1
|
Giordano I, Pasolli E, Mauriello G. Transcriptomic analysis reveals differential gene expression patterns of Lacticaseibacillus casei ATCC 393 in response to ultrasound stress. ULTRASONICS SONOCHEMISTRY 2024; 107:106939. [PMID: 38843696 PMCID: PMC11214525 DOI: 10.1016/j.ultsonch.2024.106939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/14/2024] [Accepted: 05/30/2024] [Indexed: 06/19/2024]
Abstract
In recent years, there has been a growing interest in modulating the performance of probiotic, mainly Lactic Acid Bacteria (LAB), in the field of probiotic food. Attenuation, induced by sub-lethal stresses, delays the probiotic metabolism, and induces a metabolic shift as survival strategy. In this paper, RNA sequencing was used to uncover the transcriptional regulation in Lacticaseibacillus casei ATCC 393 after ultrasound-induced attenuation. Six (T) and 8 (ST) min of sonication induced a significant differential expression of 742 and 409 genes, respectively. We identified 198 up-regulated and 321 down-regulated genes in T, and similarly 321 up-regulated and 249 down-regulated in ST. These results revealed a strong defensive response at 6 min, followed by adaptation at 8 min. Ultrasound attenuation modified the expression of genes related to a series of crucial biomolecular processes including membrane transport, carbohydrate and purine metabolism, phage-related genes, and translation. Specifically, genes encoding PTS transporters and genes involved in the glycolytic pathway and pyruvate metabolism were up-regulated, indicating an increased need for energy supply, as also suggested by an increase in the transcription of purine biosynthetic genes. Instead, protein translation, a high-energy process, was inhibited with the down-regulation of ribosomal protein biosynthetic genes. Moreover, phage-related genes were down-regulated suggesting a tight transcriptional control on DNA structure. The observed phenomena highlight the cell need of ATP to cope with the multiple ultrasound stresses and the activation of processes to stabilize and preserve the DNA structure. Our work demonstrates that ultrasound has remarkable effects on the tested strain and elucidates the involvement of different pathways in its defensive stress-response and in the modification of its phenotype.
Collapse
Affiliation(s)
- Irene Giordano
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Edoardo Pasolli
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80049 Naples, Italy.
| |
Collapse
|
2
|
Benameur F, Belkaaloul K, Kheroua O. Isolation of 60 strains from fermented milk of mares and donkeys in Algeria and identification by 16S rRNA sequencing of lactobacilli: Assessment of probiotic skills of important strains and aromatic productivity power. Vet World 2024; 17:829-841. [PMID: 38798294 PMCID: PMC11111728 DOI: 10.14202/vetworld.2024.829-841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 03/14/2024] [Indexed: 05/29/2024] Open
Abstract
Background and Aim Donkey and mare milk have high nutritional and functional values, but their lactic acid bacteria (LAB) content remains poorly studied and undervalued in the Algerian dairy industry. This study aimed to isolate and select LAB strains that produce antimicrobial substances during fermentation and to characterize the probiotic profiles of each extracted strain to indicate their potential for antioxidant and proteolytic activity. Materials and Methods This study focuses on isolating and identifying lactic acid bacterial strains from 10 Equid-fermented milk samples collected in two regions of El Bayed Wilaya (Algeria). Identification of LAB strains was obtained by 16S rRNA sequencing. The probiotic properties of important strains and their aromatic productivity power are assessed. To evaluate their antibacterial activity against Listeria monocytogenes, Staphylococcus aureus, Chryseobacterium joostei, Pseudomonas aeruginosa, and Escherichia coli, we selected 21 strains. Different induction methods have been used to amplify the antibacterial effects against these pathogenic strains. Results Among a total of 60 identified strains, 31 had a probiotic profile, and most were catalase-negative. Aromatic productivity power was observed in eight strains: Lactiplantibacillus plantarum, Lactobacillus casei, Lactobacillus paracasei, Weissella confusa, Weissella cibaria, Leuconostoc mesenteroides, Leuconostoc lactis, and Lactobacillus sp1. Conclusion Our results provide insight into the considerable diversity of LAB present in fermented donkey and mare milk. To meet the expectations of the Algerian dairy industry, it is important that the probiotic skills of the nine selected strains are met. In addition, a significant number of these strains may have important probiotic activity and biotechnological potential.
Collapse
Affiliation(s)
- Fouzia Benameur
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Kawthar Belkaaloul
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| | - Omar Kheroua
- Laboratory of Physiology of Nutrition and Food Safety, Department of Biology, Faculty of Natural and Life Sciences, University Oran 1 Ahmed Ben Bella, Oran, Algeria
| |
Collapse
|
3
|
Davray D, Bawane H, Kulkarni R. Non-redundant nature of Lactiplantibacillus plantarum plasmidome revealed by comparative genomic analysis of 105 strains. Food Microbiol 2023; 109:104153. [DOI: 10.1016/j.fm.2022.104153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/09/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
|
4
|
Luo X, Li M, Zhang H, Yan D, Ji S, Wu R, Chen Y. Comparative proteomic analysis of three Lactobacillus plantarum strains under salt stress by iTRAQ. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:3457-3471. [PMID: 33270231 DOI: 10.1002/jsfa.10976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lactobacillus plantarum, a common species of lactic acid bacteria, is used to improve the flavor of traditional fermented food. Under salt stress, different strains of L. plantarum can respond differently. In this work, proteomics and bioinformatics analysis of L. plantarum strains (ATCC14917, FS5-5, and 208) grown under salt stress (240 g L-1 sodium chloride (NaCl)) were investigated based on the isobaric tags for relative and absolute quantitation method. RESULTS Although 171 differentially expressed proteins (DEPs) were observed, only 44, 57, and 112 DEPs were identified in the strains ATCC14917, FS5-5, and 208 respectively. There were 33, 191, and 179 specific DEPs in ATCC14917 versus FS5-5, in 208 versus FS5-5, and in strain 208 versus ATCC14917 in 240 g L-1 NaCl. These DEPs indicate that the three strains, from pickles, fermented soybean paste, and fermented milk, may have different salt stress responses. Gene Ontology enrichment and Kyoto Encyclopedia of Genes and Genomes analysis showed that most DEPs observed were involved in protein biosynthesis, nucleotide metabolism, and sugar metabolism. Twenty-six significantly different DEPs that were possibly associated with salt response were selected and further analyzed for gene expression level and pattern by quantitative reverse transcription polymerase chain reaction. Pyruvate kinase and cysteine desulfurase had similar expression patterns in all three strains; glutamate decarboxylase expression was upregulated in FS5-5 and significantly upregulated in strain 208; RNA polymerase subunit alpha was downregulated in FS5-5 but upregulated in strain 208. CONCLUSIONS These results also showed that the salt stress response of strain 208 may involve higher numbers of genes than the other strains. This research provides a theoretical basis for improvement of salt tolerance of L. plantarum in industrial production. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xue Luo
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Mo Li
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Henan Zhang
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Danli Yan
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Shuaiqi Ji
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Rina Wu
- College of Food Science, Shenyang Agricultural University, Shenyang, China
| | - Yongfu Chen
- The Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, Department of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
5
|
Kleerebezem M, Bachmann H, van Pelt-KleinJan E, Douwenga S, Smid EJ, Teusink B, van Mastrigt O. Lifestyle, metabolism and environmental adaptation in Lactococcus lactis. FEMS Microbiol Rev 2021; 44:804-820. [PMID: 32990728 DOI: 10.1093/femsre/fuaa033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/28/2020] [Indexed: 12/14/2022] Open
Abstract
Lactococcus lactis serves as a paradigm organism for the lactic acid bacteria (LAB). Extensive research into the molecular biology, metabolism and physiology of several model strains of this species has been fundamental for our understanding of the LAB. Genomic studies have provided new insights into the species L. lactis, including the resolution of the genetic basis of its subspecies division, as well as the control mechanisms involved in the fine-tuning of growth rate and energy metabolism. In addition, it has enabled novel approaches to study lactococcal lifestyle adaptations to the dairy application environment, including its adjustment to near-zero growth rates that are particularly relevant in the context of cheese ripening. This review highlights various insights in these areas and exemplifies the strength of combining experimental evolution with functional genomics and bacterial physiology research to expand our fundamental understanding of the L. lactis lifestyle under different environmental conditions.
