1
|
Increased mortality and altered local immune response in secondary peritonitis after previous visceral operations in mice. Sci Rep 2021; 11:16175. [PMID: 34376743 PMCID: PMC8355121 DOI: 10.1038/s41598-021-95592-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/27/2021] [Indexed: 12/29/2022] Open
Abstract
Postoperative peritonitis is characterized by a more severe clinical course than other forms of secondary peritonitis. The pathophysiological mechanisms behind this phenomenon are incompletely understood. This study used an innovative model to investigate these mechanisms, combining the models of murine Colon Ascendens Stent Peritonitis (CASP) and Surgically induced Immune Dysfunction (SID). Moreover, the influence of the previously described anti-inflammatory reflex transmitted by the vagal nerve was characterized. SID alone, or 3 days before CASP were performed in female C57BL/6 N mice. Subdiaphragmatic vagotomy was performed six days before SID with following CASP. The immune status was assessed by FACS analysis and measurement of cytokines. Local intestinal inflammatory changes were characterized by immunohistochemistry. Mortality was increased in CASP animals previously subjected to SID. Subclinical bacteremia occurred after SID, and an immunosuppressive milieu occurred secondary to SID just before the induction of CASP. Previous SID modified the pattern of intestinal inflammation induced by CASP. Subdiaphragmatic vagotomy had no influence on sepsis mortality in our model of postoperative peritonitis. Our results indicate a surgery-induced inflammation of the small intestine and the peritoneal cavity with bacterial translocation, which led to immune dysfunction and consequently to a more severe peritonitis.
Collapse
|
2
|
Cui Y, Cui Y. [Intraoperative Aspiration]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:393-401. [PMID: 32429641 PMCID: PMC7260386 DOI: 10.3779/j.issn.1009-3419.2020.101.22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
术中误吸是外科手术中常见的肺部并发症,麻醉和体位是导致术中误吸的主要因素。近年来,围手术期肺保护已受到外科和麻醉医师的广泛关注,如何加速术后康复进程,减少相关并发症发生,显著改善患者预后已成为当前外科治疗的主要目标。本文将以术中误吸为重点,从解剖、病理生理、表现、诊断、处理和预防等方面展开综述。
Collapse
Affiliation(s)
- Yiyao Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, China
| | - Yong Cui
- Department of Thoracic Surgery, Beijing Friendship Hospital Affiliated to Capital Medical University, Beijing 100050, China
| |
Collapse
|
3
|
Cohen JT, Danise M, Machan JT, Zhao R, Lefort CT. Murine Myeloid Progenitors Attenuate Immune Dysfunction Induced by Hemorrhagic Shock. Stem Cell Reports 2021; 16:324-336. [PMID: 33482101 PMCID: PMC7878835 DOI: 10.1016/j.stemcr.2020.12.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/11/2022] Open
Abstract
Hemorrhagic shock induces an aberrant immune response characterized by simultaneous induction of a proinflammatory state and impaired host defenses. The objective of this study was to evaluate the impact of conditionally immortalized neutrophil progenitors (NPs) on this aberrant immune response. We employed a mouse model of hemorrhagic shock, followed by the adoptive transfer of NPs and subsequent inoculation of Staphylococcus aureus to induce pneumonia. We observed that transplant of NPs decreases the proportion of host neutrophils that express programmed death ligand 1 and intercellular adhesion molecule 1 in the context of prior hemorrhage. Following hemorrhage, NP transplant decreased proinflammatory cytokines in the lungs, increased neutrophil migration into the airspaces, and enhanced bacterial clearance. Further, hemorrhagic shock improved NP engraftment in the bone marrow. These results suggest that NPs hold the potential for use as a cellular therapy in the treatment and prevention of secondary infection following hemorrhagic shock. Myeloid progenitors restore a competent inflammatory response to pneumonia Progenitor transplantation promotes clearance of secondary S. aureus pneumonia Hemorrhagic shock enhances engraftment of transplanted myeloid progenitors
Collapse
Affiliation(s)
- Joshua T Cohen
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Michael Danise
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Jason T Machan
- Lifespan Biostatistics Core, Rhode Island Hospital, Providence, RI 02903, USA
| | - Runping Zhao
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA
| | - Craig T Lefort
- Division of Surgical Research, Department of Surgery, Rhode Island Hospital, 593 Eddy Street, Providence, RI 02903, USA.
