevance for microbial life in mat-covered surface sediments. Our data indicate that in conductively heated surface sediments microbial sulfur cycling is the driving force for bacterial biomass production although ultramafic-hosted systems are characterized by fluids with high levels of dissolved methane and hydrogen.
Collapse
Affiliation(s)
- Regina Schauer
- Max Planck Institute for Marine Microbiology, Celsiusstr.1, D-28359 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Roussel EG, Konn C, Charlou JL, Donval JP, Fouquet Y, Querellou J, Prieur D, Bonavita MAC. Comparison of microbial communities associated with three Atlantic ultramafic hydrothermal systems. FEMS Microbiol Ecol 2011; 77:647-65. [PMID: 21707671 DOI: 10.1111/j.1574-6941.2011.01161.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The distribution of Archaea and methanogenic, methanotrophic and sulfate-reducing communities in three Atlantic ultramafic-hosted hydrothermal systems (Rainbow, Ashadze, Lost City) was compared using 16S rRNA gene and functional gene (mcrA, pmoA and dsrA) clone libraries. The overall archaeal community was diverse and heterogeneously distributed between the hydrothermal sites and the types of samples analyzed (seawater, hydrothermal fluid, chimney and sediment). The Lost City hydrothermal field, characterized by high alkaline warm fluids (pH>11; T<95 °C), harbored a singular archaeal diversity mostly composed of unaffiliated Methanosarcinales. The archaeal communities associated with the recently discovered Ashadze 1 site, one of the deepest active hydrothermal fields known (4100 m depth), showed significant differences between the two different vents analyzed and were characterized by putative extreme halophiles. Sequences related to the rarely detected Nanoarchaeota phylum and Methanopyrales order were also retrieved from the Rainbow and Ashadze hydrothermal fluids. However, the methanogenic Methanococcales was the most widely distributed hyper/thermophilic archaeal group among the hot and acidic ultramafic-hosted hydrothermal system environments. Most of the lineages detected are linked to methane and hydrogen cycling, suggesting that in ultramafic-hosted hydrothermal systems, large methanogenic and methanotrophic communities could be fuelled by hydrothermal fluids highly enriched in methane and hydrogen.
Collapse
Affiliation(s)
- Erwan G Roussel
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Université de Bretagne Occidentale, Ifremer, CNRS, Institut Universitaire Européen de la Mer, Plouzané, France.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Nitahara S, Kato S, Urabe T, Usui A, Yamagishi A. Molecular characterization of the microbial community in hydrogenetic ferromanganese crusts of the Takuyo-Daigo Seamount, northwest Pacific. FEMS Microbiol Lett 2011; 321:121-9. [DOI: 10.1111/j.1574-6968.2011.02323.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
36
|
Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Mol Biol Rev 2011; 75:361-422. [PMID: 21646433 PMCID: PMC3122624 DOI: 10.1128/mmbr.00039-10] [Citation(s) in RCA: 324] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The majority of life on Earth--notably, microbial life--occurs in places that do not receive sunlight, with the habitats of the oceans being the largest of these reservoirs. Sunlight penetrates only a few tens to hundreds of meters into the ocean, resulting in large-scale microbial ecosystems that function in the dark. Our knowledge of microbial processes in the dark ocean-the aphotic pelagic ocean, sediments, oceanic crust, hydrothermal vents, etc.-has increased substantially in recent decades. Studies that try to decipher the activity of microorganisms in the dark ocean, where we cannot easily observe them, are yielding paradigm-shifting discoveries that are fundamentally changing our understanding of the role of the dark ocean in the global Earth system and its biogeochemical cycles. New generations of researchers and experimental tools have emerged, in the last decade in particular, owing to dedicated research programs to explore the dark ocean biosphere. This review focuses on our current understanding of microbiology in the dark ocean, outlining salient features of various habitats and discussing known and still unexplored types of microbial metabolism and their consequences in global biogeochemical cycling. We also focus on patterns of microbial diversity in the dark ocean and on processes and communities that are characteristic of the different habitats.