Collapse
Affiliation(s)
- Michiel Kleerebezem
- Host-Microbe Interactomics Group, Animal Sciences Department, Wageningen University, De Elst 1, 6708 WD Wageningen, the Netherlands
| | - Herwig Bachmann
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,NIZO food research, Kernhemseweg 2, 6718 ZB Ede, the Netherlands
| | - Eunice van Pelt-KleinJan
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Sieze Douwenga
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands.,TiFN Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, the Netherlands
| | - Eddy J Smid
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| | - Bas Teusink
- Systems Bioinformatics, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, the Netherlands
| | - Oscar van Mastrigt
- Laboratory of Food Microbiology, Wageningen University, Bornse Weilanden 9, 6708 WG Wageningen, the Netherlands
| |
Collapse
|
6
|
Transcriptomic Analysis of Staphylococcus xylosus in Solid Dairy Matrix Reveals an Aerobic Lifestyle Adapted to Rind. Microorganisms 2020; 8:microorganisms8111807. [PMID: 33212972 PMCID: PMC7698506 DOI: 10.3390/microorganisms8111807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/12/2020] [Accepted: 11/14/2020] [Indexed: 11/17/2022] Open
Abstract
Staphylococcus xylosus is found in the microbiota of traditional cheeses, particularly in the rind of soft smeared cheeses. Despite its frequency, the molecular mechanisms allowing the growth and adaptation of S. xylosus in dairy products are still poorly understood. A transcriptomic approach was used to determine how the gene expression profile is modified during the fermentation step in a solid dairy matrix. S. xylosus developed an aerobic metabolism perfectly suited to the cheese rind. It overexpressed genes involved in the aerobic catabolism of two carbon sources in the dairy matrix, lactose and citrate. Interestingly, S. xylosus must cope with nutritional shortage such as amino acids, peptides, and nucleotides, consequently, an extensive up-regulation of genes involved in their biosynthesis was observed. As expected, the gene sigB was overexpressed in relation with general stress and entry into the stationary phase and several genes under its regulation, such as those involved in transport of anions, cations and in pigmentation were up-regulated. Up-regulation of genes encoding antioxidant enzymes and glycine betaine transport and synthesis systems showed that S. xylosus has to cope with oxidative and osmotic stresses. S. xylosus expressed an original system potentially involved in iron acquisition from lactoferrin.
Collapse
|
7
|
Milanowski M, Pomastowski P, Railean-Plugaru V, Rafińska K, Ligor T, Buszewski B. Biosorption of silver cations onto Lactococcus lactis and Lactobacillus casei isolated from dairy products. PLoS One 2017; 12:e0174521. [PMID: 28362838 PMCID: PMC5375156 DOI: 10.1371/journal.pone.0174521] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 03/10/2017] [Indexed: 01/20/2023] Open
Abstract
The current work deals with the phenomenon of silver cations uptake by two kinds of bacteria isolated from dairy products. The mechanism of sorption of silver cations by Lactococcus lactis and Lactobacillus casei bacteria was investigated. Inductively coupled plasma–mass spectrometry (ICP-MS) was used for determination of silver concentration sorbed by bacteria. Analysis of charge distribution was conducted by diffraction light scattering method. Changes in the ultrastructure of Lactococcus lactis and Lactobacillus casei cells after treatment with silver cations were investigated using transmission electron microscopy observation. Molecular spectroscopy methods, namely Fourier transform-infrared spectroscopy (FT-IR) and matrix-assisted laser desorption/ionization mass spectrometry (MALDI MS) were employed for description of the sorption mechanism. Moreover, an analysis of volatile organic compounds (VOCs) extracted from bacterial cells was performed.
Collapse
Affiliation(s)
- Maciej Milanowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Paweł Pomastowski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Viorica Railean-Plugaru
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Katarzyna Rafińska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Tomasz Ligor
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
| | - Bogusław Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Toruń, Poland
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University, Toruń, Poland
- * E-mail:
| |
Collapse
|
8
|
Larsen N, Brøsted Werner B, Jespersen L. Transcriptional responses in Lactococcus lactis
subsp. cremoris
to the changes in oxygen and redox potential during milk acidification. Lett Appl Microbiol 2016; 63:117-23. [DOI: 10.1111/lam.12596] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/17/2016] [Accepted: 05/24/2016] [Indexed: 11/29/2022]
Affiliation(s)
- N. Larsen
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| | - B. Brøsted Werner
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| | - L. Jespersen
- Department of Food Science; Food Microbiology; University of Copenhagen; Frederiksberg C Denmark
| |
Collapse
|
9
|
Benkerroum N. Biogenic Amines in Dairy Products: Origin, Incidence, and Control Means. Compr Rev Food Sci Food Saf 2016; 15:801-826. [PMID: 33401839 DOI: 10.1111/1541-4337.12212] [Citation(s) in RCA: 145] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 04/23/2016] [Accepted: 04/27/2016] [Indexed: 12/15/2022]
Abstract
Biogenic amines (BAs) are toxic compounds produced by a number of microorganisms (bacteria, yeasts, and molds) as a result of the metabolism of some amino acid, usually decarboxylation reactions. BA-producing microorganisms are not necessarily pathogenic, such as lactic acid bacteria, which are, on the contrary, among the most beneficial microbiota to human beings and some of which even have probiotic properties. However, the incidence of BAs in dairy products and their possible implication in serious dairy-borne intoxications has long been overlooked. Consequently, the implementation of control measures to limit such an incidence has not been considered among the priorities of the food safety authorities. Nonetheless, there is a growing concern with regard to the presence of BAs in dairy products, because their toxicological status as toxins that may have serious acute and/or chronic adverse health effects is becoming increasingly evident and well-documented. The main BAs associated with dairy products are reviewed herein from the perspective of their incidence in these food products, and to draw the attention of readers to the shortage in data to perform pertinent risk assessment, which is considered to be a key action to provide efficient control means and to help decision makers issue appropriate legislative and regulatory measures.
