1
|
Xu G, Zhao S, He J. Underexplored Organohalide-Respiring Bacteria in Sewage Sludge Debrominating Polybrominated Diphenyl Ethers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024. [PMID: 39031078 DOI: 10.1021/acs.est.4c00906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent organic pollutants prevalent in the environment. Organohalide-respiring bacteria (OHRB) can attenuate PBDEs via reductive debromination, but often producing toxic end-products. Debromination of PBDEs to diphenyl ether remains a rare phenomenon and is so far specifically associated with Dehalococcoides isolated from e-waste polluted sites. The occurrence of PBDE debromination in other ecosystems and underpinning OHRB are underexplored. Here we found that debromination of PBDEs is a common trait of sewage sludge microbiota, and diphenyl ether was produced as the end-product at varying quantities (0.6-52.9% mol of the parent PBDEs) in 76 of 84 cultures established with bioreactor sludge. Diverse debromination pathways converting PBDEs to diphenyl ether, including several new routes, were identified. Although Dehalococcoides contributed to PBDE debromination, Dehalogenimonas, Dehalobacter, and uncultivated Dehalococcoidia likely played more important roles than previously recognized. Multiple reductive dehalogenase genes (including bdeA, pcbA4, pteA, and tceA) were also prevalent and coexisted in bioreactor sludge. Collectively, these findings contribute to enhancing our comprehension of the environmental fate of PBDEs, expanding the diversity of microorganisms catalyzing PBDE debromination, and developing consortia for bioremediation application.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576 Singapore
| |
Collapse
|
2
|
Faier-Pereira A, Finamore-Araujo P, Brito CRDN, Peres EG, de Lima Yamaguchi KK, de Castro DP, Moreira OC. The Development of a One-Step RT-qPCR for the Detection and Quantification of Viable Forms of Trypanosoma cruzi in Açai Samples from Areas at Risk of Chagas Disease through Oral Transmission. Int J Mol Sci 2024; 25:5531. [PMID: 38791565 PMCID: PMC11122307 DOI: 10.3390/ijms25105531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 05/06/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Currently, approximately 70% of new cases of Chagas disease (CD) in Brazil are attributed to oral transmission, particularly through foods such as açaí, bacaba, and sugarcane juice, primarily in the northern and northeastern regions of the country. This underscores the imperative need to control the spread of the disease. The methods utilized to conduct quality control for food associated with outbreaks and to assess the potential for the oral transmission of CD through consuming açaí primarily rely on isolating the parasite or inoculating food into experimental animals, restricting the analyses to major research centers. While there are existing studies in the literature on the detection and quantification of T. cruzi DNA in açaí, the evaluation of parasites' viability using molecular methods in this type of sample and differentiating between live and dead parasites in açaí pulp remain challenging. Consequently, we developed a molecular methodology based on RT-qPCR for detecting and quantifying viable T. cruzi in açaí pulp samples. This protocol enables the stabilization and preservation of nucleic acids in açaí, along with incorporating an exogenous internal amplification control. The standardization of the RNA extraction method involved a simple and reproducible approach, coupled with a one-step RT-qPCR assay. The assay underwent validation with various T. cruzi DTUs and demonstrated sensitivity in detecting up to 0.1 viable parasite equivalents/mL in açaí samples. Furthermore, we investigated the effectiveness of a bleaching method in eliminating viable parasites in açaí samples contaminated with T. cruzi by comparing the detection of DNA versus RNA. Finally, we validated this methodology using açaí pulp samples positive for T. cruzi DNA, which were collected in a municipality with a history of oral CD outbreaks (Coari-AM). This validation involved comparing the detection and quantification of total versus viable T. cruzi. Collectively, our findings demonstrate the feasibility of this methodology in detecting viable forms of T. cruzi in açaí pulp samples, emerging as a crucial tool for monitoring oral outbreaks of Chagas disease resulting from açaí consumption.
Collapse
Affiliation(s)
- Amanda Faier-Pereira
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Paula Finamore-Araujo
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - Eldrinei Gomes Peres
- Departament of Chemistry, Federal University of Amazonas, Manaus 69067-005, Brazil
| | | | - Daniele Pereira de Castro
- Laboratory of Biochemistry and Physiology of Insects, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacilio C. Moreira
- Laboratory of Molecular Virology and Parasitology, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro 21040-360, Brazil
| |
Collapse
|
3
|
Xu G, Zhao S, Rogers MJ, Chen C, He J. Global prevalence of organohalide-respiring bacteria dechlorinating polychlorinated biphenyls in sewage sludge. MICROBIOME 2024; 12:54. [PMID: 38491554 PMCID: PMC10943849 DOI: 10.1186/s40168-024-01754-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 03/18/2024]
Abstract
BACKGROUND Massive amounts of sewage sludge are generated during biological sewage treatment and are commonly subjected to anaerobic digestion, land application, and landfill disposal. Concurrently, persistent organic pollutants (POPs) are frequently found in sludge treatment and disposal systems, posing significant risks to both human health and wildlife. Metabolically versatile microorganisms originating from sewage sludge are inevitably introduced to sludge treatment and disposal systems, potentially affecting the fate of POPs. However, there is currently a dearth of comprehensive assessments regarding the capability of sewage sludge microbiota from geographically disparate regions to attenuate POPs and the underpinning microbiomes. RESULTS Here we report the global prevalence of organohalide-respiring bacteria (OHRB) known for their capacity to attenuate POPs in sewage sludge, with an occurrence frequency of ~50% in the investigated samples (605 of 1186). Subsequent laboratory tests revealed microbial reductive dechlorination of polychlorinated biphenyls (PCBs), one of the most notorious categories of POPs, in 80 out of 84 sludge microcosms via various pathways. Most chlorines were removed from the para- and meta-positions of PCBs; nevertheless, ortho-dechlorination of PCBs also occurred widely, although to lower extents. Abundances of several well-characterized OHRB genera (Dehalococcoides, Dehalogenimonas, and Dehalobacter) and uncultivated Dehalococcoidia lineages increased during incubation and were positively correlated with PCB dechlorination, suggesting their involvement in dechlorinating PCBs. The previously identified PCB reductive dehalogenase (RDase) genes pcbA4 and pcbA5 tended to coexist in most sludge microcosms, but the low ratios of these RDase genes to OHRB abundance also indicated the existence of currently undescribed RDases in sewage sludge. Microbial community analyses revealed a positive correlation between biodiversity and PCB dechlorination activity although there was an apparent threshold of community co-occurrence network complexity beyond which dechlorination activity decreased. CONCLUSIONS Our findings that sludge microbiota exhibited nearly ubiquitous dechlorination of PCBs indicate widespread and nonnegligible impacts of sludge microbiota on the fate of POPs in sludge treatment and disposal systems. The existence of diverse OHRB also suggests sewage sludge as an alternative source to obtain POP-attenuating consortia and calls for further exploration of OHRB populations in sewage sludge. Video Abstract.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Matthew J Rogers
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, Singapore, 117576, Singapore.
| |
Collapse
|
4
|
Ma J, Li Y, Zhang X, Li J, Lin Q, Zhu Y, Ruan Z, Ni Z, Qiu R. Modified nano zero-valent iron coupling microorganisms to degrade BDE-209: Degradation pathways and microbial responses. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133378. [PMID: 38160554 DOI: 10.1016/j.jhazmat.2023.133378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/24/2023] [Accepted: 12/25/2023] [Indexed: 01/03/2024]
Abstract
Polybrominated diphenyl ethers (PBDEs) in soil and groundwater have garnered considerable attention owing to the significant bioaccumulation potential and toxicity. Currently, the coupling treatment method of nano zero-valent iron (nZVI) with dehalogenation microorganisms is a research hotspot in the field of PBDE degradation. In this study, various systems were established within anaerobic environments, including the nZVI-only system, microorganism-only system, and the nZVI + microorganisms system. The aim was to investigate the degradation pathway of BDE-209 and elucidate the degradation mechanism within the coupled system. The results indicated that the degradation efficiency of the coupled system was better than that of the nZVI-only or microorganism-only system. Two modified nZVI (carboxymethyl cellulose and polyacrylamide) were prepared to improve the coupling degradation efficiency. CMC-nZVI showed the highest stability, and the coupled system consisting of microorganisms and CMC-nZVI showed the best degradation effect among all of the systems in this study, reaching 89.53% within 30 days. Furthermore, 22 intermediate products were detected in the coupling systems. Notably, changing the inoculation time did not significantly improve the degradation effect. The expression changes of the two reductive dehalogenase genes, e.g. TceA and Vcr, reflected the stress response and self-recovery ability of the dehalogenating bacteria, indicating such genes can be used as biomarker for evaluating the degradation performance of the coupling system. These findings provide a better understanding about the mechanism of coupling debromination process and the direction for the optimization and on-site repair of coupled systems.
Collapse
Affiliation(s)
- Jing Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yingping Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Xing Zhang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jingjing Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Qingqi Lin
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanping Zhu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhepu Ruan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Zhuobiao Ni
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| | - Rongliang Qiu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
5
|
Dong Q, LeFevre GH, Mattes TE. Black Carbon Impacts on Paraburkholderia xenovorans Strain LB400 Cell Enrichment and Activity: Implications toward Lower-Chlorinated Polychlorinated Biphenyls Biodegradation Potential. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3895-3907. [PMID: 38356175 PMCID: PMC10902836 DOI: 10.1021/acs.est.3c09183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024]
Abstract
Volatilization of lower-chlorinated polychlorinated biphenyls (LC-PCBs) from sediment poses health threats to nearby communities and ecosystems. Biodegradation combined with black carbon (BC) materials is an emerging bioaugmentation approach to remove PCBs from sediment, but development of aerobic biofilms on BC for long-term, sustained LC-PCBs remediation is poorly understood. This work aimed to characterize the cell enrichment and activity of biphenyl- and benzoate-grown Paraburkholderia xenovorans strain LB400 on various BCs. Biphenyl dioxygenase gene (bphA) abundance on four BC types demonstrated corn kernel biochar hosted at least 4 orders of magnitude more attached cells per gram than other feedstocks, and microscopic imaging revealed the attached live cell fraction was >1.5× more on corn kernel biochar than GAC. BC characteristics (i.e., sorption potential, pore size, pH) appear to contribute to cell attachment differences. Reverse transcription qPCR indicated that BC feedstocks significantly influenced bphA expression in attached cells. The bphA transcript-per-gene ratio of attached cells was >10-fold more than suspended cells, confirmed by transcriptomics. RNA-seq also demonstrated significant upregulation of biphenyl and benzoate degradation pathways on attached cells, as well as revealing biofilm formation potential/cell-cell communication pathways. These novel findings demonstrate aerobic PCB-degrading cell abundance and activity could be tuned by adjusting BC feedstocks/attributes to improve LC-PCBs biodegradation potential.
Collapse
Affiliation(s)
- Qin Dong
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| | - Timothy E. Mattes
- Department
of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United States
- IIHR—Hydroscience
and Engineering, University of Iowa, 100 C. Maxwell Stanley Hydraulics
Laboratory, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Kucharzyk KH, Murdoch FK, Wilson J, Michalsen M, Löffler FE, Murdoch RW, Istok JD, Hatzinger PB, Mullins L, Hill A. Integrated Advanced Molecular Tools Predict In Situ cVOC Degradation Rates: Field Demonstration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:557-569. [PMID: 38109066 DOI: 10.1021/acs.est.3c06231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Chlorinated volatile organic compound (cVOC) degradation rate constants are crucial information for site management. Conventional approaches generate rate estimates from the monitoring and modeling of cVOC concentrations. This requires time series data collected along the flow path of the plume. The estimates of rate constants are often plagued by confounding issues, making predictions cumbersome and unreliable. Laboratory data suggest that targeted quantitative analysis of Dehalococcoides mccartyi (Dhc) biomarker genes (qPCR) and proteins (qProt) can be directly correlated with reductive dechlorination activity. To assess the potential of qPCR and qProt measurements to predict rates, we collected data from cVOC-contaminated aquifers. At the benchmark study site, the rate constant for degradation of cis-dichloroethene (cDCE) extracted from monitoring data was 11.0 ± 3.4 yr-1, and the rate constant predicted from the abundance of TceA peptides was 6.9 yr-1. The rate constant for degradation of vinyl chloride (VC) from monitoring data was 8.4 ± 5.7 yr-1, and the rate constant predicted from the abundance of TceA peptides was 5.2 yr-1. At the other study sites, the rate constants for cDCE degradation predicted from qPCR and qProt measurements agreed within a factor of 4. Under the right circumstances, qPCR and qProt measurements can be useful to rapidly predict rates of cDCE and VC biodegradation, providing a major advance in effective site management.