Collapse
Affiliation(s)
- Beth N. Orcutt
- Center for Geomicrobiology, Aarhus University, 8000 Aarhus, Denmark
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Jason B. Sylvan
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Nina J. Knab
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
| | - Katrina J. Edwards
- Marine Environmental Biology Section, Department of Biological Sciences, University of Southern California, Los Angeles, California 90089
- Department of Earth Sciences, University of Southern California, Los Angeles, California 90089
| |
Collapse
|
37
|
Auguet JC, Nomokonova N, Camarero L, Casamayor EO. Seasonal changes of freshwater ammonia-oxidizing archaeal assemblages and nitrogen species in oligotrophic alpine lakes. Appl Environ Microbiol 2011; 77:1937-45. [PMID: 21239556 PMCID: PMC3067326 DOI: 10.1128/aem.01213-10] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 01/03/2011] [Indexed: 02/01/2023] Open
Abstract
The annual changes in the composition and abundance of ammonia-oxidizing archaea (AOA) were analyzed monthly in surface waters of three high mountain lakes within the Limnological Observatory of the Pyrenees (LOOP; northeast Spain) using both 16S rRNA and functional (ammonia monooxygenase gene, amoA) gene sequencing as well as quantitative PCR amplification. The set of biological data was related to changes in nitrogen species and to other relevant environmental variables. The whole archaeal assemblage was dominated by phylotypes closely related to the crenarchaeal 1.1a group (58% ± 18% of total 16S rRNA gene sequences), and consistent structural changes were detected during the study. Water temperature was the environmental variable that better explained spring, summer, and winter (ice-covered lakes) archaeal assemblage structure. The amoA gene was detected year round, and seasonal changes in amoA gene composition were well correlated with changes in the archaeal 16S rRNA gene pool. In addition, copy numbers of both the specific 1.1a group 16 rRNA and archaeal amoA genes were well correlated, suggesting that most freshwater 1.1a Crenarchaeota had the potential to carry out ammonia oxidation. Seasonal changes in the diversity and abundance of AOA (i.e., amoA) were better explained by temporal changes in ammonium, the substrate for nitrification, and mostly nitrite, the product of ammonia oxidation. Lacustrine amoA gene sequences grouped in coherent freshwater phylogenetic clusters, suggesting that freshwater habitats harbor typical amoA-containing ecotypes, which is different from soils and seas. We observed within the freshwater amoA gene sequence pool a high genetic divergence (translating to up to 32% amino acid divergence) between the spring and the remaining AOA assemblages. This suggests that different AOA ecotypes are adapted to different temporal ecological niches in these lakes.
Collapse
Affiliation(s)
- Jean-Christophe Auguet
- Centro de Estudios Avanzados de Blanes, CEAB-CSIC, Accés Cala Sant Francesc 14, E-17300, Blanes, Spain.
| | | | | | | |
Collapse
|
38
|
Yu Z, Xu S. Search for a Methanopyrus-proximal last universal common ancestor based on comparative-genomic analysis. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0154-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
39
|
Durbin AM, Teske A. Sediment-associated microdiversity within the Marine Group I Crenarchaeota. ENVIRONMENTAL MICROBIOLOGY REPORTS 2010; 2:693-703. [PMID: 23766257 DOI: 10.1111/j.1758-2229.2010.00163.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although oligotrophic, abyssal marine sediments cover most of the sea bottom, previous investigations of microbial diversity have primarily focused on organic-rich, anoxic sediments of continental margins. In contrast, abyssal open-ocean sediments are oxidized and contain limiting organic substrate concentrations. This study examines the archaeal diversity of oligotrophic, oxic and nitrate-reducing marine sediments and oxic bottom water in the South Pacific Gyre. 16S rDNA clone library analysis identified phylogenetically distinct lineages of the Marine Group I (MG-I) Crenarchaeota in oxidized sediment that are different from those in bottom water. Thus, the sediment habitat selects for different MG-I lineages, within short vertical distances of a few centimetres.
