1
|
Yoshikawa S, Itaya K, Hoshina R, Tashiro Y, Suda W, Cho Y, Matsuura M, Shindo C, Ito T, Hattori M, Miyamoto H, Kodama H. Thermophile-fermented feed modulates the gut microbiota related to lactate metabolism in pigs. J Appl Microbiol 2024; 135:lxae254. [PMID: 39333026 DOI: 10.1093/jambio/lxae254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 09/22/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
AIMS Extracts of fermented feed obtained via fermentation of marine animal resources with thermophilic Bacillaceae bacteria increase the fecundity of livestock. The intestinal bacterial profiles in response to long-term administration of this extract to pigs were investigated. METHODS AND RESULTS Half of a swine farm was supplied with potable water containing an extract of fermented feed for more than 2 years, whereas the other half was supplied with potable water without the extract. Feces from 6-month-old pigs rearing in these two areas were collected. 16S rRNA gene sequencing and isolation of lactic acid bacteria revealed an increase in the D/L-lactate-producing bacterium, Lactobacillus amylovorus, and a decrease in several members of Clostridiales following administration of fermented feed. A lactate-utilizing bacterium, Megasphaera elsdenii, was more abundant in the feces of pigs in the fermented feed group. All representative isolates of M. elsdenii showed rapid utilization of D-lactate relative to L-lactate, and butyrate and valerate were the main products. CONCLUSION The probiotic effect of fermented feed is associated with the modulation of lactate metabolism in the digestive organs of pigs.
Collapse
Affiliation(s)
- Shota Yoshikawa
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| | - Kaede Itaya
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| | - Ryo Hoshina
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| | - Yukihiro Tashiro
- Institute of Advanced Study, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
- Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Center, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Wataru Suda
- RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Yuichiro Cho
- Department of Anatomy and Physiological Science, Graduate School of Health Care Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | - Makiko Matsuura
- Sermas Co., Ltd., 4-3-5 Onitaka, Ichikawa City, Chiba 272-0015, Japan
| | - Chie Shindo
- RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
| | - Toshiyuki Ito
- Keiyo Gas Energy Solution Co. Ltd., 4-3-5 Onitaka, Ichikawa City, Chiba 272-0015, Japan
| | - Masahira Hattori
- RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
- School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hirokuni Miyamoto
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
- RIKEN Center for Integrative Medical Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa 230-0045, Japan
- Sermas Co., Ltd., 4-3-5 Onitaka, Ichikawa City, Chiba 272-0015, Japan
- Japan Eco-science (Nikkan Kagaku) Co. Ltd., 11-1-211 Shiomigaokacho, Chiba City, Chiba 260-0034, Japan
| | - Hiroaki Kodama
- Graduate School of Horticulture, Chiba University, 648 Matsudo, Chiba 271-8510, Japan
| |
Collapse
|
2
|
Tu W, Nie W, Yao X, Zhang J, Zhang H, Di D, Li Z. Growth performance, lipid metabolism, and systemic immunity of weaned piglets were altered by buckwheat protein through the modulation of gut microbiota. Mol Genet Genomics 2024; 299:15. [PMID: 38411753 DOI: 10.1007/s00438-024-02103-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/16/2023] [Indexed: 02/28/2024]
Abstract
Tartary buckwheat protein (BWP) is well known for the wide-spectrum antibacterial activity and the lipid metabolism- regulating property; therefore, BWP can be applied as feed additives to improve the animal's nutritional supply. With the aim to investigate the bioactive actions of the BWP, growth performance, lipid metabolism and systemic immunity of the weaned piglets were measured, and the alterations of pig gut microbiota were also analyzed. According to the results, the growth performances of the weaned piglets which were calculated as the average daily gain (ADG) and the average daily feed intake (ADFI) were significantly increased when compared to the control group. Simultaneously, the serum levels of the total cholesterol (TC), triglycerides (TG), and low-density lipoprotein cholesterol (LDL-C) were decreased, while the levels of high-density lipoprotein cholesterol (HDL-C) were increased in the BWP group. Moreover, the relative abundances of Lactobacillus, Prevotella_9, Subdoligranulum, Blautia, and other potential probiotics in the gut microbiota of weaned piglets were obviously increased in the BWP group. However, the relative abundances of Escherichia-Shigella, Campylobacter, Rikenellaceae_RC9_gut_group and other opportunistic pathogens were obviously decreased in the BWP group. In all, BWP was proved to be able to significantly improve the growth performance, lipid metabolism, and systemic immunity of the weaned piglets, and the specific mechanism might relate to the alterations of the gut microbiota. Therefore, BWP could be explored as a prospective antibiotic alternative for pig feed additives.
Collapse
Affiliation(s)
- Weilong Tu
- Institute of Animal Husbandry and Veterinary Science, Shanghai Academy of Agricultural Sciences, Shanghai, 201106, China
- Shanghai Engineering Research Center of Breeding Pig, Shanghai, 201302, China
| | - Wansen Nie
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Xiaohui Yao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Junjie Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Hailong Zhang
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Di Di
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China
| | - Zongjie Li
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Science, Shanghai, 200241, China.
| |
Collapse
|
3
|
Liao SF, Ji F, Fan P, Denryter K. Swine Gastrointestinal Microbiota and the Effects of Dietary Amino Acids on Its Composition and Metabolism. Int J Mol Sci 2024; 25:1237. [PMID: 38279233 PMCID: PMC10816286 DOI: 10.3390/ijms25021237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/05/2024] [Accepted: 01/12/2024] [Indexed: 01/28/2024] Open
Abstract
Many researchers consider gut microbiota (trillions of microorganisms) an endogenous organ of its animal host, which confers a vast genetic diversity in providing the host with essential biological functions. Particularly, the gut microbiota regulates not only gut tissue structure but also gut health and gut functionality. This paper first summarized those common bacterial species (dominated by the Firmicutes, Bacteroidota, and Proteobacteria phyla) in swine gut and then briefly discussed their roles in swine nutrition and health, which include roles in nutrient metabolism, pathogen exclusion, and immunity modulation. Secondly, the current knowledge on how dietary nutrients and feed additives affect the gut bacterial composition and nutrient metabolism in pigs was discussed. Finally, how dietary amino acids affect the relative abundances and metabolism of bacteria in the swine gut was reviewed. Tryptophan supplementation promotes the growth of beneficial bacteria and suppresses pathogens, while arginine metabolism affects nitrogen recycling, impacting gut immune response and health. Glutamate and glutamine supplementations elevate the levels of beneficial bacteria and mitigate pathogenic ones. It was concluded that nutritional strategies to manipulate gut microbial ecosystems are useful measures to optimize gut health and gut functions. For example, providing pigs with nutrients that promote the growth of Lactobacillus and Bifidobacterium can lead to better gut health and growth performance, especially when dietary protein is limited. Further research to establish the mechanistic cause-and-effect relationships between amino acids and the dynamics of gut microbiota will allow swine producers to reap the greatest return on their feed investment.
Collapse
Affiliation(s)
- Shengfa F. Liao
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Feng Ji
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China;
| | - Peixin Fan
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| | - Kristin Denryter
- Department of Animal and Dairy Sciences, Mississippi State University, Starkville, MS 39762, USA; (P.F.)
| |
Collapse
|
4
|
Zhang A, Yang Y, Li Y, Zheng Y, Wang H, Cui H, Yin W, Lv M, Liang Y, Chen W. Effects of wheat-based fermented liquid feed on growth performance, nutrient digestibility, gut microbiota, intestinal morphology, and barrier function in grower-finisher pigs. J Anim Sci 2024; 102:skae229. [PMID: 39155623 PMCID: PMC11495224 DOI: 10.1093/jas/skae229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024] Open
Abstract
Fermented liquid feed (FLF) can improve dietary nutrient absorption levels, degrade antinutrient factors in diets, and increase beneficial bacteria abundance in animal guts. However, few systematic studies have been conducted on wheat-based fermented liquid feed (WFLF) in pigs. The present study evaluates the effects of WFLF on the growth performance, nutrient digestibility, gastric volume, intestinal morphology, intestinal health, intestinal barrier function, serum biochemical immunity, gut microbiota, and intestinal microbial diversity of grower-finisher pigs. In total, 80 weaned pigs were randomly allocated to two treatment groups based on their initial body weight: a basal diet with pellet dry feeding (CON) and a basal diet with WFLF, with four replicate pens per group. The experiment lasted 82 d. Compared with CON pigs, those fed WFLF were significantly heavier at 60 to 82 d and had significantly higher average daily feed intake, average daily gain, and gain: feed ratio at 60 to 82 d and 1 to 82 d. WFLF pigs had significantly greater jejunum, total tract, and ileal digestibility for all nutrients and amino acids, excluding arginine, than CON pigs. WFLF intake influenced villus height, villus height:crypt depth ratio of the anterior segment of the jejunum (A-jejunum), crypt depth, and redox potential of the posterior segment of the jejunum (P-jejunum) while significantly affecting body weight. Additionally, FLF improved gastric capacity significantly. Furthermore, mRNA expression of occludin and claudin-1 in the mucosa of the ileum and jejunum was significantly higher in WFLF pigs than in CON pigs. WFLF increased serum concentrations of alanine transaminase and reduced low-density lipoprotein cholesterol, total cholesterol, and total bile acid content. The alpha diversity (Shannon and Simpson indices) in the stomachs of WFLF pigs was significantly higher than in CON pigs. Microbial diversity in the stomach, ileum, and cecum, as well as the abundance of lactic acid bacteria, were increased in WFLF pigs compared to CON pigs. In conclusion, WFLF intake may positively influence intestinal ecology by improving digestive tract structure, upregulating intestinal barrier-related genes, and improving intestinal morphology to enhance intestinal digestive function and health. Collectively, the present study shows that WFLF intake can increase growth performance while maintaining beneficial nutrient digestibility in grower-finisher pigs.
Collapse
Affiliation(s)
- Aoran Zhang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yanyi Yang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yong Li
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Yunfan Zheng
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongmei Wang
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Hongxiao Cui
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Wang Yin
- New Hope Liuhe Co., Ltd, Key Laboratory of Feed and Livestock and Poultry Products Quality & Safety Control, Ministry of Agriculture, Chengdu, Sichuan, China
| | - Mei Lv
- Henan Heshun Automation Equipment Co. Ltd., Zhengzhou, Henan, China
| | - Yunxiang Liang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Wenli Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
5
|
Kumar S, Ahmad MF, Nath P, Roy R, Bhattacharjee R, Shama E, Gahatraj I, Sehrawat M, Dasriya V, Dhillon HS, Puniya M, Samtiya M, Dhewa T, Aluko RE, Khedkar GD, Raposo A, Puniya AK. Controlling Intestinal Infections and Digestive Disorders Using Probiotics. J Med Food 2023; 26:705-720. [PMID: 37646629 DOI: 10.1089/jmf.2023.0062] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023] Open
Abstract
After consumption, probiotics provide health benefits to the host. Probiotics and their metabolites have therapeutic and nutritional properties that help to alleviate gastrointestinal, neurological, and cardiovascular problems. Probiotics strengthen host immunity through various mechanisms, including improved gut barrier function, receptor site blocking, competitive exclusion of pathogens, and the production of bioactive molecules. Emerging evidence suggests that intestinal bowel diseases can be fatal, but regular probiotic consumption can alleviate disease symptoms. The use and detailed description of the health benefits of probiotics to consumers in terms of reducing intestinal infection, inflammation, and digestive disorders are discussed in this review. The well-designed and controlled studies that examined the use of probiotics to reduce life-threatening activities caused by intestinal bowel diseases are also covered. This review discussed the active principles and potency of probiotics as evidenced by the known effects on host health, in addition to providing information on the mechanism of action.