| |
Collapse
|
4
|
Hemorrhage Attenuates Neutrophil Recruitment in Response to Secondary Respiratory Infection by Pseudomonas Aeruginosa. Shock 2020; 52:506-512. [PMID: 30475329 DOI: 10.1097/shk.0000000000001288] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Neutrophil recruitment into the lung airspaces plays an important role in the containment and clearance of bacteria. Hemorrhagic shock, a complication of traumatic injury, induces immune dysfunction that compromises host defense and frequently leads to secondary infection. The objective of the current study was to determine whether prior hemorrhage impacts neutrophil recruitment in response to secondary Pseudomonas aeruginosa. Experiments were performed using a mouse model (C57BL/6) of respiratory infection by P. aeruginosa (strain PA103, 3 × 10 colony-forming units [CFUs]) that is delivered by intratracheal inhalation 24 h after hypovolemic hemorrhagic shock (fixed mean arterial blood pressure at 35 mmHg for 90 min, Ringer's lactate infused as fluid resuscitation). By postmortem flow cytometry analyses of bronchoalveolar lavage fluid, we observe that prior hemorrhage attenuates the entry of neutrophils into the lung airspaces in response to P. aeruginosa. The reduction in neutrophil recruitment occurs in an amplified inflammatory environment, with elevated lung tissue levels of interleukin 6 and C-X-C motif ligand 1 in mice receiving hemorrhage prior to infection. As compared to either insult alone, outcome to sequential hemorrhage and respiratory infection includes enhanced mortality. The effect of prior hemorrhage on clearance of P. aeruginosa, as determined by quantifying bacterial CFUs in lung tissue, was not statistically significant at 24 h postinfection, but our data suggest that further inquiry may be needed to fully understand the potential impact of hemorrhagic shock on this process. These results suggest that changes in neutrophil recruitment may contribute to the immune dysfunction following hemorrhagic shock that renders the host susceptible to severe respiratory infection.
Collapse
|
5
|
Kim S, Joe Y, Park SU, Jeong SO, Kim JK, Park SH, Pae HO, Surh YJ, Shin J, Chung HT. Induction of endoplasmic reticulum stress under endotoxin tolerance increases inflammatory responses and decreases Pseudomonas aeruginosa pneumonia. J Leukoc Biol 2018; 104:1003-1012. [PMID: 29924419 DOI: 10.1002/jlb.3a0317-106rrr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 05/13/2018] [Accepted: 05/20/2018] [Indexed: 12/19/2022] Open
Abstract
Endotoxin tolerance develops in the late phase of sepsis to protect cells from an early hyperinflammatory response. Nonetheless, because it induces an immunosuppressive environment, patients with sepsis in its late phase are affected by secondary infections, particularly bacterial pneumonia. Here, we showed that induction of endoplasmic reticulum (ER) stress leads to activation of glycogen synthase kinase 3β (GSK-3β) and X-box-binding protein 1 (XBP-1) in an inositol-requiring enzyme 1α (IRE1α)-mediated manner, which in turn restores the inflammatory response in endotoxin-tolerant macrophages. Animal and in vitro models of endotoxin tolerance were studied along with a model of LPS-induced endotoxin tolerance and a model of cecal ligation and puncture (CLP)-induced endotoxin tolerance. To detect the suppressed inflammatory response during endotoxin tolerance, inflammatory-cytokine expression levels were measured by quantitative real-time PCR and an ELISA. Our research revealed that induction of ER stress alleviated lung injury in a septic host infected with Pseudomonas aeruginosa via the activation of GSK-3β and XBP-1 in an IRE1α-mediated manner. Consequently, in the lungs of the septic host infected with P. aeruginosa, symptoms of pneumonia improved and the infecting bacteria were cleared. Thus, for septic patients, determination of immune status may guide the selection of appropriate immunomodulation, and ER stress can be a novel therapeutic strategy restoring the immune response in patients with endotoxin tolerance.
Collapse
Affiliation(s)
- Sena Kim
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Yeonsoo Joe
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Se-Ung Park
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Sun Oh Jeong
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| | - Jin-Kyung Kim
- Department of Cosmetics, Wonkwang Health Science University, Iksan, South Korea
| | - Seong Hoon Park
- Department of Radiology, Wonkwang University School of Medicine, Institute for Metabolic Disease, Iksan, South Korea
| | - Hyun-Ock Pae
- Department of Microbiology and immunology, Wonkwang University School of Medicine, Iksan, South Korea
| | - Young-Joon Surh
- College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jaekyoon Shin
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, South Korea
| | - Hun Taeg Chung
- School of Biological Sciences, University of Ulsan, Ulsan, South Korea
| |
Collapse
|
6
|
Hunt EB, Sullivan A, Galvin J, MacSharry J, Murphy DM. Gastric Aspiration and Its Role in Airway Inflammation. Open Respir Med J 2018; 12:1-10. [PMID: 29456774 PMCID: PMC5806178 DOI: 10.2174/1874306401812010001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 12/22/2017] [Accepted: 01/01/2018] [Indexed: 12/15/2022] Open
Abstract
Gastro-Oesophageal Reflux (GOR) has been associated with chronic airway diseases while the passage of foreign matter into airways and lungs through aspiration has the potential to initiate a wide spectrum of pulmonary disorders. The clinical syndrome resulting from such aspiration will depend both on the quantity and nature of the aspirate as well as the individual host response. Aspiration of gastric fluids may cause damage to airway epithelium, not only because acidity is toxic to bronchial epithelial cells but also due to the effect of digestive enzymes such as pepsin and bile salts. Experimental models have shown that direct instillation of these factors to airways epithelia cause damage with a consequential inflammatory response. The pathophysiology of these responses is gradually being dissected, with better understanding of acute gastric aspiration injury, a major cause of acute lung injury, providing opportunities for therapeutic intervention and potentially, ultimately, improved understanding of the chronic airway response to aspiration. Ultimately, clarification of the inflammatory pathways which are related to micro-aspiration via pepsin and bile acid salts may eventually progress to pharmacological intervention and surgical studies to assess the clinical benefits of such therapies in driving symptom improvement or reducing disease progression.
