1
|
Londoño AF, Scorpio DG, Dumler JS. Innate immunity in rickettsial infections. Front Cell Infect Microbiol 2023; 13:1187267. [PMID: 37228668 PMCID: PMC10203653 DOI: 10.3389/fcimb.2023.1187267] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/19/2023] [Indexed: 05/27/2023] Open
Abstract
Rickettsial agents are a diverse group of alpha-proteobacteria within the order Rickettsiales, which possesses two families with human pathogens, Rickettsiaceae and Anaplasmataceae. These obligate intracellular bacteria are most frequently transmitted by arthropod vectors, a first step in the pathogens' avoidance of host cell defenses. Considerable study of the immune responses to infection and those that result in protective immunity have been conducted. Less study has focused on the initial events and mechanism by which these bacteria avoid the innate immune responses of the hosts to survive within and propagate from host cells. By evaluating the major mechanisms of evading innate immunity, a range of similarities among these bacteria become apparent, including mechanisms to escape initial destruction in phagolysosomes of professional phagocytes, those that dampen the responses of innate immune cells or subvert signaling and recognition pathways related to apoptosis, autophagy, proinflammatory responses, and mechanisms by which these microbes attach to and enter cells or those molecules that trigger the host responses. To illustrate these principles, this review will focus on two common rickettsial agents that occur globally, Rickettsia species and Anaplasma phagocytophilum.
Collapse
Affiliation(s)
- Andrés F. Londoño
- The Henry M. Jackson Foundation for Advancement in Military Medicine, Bethesda, MD, United States
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Diana G. Scorpio
- Host-Pathogen Interactions Program, Texas Biomedical Research Institute, San Antonio, TX, United States
| | - J. Stephen Dumler
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
Dumler JS, Lichay M, Chen WH, Rennoll-Bankert KE, Park JH. Anaplasma phagocytophilum Activates NF-κB Signaling via Redundant Pathways. Front Public Health 2020; 8:558283. [PMID: 33194960 PMCID: PMC7661751 DOI: 10.3389/fpubh.2020.558283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 09/22/2020] [Indexed: 11/28/2022] Open
Abstract
Anaplasma phagocytophilum subverts neutrophil function permitting intracellular survival, propagation and transmission. Sustained pro-inflammatory response, recruitment of new host cells for population expansion, and delayed apoptosis are associated with prolonged nuclear presence of NF-κB. We investigated NF-κB signaling and transcriptional activity with A. phagocytophilum infection using inhibitors of NF-κB signaling pathways, and through silencing of signaling pathway genes. How inhibitors or silencing affected A. phagocytophilum growth, inflammatory response (transcription of the κB-enhanced genes CXCL8 and MMP9), and NF-κB signaling pathway gene expression were tested. Among A. phagocytophilum-infected HL-60 cells, nuclear NF-κB p50, p65, and p52 were detected by immunoblots or iTRAQ proteomics. A. phagocytophilum growth was affected most by the IKKαβ inhibitor wedelolactone (reductions of 96 to 99%) as compared with SC-514 that selectively inhibits IKKβ, illustrating a role for the non-canonical pathway. Wedelolactone inhibited transcription of both CXCL8 (p = 0.001) and MMP9 (p = 0.002) in infected cells. Compared to uninfected THP-1 cells, A. phagocytophilum infection led to >2-fold down regulation of 64 of 92 NF-κB signaling pathway genes, and >2-fold increased expression in only 4. Wedelolactone and SC-514 reversed downregulation in all 64 and 45, respectively, of the genes down-regulated by infection, but decreased expression in 1 gene with SC-514 only. Silencing of 20 NF-κB signal pathway genes increased bacterial growth in 12 (IRAK1, MAP3K1, NFKB1B, MAP3K7, TICAM2, TLR3, TRADD, TRAF3, CHUK, IRAK2, LTBR, and MALT1). Most findings support canonical pathway activation; however, the presence of NFKB2 in infected cell nuclei, selective non-canonical pathway inhibitors that dampen CXCL8 and MMP9 transcription with infection, upregulation of non-canonical pathway target genes CCL13 and CCL19, enhanced bacterial growth with TRAF3 and LTBR silencing provide evidence for non-canonical pathway signaling. Whether this impacts distinct inflammatory processes that underlie disease, and whether and how A. phagocytophilum subverts NF-κB signaling via these pathways, need to be investigated.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University for the Health Sciences, Bethesda, MD, United States.,Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Marguerite Lichay
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Wan-Hsin Chen
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Kristen E Rennoll-Bankert
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jin-Ho Park
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
3
|
Green RS, Naimi WA, Oliver LD, O'Bier N, Cho J, Conrad DH, Martin RK, Marconi RT, Carlyon JA. Binding of Host Cell Surface Protein Disulfide Isomerase by Anaplasma phagocytophilum Asp14 Enables Pathogen Infection. mBio 2020; 11:e03141-19. [PMID: 31992623 PMCID: PMC6989111 DOI: 10.1128/mbio.03141-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022] Open
Abstract
Diverse intracellular pathogens rely on eukaryotic cell surface disulfide reductases to invade host cells. Pharmacologic inhibition of these enzymes is cytotoxic, making it impractical for treatment. Identifying and mechanistically dissecting microbial proteins that co-opt surface reductases could reveal novel targets for disrupting this common infection strategy. Anaplasma phagocytophilum invades neutrophils by an incompletely defined mechanism to cause the potentially fatal disease granulocytic anaplasmosis. The bacterium's adhesin, Asp14, contributes to invasion by virtue of its C terminus engaging an unknown receptor. Yeast-two hybrid analysis identified protein disulfide isomerase (PDI) as an Asp14 binding partner. Coimmunoprecipitation confirmed the interaction and validated it to be Asp14 C terminus dependent. PDI knockdown and antibody-mediated inhibition of PDI reductase activity impaired A. phagocytophilum infection of but not binding to host cells. Infection during PDI inhibition was rescued when the bacterial but not host cell surface disulfide bonds were chemically reduced with tris(2-carboxyethyl)phosphine-HCl (TCEP). TCEP also restored bacterial infectivity in the presence of an Asp14 C terminus blocking antibody that otherwise inhibits infection. A. phagocytophilum failed to productively infect myeloid-specific-PDI conditional-knockout mice, marking the first demonstration of in vivo microbial dependency on PDI for infection. Mutational analyses identified the Asp14 C-terminal residues that are critical for binding PDI. Thus, Asp14 binds and brings PDI proximal to A. phagocytophilum surface disulfide bonds that it reduces, which enables cellular and in vivo infection.IMPORTANCEAnaplasma phagocytophilum infects neutrophils to cause granulocytic anaplasmosis, an emerging potentially fatal disease and the second-most common tick-borne illness in the United States. Treatment options are limited, and no vaccine exists. Due to the bacterium's obligatory intracellular lifestyle, A. phagocytophilum survival and pathogenesis are predicated on its ability to enter host cells. Understanding its invasion mechanism will yield new targets for preventing bacterial entry and, hence, disease. We report a novel entry pathway in which the A. phagocytophilum outer membrane protein Asp14 binds host cell surface protein disulfide isomerase via specific C-terminal residues to promote reduction of bacterial surface disulfide bonds, which is critical for cellular invasion and productive infection in vivo Targeting the Asp14 C terminus could be used to prevent/treat granulocytic anaplasmosis. Our findings have broad implications, as a thematically similar approach could be applied to block infection by other intracellular microbes that exploit cell surface reductases.