Collapse
Affiliation(s)
- Sanjeev Kumar
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Md Faruque Ahmad
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Priyakshi Nath
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rubina Roy
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | - Rudrarup Bhattacharjee
- Adelaide Medical School, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, Australia
| | - Eman Shama
- Department of Clinical Nutrition, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
| | - Indira Gahatraj
- Department of Life Science and Bioinformatics, Assam University, Silchar, India
| | | | - Vaishali Dasriya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| | | | - Monica Puniya
- Science and Standards Division, Food Safety and Standards Authority of India, New Delhi, India
| | - Mrinal Samtiya
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Tejpal Dhewa
- Department of Nutrition Biology, Central University of Haryana, Mahendergarh, India
| | - Rotimi E Aluko
- Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, Canada
| | - Gulab D Khedkar
- Paul Hebert Centre for DNA Barcoding and Biodiversity Studies, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Lisboa, Portugal
| | - Anil Kumar Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, India
| |
Collapse
|
6
|
Gayathiri E, Prakash P, Pratheep T, Ramasubburayan R, Thirumalaivasan N, Gaur A, Govindasamy R, Rengasamy KRR. Bio surfactants from lactic acid bacteria: an in-depth analysis of therapeutic properties and food formulation. Crit Rev Food Sci Nutr 2023; 64:10925-10949. [PMID: 37401803 DOI: 10.1080/10408398.2023.2230491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2023]
Abstract
Healthy humans and animals commonly harbor lactic acid bacteria (LAB) on their mucosal surfaces, which are often associated with food fermentation. These microorganisms can produce amphiphilic compounds, known as microbial surface-active agents, that exhibit remarkable emulsifying activity. However, the exact functions of these microbial surfactants within the producer cells remain unclear. Consequently, there is a growing urgency to develop biosurfactant production from nonpathogenic microbes, particularly those derived from LAB. This approach aims to harness the benefits of biosurfactants while ensuring their safety and applicability. This review encompasses a comprehensive analysis of native and genetically modified LAB biosurfactants, shedding light on microbial interactions, cell signaling, pathogenicity, and biofilm development. It aims to provide valuable insights into the applications of these active substances in therapeutic use and food formulation as well as their potential biological and other benefits. By synthesizing the latest knowledge and advancements, this review contributes to the understanding and utilization of LAB biosurfactants in the food and nutritional areas.
Collapse
Affiliation(s)
- Ekambaram Gayathiri
- Department of Plant Biology and Plant Biotechnology, Guru Nanak College (Autonomous), Chennai, Tamil Nadu, India
| | | | - Thangaraj Pratheep
- Department of Biotechnology, Rathinam College of Arts and Science, Coimbatore, Tamil Nadu, India
| | - Ramasamy Ramasubburayan
- Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Arti Gaur
- Department of Applied Sciences, Parul University, Vadodara, Gujarat, India
| | - Rajakumar Govindasamy
- Department of Orthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, India
| | - Kannan R R Rengasamy
- Laboratory of Natural Products and Medicinal Chemistry (LNPMC), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Upadhaya SD, Kim IH. Maintenance of gut microbiome stability for optimum intestinal health in pigs - a review. J Anim Sci Biotechnol 2022; 13:140. [PMID: 36474259 PMCID: PMC9727896 DOI: 10.1186/s40104-022-00790-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 10/03/2022] [Indexed: 12/12/2022] Open
Abstract
Pigs are exposed to various challenges such as weaning, environmental stressors, unhealthy diet, diseases and infections during their lifetime which adversely affects the gut microbiome. The inability of the pig microbiome to return to the pre-challenge baseline may lead to dysbiosis resulting in the outbreak of diseases. Therefore, the maintenance of gut microbiome diversity, robustness and stability has been influential for optimum intestinal health after perturbations. Nowadays human and animal researches have focused on more holistic approaches to obtain a robust gut microbiota that provides protection against pathogens and improves the digestive physiology and the immune system. In this review, we present an overview of the swine gut microbiota, factors affecting the gut microbiome and the importance of microbial stability in promoting optimal intestinal health. Additionally, we discussed the current understanding of nutritional interventions using fibers and pre/probiotics supplementation as non-antibiotic alternatives to maintain microbiota resilience to replace diminished species.
Collapse
Affiliation(s)
- Santi Devi Upadhaya
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| | - In Ho Kim
- grid.411982.70000 0001 0705 4288Department of Animal Resource and Science, Dankook University, No.29 Anseodong, Cheonan, 31116 Choongnam South Korea
| |
Collapse
|
8
|
Formulating Diets for Improved Health Status of Pigs: Current Knowledge and Perspectives. Animals (Basel) 2022; 12:ani12202877. [DOI: 10.3390/ani12202877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 11/17/2022] Open
Abstract
Our understanding of nutrition has been evolving to support both performance and immune status of pigs, particularly in disease-challenged animals which experience repartitioning of nutrients from growth towards the immune response. In this sense, it is critical to understand how stress may impact nutrient metabolism and the effects of nutritional interventions able to modulate organ (e.g., gastrointestinal tract) functionality and health. This will be pivotal in the development of effective diet formulation strategies in the context of improved animal performance and health. Therefore, this review will address qualitative and quantitative effects of immune system stimulation on voluntary feed intake and growth performance measurements in pigs. Due to the known repartitioning of nutrients, the effects of stimulating the immune system on nutrient requirements, stratified according to different challenge models, will be explored. Finally, different nutritional strategies (i.e., low protein, amino acid-supplemented diets; functional amino acid supplementation; dietary fiber level and source; diet complexity; organic acids; plant secondary metabolites) will be presented and discussed in the context of their possible role in enhancing the immune response and animal performance.
Collapse
|
9
|
Ren Z, Fan H, Deng H, Yao S, Jia G, Zuo Z, Hu Y, Shen L, Ma X, Zhong Z, Deng Y, Yao R, Deng J. Effects of dietary protein level on small intestinal morphology, occludin protein, and bacterial diversity in weaned piglets. Food Sci Nutr 2022; 10:2168-2201. [PMID: 35844902 PMCID: PMC9281955 DOI: 10.1002/fsn3.2828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 01/25/2022] [Accepted: 02/01/2022] [Indexed: 11/30/2022] Open
Abstract
Due to the physiological characteristics of piglets, the morphological structure and function of the small intestinal mucosa change after weaning, which easily leads to diarrhea in piglets. The aim of this study was to investigate effects of crude protein (CP) levels on small intestinal morphology, occludin protein expression, and intestinal bacteria diversity in weaned piglets. Ninety-six weaned piglets (25 days of age) were randomly divided into four groups and fed diets containing 18%, 20%, 22%, and 24% protein. At 6, 24, 48, 72, and 96 h, changes in mucosal morphological structure, occludin mRNA, and protein expression and in the localization of occludin in jejunal and ileal tissues were evaluated. At 6, 24, and 72 h, changes in bacterial diversity and number of the ileal and colonic contents were analyzed. Results showed that structures of the jejunum and the ileum of piglets in the 20% CP group were intact. The expression of occludin mRNA and protein in the small intestine of piglets in the 20% CP group were significantly higher than those in the other groups. As the CP level increased, the number of pathogens, such as Clostridium difficile and Escherichia coli, in the intestine increased, while the number of beneficial bacteria, such as Lactobacillus, Bifidobacterium, and Roseburia, decreased. It is concluded that maintaining the CP level at 20% is beneficial to maintaining the small intestinal mucosal barrier and its absorption function, reducing the occurrence of diarrhea, and facilitating the growth and development of piglets.
Collapse
Affiliation(s)
- Zhihua Ren
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Haoyue Fan
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Huidan Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Shuhua Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Guilin Jia
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhicai Zuo
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Yanchun Hu
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Liuhong Shen
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Xiaoping Ma
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Zhijun Zhong
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Youtian Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Renjie Yao
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| | - Junliang Deng
- College of Veterinary MedicineSichuan Agricultural UniversityYa’anChina
- Sichuan Province Key Laboratory of Animal Disease & Human HealthYa’anChina
- Key Laboratory of Environmental Hazard and Human Health of Sichuan ProvinceYa’anChina
| |
Collapse
|
10
|
Gryaznova MV, Dvoretskaya YD, Syromyatnikov MY, Shabunin SV, Parshin PA, Mikhaylov EV, Strelnikov NA, Popov VN. Changes in the Microbiome Profile in Different Parts of the Intestine in Piglets with Diarrhea. Animals (Basel) 2022; 12:ani12030320. [PMID: 35158643 PMCID: PMC8833389 DOI: 10.3390/ani12030320] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The most common genera in the piglet microbiome were Lactobacillus, Escherichia-Shigella, Enterococcus, Bacteroides, and Fusobacterium. Bacteria of the Lactobacillus genus dominated in healthy piglets. An increased number of Escherichia-Shigella and Enterococcus was detected in diarrheal pigs. This indicates an important role of these bacteria in the pathogenesis of diarrhea. A decreased number of Bacteroides was detected in diarrheal pigs. According to the assessment of the microbiome composition in different sections of the intestine, bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides were more common in the rectum. Our results show that the gut microbiome may make a significant contribution to the pathogenesis of diarrhea. Abstract Determining the taxonomic composition of microbial consortia of the piglet intestine is of great importance for pig production. However, knowledge on the variety of the intestinal microbiome in newborn piglets is limited. Piglet diarrhea is a serious gastrointestinal disease with a high morbidity and mortality that causes great economic damage to the pig industry. In this study, we investigated the microbiome of various sections of the piglet intestine and compared the microbiome composition of healthy and diarrheal piglets using high-throughput sequencing of the 16S rRNA gene. The results showed that bacteria of the Lactobacillus genus were the most common in the ileum, while Fusobacterium and Bacteroides dominated in the rectum. Comparing the microbiome composition of healthy and diarrheal piglets revealed a reduced number of Lactobacillus bacteria as a hallmark of diarrhea, as did an increased content of representatives of the Escherichia-Shigella genus and a reduced number of Bacteroides, which indicates the contribution of these bacteria to the development of diarrhea in piglets. The relative abundance of Enterococcus bacteria was higher in the diarrhea group. Although some bacteria of this genus are commensals, a small number of species may be associated with the development of diarrhea in piglets. Therefore, our results indicate that the gut microbiome may be an important factor in the development of diarrhea in piglets.
Collapse
Affiliation(s)
- Mariya V. Gryaznova
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Yuliya D. Dvoretskaya
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| | - Mikhail Y. Syromyatnikov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
- Correspondence: ; Tel.: +7-473-220-0876
| | - Sergey V. Shabunin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Pavel A. Parshin
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Evgeniy V. Mikhaylov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Nikolay A. Strelnikov
- FSBSI All-Russian Veterinary Research Institute of Pathology, Pharmacology and Therapy, 394061 Voronezh, Russia; (S.V.S.); (P.A.P.); (E.V.M.); (N.A.S.)
| | - Vasily N. Popov
- Laboratory of Metagenomics and Food Biotechnology, Voronezh State University of Engineering Technologies, 394036 Voronezh, Russia; (M.V.G.); (Y.D.D.); (V.N.P.)