Collapse
Affiliation(s)
- Alan M Durbin
- Department of Marine Sciences, University of North Carolina, Chapel Hill, NC 27599, USA
| | | |
Collapse
|
40
|
Lazar CS, Dinasquet J, Pignet P, Prieur D, Toffin L. Active archaeal communities at cold seep sediments populated by Siboglinidae tubeworms from the Storegga Slide. MICROBIAL ECOLOGY 2010; 60:516-527. [PMID: 20401609 DOI: 10.1007/s00248-010-9654-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2009] [Accepted: 03/07/2010] [Indexed: 05/29/2023]
Abstract
Siboglinid tubeworms in cold seep sediments can locally modify the geochemical gradients of electron acceptors and donors, hence creating potential microhabitats for prokaryotic populations. The archaeal communities associated with sediments populated by Oligobrachia haakonmosbiensis and Sclerolinum contortum Siboglinid tubeworms in the Storegga Slide were examined in this study. Vertical distribution of archaeal communities was investigated using denaturing gradient gel electrophoresis based on 16S rRNA genes. The active fraction of the archaeal community was assessed by using reverse-transcribed rRNA. Archaeal communities associated with sediments colonized by tubeworms were affiliated with uncultivated archaeal lineages of the Crenarchaeota and Euryarchaeota. The composition of the active archaeal populations changed with depth indicating a reorganization of microbial communities. 16S rRNA gene libraries were dominated by sequences affiliated to the Rice Cluster V which are unusual in marine sediment samples. Moreover, this study provides the first evidence of living Crenarchaeota of the Rice Cluster V in cold seep sediments. Furthermore, the Storegga Slide sediments harbored a high diversity of other minor groups of uncultivated lineages including Terrestrial Miscellaneous Euryarchaeotal Group, Marine Benthic Group (MBG)-D, MBG-E, Deep-Sea Hydrothermal Vent Euryarchaeotal Group, Lake Dagow Sediment, Val Kotinen Lake clade III, and Sippenauer Moor 1. Thus, we hypothesize that the vertical geochemical imprint created by the tubeworms could support broad active archaeal populations in the Siboglinidae-populated Storegga Slide sediments.
Collapse
Affiliation(s)
- Cassandre Sara Lazar
- Laboratoire de Microbiologie des Environnements Extrêmes, UMR 6197, Ifremer Centre de Brest, Département Etudes des Environnements Profonds, Université de Bretagne Occidentale, BP 70, 29280 Plouzané, France
| | | | | | | | | |
Collapse
|
41
|
Müller M, Handley KM, Lloyd J, Pancost RD, Mills RA. Biogeochemical controls on microbial diversity in seafloor sulphidic sediments. GEOBIOLOGY 2010; 8:309-326. [PMID: 20491949 DOI: 10.1111/j.1472-4669.2010.00242.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The ultimate fate of hydrothermal sulphides on the seafloor depends on the nature and rate of abiotic and microbially catalysed reactions where sulphide minerals are exposed to oxic seawater. This study combines organic and inorganic geochemical with microbiological measurements across a suboxic transition zone of highly altered sulphidic sediments from the Trans-Atlantic Geotransverse hydrothermal field to characterize the reaction products and microbial communities present. There is distinct biogeochemical zonation apparent within the sediment sequence from oxic surface layers through a suboxic transition zone into the sulphide material. The microbial communities in the sediment differ significantly between the biogeochemical horizons sampled, with the identified microbes inferred to be associated with Fe and S redox cycling. In particular, Marinobacter species, organisms associated with circumneutral Fe oxidation, are dominant in a sulphide lens present in the lower core. The dominance of Marinobacter-related sequences within the relict sulphide lens implies that these organisms play an important role in the alteration of sulphides at the seafloor once active venting has ceased.
