1
|
Yang F, Li X, Sun J, Pang X, Sun Q, Lu Y. Regulatory mechanisms of the probiotic-targeted gut-liver axis for the alleviation of alcohol-related liver disease: a review. Crit Rev Food Sci Nutr 2025:1-22. [PMID: 39905925 DOI: 10.1080/10408398.2025.2455954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Alcohol abuse-triggered alcohol-related liver disease (ALD) has become as a global public health concern that substantially affects the well-being and clinical status of patients. Although modern medicine provides various treatments for ALD, their effectiveness is limited and can lead to adverse side effects. Probiotics have been employed to prevent, alleviate, and even treat ALD, with promising results. However, few comprehensive reviews are available on how they mitigate ALD by targeting the gut-liver axis. This review systematically clarifies the specific mediators of the gut-liver axis in healthy states. It also describes the alterations observed in ALD. Furthermore, this review thoroughly summarizes the underlying mechanisms through which probiotics act on the gut-liver axis to relieve ALD. It also discusses the current status and challenges faced in clinical research applications. Finally, we discuss the challenges and future prospects of using probiotics to treat ALD. This review improves our understanding of ALD and supports the development and application of probiotics that target the gut-liver axis for therapeutic use.
Collapse
Affiliation(s)
- Feiyu Yang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Xiangfei Li
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Jing Sun
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Xinyi Pang
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| | - Quancai Sun
- Department of Health, Nutrition, and Food Sciences, Florida State University, Tallahassee, FL, USA
| | - Yingjian Lu
- College of Food Science and Engineering, Nanjing University of Finance and Economics/Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing, China
| |
Collapse
|
2
|
Walsh C, Lane JA, van Sinderen D, Hickey RM. Tailored Combinations of Human Milk Oligosaccharides Modulate the Immune Response in an In Vitro Model of Intestinal Inflammation. Biomolecules 2024; 14:1481. [PMID: 39766188 PMCID: PMC11727556 DOI: 10.3390/biom14121481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 01/15/2025] Open
Abstract
Infants rely on their developing immune system and the protective components of breast milk to defend against bacterial and viral pathogens, as well as immune disorders such as food allergies, prior to the introduction of solid foods. When breastfeeding is not feasible, fortified infant formula will most frequently be offered, usually based on a cow's milk-based substitute. The current study aimed to explore the immunomodulatory effects of combinations of commercially available human milk oligosaccharides (HMOs). An in vitro co-culture model of Caco-2 intestinal epithelial cells and THP-1 macrophages was established to replicate the hallmarks of intestinal inflammation and to evaluate the direct effects of different synthetic HMO combinations. Notably, a blend of the most prevalent fucosylated and sialylated HMOs, 2'-fucosyllactose (2'-FL) and 6'-siallylactose (6'-SL), respectively, resulted in decreased pro-inflammatory cytokine levels. These effects were dependent on the HMO concentration and on the HMO ratio resembling those in breastmilk. Interestingly, adding additional HMO structures did not enhance the anti-inflammatory effects. This research highlights the importance of carefully selecting HMO combinations in nutritional products, particularly for infant milk formulations, to effectively mimic the benefits associated with breastmilk.
Collapse
Affiliation(s)
- Clodagh Walsh
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Jonathan A. Lane
- Health and Happiness Group, H&H Research, P61 K202 Cork, Ireland;
| | - Douwe van Sinderen
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| | - Rita M. Hickey
- Teagasc Food Research Centre, Moorepark, Fermoy, P61 C996 Cork, Ireland;
- APC Microbiome Ireland and School of Microbiology, University College Cork, T12 YT20 Cork, Ireland;
| |
Collapse
|
3
|
Zaib S, Hayat A, Khan I. Probiotics and their Beneficial Health Effects. Mini Rev Med Chem 2024; 24:110-125. [PMID: 37291788 DOI: 10.2174/1389557523666230608163823] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
Probiotics are living microorganisms that are present in cultured milk and fermented food. Fermented foods are a rich source for the isolation of probiotics. They are known as good bacteria. They have various beneficial effects on human health including antihypertensive effects, antihypercholesterolemic effects, prevention of bowel disease, and improving the immune system. Microorganisms including bacteria, yeast, and mold are used as probiotics but the major microorganisms that are used as probiotics are bacteria from the genus Lactobacillus, Lactococcus, Streptococcus, and Bifidobacterium. Probiotics are beneficial in the prevention of harmful effects. Recently, the use of probiotics for the treatment of various oral and skin diseases has also gained significant attention. Clinical studies indicate that the usage of probiotics can alter gut microbiota composition and provoke immune modulation in a host. Due to their various health benefits, probiotics are attaining more interest as a substitute for antibiotics or anti-inflammatory drugs leading to the growth of the probiotic market.
Collapse
Affiliation(s)
- Sumera Zaib
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Aqsa Hayat
- Department of Basic and Applied Chemistry, Faculty of Sciences and Technology, University of Central Punjab, Lahore, 54590, Pakistan
| | - Imtiaz Khan
- Department of Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131, Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
4
|
Dos Santos VHB, de Azevedo Ximenes ECP, de Souza RAF, da Silva RPC, da Conceição Silva M, de Andrade LVM, de Souza Oliveira VM, de Melo-Júnior MR, Costa VMA, de Barros Lorena VM, de Araújo HDA, de Lima Aires A, de Azevedo Albuquerque MCP. Effects of the probiotic Bacillus cereus GM on experimental schistosomiasis mansoni. Parasitol Res 2023; 123:72. [PMID: 38148420 DOI: 10.1007/s00436-023-08090-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/09/2023] [Indexed: 12/28/2023]
Abstract
Probiotics contribute to the integrity of the intestinal mucosa and preventing dysbiosis caused by opportunistic pathogens, such as intestinal helminths. Bacillus cereus GM obtained from Biovicerin® was cultured to obtain spores for in vivo evaluation on experimental schistosomiasis. The assay was performed for 90 days, where all animals were infected with 50 cercariae of Schistosoma mansoni on the 15th day. Three experimental groups were formed, as follows: G1-saline solution from the 1st until the 90th day; G2-B. cereus GM (105 spores in 300 μL of sterile saline) from the 1st until the 90th day; and G3-B. cereus GM 35th day (onset of oviposition) until the 90th day. G2 showed a significant reduction of 43.4% of total worms, 48.8% of female worms and 42.5% of eggs in the liver tissue. In G3, the reduction was 25.2%, 29.1%, and 44% of the total number of worms, female worms, and eggs in the liver tissue, respectively. G2 and G3 showed a 25% (p < 0.001) and 22% (p < 0.001) reduction in AST levels, respectively, but ALT levels did not change. ALP levels were reduced by 23% (p < 0.001) in the G2 group, but not in the G3. The average volume of granulomas reduced (p < 0.0001) 65.2% and 46.3% in the liver tissue and 83.0% and 53.2% in the intestine, respectively, in groups G2 and G3. Th1 profile cytokine (IFN-γ, TNF-α, and IL-6) and IL-17 were significantly increased (p < 0.001) stimulated with B. cereus GM in groups G2 and G3. IL-4 showed significant values when the stimulus was mediated by ConA. By modulating the immune response, B. cereus GM reduced the burden of worms, improved some markers of liver function, and reduced the granulomatous inflammatory reaction in mice infected with S. mansoni, especially when administered before infection.
Collapse
Affiliation(s)
- Victor Hugo Barbosa Dos Santos
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eulália Camelo Pessoa de Azevedo Ximenes
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Antibióticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Renan Andrade Fernandes de Souza
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | | | | | - Valdenia Maria de Souza Oliveira
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Vlaudia Maria Assis Costa
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Departamento de Patologia, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | | | - Hallysson Douglas Andrade de Araújo
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Laboratório de Biotecnologia e Fármacos e Laboratório de Tecnologia de Biomateriais - Centro Acadêmico de Vitória de Santo Antão, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - André de Lima Aires
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Mônica Camelo Pessoa de Azevedo Albuquerque
- Instituto Keizo Asami (iLIKA), Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Programa de Pós-Graduação em Ciências Farmacêuticas, Universidade Federal de Pernambuco, Recife, PE, Brazil.
- Centro de Ciências Médicas, Área Acadêmica de Medicina Tropical, Universidade Federal de Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
5
|
Shahbazi R, Yasavoli-Sharahi H, Mallet JF, Sharifzad F, Alsadi N, Cuenin C, Cahais V, Chung FFL, Herceg Z, Matar C. Novel Probiotic Bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53) Modulates Gut Immunity through Epigenetic Mechanisms. Microorganisms 2023; 11:2456. [PMID: 37894114 PMCID: PMC10609533 DOI: 10.3390/microorganisms11102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/29/2023] Open
Abstract
Gut immune system homeostasis is crucial to overall host health. Immune disturbance at the gut level may lead to systemic and distant sites' immune dysfunction. Probiotics and prebiotics consumption have been shown to improve gut microbiota composition and function and enhance gut immunity. In the current study, the immunomodulatory and anti-inflammatory effects of viable and heat-inactivated forms of the novel probiotic bacterium Rouxiella badensis subsp. acadiensis (Canan SV-53), as well as the prebiotic protocatechuic acid (PCA) derived from the fermentation of blueberry juice by SV-53, were examined. To this end, female Balb/c mice received probiotic (viable or heat-inactivated), prebiotic, or a mixture of viable probiotic and prebiotic in drinking water for three weeks. To better decipher the immunomodulatory effects of biotics intake, gut microbiota, gut mucosal immunity, T helper-17 (Th17) cell-related cytokines, and epigenetic modulation of Th17 cells were studied. In mice receiving viable SV-53 and PCA, a significant increase was noted in serum IgA levels and the number of IgA-producing B cells in the ileum. A significant reduction was observed in the concentrations of proinflammatory cytokines, including interleukin (IL)-17A, IL-6, and IL-23, and expression of two proinflammatory miRNAs, miR-223 and miR425, in treated groups. In addition, heat-inactivated SV-53 exerted immunomodulatory properties by elevating the IgA concentration in the serum and reducing IL-6 and IL-23 levels in the ileum. DNA methylation analysis revealed the role of heat-inactivated SV-53 in the epigenetic regulation of genes related to Th17 and IL-17 production and function, including Il6, Il17rc, Il9, Il11, Akt1, Ikbkg, Sgk1, Cblb, and Smad4. Taken together, these findings may reflect the potential role of the novel probiotic bacterium SV-53 and prebiotic PCA in improving gut immunity and homeostasis. Further studies are required to ascertain the beneficial effects of this novel bacterium in the inflammatory state.
Collapse
Affiliation(s)
- Roghayeh Shahbazi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Hamed Yasavoli-Sharahi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Jean-François Mallet
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Farzaneh Sharifzad
- Department of Urology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Nawal Alsadi
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| | - Cyrille Cuenin
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Vincent Cahais
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Felicia Fei-Lei Chung
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Jalan Universiti, Bandar Sunway, Subang Jaya 47500, Selangor, Malaysia
| | - Zdenko Herceg
- Epigenomics and Mechanisms Branch, International Agency for Research on Cancer (IARC), 25 Av. Tony Garnier, 69007 Lyon, France
| | - Chantal Matar
- Cellular and Molecular Medicine Department, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada
- School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON K1H 8M5, Canada
| |
Collapse
|
6
|
Mishra G, Singh P, Molla M, Yimer YS, Dinda SC, Chandra P, Singh BK, Dagnew SB, Assefa AN, Ewunetie A. Harnessing the potential of probiotics in the treatment of alcoholic liver disorders. Front Pharmacol 2023; 14:1212742. [PMID: 37361234 PMCID: PMC10287977 DOI: 10.3389/fphar.2023.1212742] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
In the current scenario, prolonged consumption of alcohol across the globe is upsurging an appreciable number of patients with the risk of alcohol-associated liver diseases. According to the recent report, the gut-liver axis is crucial in the progression of alcohol-induced liver diseases, including steatosis, steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Despite several factors associated with alcoholic liver diseases, the complexity of the gut microflora and its great interaction with the liver have become a fascinating area for researchers due to the high exposure of the liver to free radicals, bacterial endotoxins, lipopolysaccharides, inflammatory markers, etc. Undoubtedly, alcohol-induced gut microbiota imbalance stimulates dysbiosis, disrupts the intestinal barrier function, and trigger immune as well as inflammatory responses which further aggravate hepatic injury. Since currently available drugs to mitigate liver disorders have significant side effects, hence, probiotics have been widely researched to alleviate alcohol-associated liver diseases and to improve liver health. A broad range of probiotic bacteria like Lactobacillus, Bifidobacteria, Escherichia coli, Sacchromyces, and Lactococcus are used to reduce or halt the progression of alcohol-associated liver diseases. Several underlying mechanisms, including alteration of the gut microbiome, modulation of intestinal barrier function and immune response, reduction in the level of endotoxins, and bacterial translocation, have been implicated through which probiotics can effectively suppress the occurrence of alcohol-induced liver disorders. This review addresses the therapeutic applications of probiotics in the treatment of alcohol-associated liver diseases. Novel insights into the mechanisms by which probiotics prevent alcohol-associated liver diseases have also been elaborated.