Collapse
Affiliation(s)
- Noreddine Benkerroum
- Inst. Agronomique et Vétérinaire Hassan II, Dépt. des Sciences Alimentaires et Nutritionnelles, BP 6202, Instituts, 10101-Rabat, Morocco
| |
Collapse
|
10
|
Larsen N, Moslehi-Jenabian S, Werner BB, Jensen ML, Garrigues C, Vogensen FK, Jespersen L. Transcriptome analysis of Lactococcus lactis subsp. lactis during milk acidification as affected by dissolved oxygen and the redox potential. Int J Food Microbiol 2016; 226:5-12. [PMID: 27015296 DOI: 10.1016/j.ijfoodmicro.2016.03.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 11/30/2022]
Abstract
Performance of Lactococcus lactis as a starter culture in dairy fermentations depends on the levels of dissolved oxygen and the redox state of milk. In this study the microarray analysis was used to investigate the global gene expression of L. lactis subsp. lactis DSM20481(T) during milk acidification as affected by oxygen depletion and the decrease of redox potential. Fermentations were carried out at different initial levels of dissolved oxygen (dO2) obtained by milk sparging with oxygen (high dO2, 63%) or nitrogen (low dO2, 6%). Bacterial exposure to high initial oxygen resulted in overexpression of genes involved in detoxification of reactive oxygen species (ROS), oxidation-reduction processes, biosynthesis of trehalose and down-regulation of genes involved in purine nucleotide biosynthesis, indicating that several factors, among them trehalose and GTP, were implicated in bacterial adaptation to oxidative stress. Generally, transcriptional changes were more pronounced during fermentation of oxygen sparged milk. Genes up-regulated in response to oxygen depletion were implicated in biosynthesis and transport of pyrimidine nucleotides, branched chain amino acids and in arginine catabolic pathways; whereas genes involved in salvage of nucleotides and cysteine pathways were repressed. Expression pattern of genes involved in pyruvate metabolism indicated shifts towards mixed acid fermentation after oxygen depletion with production of specific end-products, depending on milk treatment. Differential expression of genes, involved in amino acid and pyruvate pathways, suggested that initial oxygen might influence the release of flavor compounds and, thereby, flavor development in dairy fermentations. The knowledge of molecular responses involved in adaptation of L. lactis to the shifts of redox state and pH during milk fermentations is important for the dairy industry to ensure better control of cheese production.
Collapse
Affiliation(s)
- Nadja Larsen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark.
| | - Saloomeh Moslehi-Jenabian
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Birgit Brøsted Werner
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | | | | | - Finn Kvist Vogensen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| | - Lene Jespersen
- Department of Food Science, Food Microbiology, University of Copenhagen, Rolighedsvej 26, DK-1958 Frederiksberg C, Denmark
| |
Collapse
|
11
|
Dan T, Chen Y, Chen X, Sun C, Wang X, Wang J, Zhang H. Isolation and characterisation of a Lactobacillus delbrueckiisubsp. bulgaricusmutant with low H +-ATPase activity. INT J DAIRY TECHNOL 2015. [DOI: 10.1111/1471-0307.12228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Tong Dan
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Yongfu Chen
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Xia Chen
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Chunling Sun
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Xueni Wang
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Junguo Wang
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering; Education Ministry of China; Department of Food Science and Engineering; Inner Mongolia Agricultural University; Hohhot 010018 China
| |
Collapse
|
12
|
Early adaptation to oxygen is key to the industrially important traits of Lactococcus lactis ssp. cremoris during milk fermentation. BMC Genomics 2014; 15:1054. [PMID: 25467604 PMCID: PMC4289295 DOI: 10.1186/1471-2164-15-1054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 11/18/2014] [Indexed: 11/17/2022] Open
Abstract
Background Lactococcus lactis is the most used species in the dairy industry. Its ability to adapt to technological stresses, such as oxidative stress encountered during stirring in the first stages of the cheese-making process, is a key factor to measure its technological performance. This study aimed to understand the response to oxidative stress of Lactococcus lactis subsp. cremoris MG1363 at the transcriptional and metabolic levels in relation to acidification kinetics and growth conditions, especially at an early stage of growth. For those purposes, conditions of hyper-oxygenation were initially fixed for the fermentation. Results Kinetics of growth and acidification were not affected by the presence of oxygen, indicating a high resistance to oxygen of the L. lactis MG1363 strain. Its resistance was explained by an efficient consumption of oxygen within the first 4 hours of culture, leading to a drop of the redox potential. The efficient consumption of oxygen by the L. lactis MG1363 strain was supported by a coherent and early adaptation to oxygen after 1 hour of culture at both gene expression and metabolic levels. In oxygen metabolism, the over-expression of all the genes of the nrd (ribonucleotide reductases) operon or fhu (ferrichrome ABC transports) genes was particularly significant. In carbon metabolism, the presence of oxygen led to an early shift at the gene level in the pyruvate pathway towards the acetate/2,3-butanediol pathway confirmed by the kinetics of metabolite production. Finally, the MG1363 strain was no longer able to consume oxygen in the stationary growth phase, leading to a drastic loss of culturability as a consequence of cumulative stresses and the absence of gene adaptation at this stage. Conclusions Combining metabolic and transcriptomic profiling, together with oxygen consumption kinetics, yielded new insights into the whole genome adaptation of L. lactis to initial oxidative stress. An early and transitional adaptation to oxidative stress was revealed for L. lactis subsp. cremoris MG1363 in the presence of initially high levels of oxygen. This enables the cells to maintain key traits that are of great importance for industry, such as rapid acidification and reduction of the redox potential of the growth media. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1054) contains supplementary material, which is available to authorized users.