Collapse
Affiliation(s)
- E B Hunt
- The Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland.,The Health Research Board Clinical Research Facility, University College Cork, Cork, Ireland
| | - A Sullivan
- The APC Microbiome Institute, Schools of Medicine and Microbiology, University College Cork, Ireland
| | - J Galvin
- The APC Microbiome Institute, Schools of Medicine and Microbiology, University College Cork, Ireland
| | - J MacSharry
- The APC Microbiome Institute, Schools of Medicine and Microbiology, University College Cork, Ireland
| | - D M Murphy
- The Department of Respiratory Medicine, Cork University Hospital, Cork, Ireland.,The Health Research Board Clinical Research Facility, University College Cork, Cork, Ireland
| |
Collapse
|
7
|
Son YG, Shin J, Ryu HG. Pneumonitis and pneumonia after aspiration. J Dent Anesth Pain Med 2017; 17:1-12. [PMID: 28879323 PMCID: PMC5564131 DOI: 10.17245/jdapm.2017.17.1.1] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 02/19/2017] [Accepted: 02/20/2017] [Indexed: 12/25/2022] Open
Abstract
Aspiration pneumonitis and aspiration pneumonia are clinical syndromes caused by aspiration. These conditions are clinically significant due to their high morbidity and mortality. However, aspiration as a preceding event are often unwitnessed, particularly in cases of asymptomatic or silent aspiration. Furthermore, despite the difference in treatment approaches for managing aspiration pneumonitis and aspiration pneumonia, these two disease entities are often difficult to discriminate from one another, resulting in inappropriate treatment. The use of unclear terminologies hinders the comparability among different studies, making it difficult to produce evidence-based conclusions and practical guidelines. We reviewed the most recent studies to define aspiration, aspiration pneumonitis, and aspiration pneumonia, and to further assess these conditions in terms of incidence and epidemiology, pathophysiology, risk factors, diagnosis, management and treatment, and prevention.
Collapse
Affiliation(s)
- Young Gon Son
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Jungho Shin
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| | - Ho Geol Ryu
- Department of Anesthesiology and Pain Medicine, Seoul National University College of Medicine, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
8
|
Cavaillon JM, Annane D. Invited review: Compartmentalization of the inflammatory response in sepsis and SIRS. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/09680519060120030301] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Sepsis and systemic inflammatory response syndrome (SIRS) are associated with an exacerbated production of both pro- and anti-inflammatory mediators that are mainly produced within tissues. Although a systemic process, the pathophysiological events differ from organ to organ, and from organ to peripheral blood, leading to the concept of compartmentalization. The nature of the insult ( e.g. burn, hemorrhage, trauma, peritonitis), the cellular composition of each compartment ( e.g . nature of phagocytes, nature of endothelial cells), and its micro-environment ( e.g. local presence of granulocyte-macrophage colony stimulating factor [GM-CSF] in the lungs, low levels of arginine in the liver, release of endotoxin from the gut), and leukocyte recruitment, have a great influence on local inflammation and on tissue injury. High levels of pro-inflammatory mediators ( e.g. interleukin-1 [IL-1], tumor necrosis factor [TNF], gamma interferon [IFN-γ], high mobility group protein-1 [HMGB1], macrophage migration inhibitory factor [MIF]) produced locally and released into the blood stream initiate remote organ injury as a consequence of an organ cross-talk. The inflammatory response within the tissues is greatly influenced by the local delivery of neuromediators by the cholinergic and sympathetic neurons. Acetylcholine and epinephrine contribute with IL-10 and other mediators to the anti-inflammatory compensatory response initiated to dampen the inflammatory process. Unfortunately, this regulatory response leads to an altered immune status of leukocytes that can increase the susceptibility to further infection. Again, the nature of the insult, the nature of the leukocytes, the presence of circulating microbial components, and the nature of the triggering agent employed to trigger cells, greatly influence the immune status of the leukocytes that may differ from one compartment to another. While anti-inflammatory mediators predominate within the blood stream to avoid igniting new inflammatory foci, their presence within tissues may not always be sufficient to prevent the initiation of a deleterious inflammatory response in the different compartments.