Collapse
Affiliation(s)
- Ryan S Green
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Waheeda A Naimi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Lee D Oliver
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Nathaniel O'Bier
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jaehyung Cho
- Department of Pharmacology, College of Medicine, University of Illinois at Chicago, Chicago, Illinois, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, School of Medicine, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| |
Collapse
|
4
|
Differential Susceptibility of Male Versus Female Laboratory Mice to Anaplasma phagocytophilum Infection. Trop Med Infect Dis 2018; 3:tropicalmed3030078. [PMID: 30274474 PMCID: PMC6161277 DOI: 10.3390/tropicalmed3030078] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/07/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
Human granulocytic anaplasmosis (HGA) is a debilitating, non-specific febrile illness caused by the granulocytotropic obligate intracellular bacterium called Anaplasma phagocytophilum. Surveillance studies indicate a higher prevalence of HGA in male versus female patients. Whether this discrepancy correlates with differential susceptibility of males and females to A. phagocytophilum infection is unknown. Laboratory mice have long been used to study granulocytic anaplasmosis. Yet, sex as a biological variable (SABV) in this model has not been evaluated. In this paper, groups of male and female C57Bl/6 mice that had been infected with A. phagocytophilum were assessed for the bacterial DNA load in the peripheral blood, the percentage of neutrophils harboring bacterial inclusions called morulae, and splenomegaly. Infected male mice exhibited as much as a 1.85-fold increase in the number of infected neutrophils, which is up to a 1.88-fold increase in the A. phagocytophilum DNA load, and a significant increase in spleen size when compared to infected female mice. The propensity of male mice to develop a higher level of A. phagocytophilum infection is relevant for studies utilizing the mouse model. This stresses the importance of including SABV and aligns with the observed higher incidence of infection in male versus female patients.
Collapse
|
5
|
Yancey CB, Diniz PPVP, Breitschwerdt EB, Hegarty BC, Wiesen C, Qurollo BA. Doxycycline treatment efficacy in dogs with naturally occurring Anaplasma phagocytophilum infection. J Small Anim Pract 2017; 59:286-293. [PMID: 29280490 DOI: 10.1111/jsap.12799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Revised: 10/23/2017] [Accepted: 10/27/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVES To evaluate doxycycline treatment efficacy and post-treatment pathogen persistence in dogs naturally infected with Anaplasma phagocytophilum in endemic regions of the USA. MATERIALS AND METHODS Symptomatic dogs in four US states (MN, WI, CT and CA) were evaluated before treatment with doxycycline and approximately 30 and 60 days post-treatment. Clinicopathological parameters, co-exposures and A. phagocytophilum DNA in whole blood and lymph node samples were compared between A. phagocytophilum infected and uninfected dogs. RESULTS In total, 42 dogs fulfilled the inclusion criteria, with 16 dogs (38%) blood PCR-positive and 26 dogs (62%) blood PCR-negative for A. phagocytophilum. At initial evaluation, the proportion of clinicopathological abnormalities was similar between A. phagocytophilum infected and uninfected dogs, although thrombocytopenia and lymphopenia were statistically more prevalent among A. phagocytophilum infected dogs. Treatment with doxycycline resulted in resolution of all clinical abnormalities in infected dogs; four dogs had persistent haematological abnormalities, including mild leukopenia, eosinopenia and lymphopenia. All 16 infected dogs became blood PCR-negative approximately 30 and 60 days after treatment onset. Additionally, 13/13 (100%) lymph node specimens tested post-treatment were PCR-negative. Select clinicopathological abnormalities persisted in uninfected dogs after treatment. CLINICAL SIGNIFICANCE The results of this study support the efficacy of doxycycline therapy for clinical treatment of dogs naturally infected with A. phagocytophilum in the USA. This study did not find clinical, haematological or microbiological indicators that supported the persistence of A. phagocytophilum infection in naturally infected dogs following treatment with doxycycline for 28 days.
Collapse
Affiliation(s)
- C B Yancey
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - P P V P Diniz
- Western University of Health Sciences, College of Veterinary Medicine, Pomona, California, 91766, USA
| | - E B Breitschwerdt
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - B C Hegarty
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| | - C Wiesen
- The Odum Institute, University of North Carolina, Chapel Hill, North Carolina, 27514, USA
| | - B A Qurollo
- Department of Clinical Sciences and the Intracellular Pathogens Research Laboratory, Comparative Medicine Institute, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, 27607, USA
| |
Collapse
|
6
|
Dumler JS, Sinclair SH, Pappas-Brown V, Shetty AC. Genome-Wide Anaplasma phagocytophilum AnkA-DNA Interactions Are Enriched in Intergenic Regions and Gene Promoters and Correlate with Infection-Induced Differential Gene Expression. Front Cell Infect Microbiol 2016; 6:97. [PMID: 27703927 PMCID: PMC5028410 DOI: 10.3389/fcimb.2016.00097] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/26/2016] [Indexed: 12/16/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular prokaryote, infects neutrophils, and alters cardinal functions via reprogrammed transcription. Large contiguous regions of neutrophil chromosomes are differentially expressed during infection. Secreted A. phagocytophilum effector AnkA transits into the neutrophil or granulocyte nucleus to complex with DNA in heterochromatin across all chromosomes. AnkA binds to gene promoters to dampen cis-transcription and also has features of matrix attachment region (MAR)-binding proteins that regulate three-dimensional chromatin architecture and coordinate transcriptional programs encoded in topologically-associated chromatin domains. We hypothesize that identification of additional AnkA binding sites will better delineate how A. phagocytophilum infection results in reprogramming of the neutrophil genome. Using AnkA-binding ChIP-seq, we showed that AnkA binds broadly throughout all chromosomes in a reproducible pattern, especially at: (i) intergenic regions predicted to be MARs; (ii) within predicted lamina-associated domains; and (iii) at promoters ≤ 3000 bp upstream of transcriptional start sites. These findings provide genome-wide support for AnkA as a regulator of cis-gene transcription. Moreover, the dominant mark of AnkA in distal intergenic regions known to be AT-enriched, coupled with frequent enrichment in the nuclear lamina, provides strong support for its role as a MAR-binding protein and genome “re-organizer.” AnkA must be considered a prime candidate to promote neutrophil reprogramming and subsequent functional changes that belie improved microbial fitness and pathogenicity.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | | | - Valeria Pappas-Brown
- Department of Pathology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences Bethesda, MD, USA
| | - Amol C Shetty
- Informatics Resource Center, Institute for Genome Sciences, University of Maryland Baltimore, MD, USA
| |
Collapse
|
7
|
Guillemi EC, Tomassone L, Farber MD. Tick-borne Rickettsiales: Molecular tools for the study of an emergent group of pathogens. J Microbiol Methods 2015; 119:87-97. [PMID: 26471201 DOI: 10.1016/j.mimet.2015.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 10/09/2015] [Accepted: 10/09/2015] [Indexed: 12/16/2022]
Abstract
The use of molecular techniques in recent years has enhanced the sensitivity and specificity of the diagnosis of Rickettsiales, a bacterial order which includes significant emerging and re-emerging pathogens of humans and animals. Molecular detection enables the accurate identification at the species level, providing additional information on the epidemiology and course of the clinical cases. Moreover, PCR and enzyme restriction analysis of the vector blood meal can be employed to study the tick feeding source and possibly identify pathogen's reservoir. Here, we review the molecular tools available for the identification and characterization of tick-borne bacteria from the genera Rickettsia, Ehrlichia and Anaplasma and for the study of ticks feeding behavior. We summarize the significant criteria for taxonomic identification of Rickettsiales species and propose a procedure algorithm for the classification of bacterial isolates as members of this order.
Collapse
Affiliation(s)
- Eliana C Guillemi
- Inst. de Biotecnología, INTA Castelar. Los Reseros y N. Repetto, 1686 Hurlingham, Buenos Aires, Argentina.
| | - Laura Tomassone
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, Largo Braccini 2, 10095 Grugliasco, Torino, Italy
| | - Marisa D Farber
- Inst. de Biotecnología, INTA Castelar. Los Reseros y N. Repetto, 1686 Hurlingham, Buenos Aires, Argentina
| |
Collapse
|
8
|
Global DNA methylation changes and differential gene expression in Anaplasma phagocytophilum-infected human neutrophils. Clin Epigenetics 2015. [PMID: 26225157 PMCID: PMC4518890 DOI: 10.1186/s13148-015-0105-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background Anaplasma phagocytophilum is an obligate intracellular prokaryotic pathogen that both infects and replicates within human neutrophils. The bacterium represses multiple antimicrobial functions while simultaneously increasing proinflammatory functions by reprogramming the neutrophil genome. Previous reports show that many observed phenotypic changes are in part explained by altered gene transcription. We recently identified that large chromosomal regions of the neutrophil genome are differentially expressed during A. phagocytophilum infection. Because of this, we sought to determine whether gene expression programs altered by infection were the result of changes in the host neutrophil DNA methylome. Results Within 24 h of infection, marked increases in DNA methylation were observed genome-wide as compared with mock-infected controls and pharmacologic inhibition of DNA methyltransferases resulted in decreased bacterial growth. New regions of DNA methylation were enriched at intron and exon junctions; however, intragenic methylation did not correlate with altered gene expression. In contrast, intergenic DNA methylation was associated with A. phagocytophilum-induced gene expression changes. Within the major histocompatibility complex locus on chromosome 6, a region with marked changes in infection-induced differential gene expression, new regions of methylation were localized to boundaries of active and inactive chromatin. Conclusions These data strongly suggest that A. phagocytophilum infection, in addition to altering histone structure, alters DNA methylation and the epigenome of its host cell to promote survival and replication, providing evidence that such bacterial infection can radically alter the epigenome of its host cell. Electronic supplementary material The online version of this article (doi:10.1186/s13148-015-0105-1) contains supplementary material, which is available to authorized users.
