1
|
Yao Y, Jia R, Liu C, Wang H, Li T, Zheng X, Zhong T, Feng N, Sun J, Li K, Xie R, Ding L, Yan C, Ding L, Ju H. An In-Situ-Tag-Generation Proximity Labeling Technology for Recording Cellular Interactions. Angew Chem Int Ed Engl 2024; 63:e202407109. [PMID: 38702296 DOI: 10.1002/anie.202407109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/02/2024] [Accepted: 05/03/2024] [Indexed: 05/06/2024]
Abstract
Obtaining information about cellular interactions is fundamental to the elucidation of physiological and pathological processes. Proximity labeling technologies have been widely used to report cellular interactions in situ; however, the reliance on addition of tag molecules typically restricts their application to regions where tags can readily diffuse, while the application in, for example, solid tissues, is susceptible. Here, we propose an "in-situ-tag-generation mechanism" and develop the GalTag technology based on galactose oxidase (GAO) for recording cellular interactions within three-dimensional biological solid regions. GAO mounted on bait cells can in situ generate bio-orthogonal aldehyde tags as interaction reporters on prey cells. Using GalTag, we monitored the dynamics of cellular interactions and assessed the targeting ability of engineered cells. In particular, we recorded, for the first time, the footprints of Bacillus Calmette-Guérin (BCG) invasion into the bladder tissue of living mice, providing a valuable perspective to elucidate the anti-tumor mechanism of BCG.
Collapse
Affiliation(s)
- Yunyan Yao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ru Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, P. R. China
| | - Chuanming Liu
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, P. R. China
- Center for Molecular Reproductive Medicine, Nanjing University, 210008, Nanjing, P. R. China
| | - Haiqi Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ting Li
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Xiaocui Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Tong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Nan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ke Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| | - Ran Xie
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, P. R. China
| | - Lijun Ding
- Center for Reproductive Medicine and Obstetrics and Gynecology, Nanjing Drum Tower Hospital, Nanjing University Medical School, 210008, Nanjing, P. R. China
- Center for Molecular Reproductive Medicine, Nanjing University, 210008, Nanjing, P. R. China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, 210023, Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, P. R. China
- Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, 210023, Nanjing, P. R. China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, 210023, Nanjing, P. R. China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, P. R. China
| |
Collapse
|
2
|
Zhang Y, Huo F, Cao Q, Jia R, Huang Q, Wang ZA, Theodorescu D, Lv Q, Li P, Yan C. FimH confers mannose-targeting ability to Bacillus Calmette-Guerin for improved immunotherapy in bladder cancer. J Immunother Cancer 2022; 10:jitc-2021-003939. [PMID: 35361729 PMCID: PMC8971803 DOI: 10.1136/jitc-2021-003939] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Bladder cancer is a common disease worldwide with most patients presenting with the non-muscle-invasive form (NMIBC) at initial diagnosis. Postoperational intravesical instillation of BCG is carried out for patients with high-risk disease to reduce tumor recurrence and progression to muscle invasive disease. However, BCG can also have side effects or be ineffective in some patients because it cannot enter the cancer cells. Thus, to improve the efficacy of BCG immunotherapy is the long-term pursuit of the bladder cancer field. METHODS To increase the adhesion of BCG to the urothelium we overexpressed FimH, a mannose binding protein naturally used by uropathogenic Escherichia coli to adhere to human urothelium, onto the surface of BCG. The adhesion/internalization ability of rBCG-S.FimH was examined in mouse bladder by fluorescence microscopy. Preclinical evaluation of antitumor efficacy was carried out in orthotopic mouse models of bladder cancer and in human peripheral blood mononuclear cells. Mechanistic studies were carried out using toll-like receptor 4 (TLR4) knockout mice. Immune cells and cytokines in the serum, tumor and lymph nodes were analyzed by flow cytometry, PCR, ELISA and ELISPOT. RESULTS rBCG-S.FimH exhibited markedly improved adhesion and more rapid internalization into urothelial cells than wild-type BCG, resulting in more potent antitumor activity in orthotopic murine models of bladder cancer. To our surprise, rBCG-S.FimH elicited a much more prominent Th1-biased immune response known to be positively correlated with BCG efficacy. Mechanistic studies using TLR4 knockout mouse showed that rBCG-S.FimH could induce enhanced dendritic cell activation and tumor antigen-specific immune response in a TLR4-dependent manner. Furthermore, human peripheral blood mononuclear cells stimulated by rBCG-S.FimH also showed better tumoricidal effects than those using wild-type BCG. CONCLUSION rBCG-S.FimH is a novel BCG strain with significantly improved efficacy against bladder cancer. Since intravesical BCG immunotherapy is the first-line treatment for NMIBC, which accounts for more than 70% of all bladder cancer cases, our results provide a compelling rationale for clinical development.