Collapse
Affiliation(s)
| | | | - John Wilson
- Scissortail Environmental Solutions, LLC, Ada, Oklahoma 74820, United States
| | - Mandy Michalsen
- U.S. Army Engineer Research and Development Center, Environmental Laboratory, Vicksburg, Mississippi 39180, United States
| | - Frank E Löffler
- Department of Civil and Environmental Engineering, Department of Microbiology, Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, Tennessee 37996, United States
| | - Robert W Murdoch
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| | - Jack D Istok
- Oak Ridge National Laboratory, Biosciences Division, Oak Ridge, Tennessee 37831, United States
| | - Paul B Hatzinger
- Aptim Biotechnology Development and Applications Group, 17 Princess Road, Lawrenceville, New Jersey 08648, United States
| | - Larry Mullins
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| | - Amy Hill
- Battelle Memorial Institute, Columbus, Ohio 43220, United States
| |
Collapse
|
7
|
Romantschuk M, Lahti-Leikas K, Kontro M, Galitskaya P, Talvenmäki H, Simpanen S, Allen JA, Sinkkonen A. Bioremediation of contaminated soil and groundwater by in situ biostimulation. Front Microbiol 2023; 14:1258148. [PMID: 38029190 PMCID: PMC10658714 DOI: 10.3389/fmicb.2023.1258148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023] Open
Abstract
Bioremediation by in situ biostimulation is an attractive alternative to excavation of contaminated soil. Many in situ remediation methods have been tested with some success; however, due to highly variable results in realistic field conditions, they have not been implemented as widely as they might deserve. To ensure success, methods should be validated under site-analogous conditions before full scale use, which requires expertise and local knowledge by the implementers. The focus here is on indigenous microbial degraders and evaluation of their performance. Identifying and removing biodegradation bottlenecks for degradation of organic pollutants is essential. Limiting factors commonly include: lack of oxygen or alternative electron acceptors, low temperature, and lack of essential nutrients. Additional factors: the bioavailability of the contaminating compound, pH, distribution of the contaminant, and soil structure and moisture, and in some cases, lack of degradation potential which may be amended with bioaugmentation. Methods to remove these bottlenecks are discussed. Implementers should also be prepared to combine methods or use them in sequence. Chemical/physical means may be used to enhance biostimulation. The review also suggests tools for assessing sustainability, life cycle assessment, and risk assessment. To help entrepreneurs, decision makers, and methods developers in the future, we suggest founding a database for otherwise seldom reported unsuccessful interventions, as well as the potential for artificial intelligence (AI) to assist in site evaluation and decision-making.
Collapse
Affiliation(s)
- Martin Romantschuk
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Katariina Lahti-Leikas
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Merja Kontro
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | | | - Harri Talvenmäki
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Suvi Simpanen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - John A. Allen
- Faculty of Biological and Environmental Sciences, University of Helsinki, Lahti, Finland
| | - Aki Sinkkonen
- Natural Resources Institute Finland (Luke), Horticulture Technologies, Turku, Finland
| |
Collapse
|
8
|
Xu G, Zhao S, Chen C, Zhang N, He J. Alleviating Chlorinated Alkane Inhibition on Dehalococcoides to Achieve Detoxification of Chlorinated Aliphatic Cocontaminants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:15112-15122. [PMID: 37772791 DOI: 10.1021/acs.est.3c04535] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Cocontamination by multiple chlorinated solvents is a prevalent issue in groundwater, presenting a formidable challenge for effective remediation. Despite the recognition of this issue, a comprehensive assessment of microbial detoxification processes involving chloroethenes and associated cocontaminants, along with the underpinning microbiome, remains absent. Moreover, strategies to mitigate the inhibitory effects of cocontaminants have not been reported. Here, we revealed that chloroform exhibited the most potent inhibitory effects, followed by 1,1,1-trichloroethane and 1,1,2-trichloroethane, on dechlorination of dichloroethenes (DCEs) in Dehalococcoides-containing consortia. The observed inhibition could be attributed to suppression of biosynthesis and enzymatic activity of reductive dehalogenases and growth of Dehalococcoides. Notably, cocontaminants more profoundly inhibited Dehalococcoides populations harboring the vcrA gene than those possessing the tceA gene, thereby explaining the accumulation of vinyl chloride under cocontaminant stress. Nonetheless, we successfully ameliorated cocontaminant inhibition by augmentation with Desulfitobacterium sp. strain PR owing to its ability to attenuate cocontaminants, resulting in concurrent detoxification of DCEs, trichloroethanes, and chloroform. Microbial community analyses demonstrated obvious alterations in taxonomic composition, structure, and assembly of the dechlorinating microbiome in the presence of cocontaminants, and introduction of strain PR reshaped the dechlorinating microbiome to be similar to its original state in the absence of cocontaminants. Altogether, these findings contribute to developing bioremediation technologies to clean up challenging sites polluted with multiple chlorinated solvents.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Siyan Zhao
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Ning Zhang
- College of Chemical Engineering and Pharmacy, Henan University of Science and Technology, Luoyang, Henan 471003, China
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| |
Collapse
|
9
|
Gushgari-Doyle S, Olivares CI, Sun M, Alvarez-Cohen L. Syntrophic Interactions Ameliorate Arsenic Inhibition of Solvent-Dechlorinating Dehalococcoides mccartyi. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14237-14247. [PMID: 37695749 PMCID: PMC11055506 DOI: 10.1021/acs.est.3c03807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Interactions and nutrient exchanges among members of microbial communities are important for understanding functional relationships in environmental microbiology. We can begin to elucidate the nature of these complex systems by taking a bottom-up approach utilizing simplified, but representative, community members. Here, we assess the effects of a toxic stress event, the addition of arsenite (As(III)), on a syntrophic co-culture containing lactate-fermenting Desulfovibrio vulgaris Hildenborough and solvent-dechlorinating Dehalococcoides mccartyi strain 195. Arsenic and trichloroethene (TCE) are two highly prevalent groundwater contaminants in the United States, and the presence of bioavailable arsenic is of particular concern at remediation sites in which reductive dechlorination has been employed. While we previously showed that low concentrations of arsenite (As(III)) inhibit the keystone TCE-reducing microorganism, D. mccartyi, this study reports the utilization of physiological analysis, transcriptomics, and metabolomics to assess the effects of arsenic on the metabolisms, gene expression, and nutrient exchanges in the described co-culture. It was found that the presence of D. vulgaris ameliorated arsenic stress on D. mccartyi, improving TCE dechlorination under arsenic-contaminated conditions. Nutrient and amino acid export by D. vulgaris may be a stress-ameliorating exchange in this syntrophic co-culture under arsenic stress, based on upregulation of transporters and increased extracellular nutrients like sarcosine and ornithine. These results broaden our knowledge of microbial community interactions and will support the further development and implementation of robust bioremediation strategies at multi-contaminant sites.
Collapse
Affiliation(s)
- Sara Gushgari-Doyle
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, 94720, USA
| | - Christopher I. Olivares
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, 94720, USA
| | - Mohan Sun
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, 94720, USA
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, CA, 94720, USA
- Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| |
Collapse
|
10
|
Vogel AL, Thompson KJ, Straub D, App CB, Gutierrez T, Löffler FE, Kleindienst S. Substrate-independent expression of key functional genes in Cycloclasticus pugetii strain PS-1 limits their use as markers for PAH biodegradation. Front Microbiol 2023; 14:1185619. [PMID: 37455737 PMCID: PMC10338962 DOI: 10.3389/fmicb.2023.1185619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/22/2023] [Indexed: 07/18/2023] Open
Abstract
Microbial degradation of petroleum hydrocarbons is a crucial process for the clean-up of oil-contaminated environments. Cycloclasticus spp. are well-known polycyclic aromatic hydrocarbon (PAH) degraders that possess PAH-degradation marker genes including rhd3α, rhd2α, and pahE. However, it remains unknown if the expression of these genes can serve as an indicator for active PAH degradation. Here, we determined transcript-to-gene (TtG) ratios with (reverse transcription) qPCR in cultures of Cycloclasticus pugetii strain PS-1 grown with naphthalene, phenanthrene, a mixture of these PAHs, or alternate substrates (i.e., no PAHs). Mean TtG ratios of 1.99 × 10-2, 1.80 × 10-3, and 3.20 × 10-3 for rhd3α, rhd2α, and pahE, respectively, were measured in the presence or absence of PAHs. The TtG values suggested that marker-gene expression is independent of PAH degradation. Measurement of TtG ratios in Arctic seawater microcosms amended with water-accommodated crude oil fractions, and incubated under in situ temperature conditions (i.e., 1.5°C), only detected Cycloclasticus spp. rhd2α genes and transcripts (mean TtG ratio of 4.15 × 10-1). The other marker genes-rhd3α and pahE-were not detected, suggesting that not all Cycloclasticus spp. carry these genes and a broader yet-to-be-identified repertoire of PAH-degradation genes exists. The results indicate that the expression of PAH marker genes may not correlate with PAH-degradation activity, and transcription data should be interpreted cautiously.
Collapse
Affiliation(s)
- Anjela L. Vogel
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Katharine J. Thompson
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| | - Daniel Straub
- Quantitative Biology Center (QBiC), Eberhard Karls University of Tübingen, Tübingen, Germany
- Cluster of Excellence: EXC 2124: Controlling Microbes to Fight Infection, Tübingen, Germany
| | - Constantin B. App
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tony Gutierrez
- School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Frank E. Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, United States
- Department of Microbiology, University of Tennessee, Knoxville, TN, United States
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, United States
- Department of Biosystems Engineering and Soil Science, University of Tennessee, Knoxville, TN, United States
| | - Sara Kleindienst
- Department of Geosciences, Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Environmental Microbiology, Institute for Sanitary Engineering, Water Quality and Solid Waste Management (ISWA), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
11
|
Rapid visual Candidatus Liberibacter asiaticus detection (citrus greening disease) using simple alkaline heat DNA lysis followed by loop-mediated isothermal amplification coupled hydroxynaphthol blue (AL-LAMP-HNB) for potential local use. PLoS One 2022; 17:e0276740. [PMID: 36282857 PMCID: PMC9595546 DOI: 10.1371/journal.pone.0276740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/12/2022] [Indexed: 11/05/2022] Open
Abstract
An outbreak of citrus greening or Huanglongbing disease bacteria occurs in many areas. We sampled and identified an ongoing ~year 2020 orange tree endemic in northern Thailand as Candidatus Liberibacter asiaticus. We thereby developed a plant greening disease (C. Liberibacter asiaticus) detection assay using simple alkaline heat DNA lysis and loop-mediated isothermal amplification coupled hydroxynaphthol blue (AL-LAMP-HNB), and evaluated the developed assay for its feasibility as point-of-care detection on 65 plant leaf samples with 100–1×104 copies of C. Liberibacter asiaticus or mocked injection compared with commercial DNA lysis kit and PCR-GE. Our assay is sensitive to 5–8.9 copies of omp (equaling 0.0056–0.01 fg) compatible with PCR-GE limit of detection. This ultra sensitive limit of detection could allow the disease detection before clinical apparent state of disease when C. Liberibacter asiaticus infection number is few, i.e. fewer than 100 copies of C. Liberibacter asiaticus. The assay is also specific with 6 degenerate primers targeting every strain of C. Liberibacter asiaticus omp from GenBank database, rapid (40 min total assay time), inexpensive (~2–3 USD/reaction), does not require sophisticated instrumentation, and has comparable assay accuracy (93.85–100% accuracy, 100% specificity, and 89.74–100% sensitivity) to bacterial DNA extraction by a commercial kit followed by PCR and gel electrophoresis (92.31% accuracy, 100% specificity, and 87.18% sensitivity) based on the real sample tests. Hence, the technique could be used in local or laboratory resource-restricted settings. The test result could be read by naked eyes through the color change from violet (negative) to sky blue (positive) for a C. Liberibacter asiaticus-infected specimen. Furthermore, this assay uses safe chemical reagents and, thus, is safe for the users.
Collapse
|
12
|
Xu G, He J. Resilience of organohalide-detoxifying microbial community to oxygen stress in sewage sludge. WATER RESEARCH 2022; 224:119055. [PMID: 36126627 DOI: 10.1016/j.watres.2022.119055] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/20/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Organohalide pollutants are prevalent in the environment, causing harms to wildlife and human. Organohalide-respiring bacteria (OHRB) could detoxify these pollutants in anaerobic environments, but the most competent OHRB (i.e., Dehalococcoides) is susceptible to oxygen. This study reports exceptional resistance and resilience of sewage sludge microbial communities to oxygen stress for attenuation of structurally distinct organohalide pollutants, including tetrachloroethene, tetrabromobisphenol A, and polybrominated diphenyl ethers. The dehalogenation rate constant of these organohalide pollutants in oxygen-exposed sludge microcosms was maintained as 74-120% as that in the control without oxygen exposure. Subsequent top-down experiments clarified that sludge flocs and non-OHRB contributed to alleviating oxygen stress on OHRB. In the dehalogenating microcosms, multiple OHRB (Dehahlococcoides, Dehalogenimonas, and Sulfurospirillum) harboring distinct reductive dehalogenase genes (pceA, pteA, tceA, vcrA, and bdeA) collaborated to detoxify organohalide pollutants but responded differentially to oxygen stress. Comprehensive microbial community analyses (taxonomy, diversity, and structure) demonstrated certain resilience of the sludge-derived dehalogenating microbial communities to oxygen stress. Additionally, microbial co-occurrence networks were intensified by oxygen stress in most microcosms, as a possible stress mitigation strategy. Altogether the mechanistic and ecological findings in this study contribute to remediation of organohalide-contaminated sites encountering oxygen disturbance.