Collapse
|
9
|
Walker DH, Dumler JS. The role of CD8 T lymphocytes in rickettsial infections. Semin Immunopathol 2015; 37:289-99. [PMID: 25823954 DOI: 10.1007/s00281-015-0480-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 03/15/2015] [Indexed: 12/01/2022]
Abstract
Arthropod-borne obligately intracellular bacteria pose a difficult challenge to the immune system. The genera Rickettsia, Orientia, Ehrlichia, and Anaplasma evolved mechanisms of immune evasion, and each interacts differently with the immune system. The roles of CD8 T cells include protective immunity and immunopathology. In Rickettsia infections, CD8 T cells are protective mediated in part by cytotoxicity toward infected cells. In contrast, TNF-α overproduction by CD8 T cells is pathogenic in lethal ehrlichiosis by induction of apoptosis/necrosis in hepatocytes. Yet, CD8 T cells, along with CD4 T cells and antibodies, also contribute to protective immunity in ehrlichial infections. In granulocytic anaplasmosis, CD8 T cells impact pathogen control modestly but could contribute to immunopathology by virtue of their dysfunction. While preliminary evidence indicates that CD8 T cells are important in protection against Orientia tsutsugamushi, mechanistic studies have been neglected. Valid animal models will enable experiments to elucidate protective and pathologic immune mechanisms. The public health need for vaccines against these agents of human disease, most clearly O. tsutsugamushi, and the veterinary diseases, canine monocytotropic ehrlichiosis (Ehrlichia canis), heartwater (Ehrlichia ruminantium), and bovine anaplasmosis (A. marginale), requires detailed immunity and immunopathology investigations, including the roles of CD8 T lymphocytes.
Collapse
Affiliation(s)
- David H Walker
- Department of Pathology, Director, UTMB Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX, 77555-0609, USA,
| | | |
Collapse
|
10
|
Choi KS, Scorpio DG, Dumler JS. Stat1 negatively regulates immune-mediated injury with Anaplasma phagocytophilum infection. THE JOURNAL OF IMMUNOLOGY 2014; 193:5088-98. [PMID: 25305312 DOI: 10.4049/jimmunol.1401381] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. Our data previously demonstrated that A. phagocytophilum induces an immunopathologic response by activating IFN-γ production through the Stat1 signaling pathway. In this study, we investigated the broader role of Stat1 signaling in the host response to infection with A. phagocytophilum. In Stat1 knockout (KO) compared with wild-type mice, A. phagocytophilum infection was more highly pathogenic as characterized by the unanticipated development of clinical signs in mice including markedly increased splenomegaly, more severe inflammatory splenic and hepatic histopathology, >100-fold higher blood and splenic bacterial loads, and more elevated proinflammatory cytokine/chemokine responses in serum. CD4(+) and CD8(+) T lymphocyte populations were significantly expanded in spleens of A. phagocytophilum-infected Stat1 KO mice compared with wild-type mice. The leukocyte infiltrates in the livers and spleens of A. phagocytophilum-infected Stat1 KO mice also contained expansions in neutrophil and monocyte/macrophage populations. Importantly, A. phagocytophilum-infected Stat1 KO mice did not demonstrate induction of inducible NO synthase in splenocytes. These results show that Stat1 plays an important role in controlling bacterial loads but also by unexpectedly providing an undefined mechanism for dampening of the immunopathologic response observed with A. phagocytophilum infection.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Department of Animal Biotechnology, College of Animal Science, Kyungpook National University, Sangju 742-711, Republic of Korea; Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Diana G Scorpio
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Biomedical Sciences, Ross University School of Veterinary Medicine, St. Kitts and Nevis, West Indies
| | - J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205; Department of Pathology, University of Maryland, Baltimore, MD 21201; and Department of Microbiology and Immunology, University of Maryland, Baltimore, MD 21201
| |
Collapse
|
11
|
Sinclair SH, Rennoll-Bankert KE, Dumler JS. Effector bottleneck: microbial reprogramming of parasitized host cell transcription by epigenetic remodeling of chromatin structure. Front Genet 2014; 5:274. [PMID: 25177343 PMCID: PMC4132484 DOI: 10.3389/fgene.2014.00274] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 07/26/2014] [Indexed: 12/25/2022] Open
Abstract
Obligate intracellular pathogenic bacteria evolved to manipulate their host cells with a limited range of proteins constrained by their compact genomes. The harsh environment of a phagocytic defense cell is one that challenges the majority of commensal and pathogenic bacteria; yet, these are the obligatory vertebrate homes for important pathogenic species in the Anaplasmataceae family. Survival requires that the parasite fundamentally alter the native functions of the cell to allow its entry, intracellular replication, and transmission to a hematophagous arthropod. The small genomic repertoires encode several eukaryotic-like proteins, including ankyrin A (AnkA) of Anaplasma phagocytophilum and Ank200 and tandem-repeat containing proteins of Ehrlichia chaffeensis that localize to the host cell nucleus and directly bind DNA. As a model, A. phagocytophilum AnkA appears to directly alter host cell gene expression by recruiting chromatin modifying enzymes such as histone deacetylases and methyltransferases or by acting directly on transcription in cis. While cis binding could feasibly alter limited ranges of genes and cellular functions, the complex and dramatic alterations in transcription observed with infection are difficult to explain on the basis of individually targeted genes. We hypothesize that nucleomodulins can act broadly, even genome-wide, to affect entire chromosomal neighborhoods and topologically associating chromatin domains by recruiting chromatin remodeling complexes or by altering the folding patterns of chromatin that bring distant regulatory regions together to coordinate control of transcriptional reprogramming. This review focuses on the A. phagocytophilum nucleomodulin AnkA, how it impacts host cell transcriptional responses, and current investigations that seek to determine how these multifunctional eukaryotic-like proteins facilitate epigenetic alterations and cellular reprogramming at the chromosomal level.