Collapse
Affiliation(s)
| | - Djillali Annane
- Service de Réanimation, Hôpital Raymond Poincaré, Assistance Publique - Hôpitaux de Paris, Faculté de Médecine Paris Ile de France Ouest, Université de Versailles Saint-Quentin-en-Yvelines, Garches, France
| |
Collapse
|
9
|
Abstract
BACKGROUND Acute kidney injury (AKI) occurs in 26% of trauma patients and is associated with increased mortality and risk for nosocomial infections (NCIs). We compared serial plasma cytokine levels in patients with posttraumatic AKI to determine whether the early cytokine changes are associated with the occurrence of AKI and NCI. METHODS We performed a secondary analysis of the Inflammation and the Host Response to Injury database to include adult blunt trauma patients who had available plasma proteomic analyses. AKI was defined by the RIFLE (Risk, Injury, Failure, Loss, and End-stage Kidney) classification, which requires a 50% increase in serum creatinine. The association among AKI, NCI, and plasma cytokines was analyzed using a mixed model analyses and logistic regression. RESULTS Among 147 patients in the cohort, prevalence of NCI was 73% and 52% for patients with and without AKI, respectively. In mixed model analyses adjusted for clinical factors, AKI patients developed significant early increase in IL-1ra, IL-8, MCP1, and IL-6; early decrease in sTNFR2; and late decrease in IL-1ra, IL-4, and IL-6 concentrations, compared with patients without AKI and regardless of NCI. The change in cytokine pattern differed for sIL1R2, CXCL1, and MIP1β, depending on the occurrence of NCI. Patients with AKI and NCI had lower early and late sIL1R2 and higher early and late CXCL1 and MIP1β levels. Within the first 24 hours of injury, adding plasma levels of IL-1ra, IL-8, MCP1, IL-6, and sTNFR2 to clinical parameters of injury severity provided a predictive model for AKI superior to clinical model only (p < 0.001). CONCLUSION AKI trauma patients exhibit simultaneous changes in proinflammatory and anti-inflammatory serial plasma cytokine levels. The predictive model for AKI that combines plasma cytokine levels with clinical data within 24 hours of injury requires further prospective validation in larger studies. LEVEL OF EVIDENCE Prognostic study, level III.
Collapse
|
10
|
Ding N, Dahlke K, Janze AK, Mailer PC, Maus R, Bohling J, Welte T, Bauer M, Riedemann NC, Maus UA. Role of p38 mitogen-activated protein kinase in posttraumatic immunosuppression in mice. J Trauma Acute Care Surg 2012; 73:861-8. [DOI: 10.1097/ta.0b013e31825ab11f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
Abstract
OBJECTIVE Aspiration of oropharyngeal or gastric contents into the lower respiratory tract is a common event in critically ill patients and can lead to pneumonia or pneumonitis. Aspiration pneumonia is the leading cause of pneumonia in the intensive care unit and is one of the leading risk factors for acute lung injury and acute respiratory distress syndromes. Despite its frequency, it remains largely a disease of exclusion characterized by ill-defined infiltrates on the chest radiograph and hypoxia. An accurate ability to diagnose aspiration is paramount because different modalities of therapy, if applied early and selectively, could change the course of the disease. This article reviews definitions, diagnosis, epidemiology, pathophysiology, including animal models of aspiration-induced lung injury, and evidence-based clinical management. Additionally, a review of current and potential biomarkers that have been tested clinically in humans is provided. DATA SOURCES Data were obtained from a PubMed search of the medical literature. PubMed "related articles" search strategies were used. SUMMARY AND CONCLUSIONS Aspiration in the intensive care unit is a clinically relevant problem requiring expertise and awareness. A definitive diagnosis of aspiration pneumonitis or pneumonia is challenging to make. Advances in specific biomarker profiles and prediction models may enhance the diagnosis and prognosis of clinical aspiration syndromes. Evidence-based management is supportive, including mechanical ventilation, bronchoscopy for particulate aspiration, consideration of empiric antibiotics for pneumonia treatment, and lower respiratory tract sampling to define pathogenic bacteria that are causative.