Collapse
Affiliation(s)
- Guofang Xu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Graduate School - Integrative Sciences and Engineering Programme (ISEP), National University of Singapore, 119077, Singapore.
| |
Collapse
|
13
|
Lu E, Ai Y, Davis A, Straathof J, Halloran K, Hull N, Winston R, Weir MH, Soller J, Bohrerova Z, Oglesbee M, Lee J. Wastewater surveillance of SARS-CoV-2 in dormitories as a part of comprehensive university campus COVID-19 monitoring. ENVIRONMENTAL RESEARCH 2022; 212:113580. [PMID: 35671797 PMCID: PMC9167806 DOI: 10.1016/j.envres.2022.113580] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/20/2022] [Accepted: 05/26/2022] [Indexed: 05/05/2023]
Abstract
Wastewater-based epidemiology is an effective tool for monitoring infectious disease spread or illicit drug use within communities. At the Ohio State University, we conducted a SARS-CoV-2 wastewater surveillance program in the 2020-2021 academic year and compared results with the university-required weekly COVID-19 saliva testing to monitor COVID-19 infection prevalence in the on-campus residential communities. The objectives of the study were to rapidly track trends in the wastewater SARS-CoV-2 gene concentrations, analyze the relationship between case numbers and wastewater signals when adjusted using human fecal viral indicator concentrations (PMMoV, crAssphage) in wastewater, and investigate the relationship of the SARS-CoV-2 gene concentrations with wastewater parameters. SARS-CoV-2 nucleocapsid and envelope (N1, N2, and E) gene concentrations, determined with reverse transcription droplet digital PCR, were used to track SARS-CoV-2 viral loads in dormitory wastewater once a week at 6 sampling sites across the campus during the fall semester in 2020. During the following spring semester, research was focused on SARS-CoV2 N2 gene concentrations at 5 sites sampled twice a week. Spearman correlations both with and without adjusting using human fecal viral indicators showed a significant correlation (p < 0.05) between human COVID-19 positive case counts and wastewater SARS-CoV-2 gene concentrations. Spearman correlations showed significant relationships between N1 gene concentrations and both TSS and turbidity, and between E gene concentrations and both pH and turbidity. These results suggest that wastewater signal increases with the census of infected individuals, in which the majority are asymptomatic, with a statistically significant (p-value <0.05) temporal correlation. The study design can be utilized as a platform for rapid trend tracking of SARS-CoV-2 variants and other diseases circulating in various communities.
Collapse
Affiliation(s)
- Emily Lu
- Environmental Science Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Judith Straathof
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Kent Halloran
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Facilities Operations and Development, Environmental Health and Safety, The Ohio State University, Columbus, OH, USA
| | - Natalie Hull
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Ryan Winston
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA; Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA
| | - Mark H Weir
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Sustainability Institute, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | | | - Zuzana Bohrerova
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Michael Oglesbee
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA; Infectious Diseases Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
14
|
Tentori EF, Fang S, Richardson RE. RNA Biomarker Trends across Type I and Type II Aerobic Methanotrophs in Response to Methane Oxidation Rates and Transcriptome Response to Short-Term Methane and Oxygen Limitation in Methylomicrobium album BG8. Microbiol Spectr 2022; 10:e0000322. [PMID: 35678574 PMCID: PMC9241951 DOI: 10.1128/spectrum.00003-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/21/2022] [Indexed: 11/26/2022] Open
Abstract
Methanotrophs, which help regulate atmospheric levels of methane, are active in diverse natural and man-made environments. This range of habitats and the feast-famine cycles seen by many environmental methanotrophs suggest that methanotrophs dynamically mediate rates of methane oxidation. Global methane budgets require ways to account for this variability in time and space. Functional gene biomarker transcripts are increasingly studied to inform the dynamics of diverse biogeochemical cycles. Previously, per-cell transcript levels of the methane oxidation biomarker pmoA were found to vary quantitatively with respect to methane oxidation rates in the model aerobic methanotroph Methylosinus trichosporium OB3b. In the present study, these trends were explored for two additional aerobic methanotroph pure cultures grown in membrane bioreactors, Methylocystis parvus OBBP and Methylomicrobium album BG8. At steady-state conditions, per-cell pmoA mRNA transcript levels strongly correlated with per-cell methane oxidation across the three methanotrophs across many orders of magnitude of activity (R2 = 0.91). The inclusion of both type I and type II aerobic methanotrophs suggests a universal trend between in situ activity level and pmoA RNA biomarker levels which can aid in improving estimates of both subsurface and atmospheric methane. Additionally, genome-wide expression data (obtained by transcriptome sequencing [RNA-seq]) were used to explore transcriptomic responses of steady-state M. album BG8 cultures to short-term CH4 and O2 limitation. These limitations induced regulation of genes involved in central carbon metabolism (including carbon storage), cell motility, and stress response. IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane, having an impact on global net methane emissions. Additionally, they have also gained interest for their biotechnological applications in single-cell protein production, biofuels, and bioplastics. Having better ways of measuring methanotroph activity and understanding how methanotrophs respond to changing conditions is imperative for both optimization in controlled-growth applications and understanding in situ methane oxidation rates. In this study, we explored the applicability of methane oxidation biomarkers as a universal indicator of methanotrophic activity and explored methanotroph transcriptomic response to short-term changes in substrate availability. Our results contribute to better understanding the activity of aerobic methanotrophs, their core metabolic pathways, and their stress responses.
Collapse
Affiliation(s)
- Egidio F. Tentori
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Shania Fang
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| | - Ruth E. Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, New York, USA
| |
Collapse
|
15
|
Trick AY, Chen F, Chen L, Lee P, Hasnain AC, Mostafa HH, Carroll KC, Wang T. Point-of-Care Platform for Rapid Multiplexed Detection of SARS-CoV-2 Variants and Respiratory Pathogens. ADVANCED MATERIALS TECHNOLOGIES 2022; 7:2101013. [PMID: 35441089 PMCID: PMC9011450 DOI: 10.1002/admt.202101013] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/20/2021] [Indexed: 05/25/2023]
Abstract
The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses to end the pandemic. Widespread detection of variants is critical to inform policy decisions to mitigate further spread, and postpandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, a portable, magnetofluidic cartridge platform for automated polymerase chain reaction testing in <30 min is developed. Cartridges are designed for multiplexed detection of SARS-CoV-2 with either identification of variant mutations or screening for Influenza A and B. Moreover, the platform can perform identification of B.1.1.7 and B.1.351 variants and the multiplexed SARS-CoV-2/Influenza assay using archived clinical nasopharyngeal swab eluates and saliva samples. This work illustrates a path toward affordable and immediate testing with potential to aid surveillance of viral variants and inform patient treatment.
Collapse
Affiliation(s)
- Alexander Y. Trick
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Fan‐En Chen
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Liben Chen
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | - Pei‐Wei Lee
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
| | | | - Heba H. Mostafa
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Karen C. Carroll
- Division of Medical MicrobiologyDepartment of PathologyJohns Hopkins University School of MedicineBaltimoreMD21205USA
| | - Tza‐Huei Wang
- Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Department of Mechanical EngineeringJohns Hopkins UniversityBaltimoreMD21218USA
- Institute for NanoBiotechnologyJohns Hopkins UniversityBaltimoreMD21218USA
| |
Collapse
|
16
|
Zhang P, Chen L, Hu J, Trick AY, Chen FE, Hsieh K, Zhao Y, Coleman B, Kruczynski K, Pisanic TR, Heaney CD, Clarke WA, Wang TH. Magnetofluidic immuno-PCR for point-of-care COVID-19 serological testing. Biosens Bioelectron 2022; 195:113656. [PMID: 34600203 PMCID: PMC8458161 DOI: 10.1016/j.bios.2021.113656] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 09/13/2021] [Accepted: 09/20/2021] [Indexed: 01/18/2023]
Abstract
Serological tests play an important role in the fight against Coronavirus Disease 2019 (COVID-19), including monitoring the dynamic immune response after vaccination, identifying past infection and determining community infection rate. Conventional methods for serological testing, such as enzyme-linked immunosorbent assays and chemiluminescence immunoassays, provide reliable and sensitive antibody detection but require sophisticated laboratory infrastructure and/or lengthy assay time. Conversely, lateral flow immunoassays are suitable for rapid point-of-care tests but have limited sensitivity. Here, we describe the development of a rapid and sensitive magnetofluidic immuno-PCR platform that can address the current gap in point-of-care serological testing for COVID-19. Our magnetofluidic immuno-PCR platform automates a magnetic bead-based, single-binding, and one-wash immuno-PCR assay in a palm-sized magnetofluidic device and delivers results in ∼30 min. In the device, a programmable magnetic arm attracts and transports magnetically-captured antibodies through assay reagents pre-loaded in a companion plastic cartridge, and a miniaturized thermocycler and a fluorescence detector perform immuno-PCR to detect the antibodies. We evaluated our magnetofluidic immuno-PCR with 108 clinical serum/plasma samples and achieved 93.8% (45/48) sensitivity and 98.3% (59/60) specificity, demonstrating its potential as a rapid and sensitive point-of-care serological test for COVID-19.
Collapse
Affiliation(s)
- Pengfei Zhang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Jiumei Hu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Branch Coleman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Kate Kruczynski
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - Thomas R Pisanic
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Christopher D Heaney
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, 21205, USA
| | - William A Clarke
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
17
|
Ai Y, Davis A, Jones D, Lemeshow S, Tu H, He F, Ru P, Pan X, Bohrerova Z, Lee J. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149757. [PMID: 34467932 PMCID: PMC8373851 DOI: 10.1016/j.scitotenv.2021.149757] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/07/2023]
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 129 million confirm cases. Many health authorities around the world have implemented wastewater-based epidemiology as a rapid and complementary tool for the COVID-19 surveillance system and more recently for variants of concern emergence tracking. In this study, three SARS-CoV-2 target genes (N1 and N2 gene regions, and E gene) were quantified from wastewater influent samples (n = 250) obtained from the capital city and 7 other cities in various size in central Ohio from July 2020 to January 2021. To determine human-specific fecal strength in wastewater samples more accurately, two human fecal viruses (PMMoV and crAssphage) were quantified to normalize the SARS-CoV-2 gene concentrations in wastewater. To estimate the trend of new case numbers from SARS-CoV-2 gene levels, different statistical models were built and evaluated. From the longitudinal data, SARS-CoV-2 gene concentrations in wastewater strongly correlated with daily new confirmed COVID-19 cases (average Spearman's r = 0.70, p < 0.05), with the N2 gene region being the best predictor of the trend of confirmed cases. Moreover, average daily case numbers can help reduce the noise and variation from the clinical data. Among the models tested, the quadratic polynomial model performed best in correlating and predicting COVID-19 cases from the wastewater surveillance data, which can be used to track the effectiveness of vaccination in the later stage of the pandemic. Interestingly, neither of the normalization methods using PMMoV or crAssphage significantly enhanced the correlation with new case numbers, nor improved the estimation models. Viral sequencing showed that shifts in strain-defining variants of SARS-CoV-2 in wastewater samples matched those in clinical isolates from the same time periods. The findings from this study support that wastewater surveillance is effective in COVID-19 trend tracking and provide sentinel warning of variant emergence and transmission within various types of communities.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA; James Molecular Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stanley Lemeshow
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Huolin Tu
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA
| | - Fan He
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Peng Ru
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA
| | - Xiaokang Pan
- James Molecular Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zuzana Bohrerova
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
18
|
Ai Y, Davis A, Jones D, Lemeshow S, Tu H, He F, Ru P, Pan X, Bohrerova Z, Lee J. Wastewater SARS-CoV-2 monitoring as a community-level COVID-19 trend tracker and variants in Ohio, United States. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149757. [PMID: 34467932 DOI: 10.1101/2021.06.08.21258421] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/12/2021] [Accepted: 08/15/2021] [Indexed: 05/26/2023]
Abstract
The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has resulted in more than 129 million confirm cases. Many health authorities around the world have implemented wastewater-based epidemiology as a rapid and complementary tool for the COVID-19 surveillance system and more recently for variants of concern emergence tracking. In this study, three SARS-CoV-2 target genes (N1 and N2 gene regions, and E gene) were quantified from wastewater influent samples (n = 250) obtained from the capital city and 7 other cities in various size in central Ohio from July 2020 to January 2021. To determine human-specific fecal strength in wastewater samples more accurately, two human fecal viruses (PMMoV and crAssphage) were quantified to normalize the SARS-CoV-2 gene concentrations in wastewater. To estimate the trend of new case numbers from SARS-CoV-2 gene levels, different statistical models were built and evaluated. From the longitudinal data, SARS-CoV-2 gene concentrations in wastewater strongly correlated with daily new confirmed COVID-19 cases (average Spearman's r = 0.70, p < 0.05), with the N2 gene region being the best predictor of the trend of confirmed cases. Moreover, average daily case numbers can help reduce the noise and variation from the clinical data. Among the models tested, the quadratic polynomial model performed best in correlating and predicting COVID-19 cases from the wastewater surveillance data, which can be used to track the effectiveness of vaccination in the later stage of the pandemic. Interestingly, neither of the normalization methods using PMMoV or crAssphage significantly enhanced the correlation with new case numbers, nor improved the estimation models. Viral sequencing showed that shifts in strain-defining variants of SARS-CoV-2 in wastewater samples matched those in clinical isolates from the same time periods. The findings from this study support that wastewater surveillance is effective in COVID-19 trend tracking and provide sentinel warning of variant emergence and transmission within various types of communities.