Collapse
Affiliation(s)
- Sara H Sinclair
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| | - Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - J S Dumler
- Graduate Program in Cellular and Molecular Medicine, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA ; Department of Pathology, The Johns Hopkins University School of Medicine Baltimore, MD, USA ; Department of Pathology, School of Medicine, University of Maryland Baltimore Baltimore, MD, USA
| |
Collapse
|
12
|
Pérez Vera C, Kapiainen S, Junnikkala S, Aaltonen K, Spillmann T, Vapalahti O. Survey of selected tick-borne diseases in dogs in Finland. Parasit Vectors 2014; 7:285. [PMID: 24957468 PMCID: PMC4074585 DOI: 10.1186/1756-3305-7-285] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 06/11/2014] [Indexed: 11/23/2022] Open
Abstract
Background Due to climate changes during the last decades, ticks have progressively spread into higher latitudes in northern Europe. Although some tick borne diseases are known to be endemic in Finland, to date there is limited information with regard to the prevalence of these infections in companion animals. We determined the antibody and DNA prevalence of the following organisms in randomly selected client-owned and clinically healthy hunting dogs living in Finland: Ehrlichia canis (Ec), Anaplasma phagocytophilum (Ap), Borrelia burgdorferi (Bb) and Bartonella. Methods Anti-Ap, −Bb and –Ec antibodies were determined in 340 Finnish pet dogs and 50 healthy hunting dogs using the 4DX Snap®Test (IDEXX Laboratories). In addition, PCRs for the detection of Ap and Bartonella DNA were performed. Univariate and multivariate logistic regression analyses were used to identify risk factors associated with seropositivity to a vector borne agent. Results The overall seroprevalence was highest for Ap (5.3%), followed by Bb (2.9%), and Ec (0.3%). Seropositivities to Ap and Bb were significantly higher in the Åland Islands (p <0.001), with prevalence of Ap and Bb antibodies of 45 and 20%, respectively. In healthy hunting dogs, seropositivity rates of 4% (2/50) and 2% (1/50) were recorded for Ap and Bb, respectively. One client-owned dog and one hunting dog, both healthy, were infected with Ap as determined by PCR, while being seronegative. For Bartonella spp., none of the dogs tested was positive by PCR. Conclusions This study represents the first data of seroprevalence to tick borne diseases in the Finnish dog population. Our results indicate that dogs in Finland are exposed to vector borne diseases, with Ap being the most seroprevalent of the diseases tested, followed by Bb. Almost 50% of dogs living in Åland Islands were Ap seropositive. This finding suggests the possibility of a high incidence of Ap infection in humans in this region. Knowing the distribution of seroprevalence in dogs may help predict the pattern of a tick borne disease and may aid in diagnostic and prevention efforts.
Collapse
Affiliation(s)
- Cristina Pérez Vera
- Haartman Institute, Department of Virology, University of Helsinki, P,O, Box 21, 00014 Helsinki, Finland.
| | | | | | | | | | | |
Collapse
|
13
|
Rennoll-Bankert KE, Sinclair SH, Lichay MA, Dumler JS. Comparison and characterization of granulocyte cell models for Anaplasma phagocytophilum infection. Pathog Dis 2013; 71:55-64. [PMID: 24376092 DOI: 10.1111/2049-632x.12111] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/03/2013] [Indexed: 11/29/2022] Open
Abstract
Anaplasma phagocytophilum, an obligate intracellular bacterium, modifies functions of its in vivo host, the neutrophil. The challenges of using neutrophils ex vivo necessitate cell line models. However, cell line infections do not currently mimic ex vivo neutrophil infection characteristics. To understand these discrepancies, we compared infection of cell lines to ex vivo human neutrophils and differentiated hematopoietic stem cells with regard to infection capacity, oxidative burst, host defense gene expression, and differentiation. Using established methods, marked ex vivo neutrophil infection heterogeneity was observed at 24-48 h necessitating cell sorting to obtain homogeneously infected cells at levels observed in vivo. Moreover, gene expression of infected cell lines differed markedly from the prior standard of unsorted infected neutrophils. Differentiated HL-60 cells sustained similar infection levels to neutrophils in vivo and closely mimicked functional and transcriptional changes of sorted infected neutrophils. Thus, care must be exercised using ex vivo neutrophils for A. phagocytophilum infection studies because a major determinant of transcriptional and functional changes among all cells was the intracellular bacteria quantity. Furthermore, comparisons of ex vivo neutrophils and the surrogate HL-60 cell model allowed the determination that specific cellular functions and transcriptional programs are targeted by the bacterium without significantly modifying differentiation.
Collapse
Affiliation(s)
- Kristen E Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA; Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
14
|
Choi KS, Dumler JS. Anaplasma phagocytophilum, interferon gamma production and Stat1 signaling. Microbiol Immunol 2013; 57:207-12. [PMID: 23278812 DOI: 10.1111/1348-0421.12023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Revised: 11/26/2012] [Accepted: 12/20/2012] [Indexed: 01/01/2023]
Abstract
Human granulocytic anaplasmosis is caused by the obligate intracellular bacterium, Anaplasma phagocytophilum. The proinflammatory cytokine, IFN-γ, is necessary for innate immunity and plays an important role in the induction of severe histopathology in A. phagocytophilum-infected mice, horses and humans. In this study, activation of signal transducer and activator of transcription (Stat) 1 phosphorylation associated with A. phagocytophilum infection was examined in mice and found to be markedly greater on day 7 post-infection than in mock-infected controls. This increase in phosphorylated Stat1 (pStat1) correlated significantly with IFN-γ production and inflammatory tissue injury. Because pStat1 operates as a transcription factor central to the generation of effectors of inflammatory injury, these data suggest that Stat1 signaling is involved in IFN-γ-mediated immunopathologic lesions and disease in A. phagocytophilum infection and could be an important target for intervention in this disease.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- College of Ecology and Environmental Science, School of Animal Science and Biotechnology, Kyungpook National University, Sangju 742-711, Korea
| | | |
Collapse
|
15
|
Dantas-Torres F, Capelli G, Giannelli A, Ramos RAN, Lia RP, Cantacessi C, de Caprariis D, De Tommasi AS, Latrofa MS, Lacasella V, Tarallo VD, Di Paola G, Qurollo B, Breitschwerdt E, Stanneck D, Otranto D. Efficacy of an imidacloprid/flumethrin collar against fleas, ticks and tick-borne pathogens in dogs. Parasit Vectors 2013; 6:245. [PMID: 23972013 PMCID: PMC3766024 DOI: 10.1186/1756-3305-6-245] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/18/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tick-borne diseases comprise a group of maladies that are of substantial medical and veterinary significance. A range of tick-borne pathogens, including diverse species of bacteria and protozoa, can infect both dogs and humans. Hence, the control of tick infestations is pivotal to decrease or prevent tick-borne pathogen transmission. Therefore, different commercial products with insecticidal, repellent or both properties have been developed for use on dogs. Recently, a collar containing a combination of imidacloprid 10% and flumethrin 4.5% has proven effective to prevent tick and flea infestations in dogs under field conditions and the infection by some vector-borne pathogens they transmit under laboratory-controlled conditions. METHODS From March 2011 to April 2012, a field study was conducted in a private shelter in southern Italy to assess the efficacy of the imidacloprid/flumethrin collar against tick and flea infestations and to determine if this strategy would decrease tick-borne pathogen transmission in young dogs. A total of 122 animals were enrolled in the study and randomly assigned to group A (n = 64; collared) or group B (n = 58; untreated controls). Dogs were examined monthly for ticks and fleas and systematically tested for selected tick-borne pathogens. RESULTS Compared to controls, the collar provided overall efficacies of 99.7% and 100% against tick and flea infestation, respectively. The overall efficacy for the prevention of tick-borne pathogens (i.e., Anaplasma platys and Babesia vogeli) was 91.6%. CONCLUSIONS This study demonstrates that the imidacloprid/flumethrin collar is efficacious against flea and tick infestation as well as tick-borne pathogen transmission to dogs under field conditions.
Collapse
|
16
|
Stuen S, Granquist EG, Silaghi C. Anaplasma phagocytophilum--a widespread multi-host pathogen with highly adaptive strategies. Front Cell Infect Microbiol 2013; 3:31. [PMID: 23885337 PMCID: PMC3717505 DOI: 10.3389/fcimb.2013.00031] [Citation(s) in RCA: 381] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 06/30/2013] [Indexed: 11/21/2022] Open
Abstract
The bacterium Anaplasma phagocytophilum has for decades been known to cause the disease tick-borne fever (TBF) in domestic ruminants in Ixodes ricinus-infested areas in northern Europe. In recent years, the bacterium has been found associated with Ixodes-tick species more or less worldwide on the northern hemisphere. A. phagocytophilum has a broad host range and may cause severe disease in several mammalian species, including humans. However, the clinical symptoms vary from subclinical to fatal conditions, and considerable underreporting of clinical incidents is suspected in both human and veterinary medicine. Several variants of A. phagocytophilum have been genetically characterized. Identification and stratification into phylogenetic subfamilies has been based on cell culturing, experimental infections, PCR, and sequencing techniques. However, few genome sequences have been completed so far, thus observations on biological, ecological, and pathological differences between genotypes of the bacterium, have yet to be elucidated by molecular and experimental infection studies. The natural transmission cycles of various A. phagocytophilum variants, the involvement of their respective hosts and vectors involved, in particular the zoonotic potential, have to be unraveled. A. phagocytophilum is able to persist between seasons of tick activity in several mammalian species and movement of hosts and infected ticks on migrating animals or birds may spread the bacterium. In the present review, we focus on the ecology and epidemiology of A. phagocytophilum, especially the role of wildlife in contribution to the spread and sustainability of the infection in domestic livestock and humans.