- Department of Genetics, Cytology and Bioengineering, Voronezh State University, 394018 Voronezh, Russia
| |
Collapse
|
11
|
Jang KB, Kim SW. Role of milk carbohydrates in intestinal health of nursery pigs: a review. J Anim Sci Biotechnol 2022; 13:6. [PMID: 34983676 PMCID: PMC8729129 DOI: 10.1186/s40104-021-00650-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 11/16/2021] [Indexed: 12/14/2022] Open
Abstract
Intestinal health is essential for the resistance to enteric diseases and for nutrient digestion and absorption to support growth. The intestine of nursery pigs are immature and vulnerable to external challenges, which cause negative impacts on the structure and function of the intestine. Among nutritional interventions, the benefits of milk are significant for the intestinal health of pigs. Milk coproducts have traditionally been used in starter feeds to improve the growth of nursery pigs, but their use is somewhat limited due to the high costs and potential risks of excessive lactose on the intestine. Thus, understanding a proper feeding level of milk carbohydrates is an important start of the feeding strategy. For nursery pigs, lactose is considered a highly digestible energy source compared with plant-based starch, whereas milk oligosaccharides are considered bioactive compounds modulating intestinal immunity and microbiota. Therefore, milk carbohydrates, mainly composed of lactose and oligosaccharides, have essential roles in the intestinal development and functions of nursery pigs. The proper feeding levels of lactose in starter feeds could be variable by weaning age, body weight, or genetic lines. Effects of lactose and milk oligosaccharides have been broadly studied in human health and animal production. Therefore, this review focuses on the mechanisms of lactose and milk oligosaccharides affecting intestinal maturation and functions through modulation of enterocyte proliferation, intestinal immunity, and intestinal microbiota of nursery pigs.
Collapse
Affiliation(s)
- Ki Beom Jang
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sung Woo Kim
- Department of Animal Science, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
12
|
Effects of Partially Hydrolyzed Guar Gum Supplementation on the Fecal Microbiotas of Piglets. Pathogens 2021; 10:pathogens10111420. [PMID: 34832576 PMCID: PMC8619618 DOI: 10.3390/pathogens10111420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022] Open
Abstract
Probiotics and prebiotics have become viable alternatives of growth-promoting antimicrobials in animal production. Here, we tested partially hydrolyzed guar gum (PHGG) as a possible prebiotic for piglets in the commercial farm. Five hundred and ninety-four piglets were used for the experiments, with 293 given a normal pig feed (control), while the rest the feed plus 0.06% (w/w) of PHGG (PHGG). One and three months post-PHGG supplementation, fecal samples were collected from randomly selected 20 piglets in each group and analyzed for microbiota and organic acid concentrations. Notably, the abundance of Streptococcus, and unclassified Ruminococcaceae were lower (p < 0.05) in PHGG than in control, one-month post-supplementation. Lactobacillus and Prevotella were higher (p < 0.05), while Streptococcus was lower (p < 0.05), in PHGG than in control, three months post-supplementation. The concentrations of acetate, propionate, and butyrate were greater in PHGG than in control, three months post-supplementation. Finally, PHGG grew faster and had fewer deaths until slaughter time (p < 0.05), than control. We concluded that PHGG not only was an effective prebiotic to alter gut microbiota of weanling piglets but also can possibly promote body weight accretion and health.
Collapse
|
13
|
The Effect of a Diet Containing Extruded Faba Bean Seeds on Growth Performance and Selected Microbial Activity Indices in the Large Intestine of Piglets. Animals (Basel) 2021; 11:ani11061703. [PMID: 34200368 PMCID: PMC8226840 DOI: 10.3390/ani11061703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/13/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Simple Summary Grain legumes are cultivated for food and feed purposes in all regions of the world. Legumes are the main source of protein for a large part of the world population where animal protein is hardly available. The potential of grain legumes is increasing primarily due to the genetic improvement of their agricultural and nutritional characteristics and expansion of organic farming. They are also fed to animals as a component of concentrates and on farms producing “organic” food. Therefore, studies on the composition, nutritional value and factors affecting quality of legume protein contribute to a more efficient utilization of seeds as feed and food ingredients. Faba bean is rich in both starch and protein and is an important alternative protein source in animal nutrition; however, its potential is not yet fully exploited, particularly in pig diets. The aim of the study was to evaluate the effect of diets containing various levels of extruded faba bean seeds on growth performance and selected microbial activity indices in the large intestine of pigs. Treatments with faba bean seeds did not negatively affect growth performance (except for the highest level of faba bean) and microbial activity in the large intestine, and can be applied in piglet diets. Abstract The study investigated the effect of replacing soybean meal with extruded faba bean seeds on piglet growth performance and selected microbial activity indices in the large intestine. In total, 24, 35-day-old, healthy, castrated piglets of similar body weight were divided into four groups with six replicates. Animals in the control group (C) were fed with soybean meal without extruded faba bean seeds. In other experimental groups, pigs were fed diets with the addition of 20 (FB20), 25 (FB25) or 30% (FB30) extruded faba bean seeds instead of soybean meal and wheat starch. Growth performance, histology of the large intestine, short-chain fatty acids (SCFA) and ammonia concentration, as well as the activity of bacterial enzymes in digesta samples, were analyzed. The intake of the FB25 diet resulted in an increased feed:gain ratio in comparison to the FB30 group. Feeding the FB30 diet increased tunica muscularis thickness in the caecum as compared to other groups. Moreover, dietary inclusion of extruded faba bean seeds had no effect on SCFA and ammonia concentration. In addition, feeding diets with a different level of extruded faba bean seeds did not affect the activity of bacterial enzymes in the colon.
Collapse
|
14
|
Zhao J, Zhang Z, Zhang S, Page G, Jaworski NW. The role of lactose in weanling pig nutrition: a literature and meta-analysis review. J Anim Sci Biotechnol 2021; 12:10. [PMID: 33431022 PMCID: PMC7798279 DOI: 10.1186/s40104-020-00522-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Lactose plays a crucial role in the growth performance of pigs at weaning because it is a palatable and easily digestible energy source that eases the transition from milk to solid feed. However, the digestibility of lactose declines after weaning due to a reduction in endogenous lactase activity in piglets. As a result, some lactose may be fermented in the gastrointestinal tract of pigs. Fermentation of lactose by intestinal microbiota yields lactic acid and volatile fatty acids, which may positively regulate the intestinal environment and microbiome, resulting in improved gastrointestinal health of weanling pigs. We hypothesize that the prebiotic effect of lactose may play a larger role in weanling pig nutrition as the global feed industry strives to reduce antibiotic usage and pharmacological levels of zinc oxide and supra-nutritional levels of copper. Evidence presented in this review indicates that high dietary lactose improves growth performance of piglets, as well as the growth of beneficial bacteria, particularly Lactobacillus, with the positive effects being more pronounced in the first 2 weeks after weaning. However, the risk of post-weaning diarrhea may increase as pigs get older due to reduced lactase activity, high dietary lactose concentrations, and larger feed intakes, all of which may lead to excessive lactose fermentation in the intestine of the pig. Therefore, dietary lactose levels exert different effects on growth performance and gastrointestinal physiological functions in different feeding phases of weanling pigs. However, no formal recommendation of lactose for weanling pigs has been reported. A meta-analysis approach was used to determine that diets fed to swine should include 20%, 15%, and 0 lactose from d 0–7, d 7–14, and d 14–35 post-weaning, respectively. However, sustainable swine production demands that economics must also be taken into account as lactose and lactose containing ingredients are expensive. Therefore, alternatives to lactose, so called “lactose equivalents” have also been studied in an effort to decrease feed cost while maintaining piglet performance with lower dietary lactose inclusions. In summary, the present review investigated dose-response effects of dietary lactose supplementation to exert positive responses and begin to elucidate its mechanisms of action in post-weaning pig diets. The results may help to replace some or all lactose in the diet of weanling pigs, while improving production economics given the high cost of lactose and availability in some swine production markets.
Collapse
Affiliation(s)
- Jinbiao Zhao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Zeyu Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.,Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Shuai Zhang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Greg Page
- Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands
| | - Neil W Jaworski
- Trouw Nutrition Innovation, Stationsstraat 77, 3800AG, Amersfoort, Netherlands.
| |
Collapse
|
15
|
Comparative analysis of the pulmonary microbiome in healthy and diseased pigs. Mol Genet Genomics 2020; 296:21-31. [PMID: 32944788 DOI: 10.1007/s00438-020-01722-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/03/2020] [Indexed: 12/11/2022]
Abstract
The lungs possess an effective antimicrobial system and a strong ability to eliminate microorganisms in healthy organisms, and were once considered sterile. With the development of culture-independent sequencing technology, the richness and diversity of porcine lung microbiota have been gaining attention. In order to study the relationship between lung microbiota and porcine respiratory disease complex (PRDC), the lung microbiota in healthy and diseased swine bronchoalveolar lavage fluids were analyzed and compared using the Illumina MiSeq sequencing platform. The predominant microbial communities of healthy and diseased swine were similar at the phylum level, mainly composed of Proteobacteria, Firmicutes, Tenericutes, and Bacteroidetes. However, the bacterial taxonomic communities of healthy and diseased swine differed at the genus level. The higher relative abundances of Lactococcus, Enterococcus, Staphylococcus, and Lactobacillus genera in healthy swine might provide more benefits for lung health, while the enhanced richness of Streptococcus, Haemophilus, Pasteurella, and Bordetella genera in diseased swine might be closely related to pathogen invasion and the occurrence of respiratory disease. In conclusion, the observed differences in the richness and diversity of lung microbiota can provide novel insights into their relationship with PRDC. Analyses of swine lung microbiota communities might produce an effective strategy for the control and prevention of respiratory tract infections.
Collapse
|
16
|
Development of Swine's Digestive Tract Microbiota and Its Relation to Production Indices-A Review. Animals (Basel) 2020; 10:ani10030527. [PMID: 32245217 PMCID: PMC7143181 DOI: 10.3390/ani10030527] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/17/2020] [Accepted: 03/19/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Proper cooperation between digestive system microbiota and the host is an important issue in maintaining proper health condition, and—in the case of farm animals—production indices. In the case of pigs, microbiota significantly affect production parameters such as meat quality, growth rate or improvement of immune response to infections. Understanding of pig digestive system microbiota and factors affecting this is an important issue. This may enable improvement of animal performance and stabilization of microbiota during their growth, reducing the risk of metabolic or systemic diseases. Abstract The development of research methods and tools related to microbiome investigation, as well as widened knowledge and awareness concerning the significance of microorganisms inhabiting mammalian organisms, has led to an increasing popularity of studies in this field. This review paper presents some issues related to the swine microbiome, its development starting from an early age of life and its status in adult animals, as well as factors affecting the microbiome in pigs. Attention is paid to the role of probiotics and prebiotics as alternatives to antibiotics in the context of post-weaning diarrhea treatment, and to the role of microorganisms inhabiting the digestive tract of pigs in performance indices formation. In veterinary and pork production practice, understanding of the swine microbiome and its relationships with the host organism may be useful in the prevention of some diseases and also in improvement of performance results of animals.