Collapse
Affiliation(s)
- Yang Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Fan Huo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiang Cao
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Ru Jia
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Qiju Huang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China
| | - Zhu A Wang
- Department of Molecular Cell and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, USA
| | - Dan Theodorescu
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA.,Department of Surgery (Urology), Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Qiang Lv
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Pengchao Li
- Department of Urology, the First Affiliated Hospital with Nanjing Medical University (Jiangsu Province Hospital), Nanjing, Jiangsu, China
| | - Chao Yan
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, China .,Engineering Research Center of Protein and Peptide Medicine, Ministry of Education, Nanjing, Jiangsu, China
| |
Collapse
|
3
|
Ji N, Mukherjee N, Shu ZJ, Reyes RM, Meeks JJ, McConkey DJ, Gelfond JA, Curiel TJ, Svatek RS. γδ T Cells Support Antigen-Specific αβ T cell-Mediated Antitumor Responses during BCG Treatment for Bladder Cancer. Cancer Immunol Res 2021; 9:1491-1503. [PMID: 34607803 PMCID: PMC8691423 DOI: 10.1158/2326-6066.cir-21-0285] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 11/16/2022]
Abstract
Bacillus Calmette-Guérin (BCG) is the most effective intravesical agent at reducing recurrence for patients with high-grade, non-muscle-invasive bladder cancer. Nevertheless, response to BCG is variable and strategies to boost BCG efficacy have not materialized. Prior work demonstrated a requirement for either conventional αβ or nonconventional γδ T cells in mediating BCG treatment efficacy, yet the importance of T-cell antigen specificity for BCG's treatment effect is unclear. Here, we provide direct evidence to show that BCG increases the number of tumor antigen-specific αβ T cells in patients with bladder cancer and protects mice from subsequent same-tumor challenge, supporting BCG induction of tumor-specific memory and protection. Adoptive T-cell transfers of antigen-specific αβ T cells into immunodeficient mice challenged with syngeneic MB49 bladder tumors showed that both tumor and BCG antigen-specific αβ T cells contributed to BCG efficacy. BCG-specific antitumor immunity, however, also required nonconventional γδ T cells. Prior work shows that the mTOR inhibitor rapamycin induces the proliferation and effector function of γδ T cells. Here, rapamycin increased BCG efficacy against both mouse and human bladder cancer in vivo in a γδ T cell-dependent manner. Thus, γδ T cells augment antitumor adaptive immune effects of BCG and support rapamycin as a promising approach to boost BCG efficacy in the treatment of non-muscle-invasive bladder cancer.
Collapse
Affiliation(s)
- Niannian Ji
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Neelam Mukherjee
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Zhen-Ju Shu
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| | - Ryan M Reyes
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Joshua J Meeks
- Departments of Urology, and Biochemistry and Molecular Genetics, Northwestern University, Feinberg School of Medicine, Chicago, Illinois
| | - David J McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University, Baltimore, Maryland
| | - Jonathan A Gelfond
- Department of Epidemiology and Biostatistics, UT Health San Antonio, San Antonio, Texas
| | - Tyler J Curiel
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Division of Hematology/Medical Oncology at UT Health San Antonio, San Antonio, Texas
| | - Robert S Svatek
- Experimental Developmental Therapeutics (EDT) Program, Mays Cancer Center at UT Health MD Anderson, San Antonio, Texas.
- Department of Urology, UT Health San Antonio, San Antonio, Texas
| |
Collapse
|
4
|
Mao C, Xu X, Ding Y, Xu N. Optimization of BCG Therapy Targeting Neutrophil Extracellular Traps, Autophagy, and miRNAs in Bladder Cancer: Implications for Personalized Medicine. Front Med (Lausanne) 2021; 8:735590. [PMID: 34660642 PMCID: PMC8514698 DOI: 10.3389/fmed.2021.735590] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/05/2021] [Indexed: 01/07/2023] Open
Abstract
Bladder cancer (BC) is the ninth most common cancer and the thirteenth most common cause of mortality worldwide. Bacillus Calmette Guerin (BCG) instillation is a common treatment option for BC. BCG therapy is associated with the less adversary effects, compared to chemotherapy, radiotherapy, and other conventional treatments. BCG could inhibit the progression and recurrence of BC by triggering apoptosis pathways, arrest cell cycle, autophagy, and neutrophil extracellular traps (NETs) formation. However, BCG therapy is not efficient for metastatic cancer. NETs and autophagy were induced by BCG and help to suppress the growth of tumor cells especially in the primary stages of BC. Activated neutrophils can stimulate autophagy pathway and release NETs in the presence of microbial pathogenesis, inflammatory agents, and tumor cells. Autophagy can also regulate NETs formation and induce production of reactive oxygen species (ROS) and NETs. Moreover, miRNAs are important regulator of gene expression. These small non-coding RNAs are also considered as an essential factor to control the levels of tumor development. However, the interaction between BCG and miRNAs has not been well-understood yet. Therefore, the present study discusses the roles of miRNAs in regulations of autophagy and NETs formation in BCG therapy in the treatment of BC. The roles of autophagy and NETs formation in BC treatment and efficiency of BCG are also discussed.