Collapse
Affiliation(s)
- Garima Mishra
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Pradeep Singh
- Pharmaceutical Chemistry Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Mulugeta Molla
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Yohannes Shumet Yimer
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | | | - Phool Chandra
- Department of Pharmacology, Teerthanker Mahaveer College of Pharmacy, Teerthanker Mahaveer University, Moradabad, India
| | | | - Samuel Berihun Dagnew
- Clinical Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Abraham Nigussie Assefa
- Social Pharmacy Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| | - Amien Ewunetie
- Pharmacology and Toxicology Unit, Department of Pharmacy, College of Health Sciences, Debre Tabor University, Debre Tabor, Ethiopia
| |
Collapse
|
7
|
Structural characteristics, anticoagulant and antithrombotic mechanism of a novel polysaccharide from Rosa Chinensis Flos. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2022.07.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
8
|
The Effects of Probiotics on Small Intestinal Microbiota Composition, Inflammatory Cytokines and Intestinal Permeability in Patients with Non-Alcoholic Fatty Liver Disease. Biomedicines 2023; 11:biomedicines11020640. [PMID: 36831176 PMCID: PMC9953317 DOI: 10.3390/biomedicines11020640] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/02/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
The prevalence of non-alcoholic fatty liver disease (NAFLD) has soared globally. As our understanding of the disease grows, the role of the gut-liver axis (GLA) in NAFLD pathophysiology becomes more apparent. Hence, we focused mainly on the small intestinal area to explore the role of GLA. We looked at how multi-strain probiotics (MCP® BCMC® strains) containing six different Lactobacillus and Bifidobacterium species affected the small intestinal gut microbiota, inflammatory cytokines, and permeability in NAFLD patients. After six months of supplementation, biochemical blood analysis did not show any discernible alterations in either group. Five predominant phyla known as Actinobacteria, Proteobacteria, Firmicutes, Bacteroidota and Fusobacteria were found in NAFLD patients. The probiotics group demonstrated a significant cluster formation of microbiota composition through beta-diversity analysis (p < 0.05). This group significantly reduced three unclassifiable species: unclassified_Proteobacteria, unclassified_Streptococcus, and unclassified_Stenotrophomonas. In contrast, the placebo group showed a significant increase in Prevotella_melaninogenica and Rothia_mucilaginosa, which were classified as pathogens. Real-time quantitative PCR analysis of small intestinal mucosal inflammatory cytokines revealed a significant decrease in IFN-γ (-7.9 ± 0.44, p < 0.0001) and TNF-α (-0.96 ± 0.25, p < 0.0033) in the probiotics group but an increase in IL-6 (12.79 ± 2.24, p < 0.0001). In terms of small intestinal permeability analysis, the probiotics group, unfortunately, did not show any positive changes through ELISA analysis. Both probiotics and placebo groups exhibited a significant increase in the level of circulating zonulin (probiotics: 107.6 ng/mL ± 124.7, p = 0.005 vs. placebo: 106.9 ng/mL ± 101.3, p = 0.0002) and a significant decrease in circulating zonula occluden-1 (ZO-1) (probiotics: -34.51 ng/mL ± 18.38, p < 0.0001 vs. placebo: -33.34 ng/mL ± 16.62, p = 0.0001). The consumption of Lactobacillus and Bifidobacterium suggested the presence of a well-balanced gut microbiota composition. Probiotic supplementation improves dysbiosis in NAFLD patients. This eventually stabilised the expression of inflammatory cytokines and mucosal immune function. To summarise, more research on probiotic supplementation as a supplement to a healthy diet and lifestyle is required to address NAFLD and its underlying causes.
Collapse
|
9
|
Le Noci V, Bernardo G, Manenti G, Infante G, Khaleghi Hashemian D, Minoli L, Canesi S, Bianchi F, Triulzi T, Arioli S, De Cecco L, Guglielmetti S, Ambrogi F, Recordati C, Gagliano N, Tagliabue E, Sommariva M, Sfondrini L. Live or Heat-Killed Lactobacillus rhamnosus Aerosolization Decreases Adenomatous Lung Cancer Development in a Mouse Carcinogen-Induced Tumor Model. Int J Mol Sci 2022; 23:ijms232112748. [PMID: 36361537 PMCID: PMC9656640 DOI: 10.3390/ijms232112748] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/13/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
An immunosuppressive microenvironment in lung concurs to pre-malignant lesions progression to cancer. Here, we explore if perturbing lung microbiota, which contribute to immunosuppression, by antibiotics or probiotic aerosol interferes with lung cancer development in a mouse carcinogen-induced tumor model. Urethane-injected mice were vancomycin/neomycin (V/N)-aerosolized or live or dead L. rhamnosus GG (L.RGG)-aerosolized, and tumor development was evaluated. Transcriptional profiling of lungs and IHC were performed. Tumor nodules number, diameter and area were reduced by live or heat-killed L.RGG, while only a decrease in nodule diameter was observed in V/N-treated lungs. Both L.RGG and V/N reduced Tregs in the lung. In L.RGG-treated groups, the gene encoding the joining chain (J chain) of immunoglobulins was increased, and higher J chain protein and IgA levels were observed. An increased infiltration of B, NK and myeloid-derived cells was predicted by TIMER 2.0. The Kaplan–Meier plotter revealed an association between high levels of J chain mRNA and good prognosis in lung adenocarcinoma patients that correlated with increased B and CD4 T cells and reduced Tregs and M2 macrophages. This study highlights L.RGG aerosol efficacy in impairing lung cancer growth by promoting local immunity and points to this non-invasive strategy to treat individuals at risk of lung cancer.
Collapse
Affiliation(s)
- Valentino Le Noci
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giancarla Bernardo
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
| | - Giacomo Manenti
- Animal Health and Welfare Unit, Department of Applied Research and Technical Development, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy
| | - Gabriele Infante
- Laboratory of Medical Statistics and Biometry “Giulio A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Unit of Clinical Epidemiology and Trial Organization, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Dariush Khaleghi Hashemian
- Laboratory of Medical Statistics and Biometry “Giulio A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
| | - Lucia Minoli
- Dipartimento di Scienze Veterinarie, Università degli Studi di Torino, 10095 Turin, Italy
| | - Simone Canesi
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, 20139 Milan, Italy
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Francesca Bianchi
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
- U.O. Laboratorio di Morfologia Umana Applicata, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Tiziana Triulzi
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Stefania Arioli
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Loris De Cecco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Simone Guglielmetti
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, 20133 Milan, Italy
| | - Federico Ambrogi
- Laboratory of Medical Statistics and Biometry “Giulio A. Maccacaro”, Department of Clinical Sciences and Community Health, Università degli Studi di Milano, 20122 Milan, Italy
- Scientific Directorate, IRCCS Policlinico San Donato, 20097 San Donato Milanese, Italy
| | - Camilla Recordati
- Mouse and Animal Pathology Laboratory (MAPLab), Fondazione Unimi, 20139 Milan, Italy
- Dipartimento di Medicina Veterinaria e Scienze Animali, Università degli Studi di Milano, 26900 Lodi, Italy
| | - Nicoletta Gagliano
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
| | - Elda Tagliabue
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Michele Sommariva
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Lucia Sfondrini
- Dipartimento di Scienze Biomediche per la Salute, Università degli Studi di Milano, 20133 Milan, Italy
- Molecular Targeting Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: ; Tel.: +39-02-2390-3780
| |
Collapse
|
10
|
Sympathetic Innervation Modulates Mucosal Immune Homeostasis and Epithelial Host Defense. Cells 2022; 11:cells11162606. [PMID: 36010681 PMCID: PMC9406312 DOI: 10.3390/cells11162606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/12/2022] [Accepted: 08/19/2022] [Indexed: 12/20/2022] Open
Abstract
Intestinal mucosal cells, such as resident macrophages and epithelial cells, express adrenergic receptors and are receptive to norepinephrine, the primary neurotransmitter of the sympathetic nervous system (SNS). It has been suggested that the SNS affects intestinal immune activity in conditions, such as inflammatory bowel disease; however, the underlying mechanisms remain ambiguous. Here, we investigated the effect of SNS on mucosal immune and epithelial cell functions. We employed 6-OHDA-induced sympathetic denervation (cSTX) to characterize muscularis-free mucosal transcriptomes by RNA-seq and qPCR, and quantified mucosal immune cells by flow cytometry. The role of norepinephrine and cytokines on epithelial functions was studied using small intestinal organoids. cSTX increased the presence of activated CD68+CD86+ macrophages and monocytes in the mucosa. In addition, through transcriptional profiling, the proinflammatory cytokines IL-1β, TNF-α, and IFN-γ were induced, while Arg-1 and CD163 expression was reduced. Further, cSTX increased intestinal permeability in vivo and induced genes involved in barrier integrity and antimicrobial defense. In intestinal organoids, similar alterations were observed after treatment with proinflammatory cytokines, but not norepinephrine. We conclude that a loss in sympathetic input induces a proinflammatory mucosal state, leading to reduced epithelial barrier functioning and enhanced antimicrobial defense. This implies that the SNS might be required to maintain intestinal immune functions during homeostasis.
Collapse
|
11
|
Ali MS, Lee EB, Quah Y, Birhanu BT, Suk K, Lim SK, Park SC. Heat-killed Limosilactobacillus reuteri PSC102 Ameliorates Impaired Immunity in Cyclophosphamide-induced Immunosuppressed Mice. Front Microbiol 2022; 13:820838. [PMID: 36033865 PMCID: PMC9413535 DOI: 10.3389/fmicb.2022.820838] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
The immune functions of heat-killed Limosilactobacillus reuteri PSC102 (hLR) were investigated in cyclophosphamide (CP)-treated immunosuppressed mice. BALB/c mice were randomly divided into five groups: normal control group, CP group, CP treated with levamisole (positive control group), and CP treated with low- and high-dose hLR. After receiving the samples for 21 days, mice were sacrificed, and different parameters, such as immune organ index, immune blood cells, splenocyte proliferation, lymphocyte subpopulations, cytokines, and immunoglobulins, were analyzed. Results showed that the immune organ (thymus and spleen) indices of hLR treatment groups were significantly increased compared to the CP group (p < 0.05). hLR administration prevented CP-induced reduction in the numbers of white blood cells, lymphocytes, midrange absolute, and granulocytes, providing supporting evidence for hematopoietic activities. Splenocyte proliferation and T-lymphocyte (CD4+ and CD8+) subpopulations were also significantly augmented in mice treated with hLR compared to the CP group (p < 0.05). Moreover, Th1-type [interferon-γ, interleukin (IL)-2, and tumor necrosis factor-α] and Th2-type (IL-4 and IL-10) immune factors and immunoglobulin (IgG) showed significant increasing trends (p < 0.05). Additionally, the other proinflammatory cytokines (IL-1β and IL-6) were also significantly elevated (p < 0.05). Taken together, this investigation suggested that orally administered hLR could recover immunosuppression caused by CP and be considered a potential immunostimulatory agent for the treatment of immunosuppressive disorders.