Collapse
|
17
|
Van Noten N, Degroote J, Van Liefferinge E, Taminiau B, De Smet S, Desmet T, Michiels J. Effects of Thymol and Thymol α-D-Glucopyranoside on Intestinal Function and Microbiota of Weaned Pigs. Animals (Basel) 2020; 10:E329. [PMID: 32092931 PMCID: PMC7070699 DOI: 10.3390/ani10020329] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 12/29/2022] Open
Abstract
The present study evaluated gluco-conjugation as a measure to delay thymol absorption and enhance its antimicrobial activity in the gut of weaned piglets. The three dietary treatments consisted of a basal diet without additives (TCON), supplemented with thymol at 3.7 mmol/kg dry matter (TTHY), or with an equimolar amount of thymol α-D-glucopyranoside (TTαG). Each dietary treatment was replicated in 6 pens with 2 piglets per pen (n = 12 for analytical parameters) and was supplemented for 14 days. The total (free plus gluco-conjugated) thymol concentrations in the stomach contents were 14% lower in TTαG as compared to TTHY piglets. Neither of the additives could be detected further down the gut. E.coli counts in the proximal small intestine were significantly lower in TTHY than in TTαG pigs (3.35 vs. 4.29 log10 CFU/g); however, other bacterial counts and their metabolites were unaffected by treatment. A metagenomic bacterial analysis revealed a great relative abundance of Lactobacillus spp. in the distal small intestine (range 88.4%-99.9%), irrespective of treatment. The intestinal barrier function was improved by TTHY, but not TTαG, compared to TCON. In conclusion, gluco-conjugation did not result in higher thymol concentrations in the gut, but conversely, it seemed to diminish the biological effects of thymol in vivo.
Collapse
Affiliation(s)
- Noémie Van Noten
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (E.V.L.); (S.D.S.)
| | - Jeroen Degroote
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (E.V.L.); (S.D.S.)
| | - Elout Van Liefferinge
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (E.V.L.); (S.D.S.)
| | - Bernard Taminiau
- Department of Food Sciences, University of Liège, Quartier Vallée 2, Avenue de Cureghem 7A-7D, 4000 Liège, Belgium;
| | - Stefaan De Smet
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (E.V.L.); (S.D.S.)
| | - Tom Desmet
- Department of Biotechnology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
| | - Joris Michiels
- Department of Animal Sciences and Aquatic Ecology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium; (N.V.N.); (J.D.); (E.V.L.); (S.D.S.)
| |
Collapse
|
18
|
Effect of lotus seed resistant starch on tolerance of mice fecal microbiota to bile salt. Int J Biol Macromol 2020; 151:384-393. [PMID: 32084485 DOI: 10.1016/j.ijbiomac.2020.02.197] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 02/02/2020] [Accepted: 02/18/2020] [Indexed: 01/06/2023]
Abstract
We investigated the effect of lotus seed resistant starch (LRS) on mice fecal microbiota tolerance to bile salt by culturing organisms compared to inulin (INU) glucose (GLU) and waxy corn starch (WAX). Operational taxonomic units (OTUs) and diversity indices in LRS and INU groups were increased in the presence of 0.03% to 0.3% bile salt, while they were decreased in GLU, and OTUs were decreased in WAX. Specifically, LRS promoted proliferation of Lactobacillus, which potentially used bile acid, and inhibited growth of the potentially harmful bacteria Enterococcus and Staphylococcus. Moreover, Lactobacillus was negatively correlated with Salinicoccus and Granulicatella in GLU, LRS and INU groups at 1.5% bile salt. With LRS, amino acid metabolic pathways were increased while pathogens causing certain diseases were decreased. LRS increased the tolerance of mice fecal microbiota to bile salt by promoting the proliferation of bacteria utilizing bile acid and inhibiting the growth of harmful bacteria.
Collapse
|
19
|
Almeida V, Nuñez A, Schinckel A, Alvarenga P, Castelini F, Silva-Guillen Y, Thomaz M. Fecal characteristics and gut bacterial population of weaned pigs fed amino acid-supplemented diets varying in crude protein and fermentable carbohydrate contents. Livest Sci 2020. [DOI: 10.1016/j.livsci.2019.103881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
20
|
Wang Z, Hu J, Zheng W, Yang T, Wang X, Xie C, Yan X. Lactobacillus frumenti mediates energy production via fatty acid β-oxidation in the liver of early-weaned piglets. J Anim Sci Biotechnol 2019; 10:95. [PMID: 31827788 PMCID: PMC6894312 DOI: 10.1186/s40104-019-0399-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Background Early-weaning of piglets is often accompanied by severe disorders, especially diarrhea. The gut microbiota and its metabolites play a critical role in the maintenance of the physiologic and metabolic homeostasis of the host. Our previous studies have demonstrated that oral administration of Lactobacillus frumenti improves epithelial barrier functions and confers diarrhea resistance in early-weaned piglets. However, the metabolic response to L. frumenti administration remains unclear. Then, we conducted simultaneous serum and hepatic metabolomic analyses in early-weaned piglets administered by L. frumenti or phosphate-buffered saline (PBS). Results A total of 100 6-day-old crossbred piglets (Landrace × Yorkshire) were randomly divided into two groups and piglets received PBS (sterile, 2 mL) or L. frumenti (suspension in PBS, 108 CFU/mL, 2 mL) by oral administration once per day from 6 to 20 days of age. Piglets were weaned at 21 days of age. Serum and liver samples for metabolomic analyses were collected at 26 days of age. Principal components analysis (PCA) showed that L. frumenti altered metabolism in serum and liver. Numerous correlations (P < 0.05) were identified among the serum and liver metabolites that were affected by L. frumenti. Concentrations of guanosine monophosphate (GMP), inosine monophosphate (IMP), and uric acid were higher in serum of L. frumenti administration piglets. Pathway analysis indicated that L. frumenti regulated fatty acid and amino acid metabolism in serum and liver. Concentrations of fatty acid β-oxidation related metabolites in serum (such as 3-hydroxybutyrylcarnitine, C4-OH) and liver (such as acetylcarnitine) were increased after L. frumenti administration. Conclusions Our findings suggest that L. frumenti regulates lipid metabolism and amino acid metabolism in the liver of early-weaned piglets, where it promotes fatty acid β-oxidation and energy production. High serum concentrations of nucleotide intermediates, which may be an alternative strategy to reduce the incidence of diarrhea in early-weaned piglets, were further detected. These findings broaden our understanding of the relationships between the gut microbiota and nutrient metabolism in the early-weaned piglets.
Collapse
Affiliation(s)
- Zhichang Wang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Jun Hu
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Wenyong Zheng
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Tao Yang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Xinkai Wang
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Chunlin Xie
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| | - Xianghua Yan
- 1State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070 China.,The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, Hubei 430070 China.,Hubei Provincial Engineering Laboratory for Pig Precision Feeding and Feed Safety Technology, Wuhan, Hubei 430070 China
| |
Collapse
|
21
|
Improvement of Feed Efficiency in Pigs through Microbial Modulation via Fecal Microbiota Transplantation in Sows and Dietary Supplementation of Inulin in Offspring. Appl Environ Microbiol 2019; 85:AEM.01255-19. [PMID: 31519656 DOI: 10.1128/aem.01255-19] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/26/2019] [Indexed: 02/06/2023] Open
Abstract
As previous studies have demonstrated a link between the porcine intestinal microbiome and feed efficiency (FE), microbiota manipulation may offer a means of improving FE in pigs. A fecal microbiota transplantation procedure (FMTp), using fecal extracts from highly feed-efficient pigs, was performed in pregnant sows (n = 11), with a control group (n = 11) receiving no FMTp. At weaning, offspring were allocated, within sow treatment, to (i) control (n = 67; no dietary supplement) or (ii) inulin (n = 65; 6-week dietary inulin supplementation) treatments. The sow FMTp, alone or in combination with inulin supplementation in offspring, reduced offspring body weight by 8.1 to 10.6 kg at ∼140 days of age, but there was no effect on feed intake. It resulted in better FE, greater bacterial diversity, and higher relative abundances of potentially beneficial bacterial taxa (Fibrobacter and Prevotella) in offspring. Due to the FMTp and/or inulin supplementation, relative abundances of potential pathogens (Chlamydia and Treponema) in the ileum and cecal concentrations of butyric acid were significantly lower. The maternal FMTp led to a greater number of jejunal goblet cells in offspring. Inulin supplementation alone did not affect growth or FE but upregulated duodenal genes linked to glucose and volatile fatty acid homeostasis and increased the mean platelet volume but reduced ileal propionic acid concentrations, granulocyte counts, and serum urea concentrations. Overall, the FMTp in pregnant sows, with or without dietary inulin supplementation in offspring, beneficially modulated offspring intestinal microbiota (albeit mostly low-relative-abundance taxa) and associated physiological parameters. Although FE was improved, the detrimental effect on growth limits the application of this FMTp-inulin strategy in commercial pig production.IMPORTANCE As previous research suggests a link between microbiota and FE, modulation of the intestinal microbiome may be effective in improving FE in pigs. The FMTp in gestating sows, alone or in combination with postweaning dietary inulin supplementation in offspring, achieved improvements in FE and resulted in a higher relative abundance of intestinal bacteria associated with fiber degradation and a lower relative abundance of potential pathogens. However, there was a detrimental effect on growth, although this may not be wholly attributable to microbiota transplantation, as antibiotic and other interventions were also part of the FMT regimen. Therefore, further work with additional control groups is needed to disentangle the effects of each component of the FMTp in order to develop a regimen with practical applications in pig production. Additional research based on findings from this study may also identify specific dietary supplements for the promotion/maintenance of the microbiota transferred via the maternal FMTp, thereby optimizing pig growth and FE.
Collapse
|
22
|
Oh HJ, Song MH, Yun W, Lee JH, Lee CH, Kwak WG, Oh SY, Liu S, An JS, Kim HB, Cho JH. Evaluation of correlation between crude protein levels and different space allowances under sawdust bed feeding system on growth performance, nutrient digestibility, blood profiles, and odour emission in growing–finishing pigs. CANADIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1139/cjas-2018-0132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Han Jin Oh
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Min Ho Song
- Division of Animal and Dairy Science, Chungnam National University, Daejeon, Choongnam 341-34, Republic of Korea
| | - Won Yun
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Ji Hwan Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Chang Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Woo Gi Kwak
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Seo Young Oh
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Shudong Liu
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Ji Seon An
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| | - Hyeun Bum Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Choongnam 311-16, Republic of Korea
| | - Jin Ho Cho
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 286-44, Republic of Korea
| |
Collapse
|
23
|
Splichal I, Donovan SM, Splichalova Z, Neuzil Bunesova V, Vlkova E, Jenistova V, Killer J, Svejstil R, Skrivanova E, Splichalova A. Colonization of Germ-Free Piglets with Commensal Lactobacillus amylovorus, Lactobacillus mucosae, and Probiotic E. coli Nissle 1917 and Their Interference with Salmonella Typhimurium. Microorganisms 2019; 7:microorganisms7080273. [PMID: 31434337 PMCID: PMC6722580 DOI: 10.3390/microorganisms7080273] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 01/12/2023] Open
Abstract
Non-typhoid Salmonellae are worldwide spread food-borne pathogens that cause diarrhea in humans and animals. Their multi-drug resistances require alternative ways to combat this enteric pathogen. Mono-colonization of a gnotobiotic piglet gastrointestinal tract with commensal lactobacilli Lactobacillus amylovorus and Lactobacillus mucosae and with probiotic E. coli Nissle 1917 and their interference with S. Typhimurium infection was compared. The impact of bacteria and possible protection against infection with Salmonella were evaluated by clinical signs, bacterial translocation, intestinal histology, mRNA expression of villin, claudin-1, claudin-2, and occludin in the ileum and colon, and local intestinal and systemic levels of inflammatory cytokines IL-8, TNF-α, and IL-10. Both lactobacilli colonized the gastrointestinal tract in approximately 100× lower density compare to E. coli Nissle and S. Typhimurium. Neither L. amylovorus nor L. mucosae suppressed the inflammatory reaction caused by the 24 h infection with S. Typhimurium. In contrast, probiotic E. coli Nissle 1917 was able to suppress clinical signs, histopathological changes, the transcriptions of the proteins, and the inductions of the inflammatory cytokines. Future studies are needed to determine whether prebiotic support of the growth of lactobacilli and multistrain lactobacilli inoculum could show higher protective effects.