Collapse
Affiliation(s)
- Chenyu Mao
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xin Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yongfeng Ding
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Nong Xu
- Department of Medical Oncology Cancer Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
A Bivalent Recombinant Mycobacterium bovis BCG Expressing the S1 Subunit of the Pertussis Toxin Induces a Polyfunctional CD4 + T Cell Immune Response. BIOMED RESEARCH INTERNATIONAL 2019; 2019:9630793. [PMID: 30941374 PMCID: PMC6420988 DOI: 10.1155/2019/9630793] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/30/2018] [Indexed: 12/15/2022]
Abstract
Background A recombinant BCG strain expressing the genetically detoxified S1 subunit of pertussis toxin 9K/129G (rBCG-S1PT), previously constructed by our research group, demonstrated the ability to develop high protection in mouse models of pertussis challenge which correlated with the induction of a Th1 immune response pattern. The Th1 immune response induced by rBCG-S1PT treatment was also confirmed in the murine orthotopic bladder cancer model, in which the intravesical instillation of rBCG-S1PT resulted in an improved antitumor effect. Based on these observations, we hypothesize that the reengineering of the S1PT expression in BCG could increase the efficiency of the protective Th1 immune response in order to develop a new alternative of immunotherapy in bladder cancer treatment. Objectives To construct rBCG strains expressing S1PT from extrachromosomal (rBCG-S1PT) and integrative vectors (rBCG-Sli), or their combination, generating the bivalent strain (rBCG-S1+S1i), and to evaluate the respective immunogenicity of rBCG strains in mice. Methods Mycobacterial plasmids were constructed by cloning the s1pt gene under integrative and extrachromosomal vectors and used to transform BCG, individually or in combination. Antigen expression and localization were confirmed by Western blot. Mice were immunized with wild-type BCG or the rBCG strains, and cytokines quantification and flow cytometry analysis were performed in splenocytes culture stimulated with mycobacterial-specific proteins. Findings S1PT expression was confirmed in all rBCG strains. The extrachromosomal vector directs S1PT to the cell wall-associated fraction, while the integrative vector directs its expression mainly to the intracellular fraction. Higher levels of IFN-γ were observed in the splenocytes culture from the group immunized with rBCG-S1i in comparison to BCG or rBCG-S1PT. rBCG-S1+S1i showed higher levels of CD4+ IFN-γ+ and double-positive CD4+ IFN-γ+ TNF-α+ T cells. Conclusions rBCG-S1+S1i was able to express the two forms of S1PT and elicited higher induction of polyfunctional CD4+ T cells, indicating enhanced immunogenicity and suggesting its use as immunotherapy for bladder cancer.
Collapse
|
6
|
New Recombinant Mycobacterium bovis BCG Expression Vectors: Improving Genetic Control over Mycobacterial Promoters. Appl Environ Microbiol 2016; 82:2240-2246. [PMID: 26850295 PMCID: PMC4959472 DOI: 10.1128/aem.03677-15] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 01/25/2016] [Indexed: 12/18/2022] Open
Abstract
The expression of many antigens, stimulatory molecules, or even metabolic pathways in mycobacteria such as Mycobacterium bovis BCG or M. smegmatis was made possible through the development of shuttle vectors, and several recombinant vaccines have been constructed. However, gene expression in any of these systems relied mostly on the selection of natural promoters expected to provide the required level of expression by trial and error. To establish a systematic selection of promoters with a range of strengths, we generated a library of mutagenized promoters through error-prone PCR of the strong PL5 promoter, originally from mycobacteriophage L5. These promoters were cloned upstream of the enhanced green fluorescent protein reporter gene, and recombinant M. smegmatis bacteria exhibiting a wide range of fluorescence levels were identified. A set of promoters was selected and identified as having high (pJK-F8), intermediate (pJK-B7, pJK-E6, pJK-D6), or low (pJK-C1) promoter strengths in both M. smegmatis and M. bovisBCG. The sequencing of the promoter region demonstrated that it was extensively modified (6 to 11%) in all of the plasmids selected. To test the functionality of the system, two different expression vectors were demonstrated to allow corresponding expression levels of the Schistosoma mansoni antigen Sm29 in BCG. The approach used here can be used to adjust expression levels for synthetic and/or systems biology studies or for vaccine development to maximize the immune response.