Collapse
Affiliation(s)
- M Müller
- National Oceanography Centre, Southampton, University of Southampton, Southampton, UK.
| | | | | | | | | |
Collapse
|
42
|
Vertical distribution of ammonia-oxidizing crenarchaeota and methanogens in the epipelagic waters of Lake Kivu (Rwanda-Democratic Republic of the Congo). Appl Environ Microbiol 2010; 76:6853-63. [PMID: 20802065 DOI: 10.1128/aem.02864-09] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Four stratified basins in Lake Kivu (Rwanda-Democratic Republic of the Congo) were sampled in March 2007 to investigate the abundance, distribution, and potential biogeochemical role of planktonic archaea. We used fluorescence in situ hybridization with catalyzed-reported deposition microscopic counts (CARD-FISH), denaturing gradient gel electrophoresis (DGGE) fingerprinting, and quantitative PCR (qPCR) of signature genes for ammonia-oxidizing archaea (16S rRNA for marine Crenarchaeota group 1.1a [MCG1] and ammonia monooxygenase subunit A [amoA]). Abundance of archaea ranged from 1 to 4.5% of total DAPI (4',6-diamidino-2-phenylindole) counts with maximal concentrations at the oxic-anoxic transition zone (∼50-m depth). Phylogenetic analysis of the archaeal planktonic community revealed a higher level of richness of crenarchaeal 16S rRNA gene sequences (21 of the 28 operational taxonomic units [OTUs] identified [75%]) over euryarchaeotal ones (7 OTUs). Sequences affiliated with the kingdom Euryarchaeota were mainly recovered from the anoxic water compartment and mostly grouped into methanogenic lineages (Methanosarcinales and Methanocellales). In turn, crenarchaeal phylotypes were recovered throughout the sampled epipelagic waters (0- to 100-m depth), with clear phylogenetic segregation along the transition from oxic to anoxic water masses. Thus, whereas in the anoxic hypolimnion crenarchaeotal OTUs were mainly assigned to the miscellaneous crenarchaeotic group, the OTUs from the oxic-anoxic transition and above belonged to Crenarchaeota groups 1.1a and 1.1b, two lineages containing most of the ammonia-oxidizing representatives known so far. The concomitant vertical distribution of both nitrite and nitrate maxima and the copy numbers of both MCG1 16S rRNA and amoA genes suggest the potential implication of Crenarchaeota in nitrification processes occurring in the epilimnetic waters of the lake.
Collapse
|
43
|
Maestre JP, Rovira R, Alvarez-Hornos FJ, Fortuny M, Lafuente J, Gamisans X, Gabriel D. Bacterial community analysis of a gas-phase biotrickling filter for biogas mimics desulfurization through the rRNA approach. CHEMOSPHERE 2010; 80:872-880. [PMID: 20554311 DOI: 10.1016/j.chemosphere.2010.05.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Revised: 05/13/2010] [Accepted: 05/17/2010] [Indexed: 05/29/2023]
Abstract
The bacterial composition of a lab-scale biotrickling filter (BTF) treating high loads of H(2)S was investigated by the rRNA approach. Two 16S rRNA gene clone libraries were established 42 and 189 d after reactor startup, while fluorescent in-situ hybridization (FISH) with DNA probes was performed throughout 260d of reactor operation. Diversity, community structure and metamorphosis were studied from reactor startup to fully-established pseudo-steady state operation at near neutral pH and at an inlet H(2)S concentration of 2000 ppmv (load of 55.6g H(2)S m(-3)h(-1)). In addition, FISH was used for assessing the spatial distribution of sulfur-oxidizing bacteria (SOB) along the length of the reactor under pseudo-steady state operation. A major shift in the diversity of the community was observed with the operating time, from a well-diverse community at startup to pseudo-steady state operation with a majority of retrieved sequences affiliated to SOB of the sulfur cycle including Thiothrix spp., Thiobacillus spp., and Sulfurimonas denitrificans. Although aerobic species were predominant along the BTF, a vertical stratification was encountered, in which facultative anaerobes had a major relative abundance in the inlet part of the BTF, where the sulfide to oxygen ratio was higher. The observed changes were related to the trophic properties of the community, the DO concentration, the accumulation of elemental sulfur and the operation at neutral pH.