Collapse
Affiliation(s)
- Yuehan Ai
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Angela Davis
- Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Dan Jones
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA; James Molecular Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Stanley Lemeshow
- Division of Biostatistics, College of Public Health, The Ohio State University, Columbus, OH, USA
| | - Huolin Tu
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA
| | - Fan He
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - Peng Ru
- The Ohio State University Comprehensive Cancer Center and James Cancer Center, Columbus, OH, USA
| | - Xiaokang Pan
- James Molecular Laboratory, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Zuzana Bohrerova
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, OH, USA
| | - Jiyoung Lee
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA; Division of Environmental Health Sciences, College of Public Health, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
19
|
Wu PS, Grosser J, Cameron DP, Baranello L, Ström L. Deficiency of Polη in Saccharomyces cerevisiae reveals the impact of transcription on damage-induced cohesion. PLoS Genet 2021; 17:e1009763. [PMID: 34499654 PMCID: PMC8454932 DOI: 10.1371/journal.pgen.1009763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 09/21/2021] [Accepted: 08/05/2021] [Indexed: 11/18/2022] Open
Abstract
The structural maintenance of chromosome (SMC) complex cohesin mediates sister chromatid cohesion established during replication, and damage-induced cohesion formed in response to DSBs post-replication. The translesion synthesis polymerase Polη is required for damage-induced cohesion through a hitherto unknown mechanism. Since Polη is functionally associated with transcription, and transcription triggers de novo cohesion in Schizosaccharomyces pombe, we hypothesized that transcription facilitates damage-induced cohesion in Saccharomyces cerevisiae. Here, we show dysregulated transcriptional profiles in the Polη null mutant (rad30Δ), where genes involved in chromatin assembly and positive transcription regulation were downregulated. In addition, chromatin association of RNA polymerase II was reduced at promoters and coding regions in rad30Δ compared to WT cells, while occupancy of the H2A.Z variant (Htz1) at promoters was increased in rad30Δ cells. Perturbing histone exchange at promoters inactivated damage-induced cohesion, similarly to deletion of the RAD30 gene. Conversely, altering regulation of transcription elongation suppressed the deficient damage-induced cohesion in rad30Δ cells. Furthermore, transcription inhibition negatively affected formation of damage-induced cohesion. These results indicate that the transcriptional deregulation of the Polη null mutant is connected with its reduced capacity to establish damage-induced cohesion. This also suggests a linkage between regulation of transcription and formation of damage-induced cohesion after replication.
Collapse
Affiliation(s)
- Pei-Shang Wu
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Jan Grosser
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Donald P. Cameron
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Laura Baranello
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| | - Lena Ström
- Karolinska Institutet, Department of Cell and Molecular Biology, Stockholm, Sweden
| |
Collapse
|
20
|
Identification of Reductive Dehalogenases That Mediate Complete Debromination of Penta- and Tetrabrominated Diphenyl Ethers in Dehalococcoides spp. Appl Environ Microbiol 2021; 87:e0060221. [PMID: 34160266 DOI: 10.1128/aem.00602-21] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are persistent, highly toxic, and widely distributed environmental pollutants. The microbial populations and functional reductive dehalogenases (RDases) responsible for PBDE debromination in anoxic systems remain poorly understood, which confounds bioremediation of PBDE-contaminated sites. Here, we report a PBDE-debrominating enrichment culture dominated by a previously undescribed Dehalococcoides mccartyi population. A D. mccartyi strain, designated TZ50, whose genome contains 25 putative RDase-encoding genes, was isolated from the debrominating enrichment culture. Strain TZ50 dehalogenated a mixture of pentabrominated diphenyl ether (penta-BDE) and tetra-BDE congeners (total BDEs, 1.48 μM) to diphenyl ether within 2 weeks (0.58 μM Br-/day) via ortho- and meta-bromine elimination; strain TZ50 also dechlorinated tetrachloroethene (PCE) to vinyl chloride and ethene (260.2 μM Cl-/day). Results of native PAGE, proteomic profiling, and in vitro enzymatic activity assays implicated the involvement of three RDases in PBDE and PCE dehalogenation. TZ50_0172 (PteATZ50) and TZ50_1083 (TceATZ50) were responsible for the debromination of penta- and tetra-BDEs to di-BDE. TZ50_0172 and TZ50_1083 were also implicated in the dechlorination of PCE to trichloroethene (TCE) and of TCE to vinyl chloride/ethene, respectively. The other expressed RDase, TZ50_0090 (designated BdeA), was associated with the debromination of di-BDE to diphenyl ether, but its role in PCE dechlorination was unclear. Comparatively few RDases are known to be involved in PBDE debromination, and the identification of PteATZ50, TceATZ50, and BdeA provides additional information for evaluating debromination potential at contaminated sites. Moreover, the ability of PteATZ50 and TceATZ50 to dehalogenate both PBDEs and PCE makes strain TZ50 a suitable candidate for the remediation of cocontaminated sites. IMPORTANCE The ubiquity, toxicity, and persistence of polybrominated diphenyl ethers (PBDEs) in the environment have drawn significant public and scientific interest to the need for the remediation of PBDE-contaminated ecosystems. However, the low bioavailability of PBDEs in environmental compartments typically limits bioremediation of PBDEs and has long impeded the study of anaerobic microbial PBDE removal. In the current study, a novel Dehalococcoides mccartyi strain, dubbed strain TZ50, that expresses RDases that mediate organohalide respiration of both PBDEs and chloroethenes was isolated and characterized. Strain TZ50 could potentially be used to remediate multiple cooccurring organohalides in contaminated systems.
Collapse
|
21
|
Trick AY, Chen FE, Chen L, Lee PW, Hasnain AC, Mostafa HH, Carroll KC, Wang TH. Magnetofluidic platform for rapid multiplexed screening of SARS-CoV-2 variants and respiratory pathogens. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2021:2021.05.10.21256995. [PMID: 34013284 PMCID: PMC8132258 DOI: 10.1101/2021.05.10.21256995] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The rise of highly transmissible SARS-CoV-2 variants brings new challenges and concerns with vaccine efficacy, diagnostic sensitivity, and public health responses in the fight to end the pandemic. Widespread detection of variant strains will be critical to inform policy decisions to mitigate further spread, and post-pandemic multiplexed screening of respiratory viruses will be necessary to properly manage patients presenting with similar respiratory symptoms. In this work, we have developed a portable, magnetofluidic cartridge platform for automated PCR testing in <30 min. Cartridges were designed for multiplexed detection of SARS-CoV-2 with either distinctive variant mutations or with Influenza A and B. The platform demonstrated a limit of detection down to 2 copies/µL SARS-CoV-2 RNA with successful identification of B.1.1.7 and B.1.351 variants. The multiplexed SARS-CoV-2/Flu assay was validated using archived clinical nasopharyngeal swab eluates ( n = 116) with an overall sensitivity/specificity of 98.1%/95.2%, 85.7%/100%, 100%/98.2%, respectively, for SARS-CoV-2, Influenza A, and Influenza B. Further testing with saliva ( n = 14) demonstrated successful detection of all SARS-CoV-2 positive samples with no false-positives.
Collapse
Affiliation(s)
- Alexander Y Trick
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Fan-En Chen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Liben Chen
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Pei-Wei Lee
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Alexander C Hasnain
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Heba H Mostafa
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| |
Collapse
|
22
|
Enhancement of nitrous oxide emissions in soil microbial consortia via copper competition between proteobacterial methanotrophs and denitrifiers. Appl Environ Microbiol 2020; 87:e0230120. [PMID: 33355098 DOI: 10.1128/aem.02301-20] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Unique means of copper scavenging have been identified in proteobacterial methanotrophs, particularly the use of methanobactin, a novel ribosomally synthesized post-translationally modified polypeptide that binds copper with very high affinity. The possibility that copper sequestration strategies of methanotrophs may interfere with copper uptake of denitrifiers in situ and thereby enhance N2O emissions was examined using a suite of laboratory experiments performed with rice paddy microbial consortia. Addition of purified methanobactin from Methylosinus trichosporium OB3b to denitrifying rice paddy soil microbial consortia resulted in substantially increased N2O production, with more pronounced responses observed for soils with lower copper content. The N2O emission-enhancing effect of the soil's native mbnA-expressing Methylocystaceae methanotrophs on the native denitrifiers was then experimentally verified with a Methylocystaceae-dominant chemostat culture prepared from a rice paddy microbial consortium as the inoculum. Lastly, with microcosms amended with varying cell numbers of methanobactin-producing Methylosinus trichosporium OB3b before CH4 enrichment, microbiomes with different ratios of methanobactin-producing Methylocystaceae to gammaproteobacterial methanotrophs incapable of methanobactin production were simulated. Significant enhancement of N2O production from denitrification was evident in both Methylocystaceae-dominant and Methylococcaceae-dominant enrichments, albeit to a greater extent in the former, signifying the comparative potency of methanobactin-mediated copper sequestration while implying the presence of alternative copper abstraction mechanisms for Methylococcaceae These observations support that copper-mediated methanotrophic enhancement of N2O production from denitrification is plausible where methanotrophs and denitrifiers cohabit.IMPORTANCE Proteobacterial methanotrophs, groups of microorganisms that utilize methane as source of energy and carbon, have been known to utilize unique mechanisms to scavenge copper, namely utilization of methanobactin, a polypeptide that binds copper with high affinity and specificity. Previously the possibility that copper sequestration by methanotrophs may lead to alteration of cuproenzyme-mediated reactions in denitrifiers and consequently increase emission of potent greenhouse gas N2O has been suggested in axenic and co-culture experiments. Here, a suite of experiments with rice paddy soil slurry cultures with complex microbial compositions were performed to corroborate that such copper-mediated interplay may actually take place in environments co-habited by diverse methanotrophs and denitrifiers. As spatial and temporal heterogeneity allow for spatial coexistence of methanotrophy (aerobic) and denitrification (anaerobic) in soils, the results from this study suggest that this previously unidentified mechanism of N2O production may account for significant proportion of N2O efflux from agricultural soils.
Collapse
|
23
|
Methane Monooxygenase Gene Transcripts as Quantitative Biomarkers of Methanotrophic Activity in Methylosinus trichosporium OB3b. Appl Environ Microbiol 2020; 86:AEM.01048-20. [PMID: 32948519 DOI: 10.1128/aem.01048-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/10/2020] [Indexed: 01/20/2023] Open
Abstract
Methanotrophic microorganisms are characterized by their ability to oxidize methane. Globally they have a significant impact on methane emissions by attenuating net methane fluxes to the atmosphere in natural and engineered systems, though the populations are dynamic in their activity level in soils and waters. Methanotrophs oxidize methane using methane monooxygenase (MMO) enzymes, and selected subunit genes of the most common MMOs, specifically pmoA and mmoX, are used as biomarkers for the presence and abundance of populations of bacterial methanotrophs. The relative expression of these biomarker genes is dependent on copper-to-biomass ratios. Empirically derived quantitative relationships between methane oxidation biomarker transcript amounts and methanotrophic activity could facilitate determination of methane oxidation rates. In this study, pure cultures of a model type II methanotroph, Methylosinus trichosporium OB3b, were grown in hollow-fiber membrane bioreactors (HFMBR) under different steady-state methane oxidation conditions. Methanotroph biomass (DNA based) and methane oxidation biomarker mRNA transcript amounts were determined using quantitative PCR (qPCR) and reverse transcription-PCR (RT-qPCR), respectively. Under both copper-present and copper-limited conditions, per-cell pmoA mRNA transcript levels positively correlated with measured per-cell methane oxidation rates across 3 orders of magnitude. These correlations, if maintained across different methanotrophs, could prove valuable for inferring in situ oxidation rates of methanotrophs and understanding the dynamics of their impact on net methane emissions.IMPORTANCE Methanotrophs are naturally occurring microorganisms capable of oxidizing methane and have an impact on global net methane emissions. The genes pmoA and mmoX are used as biomarkers for bacterial methanotrophs. Quantitative relationships between transcript amounts of these genes and methane oxidation rates could facilitate estimation of methanotrophic activity. In this study, a strong correlation was observed between per-cell pmoA transcript levels and per-cell methane oxidation rates for pure cultures of the aerobic methanotroph M. trichosporium OB3b grown in bioreactors. If similar relationships exist across different methanotrophs, they could prove valuable for inferring in situ oxidation rates of methanotrophs and better understanding their impact on net methane emissions.