Collapse
|
7
|
Shah G, Zielonka J, Chen F, Zhang G, Cao Y, Kalyanaraman B, See W. H2O2 generation by bacillus Calmette-Guérin induces the cellular oxidative stress response required for bacillus Calmette-Guérin direct effects on urothelial carcinoma biology. J Urol 2014; 192:1238-48. [PMID: 24928267 DOI: 10.1016/j.juro.2014.05.115] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Exposure of urothelial carcinoma cells to bacillus Calmette-Guérin affects cellular redox status and tumor cell biology but the mechanism(s) remain unclear. We examined free radical production by bacillus Calmette-Guérin in tumor cells in response to the bacillus using global profiling of reactive oxygen species/reactive nitrogen species. The relationship between free radical generation and downstream cellular events was evaluated. MATERIALS AND METHODS Using fluorescent probes we performed global profiling of reactive oxygen species/reactive nitrogen species in heat killed and viable bacillus Calmette-Guérin, and in the 253J and T24 urothelial carcinoma cell lines after exposure to the bacillus. Inhibition of bacillus Calmette-Guérin internalization and H2O2 pharmacological scavenging were studied for their effect on cellular reactive oxygen species/reactive nitrogen species generation and various physiological end points. RESULTS Viable bacillus Calmette-Guérin produced H2O2 and O2(-) but nitric oxide was not generated. Loss of viability decreased H2O2 production by 50% compared to viable bacillus. Bacillus Calmette-Guérin internalization was necessary for the bacillus to induce reactive oxygen species/reactive nitrogen species generation in urothelial carcinoma cells. Pharmacological H2O2 scavenging reversed reactive oxygen species/reactive nitrogen species mediated signaling in urothelial carcinoma cells. Bacillus Calmette-Guérin dependent alterations in tumor biology, including intracellular signaling, gene expression and cytotoxicity, depended on free radical generation. CONCLUSIONS This study demonstrates the importance of free radical generation by bacillus Calmette-Guérin and intracellular generation of cellular oxidative stress on the urothelial carcinoma cell response to the bacillus. Manipulating the cellular oxidative stress induced by bacillus Calmette-Guérin represents a potential target to increase the efficacy of the bacillus.
Collapse
Affiliation(s)
- Gopitkumar Shah
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jacek Zielonka
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fanghong Chen
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guangjian Zhang
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - YanLi Cao
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William See
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
8
|
Blazevic A, Eickhoff CS, Stanley J, Buller MR, Schriewer J, Kettelson EM, Hoft DF. Investigations of TB vaccine-induced mucosal protection in mice. Microbes Infect 2013; 16:73-9. [PMID: 24120457 DOI: 10.1016/j.micinf.2013.09.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 09/25/2013] [Accepted: 09/28/2013] [Indexed: 10/26/2022]
Abstract
A better understanding of mucosal immunity is required to develop more protective vaccines against Mycobacterium tuberculosis. We developed a murine aerosol challenge model to investigate responses capable of protecting against mucosal infection. Mice received vaccinations intranasally with CpG-adjuvanted antigen 85B (Ag85B/CpG) and/or Bacillus Calmette-Guerin (BCG). Protection against aerosol challenge with a recombinant GFP-expressing BCG was assessed. Mucosal prime/boost vaccinations with Ag85B/CpG and BCG were protective, but did not prevent lung infection indicating more efficacious mucosal vaccines are needed. Our novel finding that protection correlated with increased airway dendritic cells early post-challenge could help guide the development of enhanced mucosal vaccines.
Collapse
Affiliation(s)
- Azra Blazevic
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Christopher S Eickhoff
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Jaime Stanley
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Mark R Buller
- Department of Molecular Microbiology and Immunology, Saint Louis University, Doisy Research Center, 7th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Jill Schriewer
- Department of Molecular Microbiology and Immunology, Saint Louis University, Doisy Research Center, 7th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Eric M Kettelson
- Department of Molecular Microbiology and Immunology, Saint Louis University, Doisy Research Center, 7th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States
| | - Daniel F Hoft
- Department of Internal Medicine, Saint Louis University, Doisy Research Center, 8th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States; Department of Molecular Microbiology and Immunology, Saint Louis University, Doisy Research Center, 7th Floor, 1100 S. Grand Blvd., St. Louis, MO 63104, United States.