Collapse
Affiliation(s)
- Md. Sekendar Ali
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Department of Pharmacy, International Islamic University Chittagong, Kumira, Bangladesh
| | - Eon-Bee Lee
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Yixian Quah
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
| | - Biruk Tesfaye Birhanu
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Biomedical Science and Department of Pharmacology, School of Medicine, Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| | - Suk-Kyung Lim
- Bacterial Disease Division, Animal and Plant Quarantine Agency, Gimcheon-si, South Korea
| | - Seung-Chun Park
- Laboratory of Veterinary Pharmacokinetics and Pharmacodynamics, College of Veterinary Medicine, Kyungpook National University, Daegu, South Korea
- Cardiovascular Research Institute, Kyungpook National University, Daegu, South Korea
- *Correspondence: Seung-Chun Park,
| |
Collapse
|
12
|
Elolimy A, Rosa F, Tripp P, Zeineldin M, Bowlin AK, Randolph C, Robeson MS, Yeruva L. Bacterial and Fungal Adaptations in Cecum and Distal Colon of Piglets Fed With Dairy-Based Milk Formula in Comparison With Human Milk. Front Microbiol 2022; 13:801854. [PMID: 35401465 PMCID: PMC8989072 DOI: 10.3389/fmicb.2022.801854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 02/08/2022] [Indexed: 11/13/2022] Open
Abstract
Exclusive breastfeeding is recommended to newborns during the first 6 months of life, whereas dairy-based infant formula is an alternative nutrition source offered to infants. Several studies demonstrated that breastfed infants have a different gut bacterial composition relative to formula-fed infants. In addition, animal models have shown that human milk (HM)–fed piglets had a distinct intestinal bacterial composition compared with milk formula (MF)–fed piglets. However, the gut fungal composition and the interactions with the bacterial community in breastfed compared with formula-fed infants remain to be investigated. In an attempt to evaluate such differences, we used an animal model to perform a shotgun metagenomics analysis on the cecal and distal colon contents of neonatal piglets fed with pasteurized HM or a dairy-based infant formula (MF) during the first 21 days of life. At postnatal day 21 (PND 21), a subset of piglets from each diet group (n = 11 per group) was euthanized. The remaining piglets in each group were weaned to a solid diet and euthanized at PND 51 (n = 13 per group). Large intestine contents (i.e., cecum and distal colon) were subjected to shotgun metagenomics analysis. The differential taxonomic composition of bacteria and fungi and the predicted functional gene profiling were evaluated. Bacteroidetes, Firmicutes, Proteobacteria, and Actinobacteria are the most abundant bacterial phyla observed in piglets at PND 21 and PND 51. In the large intestine at PND 21 and PND 51, Proteobacteria phylum was significantly higher in MF-fed group, and species Burkholderiales bacterium of phyla was significantly higher in MF group relative to HM group. In addition, in HM group, several Lactobacillus spp. and Bacteroides spp. were higher relative to MF group in the large intestine at PND 21 and PND 51. Fungal genus Aspergillus was higher in MF, whereas Malassezia was lower relative to HM group. Persistent effects of the neonatal diets were observed at PND 51, where alpha- and beta-diversity differences were detected for bacterial and fungal species in the large intestine. Overall, our findings indicate that neonatal diet affects the large intestinal microbial community during the exclusive milk-feeding period, as well as after the introduction of the complementary food.
Collapse
Affiliation(s)
- Ahmed Elolimy
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Fernanda Rosa
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- School of Veterinary Medicine, Texas Tech University, Amarillo, TX, United States
| | - Patricia Tripp
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
| | - Mohamed Zeineldin
- Department of Animal Medicine, College of Veterinary Medicine, Benha University, Banha, Egypt
| | - Anne K. Bowlin
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Christopher Randolph
- Center for Translational Pediatric Research, Arkansas Children’s Research Institute, Little Rock, AR, United States
| | - Michael S. Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
| | - Laxmi Yeruva
- Arkansas Children’s Nutrition Center, Agricultural Research Service (ARS), United States Department of Agriculture (USDA), Little Rock, AR, United States
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, AR, United States
- *Correspondence: Laxmi Yeruva,
| |
Collapse
|
13
|
Cheng C, Zhang L, Mu J, Tian Q, Liu Y, Ma X, Fu Y, Liu Z, Li Z. Effect of Lactobacillus johnsonii Strain SQ0048 on the TLRs-MyD88/NF-κB Signaling Pathway in Bovine Vaginal Epithelial Cells. Front Vet Sci 2021; 8:670949. [PMID: 34447797 PMCID: PMC8383737 DOI: 10.3389/fvets.2021.670949] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/06/2021] [Indexed: 11/16/2022] Open
Abstract
Vaginal inflammation is a common disease of the dairy cows' reproductive tract. Lactic acid bacteria can combat purulent inflammation caused by pathogenic bacteria and regulate the NF-κB signaling pathway mediated by toll-like receptors (TLRs) in the inflammatory response. We studied the effect of Lactobacillus johnsonii SQ0048, an isolate with antibacterial activity, on the NF-κB signaling pathway in cow vaginal epithelial cells. The expression levels of serial effectors related to the TLRs-MyD88/NF-κB signaling pathway (TLR2, TLR4, MyD88, IKK, NF-κB, IL-1β, IL-6, TNF-α, and IL-10) were measured with real-time polymerase chain reaction (RT-PCR), ELISA, and Western blot analyses. TLR2 and TLR4 were activated by SQ0048 cells, as noted by increased mRNA expression levels of TLR2 and TLR4 in SQ0048-treated bovine vaginal epithelial cells relative to control cells (P <0.01). SQ0048 treatment also significantly increased MyD88 and IKK expression, and activated NF-κB in vaginal epithelial cells (P <0.01). In addition, SQ0048 treatment also significantly increased mRNA expression levels of IL-1β, IL-6, and TNF-α, but decreased IL-10 mRNA expression levels (P <0.01). These data indicate that strain SQ0048 presence can improve the immune functions of cow vaginal epithelial cells by activating TLRs-MyD88/NF-κB signaling pathways. However, further in vivo studies are required to confirm these findings.
Collapse
Affiliation(s)
- Chao Cheng
- College of Life Science and Technology, Jining Normal University, Jining, China
| | | | - Junxiang Mu
- College of Life Science and Technology, Jining Normal University, Jining, China
| | | | - Yanming Liu
- Inner Mongolia Shuangqi Pharmaceutical Co., Ltd., Hohhot, China
| | - Xiaohong Ma
- Inner Mongolia Shuangqi Pharmaceutical Co., Ltd., Hohhot, China
| | - Yanru Fu
- Hohhot Vocational College, Hohhot, China
| | - Zhiguo Liu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhenjun Li
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
14
|
Polyphenol-Enriched Blueberry Preparation Controls Breast Cancer Stem Cells by Targeting FOXO1 and miR-145. Molecules 2021; 26:molecules26144330. [PMID: 34299605 PMCID: PMC8304479 DOI: 10.3390/molecules26144330] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/12/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Scientific evidence supports the early deregulation of epigenetic profiles during breast carcinogenesis. Research shows that cellular transformation, carcinogenesis, and stemness maintenance are regulated by epigenetic-specific changes that involve microRNAs (miRNAs). Dietary bioactive compounds such as blueberry polyphenols may modulate susceptibility to breast cancer by the modulation of CSC survival and self-renewal pathways through the epigenetic mechanism, including the regulation of miRNA expression. Therefore, the current study aimed to assay the effect of polyphenol enriched blueberry preparation (PEBP) or non-fermented blueberry juice (NBJ) on the modulation of miRNA signature and the target proteins associated with different clinical-pathological characteristics of breast cancer such as stemness, invasion, and chemoresistance using breast cancer cell lines. To this end, 4T1 and MB-MDM-231 cell lines were exposed to NBJ or PEBP for 24 h. miRNA profiling was performed in breast cancer cell cultures, and RT-qPCR was undertaken to assay the expression of target miRNA. The expression of target proteins was examined by Western blotting. Profiling of miRNA revealed that several miRNAs associated with different clinical-pathological characteristics were differentially expressed in cells treated with PEBP. The validation study showed significant downregulation of oncogenic miR-210 expression in both 4T1 and MDA-MB-231 cells exposed to PEBP. In addition, expression of tumor suppressor miR-145 was significantly increased in both cell lines treated with PEBP. Western blot analysis showed a significant increase in the relative expression of FOXO1 in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Furthermore, a significant decrease was observed in the relative expression of N-RAS in 4T1 and MDA-MB-231 cells exposed to PEBP and in MDA-MB-231 cells exposed to NBJ. Our data indicate a potential chemoprevention role of PEBP through the modulation of miRNA expression, particularly miR-210 and miR-145, and protection against breast cancer development and progression. Thus, PEBP may represent a source for novel chemopreventative agents against breast cancer.
Collapse
|
15
|
Yahfoufi N, Alsadi N, Mallet JF, Kulshreshtha G, Hincke M, Ismail N, Matar C. Immunomodulation and Intestinal Morpho-Functional Aspects of a Novel Gram-Negative Bacterium Rouxiella badensis subsp. acadiensis. Front Microbiol 2021; 12:569119. [PMID: 34239502 PMCID: PMC8258396 DOI: 10.3389/fmicb.2021.569119] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
A novel bacterium (Rouxiella badensis subsp. acadiensis) isolated from the microbiota of wild blueberry fruit was investigated for its immunomodulation capabilities and intestinal morpho-functional aspects. The whole-genome shotgun sequencing of this bacterium led to its new taxonomy and showed absence of pathogenicity genes. Although the bacterium was used for blueberry-fermentation and enhancing its anti-inflammatory effects on neurodegeneration, diabetes, and cancer, no study has assessed the effect of the bacterium on health. In this study, we used several in vitro and in vivo assays to evaluate the interaction of R. badensis subsp. acadiensis with the intestinal mucosa and its impact on the localized immune response. The strain antibiotic susceptibility has been investigated as well as its tolerance to gastric and intestinal environment and ability to attach to human intestinal epithelial cells (Caco-2 and HT-29). In addition, Balb/c mice were used to explore the immune-modulatory characteristics of the live bacterium at the intestinal level and its impact on the morpho-functional aspects of the intestinal mucosa. In vitro assays revealed the ability of R. badensis subsp. acadiensis to survive the gastric and intestinal simulated conditions and to satisfactorily adhere to the human intestinal epithelial cells. The bacterium was shown to be sensitive to an array of antibiotics. Immuno-modulation studies with mice orally administered with R. badensis subsp. acadiensis showed a higher number of IgA positive cells in the small intestine, a higher concentration of the anti-inflammatory cytokine IL-10 in the intestinal mucosa, as well as an increase in the number of goblet cells. The anti-inflammatory cytokine miR146a was found to be increased in the ileum and brain. Furthermore, it increases the number of goblet cells which contribute to intestinal barrier integrity. Taken together, our findings reflect the ability of the tested bacterium to modulates the intestinal homeostasis and immune response. Detailed safety unpublished studies and genome data support our finding. The strain Rouxiella badensis subsp. acadiensis has been filed in a provisional patent; a U.S. Provisional Application No. 62/916,921 entitled "Probiotics Composition and Methods." Future studies are still needed to validate the potential utilization of this strain as functional food and its potential probiotic effect.
Collapse
Affiliation(s)
- Nour Yahfoufi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nawal Alsadi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Jean Francois Mallet
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Garima Kulshreshtha
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Maxwell Hincke
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,Department of Innovation in Medical education, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Nafissa Ismail
- School of Psychology, Faculty of Social Sciences, University of Ottawa, Ottawa, ON, Canada
| | - Chantal Matar
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada.,School of Nutrition, Faculty of Health Sciences, University of Ottawa, Ottawa, ON, Canada
| |
Collapse
|
16
|
Simon E, Călinoiu LF, Mitrea L, Vodnar DC. Probiotics, Prebiotics, and Synbiotics: Implications and Beneficial Effects against Irritable Bowel Syndrome. Nutrients 2021; 13:nu13062112. [PMID: 34203002 PMCID: PMC8233736 DOI: 10.3390/nu13062112] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/05/2021] [Accepted: 06/16/2021] [Indexed: 12/12/2022] Open
Abstract
Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota–gut–brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.
Collapse
Affiliation(s)
- Elemer Simon
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
| | - Lavinia Florina Călinoiu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
| | - Dan Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania; (E.S.); (L.F.C.)
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine, Calea Mănăştur 3–5, 400372 Cluj-Napoca, Romania;
- Correspondence: ; Tel.: +40-747-341-881
| |
Collapse
|
17
|
Lemme-Dumit JM, Cazorla SI, Perdigón GDV, Maldonado-Galdeano C. Probiotic Bacteria and Their Cell Walls Induce Th1-Type Immunity Against Salmonella Typhimurium Challenge. Front Immunol 2021; 12:660854. [PMID: 34054825 PMCID: PMC8149796 DOI: 10.3389/fimmu.2021.660854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 04/27/2021] [Indexed: 01/13/2023] Open
Abstract
Probiotics have been associated with a variety of health benefits. They can act as adjuvant to enhance specific immune response. Bacterial cell wall (CW) molecules are key structures that interact with host receptors promoting probiotic effects. The adjuvant capacity underlying this sub-cellular fraction purified from Lactobacillus casei CRL431 and L. paracasei CNCMI-1518 remains to be characterized. We interrogated the molecular and cellular events after oral feeding with probiotic-derived CW in addition to heat-inactivated Salmonella Typhimurium and their subsequent protective capacity against S. Typhimurium challenge. Intact probiotic bacteria were orally administered for comparison. We find that previous oral feeding with probiotics or their sub-cellular fraction reduce bacterial burden in spleen and liver after Salmonella challenge. Antibody responses after pathogen challenge were negligible, characterized by not major changes in the antibody-mediated phagocytic activity, and in the levels of total and Salmonella-specific intestinal sIgA and serum IgG, respectively. Conversely, the beneficial effect of probiotic-derived CW after S. Typhimurium challenge were ascribed to a Th1-type cell-mediated immunity which was characterized by augmentation of the delayed-type hypersensitivity response. The cell-mediated immunity associated with the oral feeding with probiotic-derived CW was accompanied with a Th1-cell polarizing cytokines, distinguished by increase IFN-γ/IL-4 ratio. Similar results were observed with the intact probiotics. Our study identified molecular events associated with the oral administration of sub-cellular structures derived from probiotics and their adjuvant capacity to exert immune modulatory function.