Collapse
Affiliation(s)
- Juan P Maestre
- Department of Chemical Engineering, School of Engineering, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Optimization of PCR amplification for sensitive capture of Methanopyrus isoleucyl-tRNA synthetase gene in environmental samples. ANN MICROBIOL 2010. [DOI: 10.1007/s13213-010-0097-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
45
|
Thornburg CC, Zabriskie TM, McPhail KL. Deep-sea hydrothermal vents: potential hot spots for natural products discovery? JOURNAL OF NATURAL PRODUCTS 2010; 73:489-499. [PMID: 20099811 DOI: 10.1021/np900662k] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Deep-sea hydrothermal vents are among the most extreme and dynamic environments on Earth. However, islands of highly dense and biologically diverse communities exist in the immediate vicinity of hydrothermal vent flows, in stark contrast to the surrounding bare seafloor. These communities comprise organisms with distinct metabolisms based on chemosynthesis and growth rates comparable to those from shallow water tropical environments, which have been rich sources of biologically active natural products. The geological setting and geochemical nature of deep-sea vents that impact the biogeography of vent organisms, chemosynthesis, and the known biological and metabolic diversity of Eukarya, Bacteria, and Archaea, including the handful of natural products isolated to date from deep-sea vent organisms, are considered here in an assessment of deep-sea hydrothermal vents as potential hot spots for natural products investigations. Of critical importance too are the logistics of collecting deep vent organisms, opportunities for re-collection considering the stability and longevity of vent sites, and the ability to culture natural product-producing deep vent organisms in the laboratory. New cost-effective technologies in deep-sea research and more advanced molecular techniques aimed at screening a more inclusive genetic assembly are poised to accelerate natural product discoveries from these microbial diversity hot spots.
Collapse
Affiliation(s)
- Christopher C Thornburg
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97331, USA
| | | | | |
Collapse
|
46
|
Archaeal diversity and distribution along thermal and geochemical gradients in hydrothermal sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa trough. Appl Environ Microbiol 2009; 76:1198-211. [PMID: 20023079 DOI: 10.1128/aem.00924-09] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of archaeal lineages have been identified using culture-independent molecular phylogenetic surveys of microbial habitats occurring in deep-sea hydrothermal environments such as chimney structures, sediments, vent emissions, and chemosynthetic macrofauna. With the exception of a few taxa, most of these archaea have not yet been cultivated, and their physiological and metabolic traits remain unclear. In this study, phylogenetic diversity and distribution profiles of the archaeal genes encoding small subunit (SSU) rRNA, methyl coenzyme A (CoA) reductase subunit A, and the ammonia monooxygenase large subunit were characterized in hydrothermally influenced sediments at the Yonaguni Knoll IV hydrothermal field in the Southern Okinawa Trough. Sediment cores were collected at distances of 0.5, 2, or 5 m from a vent emission (90 degrees C). A moderate temperature gradient extends both horizontally and vertically (5 to 69 degrees C), indicating the existence of moderate mixing between the hydrothermal fluid and the ambient sediment pore water. The mixing of reductive hot hydrothermal fluid and cold ambient sediment pore water establishes a wide spectrum of physical and chemical conditions in the microbial habitats that were investigated. Under these different physico-chemical conditions, variability in archaeal phylotype composition was observed. The relationship between the physical and chemical parameters and the archaeal phylotype composition provides important insight into the ecophysiological requirements of uncultivated archaeal lineages in deep-sea hydrothermal vent environments, giving clues for approximating culture conditions to be used in future culturing efforts.