Collapse
|
24
|
Jahne MA, Brinkman NE, Keely SP, Zimmerman BD, Wheaton EA, Garland JL. Droplet digital PCR quantification of norovirus and adenovirus in decentralized wastewater and graywater collections: Implications for onsite reuse. WATER RESEARCH 2020; 169:115213. [PMID: 31671297 PMCID: PMC7017454 DOI: 10.1016/j.watres.2019.115213] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 10/08/2019] [Accepted: 10/17/2019] [Indexed: 05/04/2023]
Abstract
Risk-based treatment of onsite wastewaters for decentralized reuse requires information on the occurrence and density of pathogens in source waters, which differ from municipal wastewater due to scaling and dilution effects in addition to variable source contributions. In this first quantitative report of viral enteric pathogens in onsite-collected graywater and wastewater, untreated graywater (n = 50 samples) and combined wastewater (i.e., including blackwater; n = 28) from three decentralized collection systems were analyzed for two norovirus genogroups (GI/GII) and human adenoviruses using droplet digital polymerase chain reaction (ddPCR). Compared to traditional quantitative PCR (qPCR), which had insufficient sensitivity to quantify viruses in graywater, ddPCR allowed quantification of norovirus GII and adenovirus in 4% and 14% of graywater samples, respectively (none quantifiable for norovirus GI). Norovirus GII was routinely quantifiable in combined wastewater by either PCR method (96% of samples), with well-correlated results between the analyses (R2 = 0.96) indicating a density range of 5.2-7.9 log10 genome copies/L. These concentrations are greater than typically reported in centralized municipal wastewater, yet agree well with an epidemiology-based model previously used to develop pathogen log-reduction targets (LRTs) for decentralized non-potable water systems. Results emphasize the unique quality of onsite wastewaters, supporting the previous LRTs and further quantitative microbial risk assessment (QMRA) of decentralized water reuse.
Collapse
Affiliation(s)
- Michael A Jahne
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA.
| | - Nichole E Brinkman
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Scott P Keely
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Brian D Zimmerman
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Emily A Wheaton
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| | - Jay L Garland
- Office of Research and Development, U.S. Environmental Protection Agency, 26 W. Martin Luther King Dr., Cincinnati, OH, 45268, USA
| |
Collapse
|
25
|
Gushgari-Doyle S, Alvarez-Cohen L. Effects of Arsenic on Trichloroethene-Dechlorination Activities of Dehalococcoides mccartyi 195. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:1276-1285. [PMID: 31913608 PMCID: PMC7792829 DOI: 10.1021/acs.est.9b06527] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Arsenic and trichloroethene (TCE) are among the most prevalent groundwater contaminants in the United States. Co-contamination of these two compounds has been detected at 63% of current TCE-contaminated National Priorities List sites. When in situ TCE reductive dechlorination is stimulated by the addition of fermentable substrates to generate a reducing environment, the presence of arsenic can be problematic because of the potential for increased mobilization and toxicity caused by the reduction of arsenate [As(V)] to arsenite [As(III)]. This study assesses the effects of arsenic exposure on the TCE-dechlorinating activities of Dehalococcoides mccartyi strain 195. Our results indicate that 9.1 μM As(III) caused a 50% decrease in D. mccartyi cell growth. While As(V) concentrations up to 200 μM did not initially impact TCE dechlorination, inhibition was observed in cultures amended with 200 μM As(V) and 100 μM As(V) in 12 and 17 days, respectively, corresponding with the accumulation of As(III). Transcriptomic and metabolomic analyses were performed to evaluate cellular responses to both As(V) and As(III) stress. Amendment of amino acids enhanced arsenic tolerance of D. mccartyi. Results from this study improve our understanding of potential inhibitions of D. mccartyi metabolism caused by arsenic and can inform the design of bioremediation strategies at co-contaminated sites.
Collapse
Affiliation(s)
- Sara Gushgari-Doyle
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, University of California, Berkeley, CA 94720-1710
- Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA
| |
Collapse
|
26
|
Kaya D, Kjellerup BV, Chourey K, Hettich RL, Taggart DM, Löffler FE. Impact of Fixed Nitrogen Availability on Dehalococcoides mccartyi Reductive Dechlorination Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14548-14558. [PMID: 31693350 DOI: 10.1021/acs.est.9b04463] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biostimulation to promote reductive dechlorination is widely practiced, but the value of adding an exogenous nitrogen (N) source (e.g., NH4+) during treatment is unclear. This study investigates the effect of NH4+ availability on organohalide-respiring Dehalococcoides mccartyi (Dhc) growth and reductive dechlorination in enrichment cultures derived from groundwater (PW4) and river sediment (TC) impacted with chlorinated ethenes. In PW4 cultures, the addition of NH4+ increased cis-1,2-dichloroethene (cDCE)-to-ethene dechlorination rates about 5-fold (20.6 ± 1.6 versus 3.8 ± 0.5 μM Cl- d-1), and the total number of Dhc 16S rRNA gene copies were about 43-fold higher in incubations with NH4+ ((1.8 ± 0.9) × 108 mL-1) compared to incubations without NH4+ ((4.1 ± 0.8) × 107 mL-1). In TC cultures, NH4+ also stimulated cDCE-to-ethene dechlorination and Dhc growth. Quantitative polymerase chain reaction (qPCR) revealed that Cornell-type Dhc capable of N2 fixation dominated PW4 cultures without NH4+, but their relative abundance decreased in cultures with NH4+ amendment (i.e., 99 versus 54% of total Dhc). Pinellas-type Dhc incapable of N2 fixation were responsible for cDCE dechlorination in TC cultures, and diazotrophic community members met their fixed N requirement in the medium without NH4+. Responses to NH4+ were apparent at the community level, and N2-fixing bacterial populations increased in incubations without NH4+. Quantitative assessment of Dhc nitrogenase genes, transcripts, and proteomics data linked Cornell-type Dhc nifD and nifK expression with fixed N limitation. NH4+ additions also demonstrated positive effects on Dhc in situ dechlorination activity in the vicinity of well PW4. These findings demonstrate that biostimulation with NH4+ can enhance Dhc reductive dechlorination rates; however, a "do nothing" approach that relies on indigenous diazotrophs can achieve similar dechlorination end points and avoids the potential for stalled dechlorination due to inhibitory levels of NH4+ or transformation products (i.e., nitrous oxide).
Collapse
Affiliation(s)
- Devrim Kaya
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | - Birthe V Kjellerup
- Department of Civil and Environmental Engineering , University of Maryland College Park , College Park , Maryland 20742 , United States
| | | | | | - Dora M Taggart
- Microbial Insights, Inc. , Knoxville , Tennessee 37932 , United States
| | - Frank E Löffler
- Biosciences Division and ⊥Chemical Sciences Division , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| |
Collapse
|
27
|
Novel copper-containing membrane monooxygenases (CuMMOs) encoded by alkane-utilizing Betaproteobacteria. ISME JOURNAL 2019; 14:714-726. [PMID: 31796935 DOI: 10.1038/s41396-019-0561-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 11/09/2019] [Accepted: 11/14/2019] [Indexed: 11/08/2022]
Abstract
Copper-containing membrane monooxygenases (CuMMOs) are encoded by xmoCAB(D) gene clusters and catalyze the oxidation of methane, ammonia, or some short-chain alkanes and alkenes. In a metagenome constructed from an oilsands tailings pond we detected an xmoCABD gene cluster with <59% derived protein sequence identity to genes from known bacteria. Stable isotope probing experiments combined with a specific xmoA qPCR assay demonstrated that the bacteria possessing these genes were incapable of methane assimilation, but did grow on ethane and propane. Single-cell amplified genomes (SAGs) from propane-enriched samples were screened with the specific PCR assay to identify bacteria possessing the target gene cluster. Multiple SAGs of Betaproteobacteria belonging to the genera Rhodoferax and Polaromonas possessed homologues of the metagenomic xmoCABD gene cluster. Unexpectedly, each of these two genera also possessed other xmoCABD paralogs, representing two additional lineages in phylogenetic analyses. Metabolic reconstructions from SAGs predicted that neither bacterium encoded enzymes with the potential to support catabolic methane or ammonia oxidation, but that both were capable of higher n-alkane degradation. The involvement of the encoded CuMMOs in alkane oxidation was further suggested by reverse transcription PCR analyses, which detected elevated transcription of the xmoA genes upon enrichment of water samples with propane as the sole energy source. Enrichments, isotope incorporation studies, genome reconstructions, and gene expression studies therefore all agreed that the unknown xmoCABD operons did not encode methane or ammonia monooxygenases, but rather n-alkane monooxygenases. This study broadens the known diversity of CuMMOs and identifies these enzymes in non-nitrifying Betaproteobacteria.
Collapse
|
28
|
Huang S, Zheng Z, Wei Q, Han I, Jaffé PR. Performance of sulfur-based autotrophic denitrification and denitrifiers for wastewater treatment under acidic conditions. BIORESOURCE TECHNOLOGY 2019; 294:122176. [PMID: 31574366 DOI: 10.1016/j.biortech.2019.122176] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/14/2019] [Accepted: 09/18/2019] [Indexed: 06/10/2023]
Abstract
Autotrophic denitrification under acidic conditions using sulfide (S2-), elemental sulfur (S0), and thiosulfate (S2O32-) as electron donors are evaluated. Results from batch and column experiments show that when different S species were supplied, different pH conditions and denitrifier communities were required for denitrification to occur. Nitrate and nitrite were removed via autotrophic denitrification at pH ranging from 4 to 8, when S2- or S2O32- was the electron donor, while with S0 denitrification was only observed at pH > 6. When S2- was used as electron donor, it was converted to S0, and S0 was not used while S2- was available. When addition of S2- was discontinued, or S2- depleted, S0 that had accumulated was used as electron donor for denitrification. These findings demonstrate that sulfur-based autotrophic denitrification can proceed under acidic conditions, but that the addition of appropriate S species and the presence of an effective denitrifier community are required.
Collapse
Affiliation(s)
- Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Zhaoming Zheng
- The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124, China
| | - Qingqing Wei
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Il Han
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Peter R Jaffé
- Department of Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
29
|
Xu Y, Gregory KB, VanBriesen JM. Reduction in sulfate inhibition of microbial dechlorination of polychlorinated biphenyls in Hudson and Grasse River sediments through fatty acid supplementation. CHEMOSPHERE 2019; 233:81-91. [PMID: 31170587 DOI: 10.1016/j.chemosphere.2019.05.211] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 06/09/2023]
Abstract
Microbial dechlorination of polychlorinated biphenyls (PCBs) in aquatic sediments may reduce the need for dredging for remediation. To better understand this biotransformation route under different geochemical conditions, the influence of sulfate on dechlorination in sediments from the Hudson River and the Grasse River spiked with two PCB mixtures (PCB 5/12, 64/71, 105/114 and 149/153/170 in Mixture 1 and PCB 5/12, 64/71, 82/97/99, 144/170 in Mixture 2) was investigated. The results showed that PCB dechlorination was partially inhibited in the sulfate-amended sediment microcosms. The rate, extent and preference of dechlorination were mainly controlled by the indigenous differences (sulfate, carbon content etc.) in sediment, but also affected by the PCB mixture composition. An increase of Dehalococcoides 16S rRNA genes coincided with the resumption of dechlorination. Dechlorination preferences were identified using a modified dechlorination pathway analysis approach. The low carbon content and high background sulfate Hudson sediment exhibited more para dechlorination targeting flanked para chlorines. The high carbon content and low background sulfate Grasse sediment preferentially removed more para-flanked meta chlorines than flanked para chlorines. The supplementation of fatty acids (acetate or a mixture of acetate, propionate and butyrate) dramatically increased PCB dechlorination in the Grasse sediment by resuming ortho-flanked meta dechlorination. Rare ortho removals were found in the Grasse sediment after adding fatty acids. This study suggests that supplementary fatty acids might be used to stimulate PCB dechlorination under sulfate reducing conditions, but the effectiveness largely depends on sediment geochemistry.
Collapse
Affiliation(s)
- Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China; Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213-3890, PA, United States.
| | - Kelvin B Gregory
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213-3890, PA, United States.
| | - Jeanne M VanBriesen
- Department of Civil and Environmental Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, 15213-3890, PA, United States.
| |
Collapse
|
30
|
RNA-based qPCR as a tool to quantify and to characterize dual-species biofilms. Sci Rep 2019; 9:13639. [PMID: 31541147 PMCID: PMC6754382 DOI: 10.1038/s41598-019-50094-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 09/06/2019] [Indexed: 12/22/2022] Open
Abstract
While considerable research has focused on studying individual-species, we now face the challenge of determining how interspecies interactions alter bacterial behaviours and pathogenesis. Pseudomonas aeruginosa and Staphylococcus aureus are often found to co-infect cystic-fibrosis patients. Curiously, their interaction is reported as competitive under laboratory conditions. Selecting appropriate methodologies is therefore critical to analyse multi-species communities. Herein, we demonstrated the major biases associated with qPCR quantification of bacterial populations and optimized a RNA-based qPCR able not only to quantify but also to characterize microbial interactions within dual-species biofilms composed by P. aeruginosa and S. aureus, as assessed by gene expression quantification. qPCR quantification was compared with flow-cytometry and culture-based quantification. Discrepancies between culture independent and culture dependent methods could be the result of the presence of viable but not-cultivable bacteria within the biofilm. Fluorescence microscopy confirmed this. A higher sensitivity to detect viable cells further highlights the potentialities of qPCR approach to quantify biofilm communities. By using bacterial RNA and an exogenous mRNA control, it was also possible to characterize bacterial transcriptomic profile, being this a major advantage of this method.