Collapse
Affiliation(s)
- José María Lemme-Dumit
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Silvia Inés Cazorla
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | - Gabriela Del Valle Perdigón
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina
| | - Carolina Maldonado-Galdeano
- Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET), San Miguel de Tucumán, Argentina.,Cátedra de Inmunología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| |
Collapse
|
18
|
Ma M, Wang X, Li J, Jiang W. Efficacy and safety of probiotics and prebiotics in liver transplantation: A systematic review and meta-analysis. Nutr Clin Pract 2021; 36:808-819. [PMID: 33955611 DOI: 10.1002/ncp.10650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Probiotics were used for liver transplantation (LT) patients to reduce postoperative infection, but clinical trials examining the combined use of prebiotics and probiotics are limited. This meta-analysis aimed to compare the safety and efficacy of combined use of prebiotics and probiotics in patients undergoing LT. PubMed, Cochrane, and Embase databases were reviewed for the combined use of prebiotics and probiotics in patients undergoing LT. The weighted mean difference (WMD), risk ratio (RR), and 95% CI were calculated. A total of 6 related studies comprising 345 patients were included. Most prebiotics and probiotics were given for 7.14 days. The overall infection rate (RR = 0.29; 95% CI, 0.14.0.60; P value for heterogeneity [PH ] = .066; test for heterogeneity [I2 ] = 51.7%) and the incidence of urinary tract infection (RR = 0.14; 95% CI, 0.04-0.47, PH = .724; I2 = 0%) were lower in the probiotics group when compared with those in the control group. Furthermore, probiotics significantly reduced the hospital length of stay (WMD = -1.37; 95% CI, -1.92 to 0.82; PH = .506; I2 = 0%) and the duration of antimicrobial therapy (WMD = -4.31; 95% CI, -5.41 to 3.22; PH = .019; I2 = 69.8%) in patients undergoing LT. These findings suggested that the combined use of prebiotics and probiotics (Lactobacillus and Bifidobacterium) was effective in lowering the incidence of bacterial infections and shortening the hospital length of stay and duration of antibiotic therapy in patients undergoing LT, when compared with conventional nutrition.
Collapse
Affiliation(s)
- Ming Ma
- Department of Liver Transplantation Surgery, Tianjin Medical University, Tianjin, China.,Department of Liver Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Xiaodong Wang
- Department of Liver Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Junjie Li
- Department of Liver Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Wentao Jiang
- Department of Liver Transplantation Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
19
|
Dai H, Han J, Lichtfouse E. Smarter cures to combat COVID-19 and future pathogens: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2021; 19:2759-2771. [PMID: 33824633 PMCID: PMC8017513 DOI: 10.1007/s10311-021-01224-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 03/12/2021] [Indexed: 05/06/2023]
Abstract
Prevention is better than cure. A milestone of the anthropocene is the emergence of a series of epidemics and pandemics often characterized by the transmission of a pathogen from animals to human in the past two decades. In particular, the coronavirus disease 2019 (COVID-19) has made a profound impact on emergency responding and policy-making in a public health crisis. Classical solutions for controlling the virus, such as travel restrictions, lockdowns, repurposed drugs and vaccines, are socially unpopular and medically limited by the fast mutation and adaptation of the virus. This is exacerbated by microbial resistance to therapeutic drugs and the slowness of vaccine development. In other words, microbial pathogens are somehow 'smarter' and faster than us, thus calling for more intelligent cures to combat future pandemics. Here, we compare therapeutics for COVID-19 such as synthetic drugs, vaccines, antibodies and phages. We present the strength and limitations of antibiotic and antiviral drugs, vaccines, and antibody-based therapeutics. We describe smarter, cheaper and preventive cures such as bacteriophages, food medicine using probiotics and prebiotics, sports, healthy diet, music, yoga, Tai Chi, dance, reading, knitting, cooking and outdoor activities. Some of these preventive cures have been intuitively developed since thousands of years ago, as illustrated by the fascinating similarity of the Chinese characters for 'music' and 'herbal medicine.'
Collapse
Affiliation(s)
- Han Dai
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Jie Han
- Department of Environmental Science and Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Eric Lichtfouse
- CNRS, IRD, INRAE, Coll France, CEREGE, Aix-Marseille University, 13100 Aix en Provence, France
- State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi’an, 710049 Shaanxi People’s Republic of China
| |
Collapse
|
20
|
Brink LR, Chichlowski M, Pastor N, Thimmasandra Narayanappa A, Shah N. In the Age of Viral Pandemic, Can Ingredients Inspired by Human Milk and Infant Nutrition Be Repurposed to Support the Immune System? Nutrients 2021; 13:870. [PMID: 33800961 PMCID: PMC7999376 DOI: 10.3390/nu13030870] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/27/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022] Open
Abstract
In 2020, with the advent of a pandemic touching all aspects of global life, there is a renewed interest in nutrition solutions to support the immune system. Infants are vulnerable to infection and breastfeeding has been demonstrated to provide protection. As such, human milk is a great model for sources of functional nutrition ingredients, which may play direct roles in protection against viral diseases. This review aims to summarize the literature around human milk (lactoferrin, milk fat globule membrane, osteopontin, glycerol monolaurate and human milk oligosaccharides) and infant nutrition (polyunsaturated fatty acids, probiotics and postbiotics) inspired ingredients for support against viral infections and the immune system more broadly. We believe that the application of these ingredients can span across all life stages and thus apply to both pediatric and adult nutrition. We highlight the opportunities for further research in this field to help provide tangible nutrition solutions to support one's immune system and fight against infections.
Collapse
Affiliation(s)
- Lauren R. Brink
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Maciej Chichlowski
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | - Nitida Pastor
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Evansville, IN 47721, USA; (M.C.); (N.P.)
| | | | - Neil Shah
- Medical and Scientific Affairs, Nutrition, Reckitt Benckiser, Slough SL1 3UH, UK;
- University College London, Great Ormond Street, London WC1N 3JH, UK
| |
Collapse
|
21
|
Guo Y, Wang B, Wang T, Gao L, Yang ZJ, Wang FF, Shang HW, Hua R, Xu JD. Biological characteristics of IL-6 and related intestinal diseases. Int J Biol Sci 2021; 17:204-219. [PMID: 33390844 PMCID: PMC7757046 DOI: 10.7150/ijbs.51362] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 11/07/2020] [Indexed: 12/21/2022] Open
Abstract
The intestine serves as an important digestive and the largest immune organ in the body. Interleukin-6(IL-6), an important mediator of various pathways, participates in the interactions between different kinds of cells and closely correlates with intestinal physiological and pathological condition. In this review we summarize the signaling pathways of IL-6 and its functions in maintaining intestinal homeostasis. We also explored its relation with nervous system and highlight its potential role in Parkinson's disease. Based on its specialty of the double-side influences on intestinal tumors and inflammation, we summarize how they are done through distinctive process.
Collapse
Affiliation(s)
- Yuexin Guo
- Department of Oral Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Boya Wang
- Undergraduate Student of 2018 Eight Program of Clinical Medicine, Peking University Health Science Center, Beijing, 100081, China
| | - Tiantian Wang
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Lei Gao
- Department of Bioinformatics, College of Bioengineering, Capital Medical University, Beijing 100069, China
| | - Ze-Jun Yang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Fei-Fei Wang
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Hong-Wei Shang
- Experimental Center for Morphological Research Platform, Capital Medical University, Beijing 100069, China
| | - Rongxuan Hua
- Department of Clinical Medicine, Basic Medical College, Capital Medical University, Beijing 100069, China
| | - Jing-Dong Xu
- Department of Physiology and Pathophysiology, Basic Medical College, Capital Medical University, Beijing 100069, China
| |
Collapse
|
22
|
Effects of a Fermented Dairy Drink Containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 ( Lactobacillus casei CNCM I-1518) and the Standard Yogurt Cultures on the Incidence, Duration, and Severity of Common Infectious Diseases: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Nutrients 2020; 12:nu12113443. [PMID: 33182682 PMCID: PMC7698120 DOI: 10.3390/nu12113443] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/03/2020] [Accepted: 11/03/2020] [Indexed: 12/14/2022] Open
Abstract
There is considerable interest in the role of probiotics in immune function. The objective of this systematic review and meta-analysis was to assess the effects of the consumption of a fermented dairy drink containing Lacticaseibacillus paracasei subsp. paracasei CNCM I-1518 (the previous taxonomic nomenclature was Lactobacillus casei CNCM I-1518, prior to the nomenclature change in April 2020) and the standard yogurt cultures (hereinafter referred to collectively as “FDD”) on common infectious diseases (CIDs) in generally healthy children and adults. Nine literature databases were searched, and nine randomized controlled trials from eight publications were eligible for inclusion. Combined effect sizes were determined for three metrics of CID incidence, two metrics of CID duration, and one metric of CID severity. Compared to the control, the consumption of the FDD resulted in (1) a significant reduction in the odds of experiencing ≥1 CID (odds ratio (OR) (with a 95% confidence interval (CI)): 0.81 (0.66, 0.98); p = 0.029); (2) a significant reduction in mean CIDs per subject (−0.09 (−0.15, −0.04); p = 0.001); and (3) a trend towards reduced risk in cumulative CIDs (relative risk (RR): 0.91 (0.82, 1.01); p = 0.082). The consumption of the FDD had no significant effect on CID duration or severity. Based on the studies conducted thus far, these results suggest that the FDD may reduce CID incidence in the general population.
Collapse
|
23
|
Lactococcus lactis subsp. Cremoris C60 restores T Cell Population in Small Intestinal Lamina Propria in Aged Interleukin-18 Deficient Mice. Nutrients 2020; 12:nu12113287. [PMID: 33121026 PMCID: PMC7693701 DOI: 10.3390/nu12113287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 12/18/2022] Open
Abstract
Lactic acid bacteria (LAB), a major commensal bacterium in the small intestine, are well known beneficial bacteria which promote establishment of gut-centric immunity, such as anti-inflammation and anti-infection. In this report, we show that a LAB strain Lactococcus lactis subsp. Cremoris C60 possess an ability to activate antigen presenting cells, such as dendritic cells (DCs), and intestinal T cells which possibly support to maintain healthy intestinal immunological environment in aging process. We found that CD4+ T cells in the small intestine are dramatically decreased in aged Interleukin-18 knock out (IL-18KO) mice, associated with the impairment of IFN-γ production in the CD4+ T cells, especially in small intestinal lamina propria (LP). Surprisingly, heat killed-C60 (HK-C60) diet completely recovered the CD4+ T cells population and activity in SI-LP and over activated the population in Peyer's patches (PPs) of IL-18KO mice. The HK-C60 diet was effective approach not only to restore the number of cells, but also to recover IFN-γ production in the CD4+ T cell population in the small intestine of IL-18-deficient mice. As a possible cause in the age-associated impairment of CD4+ T cells activity in IL-18KO mice, we found that the immunological activity was downregulated in the IL-18-deficient DCs. The cytokines production and cellular activation markers expression were downregulated in the IL-18-deficient bone marrow derived dendritic cells (BMDCs) at the basal level, however, both activities were highly upregulated in HK-C60 stimulation as compared to those of WT cells. Antigen uptake was also attenuated in the IL-18-deficient BMDCs, and it was significantly enhanced in the cells as compared to WT cells in HK-60 stimulation. An in vitro antigen presentation assay showed that IFN-γ production in the CD4+ T cells was significantly enhanced in the culture of IL-18-deficient BMDCs compared with WT cells in the presence of HK-C60. Thus, we conclude that HK-C60 diet possesses an ability to restore T cells impairment in the small intestine of IL-18-deficient environment. In addition, the positive effect is based on the immunological modification of DCs function which directory influences into the promotion of effector CD4+ T cells generation in the small intestine.