Collapse
|
47
|
Yu Z, Takai K, Slesarev A, Xue H, Wong JTF. Search for Primitive Methanopyrus Based on Genetic Distance Between Val- and Ile-tRNA Synthetases. J Mol Evol 2009; 69:386-94. [DOI: 10.1007/s00239-009-9297-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2009] [Accepted: 09/29/2009] [Indexed: 11/30/2022]
|
48
|
Kato S, Yanagawa K, Sunamura M, Takano Y, Ishibashi JI, Kakegawa T, Utsumi M, Yamanaka T, Toki T, Noguchi T, Kobayashi K, Moroi A, Kimura H, Kawarabayasi Y, Marumo K, Urabe T, Yamagishi A. Abundance of Zetaproteobacteria within crustal fluids in back-arc hydrothermal fields of the Southern Mariana Trough. Environ Microbiol 2009; 11:3210-22. [PMID: 19691504 DOI: 10.1111/j.1462-2920.2009.02031.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To extend knowledge of subseafloor microbial communities within the oceanic crust, the abundance, diversity and composition of microbial communities in crustal fluids at back-arc hydrothermal fields of the Southern Mariana Trough (SMT) were investigated using culture-independent molecular techniques based on 16S rRNA gene sequences. Seafloor drilling was carried out at two hydrothermal fields, on- and off-ridge of the back-arc spreading centre of the SMT. 16S rRNA gene clone libraries for bacterial and archaeal communities were constructed from the fluid samples collected from the boreholes. Phylotypes related to Thiomicrospira in the Gammaproteobacteria (putative sulfide-oxidizers) and Mariprofundus in the Zetaproteobacteria (putative iron-oxidizers) were recovered from the fluid samples. A number of unique archaeal phylotypes were also recovered. Fluorescence in situ hybridization (FISH) analysis indicated the presence of active bacterial and archaeal populations in the fluids. The Zetaproteobacteria accounted for up to 32% of the total prokaryotic cell number as shown by FISH analysis using a specific probe designed in this study. Our results lead to the hypothesis that the Zetaproteobacteria play a role in iron oxidation within the oceanic crust.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kato S, Kobayashi C, Kakegawa T, Yamagishi A. Microbial communities in iron-silica-rich microbial mats at deep-sea hydrothermal fields of the Southern Mariana Trough. Environ Microbiol 2009; 11:2094-111. [PMID: 19397679 DOI: 10.1111/j.1462-2920.2009.01930.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The abundance, diversity and composition of bacterial and archaeal communities in the microbial mats at deep-sea hydrothermal fields were investigated, using culture-independent 16S rRNA and functional gene analyses combined with mineralogical analysis. Microbial mats were collected at two hydrothermal areas on the ridge of the back-arc spreading centre in the Southern Mariana Trough. Scanning electron microscope and energy dispersive X-ray spectroscopic (SEM-EDS) analyses revealed that the mats were mainly composed of amorphous silica and contained numerous filamentous structures of iron hydroxides. Direct cell counting with SYBR Green I staining showed that the prokaryotic cell densities were more than 10(8) cells g(-1). Quantitative polymerase chain reaction (Q-PCR) analysis revealed that Bacteria are more abundant than Archaea in the microbial communities. Furthermore, zetaproteobacterial cells accounted for 6% and 22% of the prokaryotic cells in each mat estimated by Q-PCR with newly designed primers and TaqMan probe. Phylotypes related to iron-oxidizers, methanotrophs/methylotrophs, ammonia-oxidizers and sulfate-reducers were found in the 16S rRNA gene clone libraries constructed from each mat sample. A variety of unique archaeal 16S rRNA gene phylotypes, several pmoA, dsrAB and archaeal amoA gene phylotypes were also recovered from the microbial mats. Our results provide insights into the diversity and abundance of microbial communities within microbial mats in deep-sea hydrothermal fields.
Collapse
Affiliation(s)
- Shingo Kato
- Department of Molecular Biology, Tokyo University of Pharmacy and Life Science, Hachioji, Tokyo 192-0392, Japan
| | | | | | | |
Collapse
|
50
|
Galand PE, Lovejoy C, Hamilton AK, Ingram RG, Pedneault E, Carmack EC. Archaeal diversity and a gene for ammonia oxidation are coupled to oceanic circulation. Environ Microbiol 2009; 11:971-80. [DOI: 10.1111/j.1462-2920.2008.01822.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|