Collapse
Affiliation(s)
- Snorre Stuen
- Department of Production Animal Clinical Sciences, Norwegian School of Veterinary Science Sandnes, Norway.
| | | | | |
Collapse
|
17
|
Rennoll-Bankert KE, Dumler JS. Lessons from Anaplasma phagocytophilum: chromatin remodeling by bacterial effectors. Infect Disord Drug Targets 2013; 12:380-7. [PMID: 23082961 PMCID: PMC3664514 DOI: 10.2174/187152612804142242] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Revised: 08/27/2012] [Accepted: 08/27/2012] [Indexed: 02/06/2023]
Abstract
Bacterial pathogens can alter global host gene expression via histone modifications and chromatin remodeling in order to subvert host responses, including those involved with innate immunity, allowing for bacterial survival. Shigella flexneri, Listeria monocytogenes, Chlamydia trachomatis, and Anaplasma phagocytophilum express effector proteins that modify host histones and chromatin structure. A. phagocytophilum modulates granulocyte respiratory burst in part by dampening transcription of several key phagocyte oxidase genes. The A. phagocytophilum protein AnkA localizes to the myeloid cell nucleus where it binds AT-rich regions in the CYBB promoter and decreases its transcription. AT-rich regions of DNA are characteristic of matrix attachment regions (MARs) which are critical for chromatin structure and transcription. MAR-binding proteins, such as SATB1, interact with histone modifying enzymes resulting in altered gene expression. With A. phagocytophilum infection, histone deacetylase 1 (HDAC1) expression is increased and histone H3 acetylation is decreased at the CYBB promoter, suggesting a role for AnkA in altering host epigenetics and modulating gene transcription, at this, and perhaps other loci. This review will focus on how bacterial pathogens alter host epigenetics, by specifically examining A. phagocytophilum AnkA cis-regulation of CYBB transcription and epigenetic changes associated with infection.
Collapse
|
18
|
Sukumaran B, Ogura Y, Pedra JHF, Kobayashi KS, Flavell RA, Fikrig E. Receptor interacting protein-2 contributes to host defense against Anaplasma phagocytophilum infection. ACTA ACUST UNITED AC 2012; 66:211-9. [PMID: 22747758 DOI: 10.1111/j.1574-695x.2012.01001.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 06/18/2012] [Accepted: 06/18/2012] [Indexed: 12/20/2022]
Abstract
The Gram-negative obligate intracellular bacterium Anaplasma phagocytophilum is the causative agent of human granulocytic anaplasmosis (HGA), an emerging tick-borne infectious disease occurring worldwide. HGA is generally self-limiting; however, the underlying mechanisms, particularly the innate immune pathways that mediate the immune clearance of A. phagocytophilum, are less understood. We herein report an unexpected role for Receptor interacting protein-2 (Rip2), the adaptor protein for the Nod-like receptors (NLRs), Nod1/Nod2, in the host immune response against A. phagocytophilum infection. Although A. phagocytophilum genome is reported to lack the genes encoding the known ligands of Nod1 and Nod2, its infection upregulated the transcription of Rip2 in human primary neutrophils. Our results revealed that Rip2-deficient mice had significantly higher bacterial load than wild-type controls throughout the infection period. In addition, the Rip2-deficient mice took strikingly longer duration to clear A. phagocytophilum infection. Detailed analysis identified that interferon gamma (IFNγ) and interleukin (IL)-18 but not IL-12, macrophage inflammatory protein-2, and KC response were diminished in A. phagocytophilum-challenged Rip2-deficient mice. Together, these results revealed that Rip2 plays important roles in the immune control of A. phagocytophilum and may contribute to our understanding of the host response to Rickettsiales.
Collapse
Affiliation(s)
- Bindu Sukumaran
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Dumler JS. The biological basis of severe outcomes in Anaplasma phagocytophilum infection. ACTA ACUST UNITED AC 2011; 64:13-20. [PMID: 22098465 DOI: 10.1111/j.1574-695x.2011.00909.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2011] [Revised: 10/20/2011] [Accepted: 11/10/2011] [Indexed: 11/29/2022]
Abstract
Anaplasma phagocytophilum causes granulocytic anaplasmosis, an acute disease in humans that is also often subclinical. However, 36% are hospitalized, 7% need intensive care, and the case fatality rate is 0.6%. The biological basis for severe disease is not understood. Despite A. phagocytophilum's mechanisms to subvert neutrophil antimicrobial responses, whether these mechanisms lead to disease is unclear. In animals, inflammatory lesions track with IFNγ and IL-10 expression and infection of Ifng(-/-) mice leads to increased pathogen load but inhibition of inflammation. Suppression of STAT signaling in horses impacts IL-10 and IFN-γ expression, and also suppresses disease severity. Similar inhibition of inflammation with infection of NKT-deficient mice suggests that innate immune responses are key for disease. With severe disease, tissues can demonstrate hemophagocytosis, and measures of macrophage activation/hemophagocytic syndromes (MAS/HPS) support the concept of human granulocytic anaplasmosis as an immunopathologic disease. MAS/HPS are related to defective cytotoxic lymphocytes that ordinarily diminish inflammation. Pilot studies in mice show cytotoxic lymphocyte activation with A. phagocytophilum infection, yet suppression of cytotoxic responses from both NKT and CD8 cells, consistent with the development of MAS/HPS. Whether severity relates to microbial factors or genetically determined diversity in human immune and inflammatory response needs more investigation.
Collapse
Affiliation(s)
- J Stephen Dumler
- Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
20
|
Dexamethasone-induced cytokine changes associated with diminished disease severity in horses infected with Anaplasma phagocytophilum. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:1962-8. [PMID: 21880854 DOI: 10.1128/cvi.05034-11] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anaplasma phagocytophilum is the zoonotic cause of granulocytic anaplasmosis. We hypothesized that immune response, specifically gamma interferon (IFN-γ), plays a role in disease severity. To test this, horses were infected and IFNG expression was pharmacologically downregulated using corticosteroids. Eight horses were infected with A. phagocytophilum; 4 received dexamethasone on days 4 to 8 of infection. Clinical signs, hematologic parameters, and transcription of cytokine/chemokine genes were compared among treated and untreated horses. Infection was quantitated by msp2 real-time PCR and microscopy. As anticipated, there was significantly greater leukopenia, thrombocytopenia, and anemia in infected versus uninfected horses. The A. phagocytophilum load was higher for dexamethasone-treated horses. Dexamethasone reduced IFNG transcription by day 12 and IL-8 and IL-18 by days 7 to 9 and increased IL-4 on day 7. The ratio of IL-10 to IFNG was increased by dexamethasone on day 9. There were no hematologic differences between the infected horses. Dexamethasone suppression of proinflammatory response resulted in delayed infection-induced limb edema and decreased icterus, anorexia, and reluctance to move between days 6 and 9 and lower fever on day 7. These results underscore the utility of the equine model of granulocytic anaplasmosis and suggest that Th1 proinflammatory response plays a role in worsening disease severity and that disease severity can be decreased by modulating proinflammatory response. A role for Th1 response and macrophage activation in hematologic derangements elicited by A. phagocytophilum is not supported by these data and remains unproven.