Collapse
|
24
|
Kanmani P, Kim H. Beneficial effect of immunobiotic strains on attenuation of Salmonella induced inflammatory response in human intestinal epithelial cells. PLoS One 2020; 15:e0229647. [PMID: 32150574 PMCID: PMC7062243 DOI: 10.1371/journal.pone.0229647] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 02/11/2020] [Indexed: 01/14/2023] Open
Abstract
Probiotic bacteria have the ability to modulate host immune responses and have potent therapeutic functional effects against several diseases, including inflammatory diseases. However, beneficial effects of probiotics are strain specific and their interactions with host immune cells to modulate inflammatory response are largely unknown. Intestinal epithelial cells (IECs), which are the first line of defense against invading pathogens, and connects between commensals/probiotics and immune system; therefore, in this study, we used human IECs to assess the probiotic effects of three selected Lactobacillus strains in vitro. An HT-29 colonic epithelial cell and HT-29/blood mononuclear cells co-culture system were stimulated with Lactobacillus followed by Salmonella for different hours, after which the mRNA level of cytokines, β-defensin-2 and negative regulators for TLR signaling and protein levels of ZO-1 and IκB-α were analyzed by real-time polymerase chain reaction and western blot analysis. L. brevis decreased Salmonella induced IL-6, IL-8, MCP-1 and IL-1β levels, whereas L. pentosus suppressed IL-6 and MCP-1 in HT-29 cells. Moreover, L. brevis was able to increase the mRNA levels of A20, Tollip, SIGIRR and IRAKM, while L. pentosus reduced the levels of A20, and IRAKM in response to Salmonella. In addition, decrease in protein level of TNF-α and increase in mRNA level of IL-10 was observed in L. brevis and L. pentosus treated HT-29 cells. Lactobacillus strains were differentially modulated ZO-1 and p-IκB-α in HT-29 cells treated with Salmonella. Overall, the results of this study indicate that Lactobacillus strains attenuate Salmonella induced inflammatory responses through beneficial modulation of TLR negative regulators and the NF-κB pathway.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
| | - Hojun Kim
- Department of Korean Medicine, Dongguk University, Goyang, Republic of Korea
- * E-mail:
| |
Collapse
|
25
|
Wilson KM, Rodrigues DR, Briggs WN, Duff AF, Chasser KM, Bottje WG, Bielke LR. Impact of in ovo administered pioneer colonizers on intestinal proteome on day of hatch. Poult Sci 2020; 99:1254-1266. [PMID: 32111303 PMCID: PMC7587751 DOI: 10.1016/j.psj.2019.10.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 10/02/2019] [Accepted: 10/02/2019] [Indexed: 02/07/2023] Open
Abstract
Pioneer colonization of the gastrointestinal tract (GIT) by bacteria is thought to have major influence on neonatal tissue development. Previous studies have shown in ovo inoculation of embryos with saline (S), species of Citrobacter (C, C2), or lactic acid bacteria (L) resulted in an altered microbiome on day of the hatch (DOH). The present study investigated GIT proteomic changes at DOH in relation to different inoculations. Embryos were inoculated in ovo with S or ∼102 cfu of C, C2, or L at 18 embryonic days. On DOH, the GIT was collected, and tissue proteins were extracted for analysis via tandem mass spectrometry. A total of 493 proteins were identified for differential comparison with S at P ≤ 0.10. Different levels were noted in 107, 39, and 78 proteins in C, C2, and L groups, respectively, which were uploaded to Ingenuity Pathway Analysis to determine canonical pathways and biological functions related to these changes. Three members of the cytokine family (interleukin [IL]-1β, IL6, and Oncostatin M) were predicted to be activated in C2, indicated with Z-score ≥ 1.50, which suggested an overall proinflammatory GIT condition. This was consistent with the activation of the acute-phase response signaling pathway seen exclusively in C2 (Z-score = 2.00, P < 0.01). However, activation (Z-score = 2.00) of IL-13, upregulation of peroxiredoxin-1 and superoxide dismutase 1, in addition to activation of nitric oxide signaling in the cardiovascular system of the L treatment may predict a state of increased antioxidant capacity and decreased inflammatory status. The nuclear factor erythroid 2-related factor 2 (NRF2)-mediated oxidative stress response (Z-score = 2.00, P < 0.01) was predicted to be upregulated in C which suggested that chicks were in an inflammatory state and associated oxidative stress, but the impact of these pathways differed from that of C2. These changes in the proteome suggest that pioneer colonizing microbiota may have a strong impact on pathways associated with GIT immune and cellular development.
Collapse
Affiliation(s)
- K M Wilson
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - D R Rodrigues
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W N Briggs
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - A F Duff
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - K M Chasser
- Department of Animal Science, The Ohio State University, Columbus, OH
| | - W G Bottje
- Department of Poultry Science, University of Arkansas, Fayetteville, AR
| | - L R Bielke
- Department of Animal Science, The Ohio State University, Columbus, OH.
| |
Collapse
|
26
|
El Hadad S, Zakareya A, Al-Hejin A, Aldahlawi A, Alharbi M. Sustaining exposure to high concentrations of bifidobacteria inhibits gene expression of Mouse's mucosal immunity. Heliyon 2019; 5:e02866. [PMID: 31890933 PMCID: PMC6926234 DOI: 10.1016/j.heliyon.2019.e02866] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/23/2019] [Accepted: 11/12/2019] [Indexed: 12/28/2022] Open
Abstract
Numerous dietary products are supplemented with probiotics that may be beneficial for human health. Recently, bifidobacteria have received increasing attention as a genus of probiotic bacteria with high efficiency and few side effects. To examine potential effects of different bifidobacteria concentrations on the mucosal immune response, we fed mice with (a) 108 colony-forming units (CFU) of bifidobacteria (group 108B), and (b) with 1012 CFU of bifidobacteria (group 1012B) over 42 days and assessed gene expression in intestinal mucosa and immune marker concentrations in serum samples; ten untreated female mice were used as a control. Continuous exposure to 108 CFU of bifidobacteria activated both macrophages and Treg immune cells through significantly increasing the expression of mucosal TLR2 and IL10-mRNA genes, but inhibited Th1 and Th2 cells via significant downregulation of IL4 and IFNγ gene expression, compared to untreated mice. Interestingly, group 1012B showed down-regulated expression of TLR2, IL10, and IL4 genes but up-regulated expression of IFNγ, compared to group 108B and to the control. Also, polyclonal immunoglobulins IgG, IgM, and IgA showed a significant increase in all treated mice compared to the control. We conclude that high concentrations of bifidobacteria reduced innate immune functions. Furthermore, adaptive immunity seemed to be enhanced by increasing stimulation of T and B lymphocytes, suggesting aberration of the immune system following intestinal inflammation due to constant exposure to high concentrations of bifidobacteria. Both experimental bifidobacteria concentrations increased the total levels of circulating Igs, particularly of IgA.
Collapse
Affiliation(s)
- Sahar El Hadad
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Research Center of Genetic Engineering and Bioinformatics, VACSERA, Cairo, Egypt.,Immunolgy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayeshah Zakareya
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed Al-Hejin
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Microbiology Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alia Aldahlawi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia.,Immunolgy Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.,Inflammatory Bowel Disease Research Group, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Mona Alharbi
- Department of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
27
|
Park HE, Do KH, Lee WK. The immune-modulating effects of viable Weissella cibaria JW15 on RAW 264.7 macrophage cells. J Biomed Res 2019; 34:36-43. [PMID: 35081681 PMCID: PMC7007729 DOI: 10.7555/jbr.33.20190095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/19/2019] [Indexed: 11/03/2022] Open
Abstract
The objective of this study is to investigate the immune-enhancing ability of viable and heat-killed Weissella cibaria JW15 (JW15) isolated from Kimchi in RAW 264.7 macrophages. The immune effects were evaluated by measuring the production of NO, cytokines, inflammatory enzyme, and activation of NF-κB. Viable JW15 executed higher activity on stimulating the release of TNF-α as well as activating NF-κB compared to that of heat-killed JW15. Additionally, viable and heat-killed JW15 significantly increased the production of NO, IL-6 and TNF-α more than that of Lactobacillus rhamnosus GG (LGG). Furthermore, viable JW15 induced higher production of iNOS compared with that of viable LGG. Collectively, our finding indicates that viable JW15 had similar, if not more, immune-enhancing activities as heat-killed JW15. In addition, viable JW15 had higher immune-enhancing activity than commercial strain LGG. Therefore, viable JW15 has the potential to be used as a functional food to improve the host immune response.
Collapse
Affiliation(s)
- Ho-Eun Park
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
28
|
Kanmani P, Kim H. Functional capabilities of probiotic strains on attenuation of intestinal epithelial cell inflammatory response induced by TLR4 stimuli. Biofactors 2019; 45:223-235. [PMID: 30537409 DOI: 10.1002/biof.1475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/10/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
Abstract
Intestinal epithelial cells (IECs) respond to intruders and their cellular molecules by displaying inflammatory state that can be abrogated by probiotics. However, the molecular mechanisms underlying the beneficial activity of probiotic strains have yet to be elucidated. This study was conducted to investigate whether probiotic strains have immunoregulatory effects in IECs, and how they respond to bacterial lipopolysaccharide (LPS) in vitro. Caco2 cells were stimulated with LABs and followed by LPS. The expression of different cytokines that involved in toll-like receptor (TLR) signaling was analyzed. Caco2 cells that were exposed to LPS showed upregulated expression of IL-6, CXCL8, CCL2, and BPI that were counteracted by LAB strains through the modulation of TLR negative regulators (A20, Tollip, SIGIRR, and IRAKM), p38 MAPK and p65 NF-κB signaling. Lactobacillus plantarum, L. farciminis, and L. pentosus unveiled better activity as compared to other strains. Moreover, LAB strains were the potent inducers of immunoregulatory cytokines in coculture system. The expression of IL-10 and TGF-β were found to be higher as compared with LPS. Conversely, TNF-α at the protein level was dampened by LAB strains in both the apical and basolateral compartments. Collectively, our results demonstrated that the selected LAB strains exert profound immunoregulatory effects in response to LPS on IECs; however, further studies in vivo and in clinical settings are important to corroborate these effects. © 2018 BioFactors, 45(2):223-235, 2019.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| | - Hojun Kim
- Department of Rehabilitation Medicine of Korean Medicine, Dongguk University Ilsan Hospital, Goyang, Gyeonggi, Republic of Korea
| |
Collapse
|
29
|
He J, Wang W, Wu Z, Pan D, Guo Y, Cai Z, Lian L. Effect of Lactobacillus reuteri on intestinal microbiota and immune parameters: Involvement of sex differences. J Funct Foods 2019. [DOI: 10.1016/j.jff.2018.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
30
|
Plaza-Diaz J, Ruiz-Ojeda FJ, Gil-Campos M, Gil A. Mechanisms of Action of Probiotics. Adv Nutr 2019; 10:S49-S66. [PMID: 30721959 PMCID: PMC6363529 DOI: 10.1093/advances/nmy063] [Citation(s) in RCA: 618] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/11/2018] [Accepted: 07/27/2018] [Indexed: 12/14/2022] Open
Abstract
Probiotics are living microorganisms that confer health benefits to the host when administered in adequate amounts; however, dead bacteria and their components can also exhibit probiotic properties. Bifidobacterium and strains of lactic acid bacteria are the most widely used bacteria that exhibit probiotic properties and are included in many functional foods and dietary supplements. Probiotics have been shown to prevent and ameliorate the course of digestive disorders such as acute, nosocomial, and antibiotic-associated diarrhea; allergic disorders such as atopic dermatitis (eczema) and allergic rhinitis in infants; and Clostridium difficile-associated diarrhea and some inflammatory bowel disorders in adults. In addition, probiotics may be of interest as coadjuvants in the treatment of metabolic disorders, including obesity, metabolic syndrome, nonalcoholic fatty liver disease, and type 2 diabetes. However, the mechanisms of action of probiotics, which are diverse, heterogeneous, and strain specific, have received little attention. Thus, the aim of the present work was to review the main mechanisms of action of probiotics, including colonization and normalization of perturbed intestinal microbial communities in children and adults; competitive exclusion of pathogens and bacteriocin production; modulation of fecal enzymatic activities associated with the metabolization of biliary salts and inactivation of carcinogens and other xenobiotics; production of short-chain and branched-chain fatty acids, which, in turn, have wide effects not only in the intestine but also in peripheral tissues via interactions with short-chain fatty acid receptors, modulating mainly tissue insulin sensitivity; cell adhesion and mucin production; modulation of the immune system, which results mainly in the differentiation of T-regulatory cells and upregulation of anti-inflammatory cytokines and growth factors, i.e., interleukin-10 and transforming growth factor; and interaction with the brain-gut axis by regulation of endocrine and neurologic functions. Further research to elucidate the precise molecular mechanisms of action of probiotics is warranted.