Collapse
|
13
|
Transcription profiling of interactions between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 during Cheddar cheese simulation. Int J Food Microbiol 2014; 178:76-86. [PMID: 24674930 DOI: 10.1016/j.ijfoodmicro.2014.03.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2013] [Revised: 02/27/2014] [Accepted: 03/03/2014] [Indexed: 01/17/2023]
Abstract
The starter cultures (Lactococcus sp.) and non-starter lactic acid bacteria (mostly Lactobacillus spp.) are essential to flavor development of Cheddar cheese. The aim of this study was to elucidate the transcriptional interaction between Lactococcus lactis subsp. cremoris SK11 and Lactobacillus paracasei ATCC 334 in mixed cultures during simulated Cheddar cheese manufacture (Pearce activity test) and ripening (slurry). Reverse transcription quantitative PCR (RT-qPCR) was used to quantify the expression of 34 genes common to both bacteria and for eight genes specific to either L. lactis subsp. cremoris SK11 or L. paracasei ATCC 334. The multifactorial analysis (MFA) performed on fold change results for each gene revealed that the genes linked to stress, protein and peptide degradation as well as carbohydrate metabolism of L. paracasei ATCC 334 were especially overexpressed in mixed culture with L. lactis subsp. cremoris SK11 during the ripening simulation. For L. lactis subsp. cremoris SK11, genes coding for amino acid metabolism were more expressed during the cheese manufacture simulation, especially in single culture. These results show how complementary functions of starter and NSLAB contribute to activities useful for flavor development.
Collapse
|
14
|
Sohier D, Pavan S, Riou A, Combrisson J, Postollec F. Evolution of microbiological analytical methods for dairy industry needs. Front Microbiol 2014; 5:16. [PMID: 24570675 PMCID: PMC3916730 DOI: 10.3389/fmicb.2014.00016] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Accepted: 01/10/2014] [Indexed: 11/13/2022] Open
Abstract
Traditionally, culture-based methods have been used to enumerate microbial populations in dairy products. Recent developments in molecular methods now enable faster and more sensitive analyses than classical microbiology procedures. These molecular tools allow a detailed characterization of cell physiological states and bacterial fitness and thus, offer new perspectives to integration of microbial physiology monitoring to improve industrial processes. This review summarizes the methods described to enumerate and characterize physiological states of technological microbiota in dairy products, and discusses the current deficiencies in relation to the industry’s needs. Recent studies show that Polymerase chain reaction-based methods can successfully be applied to quantify fermenting microbes and probiotics in dairy products. Flow cytometry and omics technologies also show interesting analytical potentialities. However, they still suffer from a lack of validation and standardization for quality control analyses, as reflected by the absence of performance studies and official international standards.
Collapse
Affiliation(s)
- Danièle Sohier
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Sonia Pavan
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Armelle Riou
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| | - Jérôme Combrisson
- Bretagne Biotechnologie Alimentaire dairy association member, Analytical Sciences, Danone Research, Palaiseau, France
| | - Florence Postollec
- Food Safety and Quality Unit, ADRIA Développement, Agri-Food Technical Institute, Quimper, France
| |
Collapse
|
15
|
Global transcriptome analysis of Lactococcus garvieae strains in response to temperature. PLoS One 2013; 8:e79692. [PMID: 24223997 PMCID: PMC3817100 DOI: 10.1371/journal.pone.0079692] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 09/24/2013] [Indexed: 11/19/2022] Open
Abstract
Lactococcus garvieae is an important fish and an opportunistic human pathogen. The genomic sequences of several L. garvieae strains have been recently published, opening the possibility of global studies on the biology of this pathogen. In this study, a whole genome DNA microarray of two strains of L. garvieae was designed and validated. This DNA microarray was used to investigate the effects of growth temperature (18°C and 37°C) on the transcriptome of two clinical strains of L. garvieae that were isolated from fish (Lg8831) and from a human case of septicemia (Lg21881). The transcriptome profiles evidenced a strain-specific response to temperature, which was more evident at 18°C. Among the most significant findings, Lg8831 was found to up-regulate at 18°C several genes encoding different cold-shock and cold-induced proteins involved in an efficient adaptive response of this strain to low-temperature conditions. Another relevant result was the description, for the first time, of respiratory metabolism in L. garvieae, whose gene expression regulation was temperature-dependent in Lg21881. This study provides new insights about how environmental factors such as temperature can affect L. garvieae gene expression. These data could improve our understanding of the regulatory networks and adaptive biology of this important pathogen.
Collapse
|
16
|
Liu J, Wang Q, Zou H, Liu Y, Wang J, Gan K, Xiang J. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution. Microb Biotechnol 2013; 6:685-93. [PMID: 23489617 PMCID: PMC3815935 DOI: 10.1111/1751-7915.12046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Revised: 12/31/2012] [Accepted: 01/27/2013] [Indexed: 11/30/2022] Open
Abstract
The (13) C isotope tracer method was used to investigate the glucose metabolic flux distribution and regulation in Lactobacillus amylophilus to improve lactic acid production using kitchen waste saccharified solution (KWSS). The results demonstrate that L. amylophilus is a homofermentative bacterium. In synthetic medium, 60.6% of the glucose entered the Embden-Meyerhof-Parnas (EMP) to produce lactic acid, whereas 36.4% of the glucose entered the pentose phosphate metabolic pathway (HMP). After solid-liquid separation of the KWSS, the addition of Fe(3+) during fermentation enhanced the NADPH production efficiency and increased the NADH content. The flux to the EMP was also effectively increased. Compared with the control (60.6% flux to EMP without Fe(3+) addition), the flux to the EMP with the addition of Fe(3+) (74.3%) increased by 23.8%. In the subsequent pyruvate metabolism, Fe(3+) also increased lactate dehydrogenase activity, and inhibited alcohol dehydrogenase, pyruvate dehydrogenase and pyruvate carboxylase, thereby increasing the lactic acid production to 9.03 g l(-1) , an increase of 8% compared with the control. All other organic acid by-products were lower than in the control. However, the addition of Zn(2+) showed an opposite effect, decreasing the lactic acid production. In conclusion it is feasible and effective means using GC-MS, isotope experiment and MATLAB software to integrate research the metabolic flux distribution of lactic acid bacteria, and the results provide the theoretical foundation for similar metabolic flux distribution.