Collapse
|
21
|
Otranto D, Testini G, Dantas-Torres F, Latrofa MS, Diniz PPVDP, de Caprariis D, Lia RP, Mencke N, Stanneck D, Capelli G, Breitschwerdt EB. Diagnosis of canine vector-borne diseases in young dogs: a longitudinal study. J Clin Microbiol 2010; 48:3316-24. [PMID: 20660218 PMCID: PMC2937705 DOI: 10.1128/jcm.00379-10] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2010] [Revised: 04/27/2010] [Accepted: 07/12/2010] [Indexed: 11/20/2022] Open
Abstract
Canine vector-borne diseases (CVBDs) pose a diagnostic challenge, particularly when a dog is coinfected with more than one pathogen. The purpose of this study was to generate information about the diagnosis of CVBDs in young dogs following their first exposure to flea, tick, sand fly, louse, and mosquito vectors. From March 2008 to May 2009, 10 purpose-bred young naive beagle dogs and a cohort of 48 mixed-breed dogs living in an area to which CVBD is endemic in southern Italy were monitored using different diagnostic tests (cytology, serology, and PCR). Overall, PCR detected the highest number of dogs infected with Anaplasma platys, Babesia vogeli, and Ehrlichia canis, whereas seroconversion was a more sensitive indicator of exposure to Leishmania infantum. For A. platys infection, combining blood and buffy coat cytology in parallel enhanced the relative sensitivity (SE(rel)) (87.3%). For B. vogeli, the best diagnostic combination was buffy coat cytology and serology used in parallel (SE(rel), 67.5%), whereas serology and PCR used in parallel (SE(rel), 100%) was the best combination for L. infantum. Overall, 12 (20.7%) dogs were coinfected; however, the percentage of new coinfections decreased from baseline (50%) to the first (33.3%) and second (16.6%) follow-up time points. Numbers of coinfections with A. platys and B. vogeli were significantly higher (P < 0.05) than coinfections with other pathogen combinations. The data generated in this study provide insights on the incidence of certain pathogens infecting young dogs in southern Italy, highlight important diagnostic testing limitations, and support the use of multiple diagnostic modalities when attempting to confirm a tick-borne infection in an individual dog or in a canine population.
Collapse
Affiliation(s)
- Domenico Otranto
- Department of Veterinary Public Health and Animal Sciences, Faculty of Veterinary Medicine, Valenzano, Bari, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Otranto D, de Caprariis D, Lia R, Tarallo V, Lorusso V, Testini G, Dantas-Torres F, Latrofa S, Diniz P, Mencke N, Maggi R, Breitschwerdt E, Capelli G, Stanneck D. Prevention of endemic canine vector-borne diseases using imidacloprid 10% and permethrin 50% in young dogs: A longitudinal field study. Vet Parasitol 2010; 172:323-32. [DOI: 10.1016/j.vetpar.2010.05.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2010] [Revised: 05/12/2010] [Accepted: 05/19/2010] [Indexed: 10/19/2022]
|
23
|
Abstract
Microbes transmitted to mammals by arthropods contend with many factors that could impede survival. To survive, host fitness with infection must outweigh costs. In this issue of the JCI, Neelakanta et al. demonstrate that ticks infected with Anaplasma phagocytophilum show enhanced fitness against freezing injury owing to induced expression of tick "antifreeze glycoprotein." This allows A. phagocytophilum to successfully propagate and survive to cause disease in nonnatural hosts, such as humans. How an intracellular microbe with a small genome subverts host cell function for survival provides insight into the control of some cellular function programs and underscores how vector biology can have an impact on human health.
Collapse
Affiliation(s)
- J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA.
| |
Collapse
|
24
|
Carrade D, Foley J, Borjesson D, Sykes J. Canine Granulocytic Anaplasmosis: A Review. J Vet Intern Med 2009; 23:1129-41. [DOI: 10.1111/j.1939-1676.2009.0384.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|
25
|
Abstract
Anaplasma phagocytophilum is the recently designated name replacing three species of granulocytic bacteria, Ehrlichia phagocytophila, Ehrlichia equi and the agent of human granulocytic ehrlichiosis, after the recent reorganization of the families Rickettsiaceae and Anaplasmataceae in the order Rickettsiales. Tick-borne fever (TBF), which is caused by the prototype of A. phagocytophilum, was first described in 1932 in Scotland. A similar disease caused by a related granulocytic agent was first described in horses in the USA in 1969; this was followed by the description of two distinct granulocytic agents causing similar diseases in dogs in the USA in 1971 and 1982. Until the discovery of human granulocytic anaplasmosis (HGA) in the USA in 1994, these organisms were thought to be distinct species of bacteria infecting specific domestic animals and free-living reservoirs. It is now widely accepted that the agents affecting different animal hosts are variants of the same Gram-negative obligatory intracellular bacterium, which is transmitted by hard ticks belonging to the Ixodes persulcatus complex. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation. Ruminants with TBF and humans with HGA develop severe febrile reaction, bacteraemia and leukopenia due to neutropenia, lymphocytopenia and thrombocytopenia within a week of exposure to a tick bite. Because of the severe haematological disorders lasting for several days and other adverse effects on the host's immune functions, infected animals and humans are more susceptible to other infections.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, South Wirral CH64 7TE, UK.
| |
Collapse
|
26
|
Infection with Anaplasma phagocytophilum induces multilineage alterations in hematopoietic progenitor cells and peripheral blood cells. Infect Immun 2009; 77:4070-80. [PMID: 19564373 DOI: 10.1128/iai.00570-09] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Infection with Anaplasma phagocytophilum, a gram-negative, lipopolysaccharide (LPS)-negative, obligate intracellular bacterium, results in multiple peripheral blood cytopenias. We hypothesized that infection with this organism would result in decreased bone marrow (BM) function and shifts in hematopoietic progenitor cells (HPCs) and lineage-committed cells in a well-established murine model of infection. HPCs and lineage-committed progenitors were enumerated in the BM and spleen during acute infection. BM cytokine production and BM CXCL12 expression were determined. Infection resulted in peripheral blood bicytopenia, marked decreases in the number of lineage-committed HPCs in the BM along with concurrent increases in the number of lineage-committed HPCs in the spleen, and a mixed, predominantly myelosuppressive BM cytokine environment. There was significant downregulation of CXCL12 in BM cells that may have been partially responsible for changes in HPC trafficking observed. Changes occurred in the absence of direct pathogen infection of BM cells. Hematopoietic lineage assessment demonstrated that there was loss of erythrocytes and B lymphocytes from the BM along with increased granulopoiesis. These changes were accompanied by splenomegaly due to lymphoid hyperplasia and increased hematopoiesis, most notably erythropoiesis. These changes largely mimic well-described inflammation and endotoxin-mediated effects on the BM and spleen; however, the numbers of peripheral blood neutrophils appear to be independently modulated as granulocytic hyperplasia does not result in neutrophilia. Our findings highlight a well-conserved series of events that we demonstrate can be instigated by an LPS-negative pathogen in the absence of an endotoxin-mediated acute proinflammatory response.
Collapse
|
27
|
Santos AS, Santos-Silva MM, Sousa RD, Bacellar F, Dumler JS. PCR-based survey of Anaplasma phagocytophilum in Portuguese ticks (Acari: Ixodidae). Vector Borne Zoonotic Dis 2008; 9:33-40. [PMID: 18781886 DOI: 10.1089/vbz.2008.0051] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A total of two-thousand and six ticks, collected from 2002 to 2006 in areas belonging to seven districts of Mainland Portugal and also in Madeira Island, were examined by polymerase chain reaction (PCR) for the presence of Anaplasma phagocytophilum. Active infections were detected exclusively in Ixodes species, including six questing I. ricinus nymphs from Madeira Island, one questing I. ventalloi nymph from Setúbal District, and two I. ventalloi adults found parasitizing domestic cats in both Setúbal and Santarém District. These findings confirm prior observations and suggest the persistence of A. phagocytophilum on Madeira Island. Moreover, it adds I. ventalloi and domestic cats to the list of potential elements of the agent's enzootic cycles in Portugal. Molecular analysis of PCR amplicons suggests the existence of two A. phagocytophilum genotypes in Portugal, one of which is identical or very similar to North American strains implicated in human disease.