Collapse
|
12
|
Renois F, Jacques J, Guillard T, Moret H, Pluot M, Andreoletti L, de Champs C. Preliminary investigation of a mice model of Klebsiella pneumoniae subsp. ozaenae induced pneumonia. Microbes Infect 2011; 13:1045-51. [PMID: 21723409 DOI: 10.1016/j.micinf.2011.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/09/2011] [Accepted: 05/31/2011] [Indexed: 12/28/2022]
Abstract
In the present study, we comparatively assessed the pathophysiological mechanisms developed during lung infection of BALB/C female mice infected by an original wild type Klebsiella pneumoniae subsp. ozaenae strain (CH137) or by a referent subspecies K. pneumoniae. subsp. pneumoniae strain (ATCC10031). The mice infected with 2.10⁶ CFU K. p. subsp. pneumoniae (n = 10) showed transient signs of infection and all of them recovered. All of those infected with 1.10⁶ CFU K. p. subsp. ozaenae (n = 10) developed pneumonia within 24 h and died between 48 and 72 h. Few macrophages, numerous polymorphonuclear cells and lymphocytes were observed in their lungs in opposite to K. p. subsp. pneumoniae. In bronchoalveolar lavage, a significant increase in MIP-2, IL-6, KC and MCP-1 levels was only observed in K. p. subsp. ozaenae infected mice whereas high levels of TNF-α were evidenced with the two subspecies. Our findings indicated a lethal effect of a wild type K. p. subsp. ozaenae strain by acute pneumonia reflecting an insufficient alveolar macrophage response. This model might be of a major interest to comparatively explore the pathogenicity of K. p. subsp ozaenae strains and to further explore the physiopathological mechanisms of gram-negative bacteria induced human pneumonia.
Collapse
Affiliation(s)
- Fanny Renois
- Unité de Virologie Médicale et Moléculaire et EA-4303, UFR Médecine, Université Reims Champagne-Ardenne, F-51092 Reims, France
| | | | | | | | | | | | | |
Collapse
|
13
|
Proinflammatory cytokine surge after injury stimulates an airway immunoglobulin a increase. ACTA ACUST UNITED AC 2010; 69:843-8. [PMID: 20173656 DOI: 10.1097/ta.0b013e3181c45284] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
BACKGROUND : Injury stimulates an innate airway IgA response in severely injured patients, which also occurs in mice. Tumor necrosis factor (TNF)-α and interleukin (IL)-1β stimulate the production of polymeric immunoglobulin receptor, the protein required to transport immunoglobulin A (IgA) to mucosal surfaces. Blockade of TNF-α and IL-1β eliminates the airway IgA response to injury. IL-6 stimulates differentiation of B cells into IgA-secreting plasma cells at mucosal sites. We investigated the local and systemic kinetics of TNF-α, IL-1β, and IL-6 after injury in mice. We also hypothesized that injection of exogenous TNF-α, IL-1β, and IL-6 would replicate the airway IgA response to injury. METHODS : Experiment 1: male Institute of Cancer Research mice were randomized to uninjured controls (n = 8) or to surgical stress with laparotomy and neck incisions, with killing at 1, 2, 3, 5, or 8 hours after injury (n = 8/group). Bronchoalveolar lavage (BAL) and serum levels of TNF-α, IL-1β, and IL-6 were analyzed by enzyme-linked immunosorbent assay. Experiment 2: male Institute of Cancer Research mice were randomized to uninjured controls (n = 6), injury (surgical stress that was similar to experiment 1 except the peritoneum was left intact, n = 6), or cytokine injection with intraperitoneal injection of recombinant TNF-α, IL-1β, and IL-6. Animals were killed at 2 hours after injury, and nasal airway lavage and BAL IgA were analyzed by enzyme-linked immunosorbent assay. RESULTS : Experiment 1: BAL TNF-α, IL-1β, and IL-6 levels increased in bimodal pattern after injury at 3 hours and 8 hours versus controls (p < 0.05). Serum IL-6 did not increase at 3 hours, but did show a significant increase by 5 hours versus control (p < 0.05). Serum levels of TNF-α and IL-1β did not change. Experiment 2: both Injury and combination TNF-α, IL-1β, and IL-6 cytokine injection significantly increased IgA levels in airway lavage (BAL + nasal airway lavage) compared with control (p < 0.01 for both). CONCLUSIONS : Airway levels of TNF-α, IL-1β, and IL-6 increase in a bimodal pattern after injury with peaks at 3 hours and 8 hours, which do not correspond to serum changes. The peak at 8 hours is consistent with the known increase in airway IgA after injury. Intraperitoneal injection of a combination exogenous TNF-α, IL-1β, and IL-6 replicates the airway IgA increase after injury. This effect is not seen with individual cytokine injections.
Collapse
|
14
|
Jaoude PA, Knight PR, Ohtake P, El-Solh AA. Biomarkers in the diagnosis of aspiration syndromes. Expert Rev Mol Diagn 2010; 10:309-19. [PMID: 20370588 PMCID: PMC2882092 DOI: 10.1586/erm.10.7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recognizing and managing the different types of aspiration events remain a challenging task due to the lack of distinguishing clinical or laboratory characteristics. Numerous biomarkers in serum, sputum and bronchoalveolar lavage have been studied, and their role in the recognition of aspiration remains controversial at this time. Recent animal investigations using an array of biomarkers based on distinct pathogenic features of each aspiration event have produced promising results; however, they have not been validated in humans. Newer markers are being introduced as diagnostic and prognostic tools in conditions such as community-acquired pneumonia and sepsis, but they have not been examined in aspiration. The present review summarizes the different biomarkers that have been studied in aspiration and those who might have a potential clinical use in the future.