Collapse
Affiliation(s)
- Julio Plaza-Diaz
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Francisco Javier Ruiz-Ojeda
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
| | - Mercedes Gil-Campos
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
- Pediatric Research and Metabolism Unit, Reina Sofia University Hospital, Maimonides Institute for Biomedical Research, Cordoba, Spain
| | - Angel Gil
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, Armilla, Granada, Spain
- Institute of Nutrition and Food Technology “José Mataix,” Biomedical Research Center, University of Granada, Armilla, Granada, Spain
- Instituto de Investigación Biosanitaria IBS.GRANADA, Complejo Hospitalario Universitario de Granada, Granada, Spain
- CIBEROBN (Physiopathology of Obesity and Nutrition CB12/03/30038), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
31
|
Jeffrey MP, Strap JL, Jones Taggart H, Green-Johnson JM. Suppression of Intestinal Epithelial Cell Chemokine Production by Lactobacillus rhamnosus R0011 and Lactobacillus helveticus R0389 Is Mediated by Secreted Bioactive Molecules. Front Immunol 2018; 9:2639. [PMID: 30524427 PMCID: PMC6262363 DOI: 10.3389/fimmu.2018.02639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 10/26/2018] [Indexed: 12/21/2022] Open
Abstract
Host intestinal epithelial cells (IEC) present at the gastrointestinal interface are exposed to pathogenic and non-pathogenic bacteria and their products. Certain probiotic lactic acid bacteria (LAB) have been associated with a range of host-immune modulatory activities including down-regulation of pro-inflammatory gene expression and cytokine production by IEC, with growing evidence suggesting that these bacteria secrete bioactive molecules with immunomodulatory activity. The aim of this study was to determine whether two lactobacilli with immunomodulatory activity [Lactobacillus rhamnosus R0011 (Lr) and Lactobacillus helveticus R0389 (Lh)], produce soluble mediators able to influence IEC responses to Pattern Recognition Receptor (PRR) ligands and pro-inflammatory cytokines [Tumor Necrosis Factor α (TNFα), Interleukin-1β (IL-1β)], signals inducing IEC chemokine production during infection. To this end, the effects of cell-free supernatants (CFS) from Lr and Lh on IEC production of the pro-inflammatory chemokines interleukin (IL)-8 and cytokine-induced neutrophil chemoattractant 1 (CINC-1) induced by a range of host- or pathogen-derived pro-inflammatory stimuli were determined, and the impact on human HT-29 IEC and a primary IEC line (rat IEC-6) was compared. The Lr-CFS and Lh-CFS did not significantly modulate basal IL-8 production from HT-29 IECs or CINC-1 production from IEC-6 cells. However, both Lr-CFS and Lh-CFS significantly down-regulated IL-8 production from HT-29 IECs challenged with varied PRR ligands. Lr-CFS and Lh-CFS had differential effects on PRR-induced CINC-1 production by rat IEC-6 IECs, with no significant down-regulation of CINC-1 observed from IEC-6 IECs cultured with Lh-CFS. Further analysis of the Lr-CFS revealed down-regulation of IL-8 production induced by the pro-inflammatory cytokines IL-1β and TNFα Preliminary characterization of the bioactive constituent(s) of the Lr-CFS indicates that it is resistant to treatment with DNase, RNase, and an acidic protease, but is sensitive to alterations in pH. Taken together, these results indicate that these lactobacilli secrete bioactive molecules of low molecular weight that may modulate host innate immune activity through interactions with IEC.
Collapse
Affiliation(s)
- Michael P Jeffrey
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Janice L Strap
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Holly Jones Taggart
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Health Sciences, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Julia M Green-Johnson
- Applied Bioscience Graduate Program, University of Ontario Institute of Technology, Oshawa, ON, Canada.,Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| |
Collapse
|
32
|
Jin X, Zhang M, Zhu XM, Fan YR, Du CG, Bao HE, Xu SG, Tian QZ, Wang YH, Yang YF. Modulation of ovine SBD-1 expression by Saccharomyces cerevisiae in ovine ruminal epithelial cells. BMC Vet Res 2018; 14:134. [PMID: 29673353 PMCID: PMC5907711 DOI: 10.1186/s12917-018-1445-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background The ovine rumen is involved in host defense responses and acts as the immune interface with the environment. The ruminal mucosal epithelium plays an important role in innate immunity and secretes antimicrobial innate immune molecules that have bactericidal activity against a variety of pathogens. Defensins are cationic peptides that are produced by the mucosal epithelia and have broad-spectrum antimicrobial activity. Sheep β-defensin-1 (SBD-1) is one of the most important antibacterial peptides in the rumen. The expression of SBD-1 is regulated by the probiotic, Saccharomyces cerevisiae (S.c); however, the regulatory mechanism has not yet been elucidated. In the current study, the effects of S.c on the expression and secretion of SBD-1 in ovine ruminal epithelial cells were investigated using quantitative real-time PCR (qPCR) and enzyme-linked immunosorbent assay (ELISA). In addition, specific inhibitors were used to block the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), p38, JNK, and ERK1/2 signalling pathways separately or simultaneously, to determine the regulatory mechanism(s) governing S.c-induced SBD-1 upregulation. Results Incubation with S.c induced release of SBD-1 by ovine ruminal epithelial cells, with SBD-1 expression peaking after 12 h of incubation. The highest SBD-1 expression levels were achieved after treatment with 5.2 × 107 CFU∙mL− 1 S.c. Treatment with S.c resulted in significantly increased NF-κB, p38, JNK, ERK1/2, TLR2, and MyD88 mRNA expression. Whereas inhibition of mitogen-activated protein kinases (MAPKs) and NF-κB gene expression led to a decrease in SBD-1 expression. Conclusions S.c was induced SBD-1 expression and the S.c-induced up-regulation of SBD-1 expression may be related to TLR2 and MyD88 in ovine ruminal epithelial cells. This is likely simultaneously regulated by the MAPKs and NF-κB pathways with the p38 axis of the MAPKs pathway acting as the primary regulator. Thus, the pathways regulating S.c-induced SBD-1 expression may be related to TLR2-MyD88-NF-κB/MAPKs, with the TLR2-MyD88-p38 component of the TLR2-MyD88-MAPKs signalling acting as the main pathway.
Collapse
Affiliation(s)
- Xin Jin
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Man Zhang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Xue-Min Zhu
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China.,College of Animal Science and Technology, Henan University of Science and Technology, Luoyang, 471000, People's Republic of China
| | - Yan-Ru Fan
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Chen-Guang Du
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China.,Vocational and Technical College of Inner Mongolia Agricultural University, Baotou, 014109, People's Republic of China
| | - Hua-Er Bao
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Siri-Guleng Xu
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Qiao-Zhen Tian
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Yun-He Wang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China.,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China
| | - Yin-Feng Yang
- Veterinary Medicine College of Inner Mongolia Agricultural University, Hohhot, 010018, People's Republic of China. .,Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture, Hohhot, 010018, People's Republic of China.
| |
Collapse
|
33
|
Long CX, Guo YF, Liu YW, Peng XX, Tan ZJ. Immunoprotective effect of traditional Chinese medicine on intestinal mucosa. Shijie Huaren Xiaohua Zazhi 2017; 25:3115-3122. [DOI: 10.11569/wcjd.v25.i35.3115] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The intestinal mucosa has a large surface area, contacts with the external antigens directly, and is the part exposed to most microbes. Growing evidence indicates that the relationship between intestinal mucosa and diseases is close. Traditional Chinese medicine is rich in a variety of bioactive ingredients and nutrients, which can provide energy and nutrition to maintain mucosal structure integrity and realize its physiological function, regulate intestinal flora directly or indirectly, establish intestinal mucosal immunity and barrier, and treat intestinal mucosal immune-related diseases. In this paper, we summarize the effect of traditional Chinese medicine on intestinal mucosal structure, immunity, flora, and metabolism, with an aim to provide some clues to the treatment of intestinal diseases using traditional Chinese medicine.
Collapse
Affiliation(s)
- Cheng-Xing Long
- Department of Microbiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Yan-Fang Guo
- Department of Pediatrics, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Ya-Wei Liu
- Department of Microbiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| | - Xin-Xin Peng
- Department of Pediatrics, the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Zhou-Jin Tan
- Department of Microbiology, Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
34
|
Lemme-Dumit JM, Polti MA, Perdigón G, Galdeano CM. Probiotic bacteria cell walls stimulate the activity of the intestinal epithelial cells and macrophage functionality. Benef Microbes 2017; 9:153-164. [PMID: 29124968 DOI: 10.3920/bm2016.0220] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The effect of oral administration of probiotic bacteria cell walls (PBCWs) in the stimulation of the immune system in healthy BALB/c mice was evaluated. We focused our investigation mainly on intestinal epithelial cells (IECs) which are essential for coordinating an adequate mucosal immune response and on the functionality of macrophages. The probiotic bacteria and their cell walls were able to stimulate the IECs exhibiting an important activation and cytokine releases. Supplementation with PBCWs promoted macrophage activation from peritoneum and spleen, indicating that the PBCWs oral administration was able to improve the functionality of the macrophages. In addition, the PBCWs increased immunoglobulin A (IgA)-producing cells in the gut lamina propria in a similar way to probiotic bacteria, but this supplementation did not have an effect on the population of goblet cells in the small intestine epithelium. These results indicate that the probiotic bacteria and their cell walls have an important immunoregulatory effect on the IECs without altering the homeostatic environment but with an increase in IgA+ producing cells and in the innate immune cells, mainly those distant from the gut such as spleen and peritoneum. These findings about the capacity of the cell walls from probiotic bacteria to stimulate key cells, such as IECs and macrophages, and to improve the functioning of the immune system, suggest that those structures could be applied as a new oral adjuvant.
Collapse
Affiliation(s)
- J M Lemme-Dumit
- 1 Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.,2 Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - M A Polti
- 3 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Av. Belgrano y Pasaje Caseros, San Miguel de Tucumán 4000, Tucumán, Argentina.,4 Facultad de Ciencias Naturales e Instituto Miguel Lillo, Universidad Nacional de Tucumán. Miguel Lillo 205, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - G Perdigón
- 1 Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.,2 Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán 4000, Tucumán, Argentina
| | - C Maldonado Galdeano
- 1 Laboratorio de Inmunología, Centro de Referencia para Lactobacilos (CERELA-CONICET). Chacabuco 145, San Miguel de Tucumán 4000, Tucumán, Argentina.,2 Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán 4000, Tucumán, Argentina
| |
Collapse
|
35
|
Vinderola G, Gueimonde M, Gomez-Gallego C, Delfederico L, Salminen S. Correlation between in vitro and in vivo assays in selection of probiotics from traditional species of bacteria. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2017.08.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
36
|
Liao SF, Nyachoti M. Using probiotics to improve swine gut health and nutrient utilization. ACTA ACUST UNITED AC 2017; 3:331-343. [PMID: 29767089 PMCID: PMC5941265 DOI: 10.1016/j.aninu.2017.06.007] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Revised: 04/03/2017] [Accepted: 06/30/2017] [Indexed: 01/10/2023]
Abstract
To maintain a healthy gut is definitely key for a pig to digest and absorb dietary nutrients efficiently. A balanced microbiota (i.e., a healthy micro-ecosystem) is an indispensable constituent of a healthy gut. Probiotics, the live microorganisms which, when administered in adequate amounts, confer good health benefits onto the host, are a category of feed additives that can be used to replenish the gut microbial population while recuperating the host immune system. Besides their antitoxin and diarrhea reduction effects, dietary supplementation of probiotics can improve gut health, nutrient digestibilities and, therefore, benefit nutrient utilization and growth performance of pigs. Current knowledge in the literature pertinent to the beneficial effects of utilizing various probiotics for swine production has been comprehensively reviewed, and the safety and the risk issues related to probiotic usage have also been discussed in this paper. Considering that the foremost cost in a swine operation is feed cost, feed efficiency holds a very special, if not the paramount, significance in commercial swine production. Globally, the swine industry along with other animal industries is moving towards restricting and eventually a total ban on the usage of antibiotic growth promoters. Therefore, selection of an ideal alternative to the in-feed antibiotics to compensate for the lost benefits due to the ban on the antibiotic usage is urgently needed to support the industry for profitable and sustainable swine production. As is understood, a decision on this selection is not easy to make. Thus, this review paper aims to provide some much needed up-to-date knowledge and comprehensive references for swine nutritionists and producers to refer to before making prudent decisions and for scientists and researchers to develop better commercial products.