Collapse
Affiliation(s)
- Igor Splichal
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Sharon M Donovan
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, IL 61801, USA
| | - Zdislava Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Vera Neuzil Bunesova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Eva Vlkova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Vera Jenistova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic
| | - Jiri Killer
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences, 142 20 Prague, Czech Republic
| | - Roman Svejstil
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Eva Skrivanova
- Department of Microbiology, Nutrition and Dietetics, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences, 165 00 Prague, Czech Republic
| | - Alla Splichalova
- Laboratory of Gnotobiology, Institute of Microbiology, Czech Academy of Sciences, 549 22 Novy Hradek, Czech Republic.
| |
Collapse
|
24
|
Sureshkumar S, Jung SK, Kim D, Oh KB, Yang H, Lee HC, Jin JY, Sun LH, Lee S, Byun SJ. Oral administration of Lactobacillus reuteri expressing a 3D8 single-chain variable fragment (scFv) enhances chicken growth and conserves immune homeostasis. 3 Biotech 2019; 9:282. [PMID: 31245246 DOI: 10.1007/s13205-019-1811-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/13/2019] [Indexed: 12/24/2022] Open
Abstract
The present study was aimed to investigate the effects of 3D8 scFv-secreting Probiotic Lactobacillus reuteri (L. reuteri) on growth performance, inflammatory responses, and intestinal microbial flora in chickens. To this end, a total of 14 healthy wild-type chickens were divided into two experimental groups. Each group was orally administrated with a daily dose of 109 colony-forming units (CFU) of 3D8 scFv-producing L. reuteri or wild-type (WT) for 35 days. Administration of L. reuteri/3D8 scFv significantly improved the body weight of chickens when compared to L. reuteri/WT group. The bacterial taxonomic composition of the fecal microbiota was determined by pyrosequencing of 16S rRNA gene amplicons. Firmicutes, Actinobacteria, and Proteobacteria were dominant phyla in two experimental groups. However, in 3D8 L. reuteri treatment groups at genus level, the Lactobacillus was highly abundant, being represented by 18.12%. In addition, serum levels of primary cytokines such as IL-6, IL-8, TNF-α, IFN-γ, IL-4, and IGF1 were markedly reduced in the probiotic L. reuteri 3D8 group. In summary, our results indicate that the administration of L. reuteri expressing 3D8 scFv has a modulatory effect on inflammatory responses, improves weight gain while not affecting the common microbial composition of the chicken intestine.
Collapse
Affiliation(s)
- Shanmugam Sureshkumar
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Sun Keun Jung
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Dongjun Kim
- 2Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do Republic of Korea
| | - Keon Bong Oh
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Hyeon Yang
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Hwi Cheul Lee
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Jo Yong Jin
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Lee Hae Sun
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| | - Sukchan Lee
- 2Department of Integrative Biotechnology, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do Republic of Korea
| | - Sung June Byun
- 1Animal Biotechnology Division, National Institute of Animal Science, Rural Development Administration, 1500, Wanju-gun, 441-706 Republic of Korea
| |
Collapse
|
25
|
Jha R, Fouhse JM, Tiwari UP, Li L, Willing BP. Dietary Fiber and Intestinal Health of Monogastric Animals. Front Vet Sci 2019; 6:48. [PMID: 30886850 PMCID: PMC6409295 DOI: 10.3389/fvets.2019.00048] [Citation(s) in RCA: 172] [Impact Index Per Article: 34.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Accepted: 02/06/2019] [Indexed: 01/10/2023] Open
Abstract
Animal performance, feed efficiency, and overall health are heavily dependent on gut health. Changes in animal production systems and feed regulations away from the use of antibiotic growth promoters (AGP) have necessitated the identification of strategies to optimize gut health in novel and effective ways. Among alternatives to AGP, the inclusion of dietary fibers (DF) in monogastric diets has been attempted with some success. Alternative feedstuffs and coproducts are typically rich in fiber and can be used in the diets to reduce feed costs and optimize gut health. DF are naturally occurring compounds with a diverse composition and are present in all plant-based feedstuffs. DF stimulate the growth of health-promoting gut bacteria, are fermented in the distal small intestine and large intestine to short-chain fatty acids and have beneficial effects on the immune system. Maternal DF supplementation is one novel strategy suggested to have a beneficial programming effect on the microbial and immune development of their offspring. One mechanism by which DF improves gut health is through maintenance of an anaerobic intestinal environment that subsequently prevents facultative anaerobic pathogens from flourishing. Studies with pigs and poultry have shown that fermentation characteristics and their beneficial effects on gut health vary widely based on type, form, and the physico-chemical properties of the DF. Therefore, it is important to have information on the different types of DF and their role in optimizing gut health. This review will provide information and updates on different types of DF used in monogastric nutrition and its contribution to gut health including microbiology, fermentation characteristics, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Rajesh Jha
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Janelle M. Fouhse
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Utsav P. Tiwari
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Linge Li
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii at Manoa, Honolulu, HI, United States
| | - Benjamin P. Willing
- Department of Agricultural Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
26
|
Kleinjans L, Veening-Griffioen DH, Wehkamp T, van Bergenhenegouwen J, Knol J, Garssen J, Knippels LMJ, Belzer C, Jeurink PV. Mice co-administrated with partially hydrolysed whey proteins and prebiotic fibre mixtures show allergen-specific tolerance and a modulated gut microbiota. Benef Microbes 2018; 10:165-178. [PMID: 30525954 DOI: 10.3920/bm2018.0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Non-breastfed infants at-risk of allergy are recommended to use a hydrolysed formula before the age of 6 months. The addition of prebiotics to this formula may reduce the allergy development in these infants, but clinical evidence is still inconclusive. This study evaluates (1) whether the exposure duration to different prebiotics alongside a partially hydrolysed whey protein (pHP) influences its' effectiveness to prevent allergy development and (2) whether the gut microbiota plays a role in this process. Mice orally sensitised with whey and/or cholera toxin were orally treated for six days before sensitization with phosphate buffered saline, whey or pHP to potentially induce tolerance. Two groups received an oligosaccharide diet only from day -7 until -2 (GFshort and GFAshort) whereas two other groups received their diets from day -15 until 37 (GFlong and GFAlong). On day 35, mice underwent an intradermal whey challenge, and the acute allergic skin response, shock score, and body temperatures were measured. At day 37, mice received whey orally and serum mouse mast cell protease-1, SLPI and whey-specific antibodies were assessed. Faecal samples were taken at day -15, -8 and 34. Feeding mice pHP alone during tolerance induction did not reduce ear swelling. The tolerance inducing mechanisms seem to vary according to the oligosaccharide-composition. GFshort, GFlong, and GFAlong reduced the allergic skin response, whereas GFAshort was not potent enough. However, in the treatment groups, the dominant Lactobacillus species decreased, being replaced by Bacteroidales family S24-7 members. In addition, the relative abundance of Prevotella was significantly higher in the GFlong, GFAshort and GFAlong groups. Co-administration of oligosaccharides and pHP can induce immunological tolerance in mice, although tolerance induction was strongest in the animals that were fed oligosaccharides during the entire protocol. Some microbial changes coincided with tolerance induction, however, a specific mechanism could not be determined based on these data.
Collapse
Affiliation(s)
- L Kleinjans
- 3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - D H Veening-Griffioen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - T Wehkamp
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - J van Bergenhenegouwen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - J Knol
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - J Garssen
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - L M J Knippels
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| | - C Belzer
- 3 Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - P V Jeurink
- 1 Nutricia Research, Uppsalalaan 12, 3584 CT Utrecht, the Netherlands.,2 Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, the Netherlands
| |
Collapse
|
27
|
Regassa A, Nyachoti CM. Application of resistant starch in swine and poultry diets with particular reference to gut health and function. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:305-310. [PMID: 30175259 PMCID: PMC6116817 DOI: 10.1016/j.aninu.2018.04.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 02/27/2018] [Accepted: 04/02/2018] [Indexed: 02/08/2023]
Abstract
The immediate post-weaning period poses a major challenge on the survival of piglets. Similarly, newly hatched chicks face life threatening challenges due to enteric infections. In the past several years, in-feed antibiotics have been used to reduce these production problems and improve growth. However, in-feed antibiotics have been banned in many jurisdictions and therefore the most effective alternatives to in-feed antibiotics must be developed. To date, several studies have been conducted to develop alternatives to antibiotics. One of the potential candidates as alternatives to in-feed antibiotics is resistant starch (RS). Resistance starch is a type of starch that resists enzymatic digestion in the upper parts of the gastrointestinal tract and therefore passes to hindgut where it can be fermented by resident microorganisms. Microbial fermentation of RS in the hindgut results in the production of short chain fatty acids (SCFA). Production of SCFA in turn results in growth and proliferation of colonic and cecal cells, increased expression of genes involved in gut development, and creation of an acidic environment. The acidic environment suppresses the growth of pathogenic microorganisms while selectively promoting the growth of beneficial microbes. Thus, RS has the potential to improve gut health and function by modifying and stabilising gut microbial community and by improving the immunological status of the host. In this review, we discussed the roles of RS in modifying and stabilising gut microbiota, gut health and function, carcass quality, and energy metabolism and growth performance in pigs and poultry.
Collapse
Affiliation(s)
| | - Charles M. Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| |
Collapse
|
28
|
Trevisi P, Priori D, Jansman AJM, Luise D, Koopmans SJ, Hynönen U, Palva A, van der Meulen J, Bosi P. Molecular networks affected by neonatal microbial colonization in porcine jejunum, luminally perfused with enterotoxigenic Escherichia coli, F4ac fimbria or Lactobacillus amylovorus. PLoS One 2018; 13:e0202160. [PMID: 30161141 PMCID: PMC6116929 DOI: 10.1371/journal.pone.0202160] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/27/2018] [Indexed: 12/11/2022] Open
Abstract
The development of an early complex gut microbiota may play an important role in the protection against intestinal dysbiosis later in life. The significance of the developed microbiota for gut barrier functionality upon interaction with pathogenic or beneficial bacteria is largely unknown. The transcriptome of differently perfused jejunal loops of 12 caesarian-derived pigs, neonatally associated with microbiota of different complexity, was studied. Piglets received pasteurized sow colostrum at birth (d0), a starter microbiota (Lactobacillus amylovorus (LAM), Clostridium glycolicum, and Parabacteroides) on d1-d3, and a placebo inoculant (simple association, SA) or an inoculant consisting of sow’s diluted feces (complex association, CA) on d3-d4. On d 26–37, jejunal loops were perfused for 8 h with either enterotoxigenic Escherichia coli F4 (ETEC), purified F4 fimbriae, LAM or saline control (CTRL). Gene expression of each intestinal loop was analyzed by Affymetrix Porcine Gene 1.1_ST array strips. Gene Set Enrichment Analysis was performed on expression values. Compared to CTRL, 184 and 74; 2 and 139; 2 and 48 gene sets, were up- and down-regulated by ETEC, F4 and LAM, respectively. ETEC up-regulated networks related to inflammatory and immune responses, RNA processing, and mitosis. There was a limited overlap in up-regulated gene sets between ETEC and F4 fimbriae. LAM down-regulated genes related to inflammatory and immune responses, as well as to cellular compound metabolism. In CA pigs, 57 gene sets were up-regulated by CA, while 73 were down-regulated compared to SA. CA up-regulated gene sets related to lymphocyte modulation and to cellular defense in all loop perfusions. In CA pigs, compared to SA pigs, genes for chemokine and cytokine activity and for response to external stimuli were down-regulated in ETEC-perfused loops and up-regulated in CTRL. The results highlight the importance of the nature of neonatal microbial colonization in the response to microbial stimuli later in life.