Collapse
Affiliation(s)
- Jianguo Liu
- School of Civil and Environmental Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China; Key Laboratory of Educational Ministry for High Efficient Mining and Safety in Metal Mine, University of Science and Technology Beijing, Beijing, 100083, China
| | | | | | | | | | | | | |
Collapse
|
17
|
Porosity of Lactococcus lactis subsp. lactis LD61 colonies immobilised in model cheese. Int J Food Microbiol 2013; 163:64-70. [PMID: 23558188 DOI: 10.1016/j.ijfoodmicro.2013.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Revised: 02/19/2013] [Accepted: 02/23/2013] [Indexed: 11/23/2022]
Abstract
During cheese ripening, micro-organisms grow as immobilised colonies, metabolising substrates present in the matrix which generate products triggered by enzymatic reactions. Local limitation rates of diffusion, either in the matrix or within the bacterial colonies, can be responsible for modulation in the metabolic and enzymatic activities of micro-organisms during ripening. How bacterial colonies immobilised in cheese are porous to these diffusing solutes has never been explored. The objective of this study was to determine if fluorescent dextrans of different sizes (4.4, 70 and 155 kDa) are able to penetrate through colonies of Lactococcus lactis LD61 immobilised in solid media, either agar or model cheese. Confocal microscopic observations showed that lactococcus colonies immobilised in these two media were porous to dextrans from 4 kDa to 155 kDa. However, the rate of diffusion of the solutes was faster inside the colonies immobilised in ultrafiltered-cheese than in agar when large dextrans were considered (≥70 kDa). The colonial shape of the lactococcus strain was also shown to be lenticular in agar and spherical in the model cheese, indicating that the physical pressure exerted on the colony by the surrounding casein network was probably isotropous in the UF-cheese but not in agar. In both cases, the fact that lactococcus colonies immobilised in solid media are porous to large dextran solutes suggests that substrates or enzymes are likely also to be able to migrate inside the colonies during cheese ripening.
Collapse
|
18
|
New insights into Lactococcus lactis diacetyl- and acetoin-producing strains isolated from diverse origins. Int J Food Microbiol 2013; 160:329-36. [DOI: 10.1016/j.ijfoodmicro.2012.10.023] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 09/17/2012] [Accepted: 10/24/2012] [Indexed: 11/21/2022]
|
19
|
Zhang J, Li Y, Chen W, Du GC, Chen J. Glutathione improves the cold resistance of Lactobacillus sanfranciscensis by physiological regulation. Food Microbiol 2012; 31:285-92. [PMID: 22608235 DOI: 10.1016/j.fm.2012.04.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 04/01/2012] [Accepted: 04/03/2012] [Indexed: 10/28/2022]
Abstract
The microenvironmental manipulation of glutathione (GSH) on improving cold resistance of Lactobacillus sanfranciscensis DSM 20451(T) was investigated in this study. It was proved that GSH relieves the metabolic disorder of cells under cold stress, and prevents the decreased activities of related key enzymes such as pyruvate kinase (PK), glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and lactate dehydrogenase (LDH) upon cold challenges. Higher intracellular ATP level was also found in cells with GSH under cold stress. Moreover, cells with imported GSH had significantly higher intracellular than the control during cold treatment. In addition, proteomics analysis showed more exciting findings that the protective function of GSH under cold stress was related to metabolic regulation and the multi-control against induced cross-stresses. These results broaden the knowledge about the physiological function of GSH, and suggest a practicable approach to improve the cold resistance of L. sanfranciscensis, a starter culture for sourdough, by the addition of GSH.
Collapse
Affiliation(s)
- Juan Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, China
| | | | | | | | | |
Collapse
|
20
|
Transcriptome sequencing of Salmonella enterica serovar Enteritidis under desiccation and starvation stress in peanut oil. Food Microbiol 2011; 30:311-5. [PMID: 22265317 DOI: 10.1016/j.fm.2011.11.001] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Revised: 10/07/2011] [Accepted: 11/02/2011] [Indexed: 11/21/2022]
Abstract
It is well recognized that Salmonella can survive long-term starvation and desiccation stresses and contaminate foods that have intermediate to low water activities; however, little is known about the specific molecular mechanisms underlying its survival and persistence in low water activity foods. In this study, we used the RNA-seq approach to compare the transcriptomes (27-33 million 36-bp reads per sample) of a Salmonella enterica subsp. enteric serovar Enteritidis strain ATCC BAA-1045 after inoculation in peanut oil (water activity 0.30) for 72 h, 216 h and 528 h to those grown in Luria-Bertani (LB) broth for 12 h and 312 h. Our results showed that desiccated Salmonella cells in peanut oil were in a physiologically dormant state with <5% of its genome being transcribed compared to 78% in LB broth. Among the few detected transcripts in peanut oil, genes involved in heat and cold shock response, DNA protection and regulatory functions likely play roles in cross protecting Salmonella from desiccation and starvation stresses. In addition, non-coding RNAs may also play roles in Salmonella desiccation stress response. This is the first report of using RNA-seq technology in characterizing bacterial transcriptomes in a food matrix.
Collapse
|
21
|
Dressaire C, Redon E, Gitton C, Loubière P, Monnet V, Cocaign-Bousquet M. Investigation of the adaptation of Lactococcus lactis to isoleucine starvation integrating dynamic transcriptome and proteome information. Microb Cell Fact 2011; 10 Suppl 1:S18. [PMID: 21995707 PMCID: PMC3236307 DOI: 10.1186/1475-2859-10-s1-s18] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Amino acid assimilation is crucial for bacteria and this is particularly true for Lactic Acid Bacteria (LAB) that are generally auxotroph for amino acids. The global response of the LAB model Lactococcus lactis ssp. lactis was characterized during progressive isoleucine starvation in batch culture using a chemically defined medium in which isoleucine concentration was fixed so as to become the sole limiting nutriment. Dynamic analyses were performed using transcriptomic and proteomic approaches and the results were analysed conjointly with fermentation kinetic data. Results The response was first deduced from transcriptomic analysis and corroborated by proteomic results. It occurred progressively and could be divided into three major mechanisms: (i) a global down-regulation of processes linked to bacterial growth and catabolism (transcription, translation, carbon metabolism and transport, pyrimidine and fatty acid metabolism), (ii) a specific positive response related to the limiting nutrient (activation of pathways of carbon or nitrogen metabolism and leading to isoleucine supply) and (iii) an unexpected oxidative stress response (positive regulation of aerobic metabolism, electron transport, thioredoxin metabolism and pyruvate dehydrogenase). The involvement of various regulatory mechanisms during this adaptation was analysed on the basis of transcriptomic data comparisons. The global regulator CodY seemed specifically dedicated to the regulation of isoleucine supply. Other regulations were massively related to growth rate and stringent response. Conclusion This integrative biology approach provided an overview of the metabolic pathways involved during isoleucine starvation and their regulations. It has extended significantly the physiological understanding of the metabolism of L. lactis ssp. lactis. The approach can be generalised to other conditions and will contribute significantly to the identification of the biological processes involved in complex regulatory networks of micro-organisms.