Collapse
Affiliation(s)
- Shengfa F Liao
- Department of Animal and Dairy Sciences, Mississippi State University, MS 39762, USA
| | - Martin Nyachoti
- Department of Animal Science, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
37
|
Durack J, Lynch SV. Promotion of Epithelial Barrier Integrity Via Probiotic-derived Products. J Pediatr Gastroenterol Nutr 2017; 64:335-336. [PMID: 27472476 DOI: 10.1097/mpg.0000000000001350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Affiliation(s)
- Juliana Durack
- Division of Gastroenterology, Department of Medicine, University of California San Francisco, San Francisco
| | | |
Collapse
|
38
|
Esmaeili SA, Mahmoudi M, Momtazi AA, Sahebkar A, Doulabi H, Rastin M. Tolerogenic probiotics: potential immunoregulators in Systemic Lupus Erythematosus. J Cell Physiol 2017; 232:1994-2007. [PMID: 27996081 DOI: 10.1002/jcp.25748] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Probiotics are commensal or nonpathogenic microbes that colonize the gastrointestinal tract and confer beneficial effects on the host through several mechanisms such as competitive exclusion, anti-bacterial effects, and modulation of immune responses. There is growing evidence supporting the immunomodulatory ability of some probiotics. Several experimental and clinical studies have been shown beneficial effect of some probiotic bacteria, particularly Lactobacillus and Bifidobacteria strains, on inflammatory and autoimmune diseases. Systemic lupus erythematosus (SLE) is an autoimmune disease that is mainly characterized by immune intolerance towards self-antigens. Some immunomodulatory probiotics have been found to regulate immune responses via tolerogenic mechanisms. Dendritic and T regulatory (Treg) cells, IL-6, IFN-γ, IL-17, and IL-23 can be considered as the most determinant dysregulated mediators in tolerogenic status. As demonstrated by documented experimental and clinical trials on inflammatory and autoimmune diseases, a number of probiotic bacterial strains can restore tolerance in host through modification of such dysregulated mediators. Since there are limited reports regarding to impact of probiotic supplementation in SLE patients, the preset review was aimed to suggest a number of probiotics bacteria, mainly from Bifidobacteria and Lactobacillus strains that are able to ameliorate immune responses. The aim was followed through literature survey on immunoregulatory probiotics that can restore tolerance and also modulate the important dysregulated pro/anti-inflammatory cytokines contributing to the pathogenesis of SLE.
Collapse
Affiliation(s)
- Seyed-Alireza Esmaeili
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Mahmoudi
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Abbas Momtazi
- Student Research Committee, Nanotechnology Research Center, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hassan Doulabi
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.,Student Research Committee, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rastin
- Immunology Research Center, BuAli Research Institute, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
39
|
Moshiri M, Dallal MMS, Rezaei F, Douraghi M, Sharifi L, Noroozbabaei Z, Gholami M, Mirshafiey A. The Effect of Lactobacillus acidophilus PTCC 1643 on Cultured Intestinal Epithelial Cells Infected with Salmonella enterica serovar Enteritidis. Osong Public Health Res Perspect 2017; 8:54-60. [PMID: 28443224 PMCID: PMC5402851 DOI: 10.24171/j.phrp.2017.8.1.07] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Objectives Gastrointestinal disorders caused by Salmonella enterica serovar Enteritidis (SesE) are a significant health problem around the globe. Probiotic bacteria have been shown to have positive effects on the immune responses. Lactobacillus acidophilus was examined for its capability to influence the innate immune response of HT29 intestinal epithelial cells towards SesE. The purpose of this work was to assess the effect of L. acidophilus PTCC 1643 on cultured intestinal epithelial cells infected with SesE. Methods HT29 cells were cultured in Roswell Park Memorial Institute medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. The cells were treated with L. acidophilus PTCC 1643 after or before challenge with SesE. At 2 and 4 hours post-infection, we measured changes in the expression levels of TLR2 and TLR4 via real-time polymerase chain reaction. Results Treatment with L. acidophilus inhibited SesE-induced increases in TLR2 and TLR4 expression in the infected HT29 cells. Moreover, the expression of TLR2 and TLR4 in cells that were pretreated with L. acidophilus and then infected with SesE was significantly higher than that in cells infected with SesE without pretreatment. Taken together, the results indicated that L. acidophilus had an anti-inflammatory effect and modulated the innate immune response to SesE by influencing TLR2 and TLR4 expression. Conclusion Our findings suggested that L. acidophilus PTCC 1643 was able to suppress inflammation caused by SesE infection in HT29 cells and reduce TLR2 and TLR4 expression. Additional in vivo and in vitro studies are required to further elucidate the mechanisms underlying this anti-inflammatory effect.
Collapse
Affiliation(s)
- Mona Moshiri
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Farhad Rezaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Laleh Sharifi
- Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Noroozbabaei
- Department of Virology, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Gholami
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Mirshafiey
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
40
|
Amaral DM, Silva LF, Casarotti SN, Nascimento LCS, Penna ALB. Enterococcus faecium and Enterococcus durans isolated from cheese: Survival in the presence of medications under simulated gastrointestinal conditions and adhesion properties. J Dairy Sci 2017; 100:933-949. [DOI: 10.3168/jds.2016-11513] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/13/2016] [Indexed: 01/02/2023]
|
41
|
Dasari S, Kathera C, Janardhan A, Praveen Kumar A, Viswanath B. Surfacing role of probiotics in cancer prophylaxis and therapy: A systematic review. Clin Nutr 2016; 36:1465-1472. [PMID: 27923508 DOI: 10.1016/j.clnu.2016.11.017] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/23/2016] [Accepted: 11/21/2016] [Indexed: 01/29/2023]
Abstract
Cancers figure among the most important causes of morbidity and mortality worldwide. Cancer and its associated infections are always complicated even when specific cancer regimens are available. It is well proved that Lactobacillus and other probiotic bacteria can modulate-ameliorate specific mechanisms against various infections including cancers. The present systematic review is intended to focus on the 'cellular and molecular mechanisms' of probiotic bacteria in the prevention and treatment of various cancers. The clinical and experimental findings of various studies explain the mechanisms such as apoptosis, antioxidant activity, immune response and epigenetics and illustrate the role of probiotics in cancer management and prophylaxis. In addition, the present review also discusses the safety aspects of probiotics when they are used in therapeutic and nutritional diet management. However, further investigations are required to reveal the effectiveness of probiotics in cancer treatment in clinical settings.
Collapse
Affiliation(s)
- Subramanyam Dasari
- Department of Biomedical Sciences, University of Illinois, College of Medicine at Rockford, Rockford, IL 61107, USA
| | - Chandrasekhar Kathera
- College of Life Sciences, Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University, Nanjing 210023, China
| | - Avilala Janardhan
- Department of Plant Biotechnology and Genomics, Centre for Biotechnology and Plant Genomics (CBGP), Polytechnic University of Madrid (UPM), Madrid 28040, Spain
| | - Arthala Praveen Kumar
- Department of Virology, College of Sciences, Sri Venkateswara University, Tirupati 517502, India
| | - Buddolla Viswanath
- Department of Bionanotechnology, Gachon University, San 65, Bokjeong dong, Sujeong gu, Seongnam si, Gyeonggi do 461 701, Republic of Korea.
| |
Collapse
|
42
|
Rokana N, Singh R, Mallappa RH, Batish VK, Grover S. Modulation of intestinal barrier function to ameliorate Salmonella infection in mice by oral administration of fermented milks produced with Lactobacillus plantarum MTCC 5690 - a probiotic strain of Indian gut origin. J Med Microbiol 2016; 65:1482-1493. [PMID: 27902414 DOI: 10.1099/jmm.0.000366] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Probiotic Lactobacillus plantarum MTCC 5690, a probiotic strain of Indian gut origin, and milk formulations produced with the same were explored in this study as biotherapeutics by evaluating their functional efficacy against Salmonella infection in mice. The efficacy of milk formulations (fermented/unfermented) of MTCC 5690 for enhancement of intestinal barrier function was determined by monitoring the permeability and histopathology of the intestine. Infected mice fed with probiotic Dahi, fermented probiotic drink and sweetened fermented probiotic drink maintained the health and integrity of the intestinal epithelium as compared to those fed with PBS, milk, unfermented probiotic milk and Dahi. Our relative expression data revealed that the changes caused by MTCC 5690 in intestinal barrier function components were established through modulation of the key regulatory receptors Toll-like receptor 2 and Toll-like receptor 4. The results suggest that fermented milks of MTCC 5690 could enhance the defences of the intestinal barrier in enteric infection condition and, therefore, can be explored as a dietary-based strategy to reduce Salmonella infection in the human gut.
Collapse
Affiliation(s)
- Namita Rokana
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rajbir Singh
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Rashmi Hogarehalli Mallappa
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Virender Kumar Batish
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| | - Sunita Grover
- Molecular Biology Unit, Indian Council of Agricultural Research (ICAR) - National Dairy Research Institute (NDRI), Karnal, Haryana 132001, India
| |
Collapse
|
43
|
Todorov SD, Furtado DN, Saad SMI, Tome E, Franco BDGM. Potential beneficial properties of bacteriocin-producing lactic acid bacteria isolated from smoked salmon. J Appl Microbiol 2015; 110:971-86. [PMID: 21251174 DOI: 10.1111/j.1365-2672.2011.04950.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS To evaluate the probiotic properties of strains isolated from smoked salmon and previously identified as bacteriocin producers. METHODS AND RESULTS Strains Lactobacillus curvatus ET06, ET30 and ET31, Lactobacillus fermentum ET35, Lactobacillus delbrueckii ET32, Pediococcus acidilactici ET34 and Enterococcus faecium ET05, ET12 and ET88 survived conditions simulating the gastrointestinal tract (GIT) and produced bacteriocins active against several strains of Listeria monocytogenes, but presented very low activity against other lactic acid bacteria (LAB). Cell-free supernatants containing bacteriocins, added to 3-h-old cultures of L. monocytogenes 603, suppressed growth over 12 h. Auto-aggregation was strain-specific, and values ranged from 7·2% for ET35 to 12·1% for ET05. Various degrees of co-aggregation with L. monocytogenes 603, Lactobacillus sakei ATCC 15521 and Enterococcus faecalis ATCC 19443 were observed. Adherence of the bacteriocinogenic strains to Caco-2 cells was within the range reported for Lactobacillus rhamnosus GG, a well-known probiotic. The highest levels of hydrophobicity were recorded for Lact. curvatus (61·9–64·6%), Lact. fermentum (78·9%), Lact. delbrueckii (43·7%) and Ped. acidilactici (51·3%), which are higher than the one recorded for Lact. rhamnosus GG (53·3%). These strains were highly sensitive to several antibiotics and affected by several drugs from different generic groups in a strain-dependent manner. CONCLUSIONS Smoked salmon is a rich source of probiotic LAB. All strains survived conditions simulating the GIT and produced bacteriocins active against various pathogens. Adherence to Caco-2 cells was within the range reported for Lact. rhamnosus GG, a well-known probiotic. In addition, the high hydrophobicity readings recorded define the strains as good probiotics.
Collapse
Affiliation(s)
- S D Todorov
- Faculdade de Cieˆ ncias Farmaceˆ uticas, Departamento de Alimentos e Nutric¸a˜ o Experimental, Laborato´ rio de Microbiologia de Alimentos, Universidade de Sa˜ o Paulo, Sa˜ o Paulo – SP, Brasil.
| | | | | | | | | |
Collapse
|
44
|
Yitbarek A, Echeverry H, Munyaka P, Rodriguez-Lecompte J. Innate immune response of pullets fed diets supplemented with prebiotics and synbiotics. Poult Sci 2015; 94:1802-11. [DOI: 10.3382/ps/pev147] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/04/2015] [Indexed: 01/04/2023] Open
|
45
|
Patten D, Laws A. Lactobacillus-produced exopolysaccharides and their potential health benefits: a review. Benef Microbes 2015; 6:457-71. [DOI: 10.3920/bm2014.0117] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Lactic acid bacteria, such as those of the Lactobacillus genus, naturally reside within the microbiota of the human body and have long been used as starter cultures and probiotic enhancers in fermented foods, such as fermented drinks, yoghurts and cheeses. Many of the beneficial qualities of these bacteria have traditionally been associated with the bacteria themselves, however, a recent spate of studies have demonstrated a wide variety of biological effects exhibited by lactobacilli-produced exopolysaccharides which could, theoretically, confer a range of local and systemic health benefits upon the host. In this review, we discuss the production of exopolysaccharides within the Lactobacillus genus and explore their potential as beneficial bioactive compounds.