Collapse
Affiliation(s)
- Ana S Santos
- Centro de Estudos de Vectores e Doenças Infecciosas, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisboa, Portugal.
| | | | | | | | | |
Collapse
|
28
|
Galindo RC, Ayoubi P, García-Pérez AL, Naranjo V, Kocan KM, Gortazar C, de la Fuente J. Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Vet Immunol Immunopathol 2008; 126:27-34. [PMID: 18640728 DOI: 10.1016/j.vetimm.2008.06.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Revised: 05/20/2008] [Accepted: 06/11/2008] [Indexed: 11/28/2022]
Abstract
Anaplasma phagocytophilum infects a wide variety of host species and causes the diseases tick-borne fever (TBF) in ruminants and granulocytic anaplasmosis in humans, horses and dogs. TBF in sheep has become one of the more prevalent tick-borne diseases in some regions of Europe. A. phagocytophilum infection modifies host gene expression and immune response. The objective of this research was to characterize differential gene expression in sheep experimentally and naturally infected with A. phagocytophilum by microarray hybridization and real-time RT-PCR. The results of these studies demonstrated in sheep the activation of inflammatory and innate immune pathways and the impairment of adaptive immunity during A. phagocytophilum infection. The characterization of the genes and their expression profiles in sheep in response to A. phagocytophilum infection advances our understanding of the molecular mechanisms of pathogen infection and the pathogenesis of TBF. Collectively, these results expand current information on the mammalian host response to A. phagocytophilum infection.
Collapse
Affiliation(s)
- Ruth C Galindo
- Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM), Ronda de Toledo s/n, 13005 Ciudad Real, Spain
| | | | | | | | | | | | | |
Collapse
|
29
|
Granick JL, Reneer DV, Carlyon JA, Borjesson DL. Anaplasma phagocytophilum infects cells of the megakaryocytic lineage through sialylated ligands but fails to alter platelet production. J Med Microbiol 2008; 57:416-423. [PMID: 18349358 DOI: 10.1099/jmm.0.47551-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Anaplasma phagocytophilum is an obligate intracellular bacterial pathogen that principally inhabits neutrophils. However, infection with A. phagocytophilum results in a moderate to marked thrombocytopenia. In host neutrophils, A. phagocytophilum uses sialylated ligands, primarily P-selectin glycoprotein ligand-1 (PSGL-1), to enter its host cell. PSGL-1 is expressed on a wide array of haematopoietic cells, including megakaryocytes. In this study, it was hypothesized that (i) cells of the megakaryocytic lineage (MEG-01 cells) would be susceptible to A. phagocytophilum infection and (ii) infection may induce alterations in platelet production contributing to infection-induced thrombocytopenia. It was found that MEG-01 cells are susceptible to infection. MEG-01 cells expressing abundant sialylated ligands were the most susceptible to infection, and the absence of sialylation, or blocking of PSGL-1, limited infection susceptibility. However, infected MEG-01 cells produced proplatelets and platelet-like particles comparable to uninfected cells. These results highlight a novel target of pathogen infection and suggest that the pathogen may utilize similar strategies to gain access to megakaryocytes. Direct pathogen modification of platelet production may not play a role in infection-induced thrombocytopenia.
Collapse
Affiliation(s)
- Jennifer L Granick
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, MN, USA
| | - Dexter V Reneer
- Department of Microbiology, Immunology and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KT, USA
| | - Jason A Carlyon
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Dori L Borjesson
- Department of Pathology, Microbiology and Immunology, School of Veterinary Medicine, Davis, CA, USA
| |
Collapse
|
30
|
Sequential analysis of Anaplasma phagocytophilum msp2 transcription in murine and equine models of human granulocytic anaplasmosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 15:418-24. [PMID: 18094110 DOI: 10.1128/cvi.00417-07] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Anaplasma phagocytophilum causes human granulocytic anaplasmosis by inducing immunopathologic responses. Its immunodominant Msp2 protein is encoded by a family of >100 paralogs. Msp2 (msp2) expression modulates in the absence of immune pressure, and prolonged in vitro passage modulates in vivo virulence. Because programmed MSP2 expression occurs in Anaplasma marginale, we hypothesized a similar event in A. phagocytophilum in vivo, with specific Msp2 expression triggering immunopathologic injury or clinical manifestations of disease. We examined msp2 transcripts in 11 B6 mice and 6 horses inoculated with low- or high-passage A. phagocytophilum Webster strain. Blood was sequentially obtained through 3 weeks postinfection for msp2 reverse transcription-PCR. Horses were additionally assessed for clinical manifestations, seroconversion, complete blood count, blood chemistry, and cytokine gene transcription. In both species, there was no consistent emergence of msp2 transcripts, and all 22 msp2 variants were detected in both passage groups. Clinical severity was much higher for high-passage-infected than for low-passage-infected horses, preceded by higher levels of blood gamma interferon transcription on day 7. Antibody was first detected on day 7, and all horses seroconverted by day 22, with a trend toward lower antibody titers in low-passage-infected animals. Leukocyte and platelet counts were similar between experimental groups except on day 13, when low-passage-infected animals had more profound thrombocytopenia. These findings corroborate studies with mice, where msp2 diversity did not explain differences in hepatic histopathology, but differ from the paradigm of low-passage A. phagocytophilum causing more significant clinical illness. Alteration in transcription of msp2 has no bearing on clinical disease in horses, suggesting the existence of a separate proinflammatory component differentially expressed with changing in vitro passage.
Collapse
|
31
|
Choi KS, Dumler JS. Mitogenic component in polar lipid-enriched Anaplasma phagocytophilum membranes. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2007; 14:1260-5. [PMID: 17687112 PMCID: PMC2168108 DOI: 10.1128/cvi.00204-07] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Human granulocytic anaplasmosis is an emerging tick-borne disease caused by Anaplasma phagocytophilum. A. phagocytophilum cells activate Toll-like receptor 2 signaling and possess mitogenic activity, and A. phagocytophilum infection in vivo activates NKT cells unrelated to major surface protein 2 (Msp2) hypervariable region expression. Thus, we hypothesized that lipoprotein or glycolipid components of A. phagocytophilum membranes could be important triggers of the innate immune response and immunopathology. A. phagocytophilum membranes depleted of Msp2 and protein antigens enhanced the proliferation of naïve mouse splenocytes beyond that of untreated membranes. Protein-depleted and polar lipid-enriched membranes from low-passage A. phagocytophilum cultures enhanced naïve splenocyte lymphoproliferation to a much greater degree than did these fractions from high-passage cultures of bacterial membranes (1.8- to 3.7-fold for protein-depleted fractions and 4.8- to > or =17.7-fold for polar lipid-enriched fractions). These results support the hypothesis that components that are enriched among polar lipids in the A. phagocytophilum membrane stimulate innate immune cell proliferation, possibly activating NKT cells that link innate and adaptive immunity, and immunopathology.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- College of Life Sciences and Natural Resources, Department of Animal Science, Sangju National University, Sangju 742-711, Korea
| | | |
Collapse
|
32
|
Choi KS, Webb T, Oelke M, Scorpio DG, Dumler JS. Differential innate immune cell activation and proinflammatory response in Anaplasma phagocytophilum infection. Infect Immun 2007; 75:3124-30. [PMID: 17403880 PMCID: PMC1932852 DOI: 10.1128/iai.00098-07] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Human granulocytic anaplasmosis (HGA) is caused by the obligate intracellular bacterium Anaplasma phagocytophilum. The critical role of gamma interferon (IFN-gamma) for induction of severe inflammatory histopathology, even in the absence of a significant bacterial load, was previously demonstrated in a murine model of HGA. We hypothesized that NK, NKT, and possibly CD8(+) cytotoxic T cells participate in the development of histopathologic lesions with A. phagocytophilum infection. Mice were mock infected or infected with low- or high-passage A. phagocytophilum and assayed for hepatic histopathology and splenocyte immunophenotype during the first 21 days after infection. Compared to high-passage A. phagocytophilum-infected mice, low-passage A. phagocytophilum-infected mice had more severe hepatic lesions and increased apoptosis. The hepatic histopathology severity in low-passage A. phagocytophilum-infected mice peaked on day 2 at the time of peak plasma IFN-gamma levels and gradually decreased through day 21. Low-passage A. phagocytophilum-infected mice also showed significantly increased levels of lymphocyte NK1.1/FasL expression on days 4 to 7 corresponding to early, severe hepatic inflammation, whereas the levels of NKT cells were substantially lower on day 4, suggesting that there was NKT cell involvement. This result supports the concept that NK1.1(+) cells, including NK and NKT cells, are major components in the early pathogenesis of A. phagocytophilum infection.