Collapse
Affiliation(s)
| | | | | | - Diana Luise
- DISTAL, University of Bologna, Bologna, Italy
| | | | - Ulla Hynönen
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Division of Microbiology and Epidemiology, University of Helsinki, Helsinki, Finland
| | | | - Paolo Bosi
- DISTAL, University of Bologna, Bologna, Italy
- * E-mail:
| |
Collapse
|
29
|
Reddy KE, Jeong JY, Song J, Lee Y, Lee HJ, Kim DW, Jung HJ, Kim KH, Kim M, Oh YK, Lee SD, Kim M. Colon Microbiome of Pigs Fed Diet Contaminated with Commercial Purified Deoxynivalenol and Zearalenone. Toxins (Basel) 2018; 10:toxins10090347. [PMID: 30158450 PMCID: PMC6162637 DOI: 10.3390/toxins10090347] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Revised: 08/10/2018] [Accepted: 08/27/2018] [Indexed: 12/22/2022] Open
Abstract
Deoxynivalenol (DON) and zearalenone (ZEN) can seriously affect animal health, with potentially severe economic losses. Previous studies have demonstrated that gut microbiota plays a significant role in detoxification. We analyzed the colon contents from three groups of pigs (fed either a standard diet, or a diet with 8 mg/kg DON or ZEN). Bacterial 16S rRNA gene amplicons were obtained from the colon contents, and sequenced using next-generation sequencing on the MiSeq platform. Overall, 2,444,635 gene sequences were generated, with ≥2000 sequences examined. Firmicutes and Bacteroidetes were the dominant phyla in all three groups. The sequences of Lactobacillus, Megasphaera, and Faecalibacterium genera, and the unclassified Clostridiaceae family, represented more than 1.2% of the total, with significantly different abundances among the groups. Lactobacillus was especially more abundant in the DON (7.6%) and ZEN (2.7%) groups than in the control (0.2%). A total of 48,346 operational taxonomic units (OTUs) were identified in the three groups. Two OTUs, classified as Lactobacillus, were the most dominant in the DON and ZEN groups. The abundances of the remaining OTUs were also significantly different among the groups. Thus, the mycotoxin-contaminated feed significantly affected the colon microbiota, especially Lactobacillus, which was the most abundant. Therefore, we speculate that Lactobacillus plays a major role in detoxification of these mycotoxins.
Collapse
Affiliation(s)
- Kondreddy Eswar Reddy
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Jin Young Jeong
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Jaeyong Song
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Yookyung Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Hyun-Jeong Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Dong-Wook Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
- Department of Poultry Science, Korea National College of Agriculture and Fisheries, #1515 Kongjwipatjwi-ro, Deokjin-gu, Jeonju-si 54874, Korea.
| | - Hyun Jung Jung
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Ki Hyun Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Minji Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Young Kyoon Oh
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Sung Dae Lee
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
| | - Minseok Kim
- Animal Nutrition & Physiology Team, National Institute of Animal Science, Rural Development Administration, #1500 Kongjwipatjwi-ro, Iseo-myeon, Wanju 55365, Korea.
- Department of Animal Science, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Korea.
| |
Collapse
|
30
|
Metzler-Zebeli B, Trevisi P, Prates J, Tanghe S, Bosi P, Canibe N, Montagne L, Freire J, Zebeli Q. Assessing the effect of dietary inulin supplementation on gastrointestinal fermentation, digestibility and growth in pigs: A meta-analysis. Anim Feed Sci Technol 2017. [DOI: 10.1016/j.anifeedsci.2017.05.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
31
|
Heinritz SN, Weiss E, Seifert J, Mosenthin R, Kuß S, Degenhardt AG, Koch TJ. Effect of cellobiose supplementation on in vitro fermentation activity and bacterial numbers of porcine inocula. J Anim Physiol Anim Nutr (Berl) 2017; 102:474-482. [DOI: 10.1111/jpn.12770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/21/2017] [Indexed: 11/29/2022]
Affiliation(s)
- S. N. Heinritz
- Institute of Animal Science; University of Hohenheim; Stuttgart Germany
| | - E. Weiss
- Institute of Animal Science; University of Hohenheim; Stuttgart Germany
| | - J. Seifert
- Institute of Animal Science; University of Hohenheim; Stuttgart Germany
| | - R. Mosenthin
- Institute of Animal Science; University of Hohenheim; Stuttgart Germany
| | - S. Kuß
- Innovation Center; Pfeifer & Langen GmbH & Co. KG; Elsdorf Germany
| | - A. G. Degenhardt
- Innovation Center; Pfeifer & Langen GmbH & Co. KG; Elsdorf Germany
| | - T. J. Koch
- Innovation Center; Pfeifer & Langen GmbH & Co. KG; Elsdorf Germany
| |
Collapse
|
32
|
Duar RM, Lin XB, Zheng J, Martino ME, Grenier T, Pérez-Muñoz ME, Leulier F, Gänzle M, Walter J. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol Rev 2017; 41:S27-S48. [DOI: 10.1093/femsre/fux030] [Citation(s) in RCA: 255] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/06/2017] [Indexed: 02/07/2023] Open
|
33
|
Valeriano VDV, Balolong MP, Kang DK. Probiotic roles of Lactobacillus sp. in swine: insights from gut microbiota. J Appl Microbiol 2017; 122:554-567. [PMID: 27914202 DOI: 10.1111/jam.13364] [Citation(s) in RCA: 152] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/11/2016] [Accepted: 11/24/2016] [Indexed: 12/13/2022]
Abstract
The use of lactobacilli as probiotics in swine has been gaining attention due to their ability to improve growth performance and carcass quality, prevent gastrointestinal infection and most importantly, their 'generally recognized as safe' status. Previous studies support the potential of lactobacilli to regulate host immune systems, enhance gut metabolic capacities and maintain balance in the gut microbiota. Research on swine gut microbiota has revealed complex gut microbial community structure and showed the importance of Lactobacillus to the host's health. However, the species- and strain-specific characteristics of lactobacilli that confer probiotic benefits are still not well understood. The diversity of probiotic traits in a complex gut ecosystem makes it challenging to infer the relationships between specific functions of Lactobacillus sp. and host health. In this review, we provide an overview of how lactobacilli play a pivotal role in the swine gut ecosystem and identify key characteristics that influence gut microbial community structure and the health of pigs. In addition, based on recent and ongoing meta-omics and omics research on the gut microbiota of pigs, we suggest a workflow combining culture-dependent and culture-independent approaches for more effective selection of probiotic lactobacilli.
Collapse
Affiliation(s)
- V D V Valeriano
- Department of Animal Resources Science, Dankook University, Cheonan, Korea
| | - M P Balolong
- Department of Animal Resources Science, Dankook University, Cheonan, Korea.,Department of Biology, College of Arts and Sciences, University of the Philippines, Manila, Philippines
| | - D-K Kang
- Department of Animal Resources Science, Dankook University, Cheonan, Korea
| |
Collapse
|
34
|
Fouhse J, Zijlstra R, Willing B. The role of gut microbiota in the health and disease of pigs. Anim Front 2016. [DOI: 10.2527/af.2016-0031] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Affiliation(s)
- J.M. Fouhse
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - R.T. Zijlstra
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| | - B.P. Willing
- Department of Agriculture, Food, and Nutritional Science, University of Alberta, Edmonton AB T6G 2P5, Canada
| |
Collapse
|
35
|
Montoya CA, Henare SJ, Rutherfurd SM, Moughan PJ. Potential misinterpretation of the nutritional value of dietary fiber: correcting fiber digestibility values for nondietary gut-interfering material. Nutr Rev 2016; 74:517-33. [PMID: 27330145 DOI: 10.1093/nutrit/nuw014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The aim of this review is to identify the origin and implications of a nondietary material present in digesta and feces that interferes with the determination of dietary fiber in gastrointestinal contents. Negative values for ileal and fecal digestibility of dietary fiber are commonly reported in the literature for monogastric animal species, including humans. As negative values are not possible physiologically, this suggests the existence of a nondietary material in the gastrointestinal contents and feces that interferes with the accurate determination of dietary fiber digestibility when conventional methods of fiber determination are applied. To date, little attention has been given to this nondietary interfering material, which appears to be influenced by the type and concentration of fiber in the diet. Interestingly, estimates of dietary fiber digestibility increase substantially when corrected for the nondietary interfering material, which suggests that currently reported values underestimate the digestibility of dietary fiber and may misrepresent where, in the digestive tract, fermentation of fiber occurs. A new perspective of dietary fiber digestion in the gastrointestinal tract is developing, leading to a better understanding of the contribution of dietary fiber to health.
Collapse
Affiliation(s)
- Carlos A Montoya
- C.A. Montoya, S.J. Henare, and S.M. Rutherfurd are with the Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.C.A. Montoya, S.J. Henare, S.M. Rutherfurd, and P.J. Moughan are with the Riddet Institute, Massey University, Palmerston North, New Zealand.
| | - Sharon J Henare
- C.A. Montoya, S.J. Henare, and S.M. Rutherfurd are with the Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.C.A. Montoya, S.J. Henare, S.M. Rutherfurd, and P.J. Moughan are with the Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Shane M Rutherfurd
- C.A. Montoya, S.J. Henare, and S.M. Rutherfurd are with the Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.C.A. Montoya, S.J. Henare, S.M. Rutherfurd, and P.J. Moughan are with the Riddet Institute, Massey University, Palmerston North, New Zealand
| | - Paul J Moughan
- C.A. Montoya, S.J. Henare, and S.M. Rutherfurd are with the Massey Institute of Food Science and Technology, Massey University, Palmerston North, New Zealand.C.A. Montoya, S.J. Henare, S.M. Rutherfurd, and P.J. Moughan are with the Riddet Institute, Massey University, Palmerston North, New Zealand
| |
Collapse
|
36
|
Chae JP, Pajarillo EAB, Oh JK, Kim H, Kang DK. Revealing the combined effects of lactulose and probiotic enterococci on the swine faecal microbiota using 454 pyrosequencing. Microb Biotechnol 2016; 9:486-95. [PMID: 27305897 PMCID: PMC4919990 DOI: 10.1111/1751-7915.12370] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Revised: 05/11/2016] [Accepted: 05/20/2016] [Indexed: 12/02/2022] Open
Abstract
Demand for the development of non‐antibiotic growth promoters in animal production has increased in recent years. This report compared the faecal microbiota of weaned piglets under the administration of a basal diet (CON) or that containing prebiotic lactulose (LAC), probiotic Enterococcus faecium NCIMB 11181 (PRO) or their synbiotic combination (SYN). At the phylum level, the Firmicutes to Bacteroidetes ratio increased in the treatment groups compared with the CON group, and the lowest proportion of Proteobacteria was observed in the LAC group. At the family level, Enterobacteriaceae decreased in all treatments; more than a 10‐fold reduction was observed in the LAC (0.99%) group compared with the CON group. At the genus level, the highest Oscillibacter proportion was detected in PRO, the highest Clostridium in LAC and the highest Lactobacillus in SYN; the abundance of Escherichia was lowest in the LAC group. Clustering in the discriminant analysis of principal components revealed distinct separation of the feeding groups (CON, LAC, PRO and SYN), showing different microbial compositions according to different feed additives or their combination. These results suggest that individual materials and their combination have unique actions and independent mechanisms for changes in the distal gut microbiota.