Collapse
Affiliation(s)
- D.A. Patten
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
- Centre for Liver Research, School of Immunity and Infection, University of Birmingham, B15 2TT Birmingham, United Kingdom
| | - A.P. Laws
- Department of Chemical and Biological Sciences, University of Huddersfield, Queensgate, HD1 3DH Huddersfield, United Kingdom
| |
Collapse
|
46
|
Nakamura Y, Terahara M, Iwamoto T, Yamada K, Asano M, Kakuta S, Iwakura Y, Totsuka M. Upregulation of Polymeric Immunoglobulin Receptor Expression by the Heat-Inactivated Potential Probiotic Bifidobacterium bifidum OLB6378 in a Mouse Intestinal Explant Model. Scand J Immunol 2015; 75:176-83. [PMID: 21967771 DOI: 10.1111/j.1365-3083.2011.02645.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We determined whether a potential probiotic bacterium, Bifidobacterium bifidum OLB6378 (BB6378), exerts beneficial effects on the mucosal immune system in a mouse intestinal explant model. The addition of heat-inactivated BB6378 to intestinal explants prepared from embryonic day 18 BALB/c mice increased the expression of polymeric immunoglobulin receptor (pIgR) mRNA by two- to fivefold. These effects were observed on ileal and colonic explants but not on jejunal explants, suggesting that the BB6378-induced pIgR upregulation is site-specific within the mouse intestine. The upregulation of pIgR protein expression in colonic explants was also detected after 24 h of culture. The results of DNA microarray analysis of ileal and colonic samples indicated that BB6378 increased the gene expression of interleukin (IL)-1α and IL-1β, and IL-1α content in colonic explants was significantly increased after 20 h of culture with BB6378. We then examined the involvement of endogenously induced IL-1α in pIgR mRNA upregulation by using IL-1α knockout (KO) mice. Contrary to our expectations, pIgR mRNA expression was equally upregulated by BB6378 in colonic explants from BALB/c and IL-1α KO mice. Conversely, we examined the involvement of Toll-like receptors in pIgR mRNA upregulation by using MyD88 KO mice. The upregulation of pIgR was completely suppressed in the explants derived from MyD88 KO mice. Taken together, we conclude that in a mouse intestinal explant model, the heat-inactivated potential probiotic BB6378 increases intestinal pIgR expression in a site-specific manner and that the upregulation of pIgR could be explained by a direct microbial effect on the epithelium via Toll-like receptors.
Collapse
Affiliation(s)
- Y Nakamura
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - M Terahara
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - T Iwamoto
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - K Yamada
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - M Asano
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - S Kakuta
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - Y Iwakura
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| | - M Totsuka
- Food Science Research Labs, R&D Division, Meiji Co. Ltd., Kanagawa, JapanDepartment of Applied Biological Chemistry, University of Tokyo, Tokyo, JapanDepartment of Pathology, Nihon University School of Dentistry, Tokyo, JapanCenter for Experimental Medicine and Systems Biology, Institute of Medical Science, University of Tokyo, Tokyo, JapanResearch Center for Human and Environmental Sciences, Shinshu University, Nagano, JapanCREST, Japan Science and Technology Agency, Saitama, Japan
| |
Collapse
|
47
|
Мokrozub VV, Lazarenko LM, Sichel LM, Babenko LP, Lytvyn PM, Demchenko OM, Melnichenko YO, Boyko NV, Biavati B, DiGioia D, Bubnov RV, Spivak MY. The role of beneficial bacteria wall elasticity in regulating innate immune response. EPMA J 2015; 6:13. [PMID: 26110044 PMCID: PMC4479350 DOI: 10.1186/s13167-015-0035-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 05/22/2015] [Indexed: 01/12/2023]
Abstract
BACKGROUND Probiotics have great potential to contribute to development of healthy dietary regimes, preventive care, and an integrated approach to immunity-related disease management. The bacterial wall is a dynamic entity, depending on many components and playing an essential role in modulating immune response. The impact of cell wall elasticity on the beneficial effects of probiotic strains has not been sufficiently studied. The aim was to investigate the effect of lactic acid bacteria (LAB) and bifidobacteria strains on phagocytic system cells (macrophages) as related to bacterial wall elasticity, estimated using atomic force microscopy (AFM). METHODS We conducted studies on Balb/c line mice 18-20 g in weight using lyophilized strains of LAB-Lactobacillus acidophilus IMV B-7279, Lactobacillus casei IMV B-7280, Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281, and bifidobacteria-Bifidobacterium animalis VKL and Bifidobacterium animalis VKB. We cultivated the macrophages obtained from the peritoneal cavity of mice individually with the strains of LAB and bifidobacteria and evaluated their effect on macrophages, oxygen-dependent bactericidal activity, nitric oxide production, and immunoregulatory cytokines. We used AFM scanning to estimate bacterial cell wall elasticity. RESULTS All strains had a stimulating effect on the functional activity of macrophages and ability to produce NO/NO2 in vitro. Lactobacilli strains increased the production of IL-12 and IFN-γ in vitro. The AFM demonstrated different cell wall elasticity levels in various strains of LAB and bifidobacteria. The rigidity of the cell walls among lactobacilli was distributed as follows: Lactobacillus acidophilus IMV B-7279 > Lactobacillus casei IMV B-7280 > Lactobacillus delbrueckii subsp. bulgaricus IMV B-7281; among the strains of bifidobacteria: B. animalis VKB > B. animalis VKL. Probiotic strain survival in the macrophages depended on the bacterial cell wall elasticity and on the time of their joint cultivation. CONCLUSION LAB and bifidobacteria strains stimulate immune-modulatory cytokines and active oxygen and nitrogen oxide compound production in macrophages. Strains with a more elastic cell wall according to AFM data demonstrated higher resistance to intracellular digestion in macrophages and higher level of their activation. AFM might be considered as a fast and accurate method to assess parameters of probiotic strain cell wall to predict their immune-modulatory properties.
Collapse
Affiliation(s)
- Viktoria V. Мokrozub
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Liudmyla M. Lazarenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Liubov M. Sichel
- />Pure Research Products, LLC, 6107, Chelsea Manor Court, Boulder, CO 80301 USA
| | - Lidia P. Babenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Petro M. Lytvyn
- />Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, 41, pr. Nauky, Kyiv, 03028 Ukraine
| | | | - Yulia O. Melnichenko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Nadiya V. Boyko
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
| | - Bruno Biavati
- />Dipartimento di Scienze Agrarie, Alma Mater Studiorum—Bologna University, Bologna, 40127 Italy
| | - Diana DiGioia
- />Dipartimento di Scienze Agrarie, Alma Mater Studiorum—Bologna University, Bologna, 40127 Italy
| | - Rostyslav V. Bubnov
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
- />Clinical Hospital “Pheophania” of State Affairs Department, Zabolotny str., 21, Kyiv, 03680 Ukraine
| | - Mykola Ya Spivak
- />Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, 154, Zabolotny st., Kyiv, D03680 Ukraine
- />LCL «Diaprof», Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
48
|
Elawadli I, Brisbin JT, Mallard BA, Griffiths MW, Corredig M, Sharif S. Differential effects of lactobacilli on activation and maturation of mouse dendritic cells. Benef Microbes 2015; 5:323-34. [PMID: 24913839 DOI: 10.3920/bm2013.0066] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) are of interest because of their potential to modulate immune responses. The effects of LAB range from regulation to stimulation of the immune system. A series of studies were performed in vitro to study the effects of six lactic acid bacteria (LAB), Lactobacillus helveticus LH-2, Lactobacillus acidophilus La-5, La-115, La-116 and La-14, and Lactobacillus salivarius, on maturation and activation of mouse dendritic cells. Production of tumour necrosis factor (TNF)-?, interleukin (IL)-6 and IL-10 by dendritic cells (DCs) was determined after treating cells with live LAB. The expression of DC maturation markers, CD80 and CD40, was also measured using flow cytometry after stimulation with LAB. In addition, the expression of Toll-like receptors (TLRs) 2, 4 and 9 by DCs stimulated with LAB was measured. Our results revealed that LAB act differentially on pro-inflammatory and anti-inflammatory cytokine production and induction of co-stimulatory molecules by DCs. Specifically, L. salivarius was found to be the most effective LAB to induce pro-inflammatory cytokine production and expression of co-stimulatory molecules. Moreover, La-14, La-116 and La-5 induced moderate maturation and activation of DCs. On the other hand, LH-2 and La-115 were the least effective lactobacilli to induce DC responses. The present study also revealed that L. salivarius was able to induce the expression of TLR2, 4 and 9 by DCs. In conclusion, various strains and species of LAB can differentially regulate DC activation and maturation, providing further evidence that these bacteria may have the ability to influence and steer immune responses in vivo.
Collapse
Affiliation(s)
- I Elawadli
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - J T Brisbin
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - B A Mallard
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| | - M W Griffiths
- Department of Food Science, Ontario Agricultural College, University of Guelph, 43 McGilvray Street, Guelph, Ontario, N1G 2W1 Canada
| | - M Corredig
- Department of Food Science, Ontario Agricultural College, University of Guelph, 43 McGilvray Street, Guelph, Ontario, N1G 2W1 Canada
| | - S Sharif
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, 419 Gordon Street, Guelph, Ontario, N1G 2W1 Canada
| |
Collapse
|
49
|
Fernández M, Hudson JA, Korpela R, de los Reyes-Gavilán CG. Impact on human health of microorganisms present in fermented dairy products: an overview. BIOMED RESEARCH INTERNATIONAL 2015; 2015:412714. [PMID: 25839033 PMCID: PMC4369881 DOI: 10.1155/2015/412714] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 09/04/2014] [Indexed: 02/07/2023]
Abstract
Fermented dairy products provide nutrients in our diet, some of which are produced by the action of microorganisms during fermentation. These products can be populated by a diverse microbiota that impacts the organoleptic and physicochemical characteristics foods as well as human health. Acidification is carried out by starter lactic acid bacteria (LAB) whereas other LAB, moulds, and yeasts become dominant during ripening and contribute to the development of aroma and texture in dairy products. Probiotics are generally part of the nonstarter microbiota, and their use has been extended in recent years. Fermented dairy products can contain beneficial compounds, which are produced by the metabolic activity of their microbiota (vitamins, conjugated linoleic acid, bioactive peptides, and gamma-aminobutyric acid, among others). Some microorganisms can also release toxic compounds, the most notorious being biogenic amines and aflatoxins. Though generally considered safe, fermented dairy products can be contaminated by pathogens. If proliferation occurs during manufacture or storage, they can cause sporadic cases or outbreaks of disease. This paper provides an overview on the current state of different aspects of the research on microorganisms present in dairy products in the light of their positive or negative impact on human health.
Collapse
Affiliation(s)
- María Fernández
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| | - John Andrew Hudson
- Food Safety Programme, ESR-Christchurch Science Centre, Christchurch 8540, New Zealand
- Food and Environment Safety Programme, The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK
| | - Riitta Korpela
- Medical Nutrition Physiology Group, Pharmacology, Institute of Biomedicine, University of Helsinki, 00014 Helsinki, Finland
| | - Clara G. de los Reyes-Gavilán
- Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas (IPLA-CSIC), Paseo Río Linares s/n, Villaviciosa, 33300 Asturias, Spain
| |
Collapse
|
50
|
Functional Starters for Functional Yogurt. Foods 2015; 4:15-33. [PMID: 28231187 PMCID: PMC5302227 DOI: 10.3390/foods4010015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 12/27/2014] [Accepted: 01/16/2015] [Indexed: 12/29/2022] Open
Abstract
In this study, we investigated the multifunctionality (microbial starters and probiotics) of Lactobacillus plantarum WCFS1 and Lactobacillus plantarum CECT 8328 strains used as microbial starters for the production of yogurt in combination with Lactobacillus delbrueckii ssp. bulgaricus and Streptococcus thermophilus. The ability of the probiotic strains to survive oro-gastrointestinal stresses was monitored by an in vitro assay simulating the human digestive tract. The transcriptional level of several genes involved in the immune response suggested that the probiotic strains may have a favorable influence on immunomodulation. Overall, this study revealed that the tested Lactobacilli exhibited suitable technological features for yogurt production and might be used to formulate novel food with immunomodulating effects.
Collapse
|