Collapse
Affiliation(s)
- Kyoung-Seong Choi
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 624, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
33
|
Woldehiwet Z. Immune evasion and immunosuppression by Anaplasma phagocytophilum, the causative agent of tick-borne fever of ruminants and human granulocytic anaplasmosis. Vet J 2007; 175:37-44. [PMID: 17275372 DOI: 10.1016/j.tvjl.2006.11.019] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 11/22/2006] [Accepted: 11/25/2006] [Indexed: 01/02/2023]
Abstract
Anaplasma phagocytophilum, the causative agent of tick-borne fever (TBF) in sheep and cattle and human granulocytic anaplasmosis, has the unique ability to infect and multiply within neutrophils, eosinophils and monocytes, cells at the frontline of the immune system. Infection with A. phagocytophilum is also characterized by severe leukopenia due to lymphocytopenia, neutropenia and thrombocytopenia lasting for several days. By itself TBF does not cause high mortality rates but infected animals are more susceptible to other secondary infections, pregnant animals may abort and there is a severe reduction in milk yield in dairy cattle. The susceptibility to secondary infections can be attributed to the leukopenia that accompanies the disease and the organism's adverse effects on lymphocyte and neutrophil functions. One of its fascinating features is that it infects and actively grows in neutrophils by employing an array of mechanisms to subvert their bactericidal activity. These include its ability to inhibit phagosome-lysosome fusion, to suppress respiratory burst and to delay the apoptotic death of neutrophils. It is also able to survive within an apparently immune host by employing a complex mechanism of antigenic variation.
Collapse
Affiliation(s)
- Zerai Woldehiwet
- University of Liverpool, Department of Veterinary Pathology, Veterinary Teaching Hospital, Leahurst, Neston, Wirral CH64 7TE, UK.
| |
Collapse
|
34
|
Scorpio DG, von Loewenich FD, Göbel H, Bogdan C, Dumler JS. Innate immune response to Anaplasma phagocytophilum contributes to hepatic injury. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2006; 13:806-9. [PMID: 16829620 PMCID: PMC1489578 DOI: 10.1128/cvi.00092-06] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In mice, Anaplasma phagocytophilum control is independent of phagocyte oxidase (phox), inducible NO synthase (NOS2), tumor necrosis factor (TNF), and MyD88 Toll-like receptor signaling. We show that despite evasion of these host responses, phox, NOS2, TNF, and MyD88 are activated and contribute to inflammation and hepatic injury more than A. phagocytophilum itself.
Collapse
Affiliation(s)
- Diana G Scorpio
- Department of Molecular and Comparative Pathobiology, The Johns Hopkins University School of Medicine, Department of Molecular and Comparative Pathobiology, 720 Rutland Avenue, Ross 459, Baltimore, Maryland 21205, USA.
| | | | | | | | | |
Collapse
|
35
|
Dierberg KL, Dumler JS. Lymph node hemophagocytosis in rickettsial diseases: a pathogenetic role for CD8 T lymphocytes in human monocytic ehrlichiosis (HME)? BMC Infect Dis 2006; 6:121. [PMID: 16859547 PMCID: PMC1559625 DOI: 10.1186/1471-2334-6-121] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2005] [Accepted: 07/21/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Human monocytic ehrlichiosis (HME) and Rocky Mountain spotted fever (RMSF) are caused by Ehrlichia chaffeensis and Rickettsia rickettsii, respectively. The pathogenesis of RMSF relates to rickettsia-mediated vascular injury, but it is unclear in HME. METHODS To study histopathologic responses in the lymphatic system for correlates of immune injury, lymph nodes from patients with HME (n = 6) and RMSF (n = 5) were examined. H&E-stained lymph node tissues were examined for five histopathologic features, including hemophagocytosis, cellularity, necrosis, and vascular congestion and edema. The relative proportions of CD68 macrophages, CD8 and CD4 T lymphocytes, and CD20 B lymphocytes were evaluated by immunohistochemical staining. RESULTS Hemophagocytosis was similar in HME and RMSF, and was greater than in control cases (p = .015). Cellularity in HME was not different from controls, whereas RMSF lymph nodes were markedly less cellular (p < 0.002). E. chaffeensis-infected mononuclear phagocytes were infrequent compared to R. rickettsii-infected endothelial cells. More CD8 cells in lymph nodes were observed with HME (p < .001), but no quantitative differences in CD4 lymphocytes, macrophages, or B lymphocytes were identified. CONCLUSION Hemophagocytosis, CD8 T cell expansion, and the paucity of infected cells in HME, suggest that E. chaffeensis infection leads to macrophage activation and immune-mediated injury.
Collapse
Affiliation(s)
- Kerry L Dierberg
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - J Stephen Dumler
- Division of Medical Microbiology, Department of Pathology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
36
|
Scorpio DG, Von Loewenich FD, Bogdan C, Dumler JS. Innate immune tissue injury and murine HGA: tissue injury in the murine model of granulocytic anaplasmosis relates to host innate immune response and not pathogen load. Ann N Y Acad Sci 2006; 1063:425-8. [PMID: 16481553 DOI: 10.1196/annals.1355.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Anaplasma phagocytophilum is an obligate intracellular tick-borne bacterium that propagates within neutrophils and causes human and animal granulocytic anaplasmosis (HGA). In the murine model of HGA, host immune response plays a more important role in histopathologic lesions than does pathogen load. We examined the role of CYBB, NOS2, and TNFalpha as effectors of innate immune-related injury. Our hypothesis is that the innate immune response to A. phagocytophilum results in inflammatory histopathology, but does not control the pathogen.
Collapse
Affiliation(s)
- Diana G Scorpio
- Department of Comparative Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | | | | | |
Collapse
|
37
|
Abstract
PURPOSE OF REVIEW This review summarizes recent knowledge regarding the strategies employed by Anaplasma phagocytophilum to evade or subvert neutrophil killing mechanisms and modify other neutrophil pathways to promote its survival. RECENT FINDINGS A. phagocytophilum evades neutrophil oxidative killing by preventing fusion of cytochrome b558-carrying specific granules and secretory vesicles with the membrane of its cytoplasmic compartment. It also directly detoxifies superoxide anion. Additionally, the bacterium alters the interaction of transcription factors with the CYYB promoter, which results in greatly reduced gp91phox levels and a consequent decline in respiratory burst capability. A. phagocytophilum not only fails to activate the normal neutrophil apoptosis differentiation program stimulated by bacterial uptake, but also delays spontaneous apoptosis by manipulating the expression of pro and antiapoptotic genes. Maintenance of the proapoptotic factor Bfl-1 contributes, at least in part, to the preservation of mitochondrial membrane integrity and inhibition of caspase 3 activation. SUMMARY A. phagocytophilum combats neutrophil oxidative killing by scavenging O2, inhibiting NADPH oxidase assembly on its vacuolar membrane, and modifying promoter activity for a key NADPH oxidase component, gp91phox. Uptake of this unique pathogen fails to induce neutrophil apoptosis. Furthermore, A. phagocytophilum extends the life of its otherwise short-lived host cell by dysregulating neutrophil gene expression and molecular machinery to potentially maximize its survival and dissemination within its mammalian host.
Collapse
Affiliation(s)
- Jason A Carlyon
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, Kentucky 40536-0298, USA.
| | | |
Collapse
|
38
|
Garyu JWA, Choi KS, Grab DJ, Dumler JS. Defective phagocytosis in Anaplasma phagocytophilum-infected neutrophils. Infect Immun 2005; 73:1187-90. [PMID: 15664962 PMCID: PMC547103 DOI: 10.1128/iai.73.2.1187-1190.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Anaplasma phagocytophilum infection induces functional neutrophil changes. Using both Candida albicans and fluorescent-aggregate phagocytosis assays, we examined whether neutrophil and dimethyl sulfoxide-differentiated HL-60 cell infection impairs internalization. A. phagocytophilum infection significantly decreased phagocytosis compared to that of controls (P < 0.05). This further impairment of neutrophil function may promote opportunistic infections and exacerbate disease.
Collapse
Affiliation(s)
- Justin W A Garyu
- Department of Pathology, Division of Medical Microbiology, The Johns Hopkins University School of Medicine, 720 Rutland Avenue, Ross 624, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|