| |
Collapse
|
9
|
Zhang G, Chen F, Cao Y, See WA. Contributors to HMGB1 Release by Urothelial Carcinoma Cells in Response to Bacillus Calmette-Guérin. J Urol 2013; 190:1398-403. [DOI: 10.1016/j.juro.2013.03.123] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2013] [Indexed: 01/18/2023]
Affiliation(s)
- Guangjian Zhang
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fanghong Chen
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Yanli Cao
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William A. See
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
10
|
Brincks EL, Risk MC, Griffith TS. PMN and anti-tumor immunity--the case of bladder cancer immunotherapy. Semin Cancer Biol 2013; 23:183-9. [PMID: 23410637 DOI: 10.1016/j.semcancer.2013.02.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/21/2013] [Accepted: 02/01/2013] [Indexed: 12/01/2022]
Abstract
Urothelial carcinoma of the bladder accounts for ∼5% of all cancer deaths in humans. The majority of bladder tumors are non-muscle invasive at diagnosis, and there is a high rate of tumor recurrence and progression even after local surgical therapy. Thus, many patients require lifelong follow-up examinations that include additional prophylactic treatments in the event of recurrence. Since its first use in 1976, Mycobacterium bovis bacillus Calmette-Guerin (BCG) has been the treatment of choice for non-muscle invasive bladder cancer. Despite nearly 40 years of clinical use, the mechanism(s) by which intravesical administration of BCG results in elimination of bladder tumors remains undefined. Granulocytes (polymorphonuclear neutrophils (PMN)) are the predominant immune cell (in number) that enters the bladder after BCG installation, and a number of studies have highlighted the importance of PMN in the antitumor activity of BCG. Studies from our laboratory demonstrated presence of intracellular stores of the apoptosis-inducing protein TNF-related apoptosis-inducing ligand (TRAIL) in PMN that are rapidly released after interaction with BCG cell wall components, along with a correlation between increased urinary levels of TRAIL and BCG responsiveness. Mature PMN in circulation are terminally differentiated cells with limited biosynthetic capacity, so the proteins located in the distinct PMN granule populations are compartmentalized concomitant with their synthesis during myelopoiesis. Thus, understanding PMN production, localization, and release of TRAIL is important in the design of future BCG-based bladder tumor immunotherapy protocols.
Collapse
Affiliation(s)
- Erik L Brincks
- Department of Urology, University of Minnesota, Minneapolis, MN 55455, United States
| | | | | |
Collapse
|
11
|
Czepluch W, Dunn AC, Everitt CL, Dorer D, Saunderson SC, Aldwell FE, McLellan AD. Extracellular forms of Mycobacterium bovis BCG in the mucosal lymphatic tissues following oral vaccination. Int J Mycobacteriol 2012; 2:44-50. [PMID: 26785788 DOI: 10.1016/j.ijmyco.2012.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 11/17/2012] [Indexed: 10/27/2022] Open
Abstract
Oral vaccination with BCG provides protective systemic immunity against pathogenic mycobacterial challenge. In this study, the anatomical distribution of Mycobacterium bovis BCG following oral vaccination was investigated. Replicating bacteria in the Peyer's patches and mesenteric lymph nodes were present as solitary rods or clusters of two to three bacteria, the majority of which were isolated ex vivo as extracellular forms. Only a minority were shown to be associated with typical antigen-presenting cells. Acid-fast staining of mast cell granules in lymphoid tissues revealed a potential pitfall for these analyses and may explain previous reports of acid-fast 'coccoid' forms of mycobacteria in tissues.
Collapse
Affiliation(s)
- Wenzel Czepluch
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Amy C Dunn
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Charlotte L Everitt
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Dominik Dorer
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Sarah C Saunderson
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand
| | - Frank E Aldwell
- Immune Solutions, Centre for Innovation, University of Otago
| | - Alexander D McLellan
- Department of Microbiology & Immunology, Otago School of Medical Sciences, University of Otago, P.O. Box 56, Dunedin, New Zealand.