Collapse
Affiliation(s)
- Clémentine Dressaire
- Université de Toulouse; INSA, UPS, INP; LISBP, 135 Avenue de Rangueil, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
22
|
Yvon M, Gitton C, Chambellon E, Bergot G, Monnet V. The initial efficiency of the proteolytic system of Lactococcus lactis strains determines their responses to a cheese environment. Int Dairy J 2011. [DOI: 10.1016/j.idairyj.2010.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Taïbi A, Dabour N, Lamoureux M, Roy D, LaPointe G. Comparative transcriptome analysis of Lactococcus lactis subsp. cremoris strains under conditions simulating Cheddar cheese manufacture. Int J Food Microbiol 2011; 146:263-75. [PMID: 21435733 DOI: 10.1016/j.ijfoodmicro.2011.02.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 02/17/2011] [Accepted: 02/26/2011] [Indexed: 10/18/2022]
Abstract
Gene expression in response to technological variations can influence fermentation and flavor generation in Cheddar cheese, and can vary from one lactococcal strain to another, perceived as differences in starter performance. The aim of this study was to determine the influence of cheese cooking temperature at 38 °C and salting on the transcriptional profiles of four closely related strains of L. lactis subsp. cremoris under simulated conditions of Cheddar cheese manufacture. Two responses could be distinguished, a core gene expression, corresponding to the common response of all strains and strain-specific response during the Cheddar simulating process. For the core gene expression after heating of inoculated milk at 38 °C, two groups of differentially expressed genes were identified: i) stress response and ii) carbohydrate and amino acid metabolism. The response to combined stresses of heat, acid and salt resulted in: i) general decrease of functions linked to cell division and metabolism, ii) specific responses related to stress such as the induction of genes coding for chaperones and proteases and iii) expression of prophage lytic systems for certain strains. Strain-specific responses were mainly observed in three of the four tested strains. These responses were the induction of genes related to osmotic stress or the release of CodY repression leading to the activation of oligopeptide transporters as well as the bcaT gene, related to amino acid degradation for the production of flavor. Comparing transcriptomes provides a core expression profile that contributes to understanding gene expression responses to environmental variations. The strain-specific responses identify predictive markers for the transcriptional state of starter strains before they enter the cheese ripening phase.
Collapse
Affiliation(s)
- Amel Taïbi
- STELA Dairy Research Centre, Institute of Nutraceuticals and Functional Foods, 2440 Hochelaga Blvd., Université Laval, Québec, QC, Canada G1V 0A6
| | | | | | | | | |
Collapse
|
24
|
Genes but not genomes reveal bacterial domestication of Lactococcus lactis. PLoS One 2010; 5:e15306. [PMID: 21179431 PMCID: PMC3003715 DOI: 10.1371/journal.pone.0015306] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE). METHODOLOGY/PRINCIPAL FINDINGS The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size. CONCLUSION/SIGNIFICANCE The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between "environmental" strains, the main contributors to the genetic diversity within the subspecies, and "domesticated" strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the "domesticated" strains essentially arose through substantial genomic flux within the dispensable genome.
Collapse
|
25
|
Identification of a tyrosine decarboxylase gene (tdcA) in Streptococcus thermophilus 1TT45 and analysis of its expression and tyramine production in milk. Appl Environ Microbiol 2010; 77:1140-4. [PMID: 21131517 DOI: 10.1128/aem.01928-10] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, a tyrosine decarboxylase gene (tdcA) was identified in 1 among 83 Streptococcus thermophilus strains tested. Its sequence, nearly identical to that of a tdcA of Lactobacillus curvatus, indicated a horizontal gene transfer event. Transcription in milk and the formation of critical levels of tyramine were observed in the presence of tyrosine.
Collapse
|
26
|
Assessment of the diversity of dairy Lactococcus lactis subsp. lactis isolates by an integrated approach combining phenotypic, genomic, and transcriptomic analyses. Appl Environ Microbiol 2010; 77:739-48. [PMID: 21131529 DOI: 10.1128/aem.01657-10] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The intrasubspecies diversity of six strains of Lactococcus lactis subsp. lactis was investigated at the genomic level and in terms of phenotypic and transcriptomic profiles in an ultrafiltration cheese model. The six strains were isolated from various sources, but all exhibited a dairy phenotype (growth in ultrafiltration cheese model and high acidification rate). The six strains exhibited similar behaviors in terms of growth during cheese ripening, while different acidification capabilities were detected. Even if all strains displayed large genomic similarities, sharing a large core genome of almost 2,000 genes, the expression of this core genome directly in the cheese matrix revealed major strain-specific differences that potentially could account for the observed different acidification capabilities. This work demonstrated that significant transcriptomic polymorphisms exist even among Lactococcus lactis subsp. lactis strains with the same dairy origin.
Collapse
|
27
|
Dynamic analysis of the Lactococcus lactis transcriptome in cheeses made from milk concentrated by ultrafiltration reveals multiple strategies of adaptation to stresses. Appl Environ Microbiol 2010; 77:247-57. [PMID: 21075879 DOI: 10.1128/aem.01174-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactococcus lactis is used extensively for the production of various cheeses. At every stage of cheese fabrication, L. lactis has to face several stress-generating conditions that result from its own modification of the environment as well as externally imposed conditions. We present here the first in situ global gene expression profile of L. lactis in cheeses made from milk concentrated by ultrafiltration (UF-cheeses), a key economical cheese model. The transcriptomic response of L. lactis was analyzed directly in a cheese matrix, starting from as early as 2 h and continuing for 7 days. The growth of L. lactis stopped after 24 h, but metabolic activity was maintained for 7 days. Conservation of its viability relied on an efficient proteolytic activity measured by an increasing, quantified number of free amino acids in the absence of cell lysis. Extensive downregulation of genes under CodY repression was found at day 7. L. lactis developed multiple strategies of adaptation to stressful modifications of the cheese matrix. In particular, expression of genes involved in acidic- and oxidative-stress responses was induced. L. lactis underwent unexpected carbon limitation characterized by an upregulation of genes involved in carbon starvation, principally due to the release of the CcpA control. We report for the first time that in spite of only moderately stressful conditions, lactococci phage is repressed under UF-cheese conditions.