Collapse
Affiliation(s)
- Jong Pyo Chae
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| | | | - Ju Kyoung Oh
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan, 330-714, Korea
| |
Collapse
|
37
|
Musco N, Calabrò S, Infascelli F, Tudisco R, Lombardi P, Grossi M, Addi L, Neto BP, Cutrignelli MI. In vitroFermentation of Structural Carbohydrate-Rich Feeds Using Faecal Inoculum from Pigs. ITALIAN JOURNAL OF ANIMAL SCIENCE 2016. [DOI: 10.4081/ijas.2015.3875] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nadia Musco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Serena Calabrò
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Federico Infascelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Raffaella Tudisco
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Pietro Lombardi
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Micaela Grossi
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | - Laura Addi
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| | | | - Monica I. Cutrignelli
- Dipartimento di Medicina Veterinaria e Produzioni Animali, University of Napoli Federico II, Italy
| |
Collapse
|
38
|
|
39
|
Du Z, Hudcovic T, Mrazek J, Kozakova H, Srutkova D, Schwarzer M, Tlaskalova-Hogenova H, Kostovcik M, Kverka M. Development of gut inflammation in mice colonized with mucosa-associated bacteria from patients with ulcerative colitis. Gut Pathog 2015; 7:32. [PMID: 26697117 PMCID: PMC4687314 DOI: 10.1186/s13099-015-0080-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 12/10/2015] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Disturbances in the intestinal microbial community (i.e. dysbiosis) or presence of the microbes with deleterious effects on colonic mucosa has been linked to the pathogenesis of inflammatory bowel diseases. However the role of microbiota in induction and progression of ulcerative colitis (UC) has not yet been fully elucidated. METHODS Three lines of human microbiota-associated (HMA) mice were established by gavage of colon biopsy from three patients with active UC. The shift in microbial community during its transferring from humans to mice was analyzed by next-generation sequencing using Illumina MiSeq sequencer. Spontaneous or dextran sulfate sodium (DSS)-induced colitis and microbiota composition profiling in germ-free mice and HMA mice over 3-4 generations were assessed to decipher the features of the distinctive and crucial events occurring during microbial colonization and animal reproduction. RESULTS None of the HMA mice developed colitis spontaneously. When treated with DSS, mice in F4 generation of one line of colonized mice (aHMA) developed colitis. Compared to the DSS-resistant earlier generations of aHMA mice, the F4 generation have increased abundance of Clostridium difficile and decrease abundance of C. symbiosum in their cecum contents measured by denaturing gradient gel electrophoresis and DNA sequencing. CONCLUSION In our study, mucosa-associated microbes of UC patients were not able to induce spontaneous colitis in gnotobiotic BALB/c mice but they were able to increase the susceptibility to DSS-induced colitis, once the potentially deleterious microbes found a suitable niche.
Collapse
Affiliation(s)
- Zhengyu Du
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic ; Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Tomas Hudcovic
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Jakub Mrazek
- Institute of Animal Physiology and Genetics, The Czech Academy of Sciences, Prague, Czech Republic
| | - Hana Kozakova
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Dagmar Srutkova
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | - Martin Schwarzer
- Institute of Microbiology, The Czech Academy of Sciences, Nový Hrádek, Czech Republic
| | | | - Martin Kostovcik
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic
| | - Miloslav Kverka
- Institute of Microbiology, The Czech Academy of Sciences, Prague, Czech Republic ; Institute of Experimental Medicine, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
40
|
Dicksved J, Jansson JK, Lindberg JE. Fecal microbiome of growing pigs fed a cereal based diet including chicory (Cichorium intybus L.) or ribwort (Plantago lanceolata L.) forage. J Anim Sci Biotechnol 2015; 6:53. [PMID: 26688727 PMCID: PMC4683726 DOI: 10.1186/s40104-015-0054-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 12/02/2015] [Indexed: 01/12/2023] Open
Abstract
Background The purpose of this study was to investigate how inclusion of chicory forage or ribwort forage in a cereal-based diet influenced the fecal microbial community (microbiome) in newly weaned (35 days of age) piglets. The piglets were fed a cereal-based diet without (B) and with inclusion (80 and 160 g/kg air-dry forage) of vegetative shoots of chicory (C) and leaves of ribwort (R) forage in a 35-day growth trial. Fecal samples were collected at the start (D0), 17 (D17) and 35 (D35) days after weaning and profiles of the microbial consortia were generated using terminal restriction fragment length polymorphism (T-RFLP). 454-FLX pyrosequencing of 16S rRNA gene amplicons was used to analyze the microbial composition in a subset of the samples already analyzed with T-RFLP. Results The microbial clustering pattern was primarily dependent on age of the pigs, but diet effects could also be observed. Lactobacilli and enterobacteria were more abundant at D0, whereas the genera Streptococcus, Treponema, Clostridium, Clostridiaceae1 and Coprococcus were present in higher abundances at D35. Pigs fed ribwort had an increased abundance of sequences classified as Treponema and a reduction in lactobacilli. However, the abundance of Prevotellaceae increased with age in on both the chicory and the ribwort diet. Moreover, there were significant correlations between the abundance of Bacteroides and the digested amount of galactose, uronic acids and total non-starch polysaccharides, and between the abundance of Bacteroidales and the digested amount of xylose. Conclusion This study demonstrated that both chicory and ribwort inclusion in the diet of newly weaned pigs influenced the composition of the fecal microbiota and that digestion of specific dietary components was correlated with species composition of the microbiota. Moreover, this study showed that the gut will be exposed to a dramatic shift in the microbial community structure several weeks after weaning.
Collapse
Affiliation(s)
- Johan Dicksved
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. Box 7024, SE75007 Uppsala, Sweden ; Department of Microbiology, Swedish University of Agricultural Sciences, P.O. Box 7025, SE75007 Uppsala, Sweden
| | - Janet K Jansson
- Division of Biology Earth and Biological Sciences, Pacific Northwest National Laboratories, P.O. Box 999, MSIN J4-18, WA99352 Richland, WA USA
| | - Jan Erik Lindberg
- Department of Animal Nutrition and Management, Swedish University of Agricultural Sciences, P.O. Box 7024, SE75007 Uppsala, Sweden
| |
Collapse
|
41
|
Cardarelli HR, Martinez RCR, Albrecht S, Schols H, Franco BDGM, Saad SMI, Smidt H. In vitro fermentation of prebiotic carbohydrates by intestinal microbiota in the presence of Lactobacillus amylovorus DSM 16998. Benef Microbes 2015; 7:119-133. [PMID: 26615853 DOI: 10.3920/bm2014.0151] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The aim of this study was to evaluate the assimilation of the prebiotics fructooligosaccharides (FOS), galactooligosaccharides (GOS), and Konjac glucomannan oligosaccharides (KGMO) by three human (H1, H2 and H3) and pig (P1, P2 and P3) faecal microbiotas in the presence of the potentially probiotic strain Lactobacillus amylovorus DSM 16698, using an in vitro batch fermentation model. Total bacteria and L. amylovorus populations were quantified using qPCR and biochemical features (pH, production of short chain fatty acids (SCFA), lactate, ammonia, and carbohydrate assimilation) were determined. L. amylovorus did not have a competitive advantage under in vitro conditions, reflected by its reduced relative abundance during fermentation despite the carbohydrate sources added. Pig microbiota sustained more stable probiotic counts. Intermittently produced lactate was possibly assimilated by the microbiota and converted to other SCFA as the carbohydrates were assimilated, with H3 probably having a methanogenic metabolism with high lactate and acetate consumption except in the presence of FOS, which assimilation resulted in the highest total SCFA for this volunteer. Addition of FOS also resulted in lower pH and ammonia, which might have been used as nitrogen source by pig microbiota. KGMO needed longer fermentation periods to be completely assimilated by both human and porcine faecal microbiotas. Overall, our results reinforce the notion that care must be taken when generalising the effects claimed for a given probiotic or potentially probiotic strain, including the combination with different prebiotic substrates, since they may vary considerably among individuals, which is important when studying potentially pro- and prebiotic combinations for application as functional foods and feed ingredients.
Collapse
Affiliation(s)
- H R Cardarelli
- 1 Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, SP, Brazil.,2 Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EJ Wageningen, the Netherlands
| | - R C R Martinez
- 1 Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, SP, Brazil.,2 Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EJ Wageningen, the Netherlands
| | - S Albrecht
- 3 Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - H Schols
- 3 Laboratory of Food Chemistry, Wageningen University, P.O. Box 17, 6700 AA Wageningen, the Netherlands
| | - B D G M Franco
- 4 Department of Food and Experimental Nutrition, School of Pharmaceutical Sciences - University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, SP, Brazil
| | - S M I Saad
- 1 Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, Av. Prof. Lineu Prestes 580, 05508-000, São Paulo, SP, Brazil
| | - H Smidt
- 2 Laboratory of Microbiology, Wageningen University, P.O. Box 8033, 6700 EJ Wageningen, the Netherlands
| |
Collapse
|
42
|
Lactulose increases bacterial diversity and modulates the swine faecal microbiome as revealed by 454-pyrosequencing. Anim Feed Sci Technol 2015. [DOI: 10.1016/j.anifeedsci.2015.07.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
43
|
Characterization of the Intestinal Lactobacilli Community following Galactooligosaccharides and Polydextrose Supplementation in the Neonatal Piglet. PLoS One 2015; 10:e0135494. [PMID: 26275147 PMCID: PMC4537252 DOI: 10.1371/journal.pone.0135494] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 07/22/2015] [Indexed: 01/31/2023] Open
Abstract
Recently, prebiotic supplementation of infant formula has become common practice; however the impact on the intestinal microbiota has not been completely elucidated. In this study, neonatal piglets were randomized to: formula (FORM, n = 8), formula supplemented with 2 g/L each galactooligosaccharides (GOS) and polydextrose (PDX, F+GP, n = 9) or a sow-reared (SOW, n = 12) reference group for 19 days. The ileal (IL) and ascending colon (AC) microbiota were characterized using culture-dependent and -independent methods. 16S amplicon sequencing identified no differences at the genera level in the IL. Interestingly, six genera in the AC were significantly different between FORM and F+GP (P<0.05): Lactobacillus, Ruminococcus, Parabacteroides, Oscillospira, Hydrogenoanaerobacterium and Catabacter. In particular, the relative abundance of AC Lactobacillus was higher (P = 0.04) in F+GP as compared to FORM. Culture-dependent analysis of the IL and AC lactobacilli communities of FORM and F+GP revealed a Lactobacillus spp. composition similar to 16S amplicon sequencing. Additional analysis demonstrated individual Lactobacillus isolates were unable to ferment PDX. Conversely, a majority of lactobacilli isolates could ferment GOS, regardless of piglet diet. In addition, the ability of lactobacilli isolates to ferment the longer chain GOS fragments (DP 3 or greater), which are expected to be present in the distal intestine, was not different between FORM and F+GP. In conclusion, prebiotic supplementation of formula impacted the AC microbiota; however, direct utilization of GOS or PDX does not lead to an increase in Lactobacillus spp.