| |
Collapse
|
12
|
Ding GQ, Yu YL, Shen ZJ, Zhou XL, Chen SW, Liao GD, Zhang Y. Antitumor effects of human interferon-alpha 2b secreted by recombinant bacillus Calmette-Guérin vaccine on bladder cancer cells. J Zhejiang Univ Sci B 2012; 13:335-41. [PMID: 22556170 DOI: 10.1631/jzus.b1100366] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Our objective was to construct a recombinant bacillus Calmette-Guérin vaccine (rBCG) that secretes human interferon-alpha 2b (IFNα-2b) and to study its immunogenicity and in vitro antitumor activity against human bladder cancer cell lines T24 and T5637. METHODS The signal sequence BCG Ag85B and the gene IFNα-2b were amplified from the genome of BCG and human peripheral blood, respectively, by polymerase chain reaction (PCR). The two genes were cloned in Escherichia coli-BCG shuttle-vector pMV261 to obtain a new recombinant plasmid pMV261-Ag85B-IFNα-2b. BCG was transformed with the recombinant plasmid by electroporation and designated rBCG-IFNα-2b. Mononuclear cells were isolated from human peripheral blood (PBMCs) and stimulated with rBCG-IFNα-2b or wild type BCG for 3 d, and then cultured with human bladder cancer cell lines T24 and T5637. Their cytotoxicities were measured by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. RESULTS BCG was successfully transformed with the recombinant plasmid pMV261-Ag85B-IFNα-2b by electroporation and the recombinant BCG (rBCG-IFNα-2b) was capable of synthesizing and secreting cytokine IFNα-2b. PBMC proliferation was enhanced significantly by rBCG-IFNα-2b, and the cytotoxicity of PBMCs stimulated by rBCG-IFNα-2b to T24 and T5627 was significantly stronger in comparison to wild type BCG. CONCLUSIONS A recombinant BCG, secreting human IFNα-2b (rBCG-IFNα-2b), was constructed successfully and was superior to control wild type BCG in inducing immune responses and enhancing cytotoxicity to human bladder cancer cell lines T24 and T5637. This suggests that rBCG-IFNα-2b could be a promising agent for bladder cancer patients in terms of possible reductions in both clinical dosage and side effects of BCG immunotherapy.
Collapse
Affiliation(s)
- Guo-qing Ding
- Department of Urology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | |
Collapse
|
13
|
Roy S, Narayana Y, Balaji KN, Ajitkumar P. Highly fluorescent GFPm 2+ -based genome integration-proficient promoter probe vector to study Mycobacterium tuberculosis promoters in infected macrophages. Microb Biotechnol 2011; 5:98-105. [PMID: 21958386 PMCID: PMC3815276 DOI: 10.1111/j.1751-7915.2011.00305.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Study of activity of cloned promoters in slow‐growing Mycobacterium tuberculosis during long‐term growth conditions in vitro or inside macrophages, requires a genome‐integration proficient promoter probe vector, which can be stably maintained even without antibiotics, carrying a substrate‐independent, easily scorable and highly sensitive reporter gene. In order to meet this requirement, we constructed pAKMN2, which contains mycobacterial codon‐optimized gfpm2+ gene, coding for GFPm2+ of highest fluorescence reported till date, mycobacteriophage L5 attP‐int sequence for genome integration, and a multiple cloning site. pAKMN2 showed stable integration and expression of GFPm2+ from M. tuberculosis and M. smegmatis genome. Expression of GFPm2+, driven by the cloned minimal promoters of M. tuberculosis cell division gene, ftsZ (MtftsZ), could be detected in the M. tuberculosis/pAKMN2‐promoter integrants, growing at exponential phase in defined medium in vitro and inside macrophages. Stable expression from genome‐integrated format even without antibiotic, and high sensitivity of detection by flow cytometry and fluorescence imaging, in spite of single copy integration, make pAKMN2 useful for the study of cloned promoters of any mycobacterial species under long‐term in vitro growth or stress conditions, or inside macrophages.
Collapse
Affiliation(s)
- Sougata Roy
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore - 560012, Karnataka, India
| | | | | | | |
Collapse
|
14
|
Th1 cytokine-secreting recombinant Mycobacterium bovis bacillus Calmette-Guérin and prospective use in immunotherapy of bladder cancer. Clin Dev Immunol 2011; 2011:728930. [PMID: 21941579 PMCID: PMC3173967 DOI: 10.1155/2011/728930] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 07/17/2011] [Indexed: 12/03/2022]
Abstract
Intravesical instillation of Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used for treating bladder cancer for 3 decades. However, BCG therapy is ineffective in approximately 30–40% of cases. Since evidence supports the T helper type 1 (Th1) response to be essential in BCG-induced tumor destruction, studies have focused on enhancing BCG induction of Th1 immune responses. Although BCG in combination with Th1 cytokines (e.g., interferon-α) has demonstrated improved efficacy, combination therapy requires multiple applications and a large quantity of cytokines. On the other hand, genetic manipulation of BCG to secrete Th1 cytokines continues to be pursued with considerable interest. To date, a number of recombinant BCG (rBCG) strains capable of secreting functional Th1 cytokines have been developed and demonstrated to be superior to BCG. This paper discusses current rBCG research, concerns, and future directions with an intention to inspire the development of this very promising immunotherapeutic modality for bladder cancer.