Collapse
|
28
|
Calles-Enríquez M, Ladero V, Fernández M, Martín MC, Alvarez MA. Extraction of RNA from fermented milk products for in situ gene expression analysis. Anal Biochem 2010; 400:307-9. [DOI: 10.1016/j.ab.2010.02.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Revised: 02/10/2010] [Accepted: 02/10/2010] [Indexed: 10/19/2022]
|
29
|
Bachmann H, de Wilt L, Kleerebezem M, van Hylckama Vlieg JET. Time-resolved genetic responses of Lactococcus lactis to a dairy environment. Environ Microbiol 2010; 12:1260-70. [PMID: 20192965 DOI: 10.1111/j.1462-2920.2010.02168.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Lactococcus lactis is one of main bacterial species found in mixed dairy starter cultures for the production of semi-hard cheese. Despite the appreciation that mixed cultures are essential for the eventual properties of the manufactured cheese the vast majority of studies on L. lactis were carried out in laboratory media with a pure culture. In this study we applied an advanced recombinant in vivo expression technology (R-IVET) assay in combination with a high-throughput cheese-manufacturing protocol for the identification and subsequent validation of promoter sequences specifically induced during the manufacturing and ripening of cheese. The system allowed gene expression measurements in an undisturbed product environment without the use of antibiotics and in combination with a mixed strain starter culture. The utilization of bacterial luciferase as reporter enabled the real-time monitoring of gene expression in cheese for up to 200 h after the cheese-manufacturing process was initiated. The results revealed a number of genes that were clearly induced in cheese such as cysD, bcaP, dppA, hisC, gltA, rpsE, purL, amtB as well as a number of hypothetical genes, pseudogenes and notably genetic elements located on the non-coding strand of annotated open reading frames. Furthermore genes that are likely to be involved in interactions with bacteria used in the mixed strain starter culture were identified.
Collapse
|
30
|
Mansour S, Bailly J, Landaud S, Monnet C, Sarthou AS, Cocaign-Bousquet M, Leroy S, Irlinger F, Bonnarme P. Investigation of associations of Yarrowia lipolytica, Staphylococcus xylosus, and Lactococcus lactis in culture as a first step in microbial interaction analysis. Appl Environ Microbiol 2009; 75:6422-30. [PMID: 19684166 PMCID: PMC2765154 DOI: 10.1128/aem.00228-09] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Accepted: 08/10/2009] [Indexed: 11/20/2022] Open
Abstract
The interactions that may occur between microorganisms in different ecosystems have not been adequately studied yet. We investigated yeast-bacterium interactions in a synthetic medium using different culture associations involving the yeast Yarrowia lipolytica 1E07 and two bacteria, Staphylococcus xylosus C2a and Lactococcus lactis LD61. The growth and biochemical characteristics of each microorganism in the different culture associations were studied. The expression of genes related to glucose, lactate, and amino acid catabolism was analyzed by reverse transcription followed by quantitative PCR. Our results show that the growth of Y. lipolytica 1E07 is dramatically reduced by the presence of S. xylosus C2a. As a result of a low amino acid concentration in the medium, the expression of Y. lipolytica genes involved in amino acid catabolism was downregulated in the presence of S. xylosus C2a, even when L. lactis was present in the culture. Furthermore, the production of lactate by both bacteria had an impact on the lactate dehydrogenase gene expression of the yeast, which increased up to 30-fold in the three-species culture compared to the Y. lipolytica 1E07 pure culture. S. xylosus C2a growth dramatically decreased in the presence of Y. lipolytica 1E07. The growth of lactic acid bacteria was not affected by the presence of S. xylosus C2a or Y. lipolytica 1E07, although the study of gene expression showed significant variations.
Collapse
Affiliation(s)
- S Mansour
- Agro Paris Tech-INRA, UMR 782 Génie et Microbiologie des Procédés Alimentaires, 78850 Thiverval Grignon, France
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Transcriptomic response of Lactococcus lactis in mixed culture with Staphylococcus aureus. Appl Environ Microbiol 2009; 75:4473-82. [PMID: 19429566 DOI: 10.1128/aem.02653-08] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The mechanisms of interaction between Lactococcus lactis and the food pathogen Staphylococcus aureus are of crucial importance, as one major role of lactic acid bacteria (LAB) in fermented foods is to inhibit undesirable and pathogenic flora. It was never questioned if the presence of a pathogen can actively modify the gene expression patterns of LAB in a shared environment. In this study, transcriptome and biochemical analyses were combined to assess the dynamic response of L. lactis in a mixed culture with S. aureus. The presence of S. aureus hardly affected the growth of L. lactis but dramatically modified its gene expression profile. The main effect was related to earlier carbon limitation and a concomitantly lower growth rate in the mixed culture due to the consumption of glucose by both species. More specific responses involved diverse cellular functions. Genes associated with amino acid metabolism, ion transport, oxygen response, menaquinone metabolism, and cell surface and phage expression were differentially expressed in the mixed culture. This study led to new insights into possible mechanisms of interaction between L. lactis and S. aureus. Moreover, new and unexpected effects of L. lactis on the virulence of S. aureus were discovered, as described elsewhere (S. Even, C. Charlier, S. Nouaille, N. L. Ben Zakour, M. Cretenet, F. J. Cousin, M. Gautier, M. Cocaign-Bousquet, P. Loubière, and Y. Le Loir, Appl. Environ. Microbiol. 75:4459-4472, 2009).
Collapse
|
32
|
Herve-Jimenez L, Guillouard I, Guedon E, Gautier C, Boudebbouze S, Hols P, Monnet V, Rul F, Maguin E. Physiology ofStreptococcus thermophilusduring the late stage of milk fermentation with special regard to sulfur amino-acid metabolism. Proteomics 2008; 8:4273-86. [DOI: 10.1002/pmic.200700489] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
33
|
Ulve VM, Monnet C, Valence F, Fauquant J, Falentin H, Lortal S. RNA extraction from cheese for analysis of in situ gene expression of Lactococcus lactis. J Appl Microbiol 2008; 105:1327-33. [PMID: 18795980 DOI: 10.1111/j.1365-2672.2008.03869.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The isolation of high-quality RNA from cheese is a prerequisite for analysis of in situ gene expression of dairy micro-organisms. METHODS AND RESULTS A method for rapid isolation of bacterial cells from cheese using cold citrate buffer followed by mechanical cell disruption was developed. RNA was extracted from experimental ultrafiltration (UF) cheeses (at 2, 8, 24 h, 7 and 14 days) and from Cheddar cheese (from 1 day to 1 year). The quantity and quality of the extracted RNA was assessed. The transcript abundance of seven genes (tuf, gapB, purM, cysK, ldh, cit and gyrA) was estimated by reverse transcription real-time PCR. In UF cheeses, the quantity of RNA extracted increased from 0.2 to 24 microg g(-1), with an RNA Integrity Number (RIN) above 9. In the experimental Cheddar cheeses, the RNA extraction yield decreased from 67.7 microg g(-1) after 1 day to 23.7 microg g(-1) after 6 months, with RIN value above 9 during the first month. The transcript abundance of the seven genes demonstrated metabolic activity of lactococci after several weeks of ripening in both cheeses. SIGNIFICANCE AND IMPACT OF THE STUDY The method described produced large quantities of high-quality RNA for future whole genome expression studies in cheese.