Collapse
|
31
|
Ruscic J, Perry C, Mukhopadhyay T, Takeuchi Y, Bracewell DG. Lentiviral Vector Purification Using Nanofiber Ion-Exchange Chromatography. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2019; 15:52-62. [PMID: 31649955 PMCID: PMC6804883 DOI: 10.1016/j.omtm.2019.08.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 08/23/2019] [Indexed: 01/04/2023]
Abstract
Lentiviral vectors (LVs) are used in cell and gene therapies due to their ability to transduce both dividing and non-dividing cells while carrying a relatively large genetic payload and providing long-term gene expression via gene integration. Current cultivation methods produce titers of 105–107 transduction unit (TU)/mL; thus, it is necessary to concentrate LVs as well as remove process- and product-related impurities. In this work, we used a packaging cell line WinPac-RD-HV for LV production to simplify upstream processing. A direct capture method based on ion-exchange chromatography and cellulose nanofibers for LV concentration and purification was developed. This novel scalable stationary phase provides a high surface area that is accessible to LV and, therefore, has potential for high-capacity operation compared to traditional bead-based supports. We were able to concentrate LVs 100-fold while achieving a two-log removal of host cell protein and maintaining up to a 90% yield of functional vector.
Collapse
Affiliation(s)
- Jelena Ruscic
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Christopher Perry
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK.,Division of Infection and Immunology, University College London, The Rayne Building, 5 University Street, London WC1E 6EJ, UK.,Advanced Therapies Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Tarit Mukhopadhyay
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| | - Yasu Takeuchi
- Division of Infection and Immunology, University College London, The Rayne Building, 5 University Street, London WC1E 6EJ, UK.,Advanced Therapies Division, National Institute for Biological Standards and Control, Blanche Lane, South Mimms, Potters Bar, Hertfordshire EN6 3QG, UK
| | - Daniel G Bracewell
- Department of Biochemical Engineering, University College London, Bernard Katz Building, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
32
|
Heavner GLW, Mansfeldt CB, Wilkins MJ, Nicora CD, Debs GE, Edwards EA, Richardson RE. Detection of Organohalide-Respiring Enzyme Biomarkers at a Bioaugmented TCE-Contaminated Field Site. Front Microbiol 2019; 10:1433. [PMID: 31316484 PMCID: PMC6610324 DOI: 10.3389/fmicb.2019.01433] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 06/06/2019] [Indexed: 12/17/2022] Open
Abstract
RNA-based biomarkers have been successfully detected at field sites undergoing in situ bioremediation, but the detection of expressed enzymes is a more direct way to prove activity for a particular biocatalytic process of interest since they provide evidence of potential in situ activity rather than simply confirming presence and abundance of genes in a given population by measurement of DNA copies using qPCR. Here we successfully applied shotgun proteomics to field samples from a trichloroethene (TCE)-contaminated industrial site in southern Ontario, Canada that had been bio-augmented with the commercially available KB-1TM microbial culture. The KB-1TM culture contains multiple strains of Dehalococcoides mccartyi (D. mccartyi) as well as an organohalide respiring Geobacter species. The relative abundances of specific enzymatic proteins were subsequently compared to corresponding qPCR-derived levels of DNA and RNA biomarkers in the same samples. Samples were obtained from two wells with high hydraulic connectivity to the KB-1TM-bioaugemented enhanced in situ bioremediation system, and two control wells that showed evidence of low levels of native organohalide respiring bacteria (OHRB), Dehalococcoides and Geobacter. Enzymes involved in organohalide respiration were detected in the metaproteomes of all four field samples, as were chaperonins of D. mccartyi, chemotaxis proteins, and ATPases. The most highly expressed RDase in the bioaugmentation culture (VcrA) was the most highly detected enzyme overall in the bioaugmented groundwater samples. In one background groundwater well, we found high expression of the Geobacter pceA RDase. The DNA and RNA biomarkers detected using qPCR-based assays were a set of orthologs of Dehalococcoides reductive dehalogenases (VcrA, TceA, BvcA, dehalogenase “DET1545”), and the Ni-Fe uptake hydrogenase, HupL. Within a sample, RNA levels for key enzymes correlated with relative protein abundance. These results indicate that laboratory observations of TCE-bioremediation biomarker protein expression are recapitulated in field environmental systems and that both RNA and protein biomarker monitoring hold promise for activity monitoring of in situ populations of OHRB.
Collapse
Affiliation(s)
- Gretchen L W Heavner
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Michael J Wilkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carrie D Nicora
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Garrett E Debs
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| | - Elizabeth A Edwards
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY, United States
| |
Collapse
|
33
|
Liang Z, Li G, Mai B, Ma H, An T. Application of a novel gene encoding bromophenol dehalogenase from Ochrobactrum sp. T in TBBPA degradation. CHEMOSPHERE 2019; 217:507-515. [PMID: 30445395 DOI: 10.1016/j.chemosphere.2018.11.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 10/27/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
Tetrabromobisphenol-A (TBBPA), a typical brominated flame retardant, leaked from commercial products into the environments has attracted people's attention around the world. Ochrobactrum sp. T capable of degradation and mineralization of TBBPA was isolated in our early work. In this study, the identification of TBBPA-degrading gene from the strain was further carried out by combining whole-genome sequencing with gene cloning and expression procedures. In total, 3877 open reading frames were found within 3.9 Mb genome and seven of them were identified as dehalogenating-relating genes. One gene with a significant ability to degrade TBBPA was designated as tbbpaA. Sequence alignments analysis showed that it shared 100% identity with haloacid dehalogenases. Furthermore, tbbpaA gene was cloned and expressed into E. coli to achieve a constructed strain. Like the original strain, the constructed strain could degrade TBBPA (6 mg L-1) with 78% of debromination efficiency and 37.8% mineralization efficiency within 96 h. Gene expression study revealed that tbbpaA was up-regulated in the presence of TBBPA. Overall, we report the identification of a functional TBBPA-degrading gene in an aerobe, which can deepen the knowledge of enhancing TBBPA removal by Strain T at the genetic level and facilitate in situ TBBPA bioremediation.
Collapse
Affiliation(s)
- Zhishu Liang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guiying Li
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| | - Bixian Mai
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Huimin Ma
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
34
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
35
|
O'Brien MA, Weston RM, Sheth NU, Bradley S, Bigbee J, Pandey A, Williams RW, Wolstenholme JT, Miles MF. Ethanol-Induced Behavioral Sensitization Alters the Synaptic Transcriptome and Exon Utilization in DBA/2J Mice. Front Genet 2018; 9:402. [PMID: 30319688 PMCID: PMC6166094 DOI: 10.3389/fgene.2018.00402] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 09/03/2018] [Indexed: 11/15/2022] Open
Abstract
Alcoholism is a complex behavioral disorder characterized by loss of control in limiting intake, and progressive compulsion to seek and consume ethanol. Prior studies have suggested that the characteristic behaviors associated with escalation of drug use are caused, at least in part, by ethanol-evoked changes in gene expression affecting synaptic plasticity. Implicit in this hypothesis is a dependence on new protein synthesis and remodeling at the synapse. It is well established that mRNA can be transported to distal dendritic processes, where it can undergo localized translation. It is unknown whether such modulation of the synaptic transcriptome might contribute to ethanol-induced synaptic plasticity. Using ethanol-induced behavioral sensitization as a model of neuroplasticity, we investigated whether repeated exposure to ethanol altered the synaptic transcriptome, contributing to mechanisms underlying subsequent increases in ethanol-evoked locomotor activity. RNAseq profiling of DBA/2J mice subjected to acute ethanol or ethanol-induced behavioral sensitization was performed on frontal pole synaptoneurosomes to enrich for synaptic mRNA. Genomic profiling showed distinct functional classes of mRNA enriched in the synaptic vs. cytosolic fractions, consistent with their role in synaptic function. Ethanol sensitization regulated more than twice the number of synaptic localized genes compared to acute ethanol exposure. Synaptic biological processes selectively perturbed by ethanol sensitization included protein folding and modification as well as and mitochondrial respiratory function, suggesting repeated ethanol exposure alters synaptic energy production and the processing of newly translated proteins. Additionally, marked differential exon usage followed ethanol sensitization in both synaptic and non-synaptic cellular fractions, with little to no perturbation following acute ethanol exposure. Altered synaptic exon usage following ethanol sensitization strongly affected genes related to RNA processing and stability, translational regulation, and synaptic function. These genes were also enriched for targets of the FMRP RNA-binding protein and contained consensus sequence motifs related to other known RNA binding proteins, suggesting that ethanol sensitization altered selective mRNA trafficking mechanisms. This study provides a foundation for investigating the role of ethanol in modifying the synaptic transcriptome and inducing changes in synaptic plasticity.
Collapse
Affiliation(s)
- Megan A O'Brien
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Rory M Weston
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States
| | - Nihar U Sheth
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Steven Bradley
- VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - John Bigbee
- Department of Anatomy and Neurobiology, Virginia Commonwealth University, Richmond, VA, United States
| | - Ashutosh Pandey
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Jennifer T Wolstenholme
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA, United States.,VCU Alcohol Research Center, Virginia Commonwealth University, Richmond, VA, United States.,Department of Neurology, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
36
|
Heavner GLW, Mansfeldt CB, Debs GE, Hellerstedt ST, Rowe AR, Richardson RE. Biomarkers' Responses to Reductive Dechlorination Rates and Oxygen Stress in Bioaugmentation Culture KB-1 TM. Microorganisms 2018; 6:E13. [PMID: 29419787 PMCID: PMC5874627 DOI: 10.3390/microorganisms6010013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 02/05/2018] [Indexed: 12/24/2022] Open
Abstract
Using mRNA transcript levels for key functional enzymes as proxies for the organohalide respiration (OHR) rate, is a promising approach for monitoring bioremediation populations in situ at chlorinated solvent-contaminated field sites. However, to date, no correlations have been empirically derived for chlorinated solvent respiring, Dehalococcoides mccartyi (DMC) containing, bioaugmentation cultures. In the current study, genome-wide transcriptome and proteome data were first used to confirm the most highly expressed OHR-related enzymes in the bioaugmentation culture, KB-1TM, including several reductive dehalogenases (RDases) and a Ni-Fe hydrogenase, Hup. Different KB-1™ DMC strains could be resolved at the RNA and protein level through differences in the sequence of a common RDase (DET1545-like homologs) and differences in expression of their vinyl chloride-respiring RDases. The dominant strain expresses VcrA, whereas the minor strain utilizes BvcA. We then used quantitative reverse-transcriptase PCR (qRT-PCR) as a targeted approach for quantifying transcript copies in the KB-1TM consortium operated under a range of TCE respiration rates in continuously-fed, pseudo-steady-state reactors. These candidate biomarkers from KB-1TM demonstrated a variety of trends in terms of transcript abundance as a function of respiration rate over the range: 7.7 × 10-12 to 5.9 × 10-10 microelectron equivalents per cell per hour (μeeq/cell∙h). Power law trends were observed between the respiration rate and transcript abundance for the main DMC RDase (VcrA) and the hydrogenase HupL (R² = 0.83 and 0.88, respectively), but not transcripts for 16S rRNA or three other RDases examined: TceA, BvcA or the RDase DET1545 homologs in KB1TM. Overall, HupL transcripts appear to be the most robust activity biomarker across multiple DMC strains and in mixed communities including DMC co-cultures such as KB1TM. The addition of oxygen induced cell stress that caused respiration rates to decline immediately (>95% decline within one hour). Although transcript levels did decline, they did so more slowly than the respiration rate observed (transcript decay rates between 0.02 and 0.03 per hour). Data from strain-specific probes on the pangenome array strains suggest that a minor DMC strain in KB-1™ that harbors a bvcA homolog preferentially recovered following oxygen stress relative to the dominant, vcrA-containing strain.
Collapse
Affiliation(s)
- Gretchen L W Heavner
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Cresten B Mansfeldt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Garrett E Debs
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Sage T Hellerstedt
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| | - Annette R Rowe
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
| | - Ruth E Richardson
- School of Civil and Environmental Engineering, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
37
|
Liang Y, Liu X, Singletary MA, Wang K, Mattes TE. Relationships between the Abundance and Expression of Functional Genes from Vinyl Chloride (VC)-Degrading Bacteria and Geochemical Parameters at VC-Contaminated Sites. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:12164-12174. [PMID: 28981261 DOI: 10.1021/acs.est.7b03521] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bioremediation of vinyl chloride (VC) contamination in groundwater could be mediated by three major bacterial guilds: anaerobic VC-dechlorinators, methanotrophs, and ethene-oxidizing bacteria (etheneotrophs) via metabolic or cometabolic pathways. We collected 95 groundwater samples across 6 chlorinated ethene-contaminated sites and searched for relationships among VC biodegradation gene abundance and expression and site geochemical parameters (e.g., VC concentrations). Functional genes from the three major VC-degrading bacterial guilds were present in 99% and expressed in 59% of the samples. Etheneotroph and methanotroph functional gene abundances ranged from 102 to 109 genes per liter of groundwater among the samples with VC reductive dehalogenase gene (bvcA and vcrA) abundances reaching 108 genes per liter of groundwater. Etheneotroph functional genes (etnC and etnE) and VC reductive dehalogenase genes (bvcA and vcrA) were strongly related to VC concentrations (p < 0.001). Methanotroph functional genes (mmoX and pmoA) were not related to VC concentration (p > 0.05). Samples from sites with bulk VC attenuation rates >0.08 year-1 contained higher levels of etheneotroph and anaerobic VC-dechlorinator functional genes and transcripts than those with bulk VC attenuation rates <0.004 year-1. We conclude that both etheneotrophs and anaerobic VC-dechlorinators have the potential to simultaneously contribute to VC biodegradation at these sites.