Collapse
|
15
|
Kitamura H, Tsukamoto T. Immunotherapy for urothelial carcinoma: current status and perspectives. Cancers (Basel) 2011; 3:3055-72. [PMID: 24212945 PMCID: PMC3759186 DOI: 10.3390/cancers3033055] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 07/22/2011] [Accepted: 07/26/2011] [Indexed: 12/14/2022] Open
Abstract
Intravesical instillation of bacillus Calmette Guérin (BCG) for the treatment of urothelial carcinoma (UC) of the bladder is based on the BCG-induced immune response, which eradicates and prevents bladder cancer. The results of recent studies have suggested that not only major histocompatibility complex (MHC)-nonrestricted immune cells such as natural killer cells, macrophages, neutrophils, etc., but also MHC-restricted CD8+ T cells play an important role and are one of the main effectors in this therapy. Better understanding of the mechanism of BCG immunotherapy supports the idea that active immunotherapy through its augmented T cell response can have great potential for the treatment of advanced UC. In this review, progress in immunotherapy for UC is discussed based on data from basic, translational and clinical studies. We also review the escape mechanism of cancer cells from the immune system, and down-regulation of MHC class I molecules.
Collapse
Affiliation(s)
- Hiroshi Kitamura
- Department of Urology, Sapporo Medical University School of Medicine, South 1 West 16, Chuo-ku, Sapporo 060-8543, Japan.
| | | |
Collapse
|
16
|
The role of neutrophils and TNF-related apoptosis-inducing ligand (TRAIL) in bacillus Calmette–Guérin (BCG) immunotherapy for urothelial carcinoma of the bladder. Cancer Metastasis Rev 2009; 28:345-53. [DOI: 10.1007/s10555-009-9195-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Kitamura A, Mastumoto S, Asahina I. Growth inhibition of HeLa cell by internalization of Mycobacterium bovis Bacillus Calmette-Guérin (BCG) Tokyo. Cancer Cell Int 2009; 9:30. [PMID: 19954548 PMCID: PMC3224964 DOI: 10.1186/1475-2867-9-30] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2009] [Accepted: 12/02/2009] [Indexed: 11/12/2022] Open
Abstract
Background Intravesical BCG immunotherapy is effective for preventing recurrence and progression in none muscle-invasive bladder cancer but the dosing schedule and duration of treatment remain empirical. The mechanisms by which intravesical BCG treatment mediates antitumor activity are currently poorly understood. Results HeLa cell infected with Mycobacterium bovis Bacillus Calmette-Guérin(BCG) Tokyo which were different multiplicity of infection(MOI). Proliferation of HeLa cell reduced in a dose-dependent manner by live BCG. The cytoplasm of the HeLa cell showed variety lysosomal stages by internalized and interacted BCG. Conclusion Proliferated Live BCG secreted the protein and depressed the growth of tumor. The possibility for clinical introduction of BCG therapy for carcinoma reported with review of literature.
Collapse
Affiliation(s)
- Akira Kitamura
- Division of Oral and Maxillofacial Surgical Reconstruction and Functional Restoration, Department of Developmental and Reconstructive Medicine, Graduate School of Biomedical Sciences, Nagasaki University, Sakamoto, Nagasaki, Japan.
| | | | | |
Collapse
|
18
|
Tiwari S, Choi HP, Matsuzawa T, Pypaert M, MacMicking JD. Targeting of the GTPase Irgm1 to the phagosomal membrane via PtdIns(3,4)P(2) and PtdIns(3,4,5)P(3) promotes immunity to mycobacteria. Nat Immunol 2009; 10:907-17. [PMID: 19620982 PMCID: PMC2715447 DOI: 10.1038/ni.1759] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2009] [Accepted: 05/22/2009] [Indexed: 12/16/2022]
Abstract
Vertebrate immunity to infection enlists a newly identified family of 47-kilodalton immunity-related GTPases (IRGs). One IRG in particular, Irgm1, is essential for macrophage host defense against phagosomal pathogens, including Mycobacterium tuberculosis (Mtb). Here we show that Irgm1 targets the mycobacterial phagosome through lipid-mediated interactions with phosphatidylinositol-3,4-bisphosphate (PtdIns(3,4)P(2)) and PtdIns(3,4,5)P(3). An isolated Irgm1 amphipathic helix conferred lipid binding in vitro and in vivo. Substitutions in this region blocked phagosome recruitment and failed to complement the antimicrobial defect in Irgm1(-/-) macrophages. Removal of PtdIns(3,4,5)P(3) or inhibition of class I phosphatidylinositol-3-OH kinase (PI(3)K) mimicked this effect in wild-type cells. Cooperation between Irgm1 and PI(3)K further facilitated the engagement of Irgm1 with its fusogenic effectors at the site of infection, thereby ensuring pathogen-directed responses during innate immunity.