Collapse
|
44
|
Brambillasca S, Zunino P, Cajarville C. Addition of inulin, alfalfa and citrus pulp in diets for piglets: Influence on nutritional and faecal parameters, intestinal organs, and colonic fermentation and bacterial populations. Livest Sci 2015. [DOI: 10.1016/j.livsci.2015.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Samanta AK, Jayaram C, Jayapal N, Sondhi N, Kolte AP, Senani S, Sridhar M, Dhali A. Assessment of Fecal Microflora Changes in Pigs Supplemented with Herbal Residue and Prebiotic. PLoS One 2015; 10:e0132961. [PMID: 26176779 PMCID: PMC4503616 DOI: 10.1371/journal.pone.0132961] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 06/20/2015] [Indexed: 11/24/2022] Open
Abstract
Antibiotic usage in animals as a growth promoter is considered as public health issue due to its negative impact on consumer health and environment. The present study aimed to evaluate effectiveness of herbal residue (ginger, Zingiber officinale, dried rhizome powder) and prebiotic (inulin) as an alternative to antibiotics by comparing fecal microflora composition using terminal restriction fragment length polymorphism. The grower pigs were offered feed containing antibiotic (tetracycline), ginger and inulin separately and un-supplemented group served as control. The study revealed significant changes in the microbial abundance based on operational taxonomic units (OTUs) among the groups. Presumptive identification of organisms was established based on the fragment length of OTUs generated with three restriction enzymes (MspI, Sau3AI and BsuRI). The abundance of OTUs representing Bacteroides intestinalis, Eubacterium oxidoreducens, Selonomonas sp., Methylobacterium sp. and Denitrobacter sp. was found significantly greater in inulin supplemented pigs. Similarly, the abundance of OTUs representing Bacteroides intestinalis, Selonomonas sp., and Phascolarcobacterium faecium was found significantly greater in ginger supplemented pigs. In contrast, the abundance of OTUs representing pathogenic microorganisms Atopostipes suicloacalis and Bartonella quintana str. Toulouse was significantly reduced in ginger and inulin supplemented pigs. The OTUs were found to be clustered under two major phylotypes; ginger-inulin and control-tetracycline. Additionally, the abundance of OTUs was similar in ginger and inulin supplemented pigs. The results suggest the potential of ginger and prebioticsto replace antibiotics in the diet of grower pig.
Collapse
Affiliation(s)
- Ashis Kumar Samanta
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - C. Jayaram
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - N. Jayapal
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - N. Sondhi
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - A. P. Kolte
- Omics Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - S. Senani
- Feed Additives and Nutraceuticals Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - M. Sridhar
- Fermentation Technology Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| | - A. Dhali
- Omics Laboratory, National Institute of Animal Nutrition and Physiology, Adugodi, Hosur Road, Bangalore, 560030, India
| |
Collapse
|
46
|
Abstract
Although dietary fiber (DF) negatively affects energy and nutrient digestibility, there is growing interest for the inclusion of its fermentable fraction in pig diets due to their functional properties and potential health benefits beyond supplying energy to the animals. This paper reviews some of the relevant information available on the role of different types of DF on digestion of nutrients in different sections of the gut, the fermentation process and its influence on gut environment, especially production and utilization of metabolites, microbial community and gut health of swine. Focus has been given on DF from feed ingredients (grains and coproducts) commonly used in pig diets. Some information on the role DF in purified form in comparison with DF in whole matrix of feed ingredients is also presented. First, composition and fractions of DF in different feed ingredients are briefly reviewed. Then, roles of different fractions of DF on digestion characteristics and physiological functions in the gastrointestinal tract (GIT) are presented. Specific roles of different fractions of DF on fermentation characteristics and their effects on production and utilization of metabolites in the GIT have been discussed. In addition, roles of DF fermentation on metabolic activity and microbial community in the intestine and their effects on intestinal health are reviewed and discussed. Evidence presented in this review indicates that there is wide variation in the composition and content of DF among feed ingredients, thereby their physico-chemical properties in the GIT of swine. These variations, in turn, affect the digestion and fermentation characteristics in the GIT of swine. Digestibility of DF from different feed ingredients is more variable and lower than that of other nutrients like starch, sugars, fat and CP. Soluble fractions of DF are fermented faster, produce higher amounts of volatile fatty acid than insoluble fractions, and favors growth of beneficial microbiota. Thus, selective inclusion of DF in diets can be used as a nutritional strategy to optimize the intestinal health of pigs, despite its lower digestibility and consequential negative effect on digestibility of other nutrients.
Collapse
|
47
|
Diao H, Zheng P, Yu B, He J, Mao X, Yu J, Chen D. Effects of benzoic Acid and thymol on growth performance and gut characteristics of weaned piglets. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2015; 28:827-39. [PMID: 25925060 PMCID: PMC4412979 DOI: 10.5713/ajas.14.0704] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/06/2014] [Revised: 10/22/2014] [Accepted: 12/22/2014] [Indexed: 11/27/2022]
Abstract
A total of 144 weaned crossed pigs were used in a 42-d trial to explore the effects of different concentrations/combinations of benzoic acid and thymol on growth performance and gut characteristics in weaned pigs. Pigs were randomly allotted to 4 dietary treatments: i) control (C), basal diet, ii) C+1,000 mg/kg benzoic acid+100 mg/kg thymol (BT1), iii) C+1,000 mg/kg benzoic acid+200 mg/kg thymol (BT2) and, iv) C+2,000 mg/kg benzoic acid+100 mg/kg thymol (BT3). Relative to the control, pigs fed diet BT3 had lower diarrhoea score during the overall period (p<0.10) and improved feed to gain ratio between days 1 to 14 (p<0.05), which was accompanied by improved apparent total tract digestibility of ether extract, Ca and crude ash (p<0.05), and larger lipase, lactase and sucrose activities in the jejunum (p<0.05) at d 14 and d 42. Similarly, relative to the control, pigs fed diet BT3 had higher counts for Lactobacillus spp in digesta of ileum at d 14 (p<0.05), and pigs fed diets BT1, BT2, or BT3 also had higher counts of Bacillus spp in digesta of caecum at d 14 (p<0.05), and lower concentration of ammonia nitrogen in digesta of caecum at d 14 and d 42 (p<0.05). Finally, pigs fed diet BT3 had higher concentration of butyric acid in digesta of caecum at d 42 (p<0.05), and a larger villus height:crypt depth ratio in jejunum and ileum at d 14 (p<0.05) than pigs fed the control diet. In conclusion, piglets fed diet supplementation with different concentrations/combinations of benzoic acid and thymol could improve feed efficiency and diarrhoea, and improve gut microfloral composition. The combination of 2,000 mg/kg benzoic acid+100 mg/kg thymol produced better effects than other treatments in most measurements.
Collapse
Affiliation(s)
- Hui Diao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| | - Daiwen Chen
- Institute of Animal Nutrition, Sichuan Agricultural University, Sichuan 625014, China
| |
Collapse
|
48
|
Hou C, Liu H, Zhang J, Zhang S, Yang F, Zeng X, Thacker PA, Zhang G, Qiao S. Intestinal microbiota succession and immunomodulatory consequences after introduction of Lactobacillus reuteri I5007 in neonatal piglets. PLoS One 2015; 10:e0119505. [PMID: 25775260 PMCID: PMC4361599 DOI: 10.1371/journal.pone.0119505] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Accepted: 01/14/2015] [Indexed: 01/06/2023] Open
Abstract
Seventy-two, suckling piglets, obtained from 9 litters standardized to 8 piglets, were assigned to 1 of 3 treatments (n = 24) to compare short-term, early administration with intermittent, longer-term administration of Lactobacillus reuteri I5007. The treatments were a control (given a placebo of 0.1% peptone water from day 1 to 5) or treatments in which 1.7 × 1010 CFU L. reuteri was administrated either daily for 4 days starting on day 1 or every 4th day from day 1 to 17. Five piglets per treatment were killed at 3 time points (day 7, 14 and 21). Denaturing Gradient Electrophoresis of ileal digesta revealed an increase in the presence of L. reuteri I5007 and Clostridium lentocellum (on day 14 and 21) in the every 4th-day treatment and Actinobacillus porcinus (on day 7 and 14) in both L. reuteri treatments, while reducing the abundance of E. coli on day 21 in the every 4th-day treatment. Real-time qPCR of ileal digesta showed an increase in Bifidobacterium spp. on day 14 for both L. reuteri I5007 treatments. An increase in the concentration of lactic acid and a lower pH was observed in the first 4-day treatment on day 7 and the every 4th day treatment on day 14. The relative abundance of mRNA for TGF-β was increased while that for IFN-γ was decreased in the mesenteric lymph nodes of piglets treated with L. reuteri every 4th day. In conclusion, early intervention with L. reuteri increases the presence of beneficial bacteria and decreases the presence of undesirable microbes in the lower gastrointestinal tract. The changes appear to be mediated by altering the intestinal pH through lactic acid production resulting in favorable bacterial species colonization. A prolonged duration of treatment (i.e. every 4th day) would appear to be superior to treatment only during the first 4 days.
Collapse
Affiliation(s)
- Chengli Hou
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Hong Liu
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Jiang Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Shihai Zhang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Fengjuan Yang
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
| | - Philip A Thacker
- Department of Animal and Poultry Science, University of Saskatchewan, Saskatoon, Canada
| | - Guolong Zhang
- Department of Animal Science, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, China Agricultural University, No. 2, Yuanmingyuan West Road, Beijing 100193, China
- * E-mail:
| |
Collapse
|
49
|
Sattler VA, Bayer K, Schatzmayr G, Haslberger AG, Klose V. Impact of a probiotic, inulin, or their combination on the piglets' microbiota at different intestinal locations. Benef Microbes 2015; 6:473-83. [PMID: 25380797 DOI: 10.3920/bm2014.0030] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Natural feed additives are used to maintain health and to promote performance of pigs without antibiotics. Effects of a probiotic, inulin, and their combination (synbiotic), on the microbial diversity and composition at different intestinal locations were analysed using denaturing gradient gel electrophoresis (DGGE), real-time PCR, and 16S rRNA gene pyrosequencing. Bacterial diversity assessed by DGGE and/or pyrosequencing was increased by inulin in all three gut locations and by the synbiotic in the caecum and colon. In contrast, the probiotic did only affect the microbiota diversity in the ileum. Shifts in the DGGE microbiota profiles of the caecum and colon were detected for the pro- and synbiotic fed animals, whereas inulin profiles were more similar to the ones of the control. 16S rRNA gene pyrosequencing revealed that all three additives could reduce Escherichia species in each gut location, indicating a potential beneficial effect on the gut microbiota. An increase of relative abundance of Clostridiaceae in the large intestine was found in the inulin group and of Enterococcaceae in the ileum of probiotic fed pigs. Furthermore, real-time PCR results showed that the probiotic and synbiotic increased bifidobacterial numbers in the ileum, which was supported by sequencing results. The probiotic and inulin, to different extents, changed the diversity, relative abundance of phylotypes, and community profiles of the porcine microbiota. However, alterations of the bacterial community were not uniformly between gut locations, demonstrating that functionality of feed additives is site specific. Therefore, gut sampling from various locations is crucial when investigations aim to identify the composition of a healthy gut microbiota after its manipulation through feed additives.
Collapse
Affiliation(s)
- V A Sattler
- 1 University of Natural Resources and Applied Life Sciences, Department for Agrobiotechnology, IFA Tulln, Konrad-Lorenz Strasse 20, 3430 Tulln, Austria
| | | | | | | | | |
Collapse
|
50
|
Potential of cereal grains and grain legumes in modulating pigs׳ intestinal microbiota – A review. Livest Sci 2015. [DOI: 10.1016/j.livsci.2014.11.016] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|