Collapse
Affiliation(s)
| | | | - Michael A Singletary
- NAVFAC Southeast, EV3 Environmental Restoration Building 135, Naval Air Station Jacksonville, Florida 32508, United States
| | | | | |
Collapse
|
38
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
39
|
Nitrous Oxide Reduction by an Obligate Aerobic Bacterium, Gemmatimonas aurantiaca Strain T-27. Appl Environ Microbiol 2017; 83:AEM.00502-17. [PMID: 28389533 DOI: 10.1128/aem.00502-17] [Citation(s) in RCA: 88] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 03/30/2017] [Indexed: 11/20/2022] Open
Abstract
N2O-reducing organisms with nitrous oxide reductases (NosZ) are known as the only biological sink of N2O in the environment. Among the most abundant nosZ genes found in the environment are nosZ genes affiliated with the understudied Gemmatimonadetes phylum. In this study, a unique regulatory mechanism of N2O reduction in Gemmatimonas aurantiaca strain T-27, an isolate affiliated with the Gemmatimonadetes phylum, was examined. Strain T-27 was incubated with N2O and/or O2 as the electron acceptor. Significant N2O reduction was observed only when O2 was initially present. When batch cultures of strain T-27 were amended with O2 and N2O, N2O reduction commenced after O2 was depleted. In a long-term incubation with the addition of N2O upon depletion, the N2O reduction rate decreased over time and came to an eventual stop. Spiking of the culture with O2 resulted in the resuscitation of N2O reduction activity, supporting the hypothesis that N2O reduction by strain T-27 required the transient presence of O2 The highest level of nosZ transcription (8.97 nosZ transcripts/recA transcript) was observed immediately after O2 depletion, and transcription decreased ∼25-fold within 85 h, supporting the observed phenotype. The observed difference between responses of strain T-27 cultures amended with and without N2O to O2 starvation suggested that N2O helped sustain the viability of strain T-27 during temporary anoxia, although N2O reduction was not coupled to growth. The findings in this study suggest that obligate aerobic microorganisms with nosZ genes may utilize N2O as a temporary surrogate for O2 to survive periodic anoxia.IMPORTANCE Emission of N2O, a potent greenhouse gas and ozone depletion agent, from the soil environment is largely determined by microbial sources and sinks. N2O reduction by organisms with N2O reductases (NosZ) is the only known biological sink of N2O at environmentally relevant concentrations (up to ∼1,000 parts per million by volume [ppmv]). Although a large fraction of nosZ genes recovered from soil is affiliated with nosZ found in the genomes of the obligate aerobic phylum Gemmatimonadetes, N2O reduction has not yet been confirmed in any of these organisms. This study demonstrates that N2O is reduced by an obligate aerobic bacterium, Gemmatimonas aurantiaca strain T-27, and suggests a novel regulation mechanism for N2O reduction in this organism, which may also be applicable to other obligate aerobic organisms possessing nosZ genes. We expect that these findings will significantly advance the understanding of N2O dynamics in environments with frequent transitions between oxic and anoxic conditions.
Collapse
|
40
|
Dolinová I, Štrojsová M, Černík M, Němeček J, Macháčková J, Ševců A. Microbial degradation of chloroethenes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13262-13283. [PMID: 28378313 DOI: 10.1007/s11356-017-8867-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 03/17/2017] [Indexed: 05/28/2023]
Abstract
Contamination by chloroethenes has a severe negative effect on both the environment and human health. This has prompted intensive remediation activity in recent years, along with research into the efficacy of natural microbial communities for degrading toxic chloroethenes into less harmful compounds. Microbial degradation of chloroethenes can take place either through anaerobic organohalide respiration, where chloroethenes serve as electron acceptors; anaerobic and aerobic metabolic degradation, where chloroethenes are used as electron donors; or anaerobic and aerobic co-metabolic degradation, with chloroethene degradation occurring as a by-product during microbial metabolism of other growth substrates, without energy or carbon benefit. Recent research has focused on optimising these natural processes to serve as effective bioremediation technologies, with particular emphasis on (a) the diversity and role of bacterial groups involved in dechlorination microbial processes, and (b) detection of bacterial enzymes and genes connected with dehalogenation activity. In this review, we summarise the different mechanisms of chloroethene bacterial degradation suitable for bioremediation and provide a list of dechlorinating bacteria. We also provide an up-to-date summary of primers available for detecting functional genes in anaerobic and aerobic bacteria degrading chloroethenes metabolically or co-metabolically.
Collapse
Affiliation(s)
- Iva Dolinová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Martina Štrojsová
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Miroslav Černík
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jan Němeček
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Jiřina Macháčková
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic
| | - Alena Ševců
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
- Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Studentská 2, 461 17, Liberec, Czech Republic.
| |
Collapse
|
41
|
Liang Y, Cook LJ, Mattes TE. Temporal abundance and activity trends of vinyl chloride (VC)-degrading bacteria in a dilute VC plume at Naval Air Station Oceana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13760-13774. [PMID: 28401391 DOI: 10.1007/s11356-017-8948-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 03/27/2017] [Indexed: 06/07/2023]
Abstract
Assessment and monitoring of microbial community dynamics is useful when tracking the progress of vinyl chloride (VC) bioremediation strategies, particularly in dilute plumes where apparent VC attenuation rates are low. In a long-term field study, the abundance and the activity of microbial VC degraders were tracked in three monitoring wells (MW05, MW25, and MW19) along a dilute VC plume at Naval Air Station (NAS) Oceana. High-throughput sequencing of partial 16S ribosomal RNA (rRNA) genes and transcripts revealed diverse groundwater microbial communities and showed that methanotrophs and anaerobic respirers (e.g., methanogens, sulfate reducers, and iron reducers) were among the most active and abundant guilds. Quantitative PCR analysis showed that among bacterial guilds with a potential to contribute to VC biodegradation, methanotrophs were the most abundant and active microbial group. Ethene-oxidizing bacterial populations were less abundant and relatively inactive compared to methanotrophs. In MW19, expression of functional genes associated with both aerobic VC oxidation and anaerobic VC reduction was observed. Overall, our results reveal that the groundwater community contains various active bacterial guilds previously associated with metabolic and cometabolic VC degradation processes either under aerobic and anaerobic conditions that might have contributed to the slowly decreasing VC concentrations at the NAS Oceana site over the 6-year study period.
Collapse
Affiliation(s)
- Yi Liang
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA
| | - Laura J Cook
- CH2M 5701 Cleveland Street Suite 200, Virginia Beach, VA, 23462, USA
| | - Timothy E Mattes
- Department of Civil and Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, IA, 52242, USA.
| |
Collapse
|
42
|
Effects of Sulfate Reduction on Trichloroethene Dechlorination by Dehalococcoides-Containing Microbial Communities. Appl Environ Microbiol 2017; 83:AEM.03384-16. [PMID: 28159790 DOI: 10.1128/aem.03384-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/26/2017] [Indexed: 12/26/2022] Open
Abstract
In order to elucidate interactions between sulfate reduction and dechlorination, we systematically evaluated the effects of different concentrations of sulfate and sulfide on reductive dechlorination by isolates, constructed consortia, and enrichments containing Dehalococcoides sp. Sulfate (up to 5 mM) did not inhibit the growth or metabolism of pure cultures of the dechlorinator Dehalococcoides mccartyi 195, the sulfate reducer Desulfovibrio vulgaris Hildenborough, or the syntroph Syntrophomonas wolfei In contrast, sulfide at 5 mM exhibited inhibitory effects on growth of the sulfate reducer and the syntroph, as well as on both dechlorination and growth rates of D. mccartyi Transcriptomic analysis of D. mccartyi 195 revealed that genes encoding ATP synthase, biosynthesis, and Hym hydrogenase were downregulated during sulfide inhibition, whereas genes encoding metal-containing enzymes involved in energy metabolism were upregulated even though the activity of those enzymes (hydrogenases) was inhibited. When the electron acceptor (trichloroethene) was limiting and an electron donor (lactate) was provided in excess to cocultures and enrichments, high sulfate concentrations (5 mM) inhibited reductive dechlorination due to the toxicity of generated sulfide. The initial cell ratio of sulfate reducers to D. mccartyi (1:3, 1:1, or 3:1) did not affect the dechlorination performance in the presence of sulfate (2 and 5 mM). In contrast, under electron donor limitation, dechlorination was not affected by sulfate amendments due to low sulfide production, demonstrating that D. mccartyi can function effectively in anaerobic microbial communities containing moderate sulfate concentrations (5 mM), likely due to its ability to outcompete other hydrogen-consuming bacteria and archaea.IMPORTANCE Sulfate is common in subsurface environments and has been reported as a cocontaminant with chlorinated solvents at various concentrations. Inconsistent results for the effects of sulfate inhibition on the performance of dechlorination enrichment cultures have been reported in the literature. These inconsistent findings make it difficult to understand potential mechanisms of sulfate inhibition and complicate the interpretation of bioremediation field data. In order to elucidate interactions between sulfate reduction and reductive dechlorination, this study systematically evaluated the effects of different concentrations of sulfate and sulfide on reductive dechlorination by isolates, constructed consortia, and enrichments containing Dehalococcoides sp. This study provides a more fundamental understanding of the competition mechanisms between reductive dechlorination by Dehalococcoides mccartyi and sulfate reduction during the bioremediation process. It also provides insights on the significance of sulfate concentrations on reductive dechlorination under electron donor/acceptor-limiting conditions during in situ bioremediation applications. For example, at a trichloroethene-contaminated site with a high sulfate concentration, proper slow-releasing electron donors can be selected to generate an electron donor-limiting environment that favors reductive dechlorination and minimizes the sulfide inhibition effect.
Collapse
|
43
|
Mao X, Oremland RS, Liu T, Gushgari S, Landers AA, Baesman SM, Alvarez-Cohen L. Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:2366-2372. [PMID: 28075122 PMCID: PMC6436540 DOI: 10.1021/acs.est.6b05770] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Acetylene (C2H2) can be generated in contaminated groundwater sites as a consequence of chemical degradation of trichloroethene (TCE) by in situ minerals, and C2H2 is known to inhibit bacterial dechlorination. In this study, we show that while high C2H2 (1.3 mM) concentrations reversibly inhibit reductive dechlorination of TCE by Dehalococcoides mccartyi isolates as well as enrichment cultures containing D. mccartyi sp., low C2H2 (0.4 mM) concentrations do not inhibit growth or metabolism of D. mccartyi. Cocultures of Pelobacter SFB93, a C2H2-fermenting bacterium, with D. mccartyi strain 195 or with D. mccartyi strain BAV1 were actively sustained by providing acetylene as the electron donor and carbon source while TCE or cis-DCE served as the electron acceptor. Inhibition by acetylene of reductive dechlorination and methanogenesis in the enrichment culture ANAS was observed, and the inhibition was removed by adding Pelobacter SFB93 into the consortium. Transcriptomic analysis of D. mccartyi strain 195 showed genes encoding for reductive dehalogenases (e.g., tceA) were not affected during the C2H2-inhibition, while genes encoding for ATP synthase, biosynthesis, and Hym hydrogenase were down-regulated during C2H2 inhibition, consistent with the physiological observation of lower cell yields and reduced dechlorination rates in strain 195. These results will help facilitate the optimization of TCE-bioremediation at contaminated sites containing both TCE and C2H2.
Collapse
Affiliation(s)
- Xinwei Mao
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | | | - Tong Liu
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Sara Gushgari
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Abigail A. Landers
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
| | - Shaun M. Baesman
- US Geological Survey, Menlo Park, California 94025, United States
| | - Lisa Alvarez-Cohen
- Department of Civil and Environmental Engineering, College of Engineering, University of California, Berkeley, California 94720-1710, United States
- Earth and Environmental Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
44
|
Jugder BE, Ertan H, Wong YK, Braidy N, Manefield M, Marquis CP, Lee M. Genomic, transcriptomic and proteomic analyses of Dehalobacter UNSWDHB in response to chloroform. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:814-824. [PMID: 27452500 DOI: 10.1111/1758-2229.12444] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/25/2016] [Indexed: 06/06/2023]
Abstract
Organohalide respiring bacteria (ORB) are capable of utilising organohalides as electron acceptors for the generation of cellular energy and consequently play an important role in the turnover of natural and anthropogenically-derived organohalides. In this study, the response of a Dehalobacter sp. strain UNSWDHB to the addition of trichloromethane (TCM) after a 50 h period of its absence (suffocation) was evaluated from a transcriptomic and proteomic perspective. The up-regulation of TCM reductive dehalogenase genes (tmrABC) and their gene products (TmrABC) was confirmed at both transcriptional and proteomic levels. Other findings include the upregulation of various hydrogenases (membrane-associated Ni-Fe hydrogenase complexes and soluble Fe-Fe hydrogenases), formate dehydrogenases, complex I and a pyrophosphate-energized proton pump. The elevated expression of enzymes associated with carbon metabolism, including complete Wood Ljungdahl pathway, during TCM respiration raises interesting questions on possible fates of intracellular formate and its potential role in the physiology of this bacterium. Overall, the findings presented here provide a broader view on the bioenergetics and general physiology of Dehalobacter UNSWDHB cells actively respiring with TCM.