Collapse
Affiliation(s)
- Philippe Abou Jaoude
- The Veterans Affairs Western New York, Healthcare System, Buffalo, NY, USA and Western New York Respiratory Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NY, USA
| | - Paul R Knight
- The Veterans Affairs Western New York, Healthcare System, Buffalo, NY, USA and Department of Anesthesiology, State University of New York at Buffalo School of Medicine and Biomedical Sciences and School of Public Health and Health Professions, NY, USA
| | - Patricia Ohtake
- Department of Rehabilitation Science, State University of New York at Buffalo School of Medicine and Biomedical Sciences and School of Public Health and Health Professions, NY, USA
| | - Ali A El-Solh
- Medical Research, Bldg 20 (151) VISN02, VA Western New York Healthcare System, 3495 Bailey Avenue, Buffalo, NY, 14215-1199, USA and Western New York Respiratory Research Center, Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, NY, USA and Department of Social and Preventive Medicine State University of New York at Buffalo School of Medicine and Biomedical Sciences and School of Public Health and Health Professions, NY, USA, Tel.: +1 716 862 7366, Fax: +1 425 675 4502
| |
Collapse
|
15
|
Characterization and modulation of the immunosuppressive phase of sepsis. Infect Immun 2010; 78:1582-92. [PMID: 20100863 DOI: 10.1128/iai.01213-09] [Citation(s) in RCA: 157] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Sepsis continues to cause significant morbidity and mortality in critically ill patients. Studies of patients and animal models have revealed that changes in the immune response during sepsis play a decisive role in the outcome. Using a clinically relevant two-hit model of sepsis, i.e., cecal ligation and puncture (CLP) followed by the induction of Pseudomonas aeruginosa pneumonia, we characterized the host immune response. Second, AS101 [ammonium trichloro(dioxoethylene-o,o')tellurate], a compound that blocks interleukin 10 (IL-10), a key mediator of immunosuppression in sepsis, was tested for its ability to reverse immunoparalysis and improve survival. Mice subjected to pneumonia following CLP had different survival rates depending upon the timing of the secondary injury. Animals challenged with P. aeruginosa at 4 days post-CLP had approximately 40% survival, whereas animals challenged at 7 days had 85% survival. This improvement in survival was associated with decreased lymphocyte apoptosis, restoration of innate cell populations, increased proinflammatory cytokines, and restoration of gamma interferon (IFN-gamma) production by stimulated splenocytes. These animals also showed significantly less P. aeruginosa growth from blood and bronchoalveolar lavage fluid. Importantly, AS101 improved survival after secondary injury 4 days following CLP. This increased survival was associated with many of the same findings observed in the 7-day group, i.e., restoration of IFN-gamma production, increased proinflammatory cytokines, and decreased bacterial growth. Collectively, these studies demonstrate that immunosuppression following initial septic insult increases susceptibility to secondary infection. However, by 7 days post-CLP, the host's immune system has recovered sufficiently to mount an effective immune response. Modulation of the immunosuppressive phase of sepsis may aid in the development of new therapeutic strategies.
Collapse
|
16
|
Leichtle A, Hernandez M, Pak K, Yamasaki K, Cheng CF, Webster NJ, Ryan AF, Wasserman SI. TLR4-mediated induction of TLR2 signaling is critical in the pathogenesis and resolution of otitis media. Innate Immun 2009; 15:205-15. [PMID: 19586996 DOI: 10.1177/1753425909103170] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Otitis media is the most prevalent childhood disease in developed countries. The involvement of Toll-like receptors (TLRs) in otitis media pathophysiology has been implicated by studies in cell lines and association studies of TLR gene polymorphisms. However, precise functions of TLRs in the etiology of otitis media in vivo have not been examined. We investigated the inflammatory response to nontypeable Haemophilus influenzae using a model of otitis media in wild-type, TLR2(- /-) and TLR4(-/ -) mice by gene microarray, qPCR, immunohistochemistry, Western blot analysis and histopathology. Toll-like receptor-2(- /-) and TLR4(- /-) mice exhibited a more profound, persistent inflammation with impaired bacterial clearance compared to controls. While wild-type mice induced tumor necrosis factor-a (TNF) after non-typeable H. influenzae challenge, TLR2(-/-) and TLR4(-/-) mice lack TNF induction in the early phase of otitis media. Moreover, lack of TLR2 resulted in a late increase in IL-10 expression and prolonged failure to clear bacteria. Toll-like receptor-4(-/- ) mice showed impaired early bacterial clearance and loss of TLR2 induction in early otitis media. Our results demonstrate that both TLR2 and TLR4 signalling are critical to the regulation of infection in non-typeable H. influenzae-induced otitis media. Toll-like receptor-4 signalling appears to induce TLR2 expression, and TLR2 activation is critical for bacterial clearance and timely resolution of otitis media.