Collapse
Affiliation(s)
- V M Ulve
- UMR1253, Science et Technologie du Lait et de l'OEuf, INRA, Rennes, France
| | | | | | | | | | | |
Collapse
|
34
|
Sieuwerts S, de Bok FAM, Hugenholtz J, van Hylckama Vlieg JET. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl Environ Microbiol 2008; 74:4997-5007. [PMID: 18567682 PMCID: PMC2519258 DOI: 10.1128/aem.00113-08] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Sander Sieuwerts
- Top Institute Food and Nutrition, P.O. Box 557, 6700 AN Wageningen, The Netherlands
| | | | | | | |
Collapse
|
35
|
Impact of aeration and heme-activated respiration on Lactococcus lactis gene expression: identification of a heme-responsive operon. J Bacteriol 2008; 190:4903-11. [PMID: 18487342 DOI: 10.1128/jb.00447-08] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Lactococcus lactis is a widely used food bacterium mainly characterized for its fermentation metabolism. However, this species undergoes a metabolic shift to respiration when heme is added to an aerobic medium. Respiration results in markedly improved biomass and survival compared to fermentation. Whole-genome microarrays were used to assess changes in L. lactis expression under aerobic and respiratory conditions compared to static growth, i.e., nonaerated. We observed the following. (i) Stress response genes were affected mainly by aerobic fermentation. This result underscores the differences between aerobic fermentation and respiration environments and confirms that respiration growth alleviates oxidative stress. (ii) Functions essential for respiratory metabolism, e.g., genes encoding cytochrome bd oxidase, menaquinone biosynthesis, and heme uptake, are similarly expressed under the three conditions. This indicates that cells are prepared for respiration once O(2) and heme become available. (iii) Expression of only 11 genes distinguishes respiration from both aerobic and static fermentation cultures. Among them, the genes comprising the putative ygfCBA operon are strongly induced by heme regardless of respiration, thus identifying the first heme-responsive operon in lactococci. We give experimental evidence that the ygfCBA genes are involved in heme homeostasis.
Collapse
|
36
|
Transcriptome analysis of Lactococcus lactis in coculture with Saccharomyces cerevisiae. Appl Environ Microbiol 2007; 74:485-94. [PMID: 17993564 DOI: 10.1128/aem.01531-07] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The study of microbial interactions in mixed cultures remains an important conceptual and methodological challenge for which transcriptome analysis could prove to be the essential method for improving our understanding. However, the use of whole-genome DNA chips is often restricted to the pure culture of the species for which the chips were designed. In this study, massive cross-hybridization was observed between the foreign cDNA and the specific Lactococcus lactis DNA chip. A very simple method is proposed to considerably decrease this nonspecific hybridization, consisting of adding the microbial partner's DNA. A correlation was established between the resulting cross-hybridization and the phylogenetic distance between the microbial partners. The response of L. lactis to the presence of Saccharomyces cerevisiae was analyzed during the exponential growth phase in fermentors under defined growth conditions. Although no differences between growth kinetics were observed for the pure and the mixed cultures of L. lactis, the mRNA levels of 158 genes were significantly modified. More particularly, a strong reorientation of pyrimidine metabolism was observed when L. lactis was grown in mixed cultures. These changes in transcript abundance were demonstrated to be regulated by the ethanol produced by the yeast and were confirmed by an independent method (quantitative reverse transcription-PCR).
Collapse
|
37
|
Loughman JA, Caparon MG. A novel adaptation of aldolase regulates virulence in Streptococcus pyogenes. EMBO J 2006; 25:5414-22. [PMID: 17066081 PMCID: PMC1636624 DOI: 10.1038/sj.emboj.7601393] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2006] [Accepted: 09/26/2006] [Indexed: 11/09/2022] Open
Abstract
Regulation of virulence factor expression is critical for pathogenic microorganisms that must sense and adapt to a dynamic host environment; yet, the signal transduction pathways that enable this process are generally poorly understood. Here, we identify LacD.1 as a global regulator of virulence factor expression in the versatile human pathogen, Streptococcus pyogenes. LacD.1 is derived from a class I tagatose-1,6-bisphosphate aldolase homologous to those involved in lactose and galactose metabolism in related prokaryotes. However, regulation of transcription by LacD.1 is not dependent on this enzymatic activity or the canonical catabolite repression pathway, but likely does require substrate recognition. Our results suggest that LacD.1 has been adapted as a metabolic sensor, and raise the possibility that regulation of gene expression by metabolic enzymes may be a novel mechanism by which Gram-positive bacteria, including S. pyogenes, coordinate multiple environmental cues, allowing essential transcription programs to be coupled with perceived nutritional status.
Collapse
Affiliation(s)
- Jennifer A Loughman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, MO, USA
- Department of Molecular Microbiology, Washington University School of Medicine, Campus Box 8230, 660 S. Euclid Ave., St Louis, MO 63110-1093, USA. Tel.: +1 314 362 1485; Fax: +1 314 362 3203; E-mail:
| |
Collapse
|
38
|
van Hylckama Vlieg JET, Rademaker JLW, Bachmann H, Molenaar D, Kelly WJ, Siezen RJ. Natural diversity and adaptive responses of Lactococcus lactis. Curr Opin Biotechnol 2006; 17:183-90. [PMID: 16517150 DOI: 10.1016/j.copbio.2006.02.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 01/31/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Lactococcus lactis is the primary model organism for lactic acid bacteria (LAB) and is widely used in the production of fermented dairy products. In recent years there has been increasing interest in strains isolated from non-dairy environments, as these exhibit a high metabolic diversity and have unique flavour-forming activities. Recent progress has been made in understanding the natural diversity and adaptive responses of L. lactis from dairy and non-dairy origins. Genome sequencing and comparative genomics have also had an impact on understanding natural diversity within the species, and have provided new opportunities for industrial strain development.
Collapse
Affiliation(s)
- Johan E T van Hylckama Vlieg
- NIZO Food Research, Kluyver Centre for Genomics of Industrial Fermentation, PO Box 20, 6710 BA Ede, The Netherlands.
| | | | | | | | | | | |
Collapse
|