Collapse
Affiliation(s)
- Bat-Erdene Jugder
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Haluk Ertan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
- Department of Molecular Biology and Genetics, Istanbul University, Turkey
| | - Yie Kuan Wong
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Nady Braidy
- Faculty of Medicine, School of Psychiatry, Centre for Healthy Brain Ageing, University of New South Wales, Sydney, Australia
| | - Michael Manefield
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Christopher P Marquis
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| | - Matthew Lee
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
45
|
Cai J, Yue Y, Wang Y, Jin Z, Jin F, Wu C. Quantitative study of effects of free cationic chains on gene transfection in different intracellular stages. J Control Release 2016; 238:71-79. [PMID: 27448443 DOI: 10.1016/j.jconrel.2016.07.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 06/08/2016] [Accepted: 07/19/2016] [Indexed: 12/12/2022]
Abstract
Previously, we revealed that in the application of using cationic polymer chains, polyethylenimine (PEI), to condense anionic plasmid DNA chains (pDNA) to form the DNA/polymer polyplexes, after all the pDNAs are complexed with PEI, further added PEIs exist individual chains and free in the solution mixture. It is those uncomplexed polycation chains that dramatically promote the gene transfection. In the current study, we studied how those free cationic chains with different lengths and topologies affect the intracellular trafficking of the polyplexes, the translocation of pDNA through the nuclear membrane, the transcription of pDNA to mRNA and the translocation of mRNA from nucleus to cytosol in HepG2 cells by using a combination of the three-dimensional confocal microscope and TaqMan real-time PCR. We found that free branched PEI chains with a molar mass of 25,000g/mol and a total concentration of 1.8×10(-6)g/mL promote the overall gene transfection efficiency by a factor of ~500 times. Our results quantitatively reveal that free chains help little in the cellular uptake, but clearly reduce the lysosomal entrapment of those internalized polyplexes (2-3 folds); assist the translocation of pDNA through nuclear membrane after it is released from the polyplexes in the cytosol (~5 folds); enhance the pDNA-to-mRNA transcription efficiency (~4 folds); and facilitate the nucleus-to-cytosol translocation of mRNA (7-8 folds). The total enhancement of those steps agrees well with the overall efficiency, demonstrating, for the first time, how free cationic polymer chains quantitatively promote the gene transfection in each step in the intracellular space.
Collapse
Affiliation(s)
- Jinge Cai
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong.
| | - Yanan Yue
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Yanjing Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | - Zhenyu Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chi Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong; Hefei National Laboratory of Physical Science at the Microscale, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
46
|
Kanitkar YH, Stedtfeld RD, Steffan RJ, Hashsham SA, Cupples AM. Loop-Mediated Isothermal Amplification (LAMP) for Rapid Detection and Quantification of Dehalococcoides Biomarker Genes in Commercial Reductive Dechlorinating Cultures KB-1 and SDC-9. Appl Environ Microbiol 2016; 82:1799-1806. [PMID: 26746711 PMCID: PMC4784023 DOI: 10.1128/aem.03660-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 12/27/2015] [Indexed: 12/23/2022] Open
Abstract
Real-time quantitative PCR (qPCR) protocols specific to the reductive dehalogenase (RDase) genes vcrA, bvcA, and tceA are commonly used to quantify Dehalococcoides spp. in groundwater from chlorinated solvent-contaminated sites. In this study, loop-mediated isothermal amplification (LAMP) was developed as an alternative approach for the quantification of these genes. LAMP does not require a real-time thermal cycler (i.e., amplification is isothermal), allowing the method to be performed using less-expensive and potentially field-deployable detection devices. Six LAMP primers were designed for each of three RDase genes (vcrA, bvcA, and tceA) using Primer Explorer V4. The LAMP assays were compared to conventional qPCR approaches using plasmid standards, two commercially available bioaugmentation cultures, KB-1 and SDC-9 (both contain Dehalococcoides species). DNA was extracted over a growth cycle from KB-1 and SDC-9 cultures amended with trichloroethene and vinyl chloride, respectively. All three genes were quantified for KB-1, whereas only vcrA was quantified for SDC-9. A comparison of LAMP and qPCR using standard plasmids indicated that quantification results were similar over a large range of gene concentrations. In addition, the quantitative increase in gene concentrations over one growth cycle of KB-1 and SDC-9 using LAMP was comparable to that of qPCR. The developed LAMP assays for vcrA and tceA genes were validated by comparing quantification on the Gene-Z handheld platform and a real-time thermal cycler using DNA isolated from eight groundwater samples obtained from an SDC-9-bioaugmented site (Tulsa, OK). These assays will be particularly useful at sites subject to bioaugmentation with these two commonly used Dehalococcoides species-containing cultures.
Collapse
Affiliation(s)
- Yogendra H Kanitkar
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Robert D Stedtfeld
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| | - Robert J Steffan
- Biotechnology Development and Applications Group, CB&I Federal Services, LLC, Lawrenceville, New Jersey, USA
| | - Syed A Hashsham
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, USA
| | - Alison M Cupples
- Department of Civil and Environmental Engineering, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
47
|
Wang S, Chng KR, Chen C, Bedard DL, He J. Genomic Characterization of Dehalococcoides mccartyi Strain JNA That Reductively Dechlorinates Tetrachloroethene and Polychlorinated Biphenyls. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:14319-14325. [PMID: 26551549 DOI: 10.1021/acs.est.5b01979] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Dehalococcoides mccartyi strain JNA detoxifies highly chlorinated polychlorinated biphenyl (PCB) mixtures via 85 distinct dechlorination reactions, suggesting that it has great potential for PCB bioremediation. However, its genomic and functional gene information remain unknown due to extremely slow growth of strain JNA with PCBs. In this study, we used tetracholorethene (PCE) as an alternative electron acceptor to grow sufficient biomass of strain JNA for subsequent genome sequencing and functional gene identification. Analysis of the assembled draft genome (1 462 509 bp) revealed the presence of 29 putative reductive dehalogenase (RDase) genes. Among them, JNA_RD8 and JNA_RD11 genes were highly transcribed in both PCE- and PCB-fed cultures. Furthermore, in vitro assays with crude cell lysate from PCE grown cells revealed dechlorination activity against both PCE and 2,2',3,4,4',5,5'-heptachlorobiphenyl. These data suggest that both JNA_RD8 and JNA_RD11 may be bifunctional PCE/PCB RDases. This study deepens the knowledge of organohalide respiration of PCBs and facilitates in situ PCB-bioremediation with strain JNA.
Collapse
Affiliation(s)
- Shanquan Wang
- Department of Civil and Environmental Engineering, National University of Singapore , Singapore 117576
| | - Kern Rei Chng
- Department of Civil and Environmental Engineering, National University of Singapore , Singapore 117576
- Computational and Systems Biology, Genome Institute of Singapore , Singapore 138672
| | - Chen Chen
- Department of Civil and Environmental Engineering, National University of Singapore , Singapore 117576
| | - Donna L Bedard
- Department of Biological Sciences, Rensselaer Polytechnic Institute , 110 Eighth St., Troy, New York 12180, United States
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore , Singapore 117576
| |
Collapse
|
48
|
Zhen H, Krumins V, Fennell DE, Mainelis G. Development of a dual-internal-reference technique to improve accuracy when determining bacterial 16S rRNA:16S rRNA gene ratio with application to Escherichia coli liquid and aerosol samples. J Microbiol Methods 2015; 117:113-21. [PMID: 26241659 DOI: 10.1016/j.mimet.2015.07.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Revised: 07/27/2015] [Accepted: 07/27/2015] [Indexed: 01/04/2023]
Abstract
Accurate enumeration of rRNA content in microbial cells, e.g. by using the 16S rRNA:16S rRNA gene ratio, is critical to properly understand its relationship to microbial activities. However, few studies have considered possible methodological artifacts that may contribute to the variability of rRNA analysis results. In this study, a technique utilizing genomic DNA and 16S rRNA from an exogenous species (Pseudomonas fluorescens) as dual internal references was developed to improve accuracy when determining the 16S rRNA:16S rRNA gene ratio of a target organism, Escherichia coli. This technique was able to adequately control the variability in sample processing and analysis procedures due to nucleic acid (DNA and RNA) losses, inefficient reverse transcription of RNA, and inefficient PCR amplification. The measured 16S rRNA:16S rRNA gene ratio of E. coli increased by 2-3 fold when E. coli 16S rRNA gene and 16S rRNA quantities were normalized to the sample-specific fractional recoveries of reference (P. fluorescens) 16S rRNA gene and 16S rRNA, respectively. In addition, the intra-sample variation of this ratio, represented by coefficients of variation from replicate samples, decreased significantly after normalization. This technique was applied to investigate the temporal variation of 16S rRNA:16S rRNA gene ratio of E. coli during its non-steady-state growth in a complex liquid medium, and to E. coli aerosols when exposed to particle-free air after their collection on a filter. The 16S rRNA:16S rRNA gene ratio of E. coli increased significantly during its early exponential phase of growth; when E. coli aerosols were exposed to extended filtration stress after sample collection, the ratio also increased. In contrast, no significant temporal trend in E. coli 16S rRNA:16S rRNA gene ratio was observed when the determined ratios were not normalized based on the recoveries of dual references. The developed technique could be widely applied in studies of relationship between cellular rRNA abundance and bacterial activity.
Collapse
Affiliation(s)
- Huajun Zhen
- Rutgers University, Department of Environmental Sciences, 14 College Farm Rd., New Brunswick, NJ 08901, United States
| | - Valdis Krumins
- Rutgers University, Department of Environmental Sciences, 14 College Farm Rd., New Brunswick, NJ 08901, United States
| | - Donna E Fennell
- Rutgers University, Department of Environmental Sciences, 14 College Farm Rd., New Brunswick, NJ 08901, United States
| | - Gediminas Mainelis
- Rutgers University, Department of Environmental Sciences, 14 College Farm Rd., New Brunswick, NJ 08901, United States.
| |
Collapse
|
49
|
Mattes TE, Jin YO, Livermore J, Pearl M, Liu X. Abundance and activity of vinyl chloride (VC)-oxidizing bacteria in a dilute groundwater VC plume biostimulated with oxygen and ethene. Appl Microbiol Biotechnol 2015; 99:9267-76. [DOI: 10.1007/s00253-015-6771-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/08/2015] [Accepted: 06/11/2015] [Indexed: 10/23/2022]
|
50
|
Yoon S, Cruz-García C, Sanford R, Ritalahti KM, Löffler FE. Denitrification versus respiratory ammonification: environmental controls of two competing dissimilatory NO3(-)/NO2(-) reduction pathways in Shewanella loihica strain PV-4. THE ISME JOURNAL 2015; 9:1093-104. [PMID: 25350157 PMCID: PMC4409154 DOI: 10.1038/ismej.2014.201] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 08/30/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
Denitrification and respiratory ammonification are two competing, energy-conserving NO3(-)/NO2(-) reduction pathways that have major biogeochemical consequences for N retention, plant growth and climate. Batch and continuous culture experiments using Shewanella loihica strain PV-4, a bacterium possessing both the denitrification and respiratory ammonification pathways, revealed factors that determine NO3(-)/NO2(-) fate. Denitrification dominated at low carbon-to-nitrogen (C/N) ratios (that is, electron donor-limiting growth conditions), whereas ammonium was the predominant product at high C/N ratios (that is, electron acceptor-limiting growth conditions). pH and temperature also affected NO3(-)/NO2(-) fate, and incubation above pH 7.0 and temperatures of 30 °C favored ammonium formation. Reverse-transcriptase real-time quantitative PCR analyses correlated the phenotypic observations with nirK and nosZ transcript abundances that decreased up to 1600-fold and 27-fold, respectively, under conditions favoring respiratory ammonification. Of the two nrfA genes encoded on the strain PV-4 genome, nrfA0844 transcription decreased only when the chemostat reactor received medium with the lowest C/N ratio of 1.5, whereas nrfA0505 transcription occurred at low levels (≤3.4 × 10(-2) transcripts per cell) under all growth conditions. At intermediate C/N ratios, denitrification and respiratory ammonification occurred concomitantly, and both nrfA0844 (5.5 transcripts per cell) and nirK (0.88 transcripts per cell) were transcribed. Recent findings suggest that organisms with both the denitrification and respiratory ammonification pathways are not uncommon in soil and sediment ecosystems, and strain PV-4 offers a tractable experimental system to explore regulation of dissimilatory NO3(-)/NO2(-) reduction pathways.
Collapse
Affiliation(s)
- Sukhwan Yoon
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Claribel Cruz-García
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Robert Sanford
- Department of Geology, University of Illinois, Urbana, IL, USA
| | - Kirsti M Ritalahti
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Frank E Löffler
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
- Department of Microbiology, University of Tennessee, Knoxville, TN, USA
- University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS) and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN, USA
| |
Collapse
|