Collapse
Affiliation(s)
- Anke Leichtle
- Department of Surgery/Otolaryngology, University of California San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Kiank C, Daeschlein G, Schuett C. Pneumonia as a long-term consequence of chronic psychological stress in BALB/c mice. Brain Behav Immun 2008; 22:1173-7. [PMID: 18571893 DOI: 10.1016/j.bbi.2008.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2008] [Revised: 04/28/2008] [Accepted: 05/14/2008] [Indexed: 11/29/2022] Open
Abstract
Recently, we have shown that female BALB/c mice are highly sensitive to chronic psychological stress. They develop systemic neuroendocrine disturbances, a hypermetabolic syndrome, behavioral alterations and severe immunosuppression with a reduced antibacterial response during experimental infection. Here, we show that chronically stressed mice spontaneously suffered from increased bacterial load in the liver and lung that sustained for up to 10 days after the termination of stress exposure. Immediately after the last chronic stress cycle, splenocytes had a reduced ability to produce IFNgamma after ex vivo stimulation with LPS while showing enhanced inducibility of IL-10. When healthy animals were treated with anti-IFNgamma antiserum the antibacterial response against the small numbers of endogenous bacteria that physiologically penetrate the intestinal barrier was reduced causing increased bacterial burden in the liver. Thus, a deficient antibacterial response to translocated commensals in chronically stressed animals can contribute to long-lasting pneumonia.
Collapse
Affiliation(s)
- Cornelia Kiank
- Department of Immunology, Ernst-Moritz-Arndt-University Greifswald, Sauerbruchstrasse, D-17487 Greifswald, Germany.
| | | | | |
Collapse
|
18
|
Nguyen M, Pace AJ, Koller BH. Mice lacking NKCC1 are protected from development of bacteremia and hypothermic sepsis secondary to bacterial pneumonia. ACTA ACUST UNITED AC 2007; 204:1383-93. [PMID: 17517966 PMCID: PMC2118609 DOI: 10.1084/jem.20061205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The contribution of the Na(+)-K(+)-Cl(-) transporter (NKCC1) to fluid in ion transport and fluid secretion in the lung and in other secretory epithelia has been well established. Far less is known concerning the role of this cotransporter in the physiological response of the pulmonary system during acute inflammation. Here we show that mice lacking this transporter are protected against hypothermic sepsis and bacteremia developing as a result of Klebsiella pneumoniae infection in the lung. In contrast, this protection was not observed in NKCC1(-/-) mice with K. pneumoniae-induced peritonitis. Although overall recruitment of cells to the lungs was not altered, the number of cells present in the airways was increased in the NKCC1(-/-) animals. Despite this robust inflammatory response, the increase in vascular permeability observed in this acute inflammatory model was attenuated in the NKCC1(-/-) animals. Our studies suggest that NKCC1 plays a unique and untoward unrecognized role in acute inflammatory responses in the lung and that specific inhibition of this NKCC isoform could be beneficial in treatment of sepsis.
Collapse
Affiliation(s)
- MyTrang Nguyen
- Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA
| | | | | |
Collapse
|
19
|
Abstract
Sepsis continues to be the primary cause of death among patients in surgical intensive care units. In many cases, death does not result from the initial septic event but rather from subsequent nosocomial infection with pneumonia being the most common etiology. In addition, most deaths in patients with sepsis occur after the first 72 h. By contrast, in most animal models of sepsis, most deaths occur within the first 72 h. The purpose of this study was to develop a clinically relevant "two-hit" model of sepsis that would reflect delayed mortality because of secondary nosocomial infection. The well-accepted and widely used cecal ligation and puncture (CLP) model was used as the "first hit". Pseudomonas aeruginosa or Streptococcus pneumoniae was used to induce pneumonia in mice 72 h after CLP as a "second hit." In this study, mortality in mice undergoing CLP followed by pneumonia was significantly higher than in mice receiving pneumonia or CLP alone. S. pneumoniae pneumonia after CLP resulted in a 95% mortality compared with a 20% mortality for pneumonia alone, P < 0.0001. Similarly, mortality of P. aeruginosa pneumonia after CLP (85%) was significantly higher than P. aeruginosa alone (20%), P < 0.0001. Mice undergoing CLP followed by P. aeruginosa pneumonia also had significantly higher levels of B- and T-cell apoptotic death. Finally, mice undergoing CLP followed by P. aeruginosa or S. pneumoniae pneumonia had significantly decreased concentrations of proinflammatory mediators monocyte chemoattractant protein-1 and interleukin (IL)-6 compared with mice undergoing CLP or pneumonia alone. In conclusion, a primary sublethal infection impairs the immune system thus rendering the host more susceptible to secondary infection and death. Double injury, that is, CLP followed by pneumonia, provides a useful tool in the study of sepsis, creating a prolonged period of infection as opposed to CLP alone. The extended duration of infection may lead to a better understanding of the mechanism of the immune dysregulation seen in clinical sepsis and therefore provides for evaluation of potential therapies that target specific stages of the immune response.
Collapse
Affiliation(s)
- Jared T Muenzer
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Avenue, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
20
|
Segal BH, Davidson BA, Hutson AD, Russo TA, Holm BA, Mullan B, Habitzruther M, Holland SM, Knight PR. Acid aspiration-induced lung inflammation and injury are exacerbated in NADPH oxidase-deficient mice. Am J Physiol Lung Cell Mol Physiol 2006; 292:L760-8. [PMID: 17114280 DOI: 10.1152/ajplung.00281.2006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Increased reactive oxidant intermediates (ROIs) from primed leukocytes have been implicated in the pathogenesis of acid aspiration lung injury. To evaluate the specific role of the phagocyte NADPH oxidase-derived ROIs in acid lung injury, the p47phox-/- knockout mouse model of chronic granulomatous disease was used. p47phox-/- mice developed a significantly greater alveolar neutrophilic leukocytosis compared with wild-type mice at all time points after acid injury, with the difference between genotypes being most marked at 48 h. In contrast, the p47phox-/- mice had a decreased number of macrophages in bronchoalveolar lavage (BAL) compared with wild-type at 48 h after acid or saline aspiration. Albumin concentration in BAL reflecting capillary leak was also greater in p47phox-/- compared with wild-type mice. BAL concentrations of proinflammatory cytokines and chemokines were greater in p47phox-/- compared with wild-type mice. These findings suggest that NADPH oxidase, directly or indirectly, plays a role in attenuating the acute neutrophilic response after acid lung injury. We speculate that this downmodulating effect may be mediated by promoting the transition from production of cytokines and chemokines involved in neutrophilic infiltration to a less injurious, chronic inflammatory response.
Collapse
Affiliation(s)
- Brahm H Segal
- Department of Medicine, Roswell Park Cancer Institute, University at Buffalo-State University of New York, Buffalo, NY 14214-3013, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Raghavendran K, Davidson BA, Mullan BA, Hutson AD, Russo TA, Manderscheid PA, Woytash JA, Holm BA, Notter RH, Knight PR. Acid and particulate-induced aspiration lung injury in mice: importance of MCP-1. Am J Physiol Lung Cell Mol Physiol 2005; 289:L134-43. [PMID: 15778247 DOI: 10.1152/ajplung.00390.2004] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A model of aspiration lung injury was developed in WT C57BL/6 mice to exploit genetically modified animals on this background, i.e., MCP-1(-/-) mice. Mice were given intratracheal hydrochloric acid (ACID, pH 1.25), small nonacidified gastric particles (SNAP), or combined acid plus small gastric particles (CASP). As reported previously in rats, lung injury in WT mice was most severe for "two-hit" aspiration from CASP (40 mg/ml particulates) based on the levels of albumin, leukocytes, TNF-alpha, IL-1beta, IL-6, MCP-1, KC, and MIP-2 in bronchoalveolar lavage (BAL) at 5, 24, and 48 h. MCP-1(-/-) mice given 40 mg/ml CASP had significantly decreased survival compared with WT mice (32% vs. 80% survival at 24 h and 0% vs. 72% survival at 48 h). MCP-1(-/-) mice also had decreased survival compared with WT mice for CASP aspirates containing reduced particulate doses of 10-20 mg/ml. MCP-1(-/-) mice given 5 mg/ml CASP had survival similar to WT mice given 40 mg/ml CASP. MCP-1(-/-) mice also had differing responses from WT mice for several inflammatory mediators in BAL (KC or IL-6 depending on the particle dose of CASP and time of injury). Histopathology of WT mice with CASP (40 mg particles/ml) showed microscopic areas of compartmentalization with prominent granuloma formation by 24 h, whereas lung tissue from MCP-1(-/-) mice had severe diffuse pneumonia without granulomas. These results indicate that MCP-1 is important for survival in murine aspiration pneumonitis and appears to act partly to protect uninjured lung regions by promoting isolation and compartmentalization of tissue with active inflammation.
Collapse
Affiliation(s)
- Krishnan Raghavendran
- Department of Surgery, University at Buffalo State University of New York, 14214, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|