Collapse
Affiliation(s)
- Sangeeta Tiwari
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine Yale University School of Medicine, New Haven, CT 06510. U.S.A
| | - Han-Pil Choi
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine Yale University School of Medicine, New Haven, CT 06510. U.S.A
| | - Takeshi Matsuzawa
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine Yale University School of Medicine, New Haven, CT 06510. U.S.A
| | - Marc Pypaert
- Department of Cell Biology, Center for Cell and Molecular Imaging Yale University School of Medicine, New Haven, CT 06510. U.S.A
| | - John D. MacMicking
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine Yale University School of Medicine, New Haven, CT 06510. U.S.A
| |
Collapse
|
19
|
Simons MP, O'Donnell MA, Griffith TS. Role of neutrophils in BCG immunotherapy for bladder cancer. Urol Oncol 2008; 26:341-5. [PMID: 18593617 DOI: 10.1016/j.urolonc.2007.11.031] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2007] [Revised: 11/01/2007] [Accepted: 11/08/2007] [Indexed: 01/05/2023]
Abstract
Bladder cancer accounts for approximately 13,000 deaths annually, and >60,000 new cases will appear this year, making it the fourth and tenth most common cancer among men and women, respectively. The majority of the newly diagnosed cases will be diagnosed prior to muscle invasion, and are thus potentially completely curable. Unfortunately, >20% of patients initially diagnosed with non-muscle invasive bladder cancer will eventually die of their disease despite local endoscopic surgery. Mycobacterium bovis bacillus Calmette-Guérin (BCG) has been used for the treatment of bladder cancer since 1976, and continues to be at the forefront of therapeutic options for this malignancy. Despite its success and worldwide acceptance, the antitumor effector mechanisms remain elusive. BCG therapy induces a massive local immune response characterized by the expression of multiple cytokines in the urine and bladder tissue, and the influx of granulocytes and mononuclear cells into the bladder wall. Findings from our laboratory have demonstrated that tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is induced by BCG treatment, and TRAIL was expressed on polymorphonuclear neutrophils (PMN) in the urine obtained from patients after intravesical BCG instillation. Subsequently, we have determined that BCG and components of the mycobacterial cell wall can directly stimulate the release of soluble TRAIL from PMN through toll-like receptor-2 (TLR2) recognition that is augmented by interferon (IFN). Based on our work and that of others implicating the need for T helper type 1 (Th-1) cytokine responses to BCG therapy for therapeutic results, we propose that TRAIL is released by PMN migrating to the bladder in response to BCG treatment. In addition, IFN acts to augment and prolong the amount of TRAIL released by PMN, resulting in an effective therapeutic outcome.
Collapse
Affiliation(s)
- Mark P Simons
- Department of Urology, University of Iowa, Iowa City, IA 52242, USA
| | | | | |
Collapse
|
20
|
Saban MR, O'Donnell MA, Hurst RE, Wu XR, Simpson C, Dozmorov I, Davis C, Saban R. Molecular networks discriminating mouse bladder responses to intravesical bacillus Calmette-Guerin (BCG), LPS, and TNF-alpha. BMC Immunol 2008; 9:4. [PMID: 18267009 PMCID: PMC2262873 DOI: 10.1186/1471-2172-9-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/11/2008] [Indexed: 12/26/2022] Open
Abstract
Background Despite being a mainstay for treating superficial bladder carcinoma and a promising agent for interstitial cystitis, the precise mechanism of Bacillus Calmette-Guerin (BCG) remains poorly understood. It is particularly unclear whether BCG is capable of altering gene expression in the bladder target organ beyond its well-recognized pro-inflammatory effects and how this relates to its therapeutic efficacy. The objective of this study was to determine differentially expressed genes in the mouse bladder following chronic intravesical BCG therapy and to compare the results to non-specific pro inflammatory stimuli (LPS and TNF-α). For this purpose, C57BL/6 female mice received four weekly instillations of BCG, LPS, or TNF-α. Seven days after the last instillation, the urothelium along with the submucosa was removed from detrusor muscle and the RNA was extracted from both layers for cDNA array experiments. Microarray results were normalized by a robust regression analysis and only genes with an expression above a conditional threshold of 0.001 (3SD above background) were selected for analysis. Next, genes presenting a 3-fold ratio in regard to the control group were entered in Ingenuity Pathway Analysis (IPA) for a comparative analysis in order to determine genes specifically regulated by BCG, TNF-α, and LPS. In addition, the transcriptome was precipitated with an antibody against RNA polymerase II and real-time polymerase chain reaction assay (Q-PCR) was used to confirm some of the BCG-specific transcripts. Results Molecular networks of treatment-specific genes generated several hypotheses regarding the mode of action of BCG. BCG-specific genes involved small GTPases and BCG-specific networks overlapped with the following canonical signaling pathways: axonal guidance, B cell receptor, aryl hydrocarbon receptor, IL-6, PPAR, Wnt/β-catenin, and cAMP. In addition, a specific detrusor network expressed a high degree of overlap with the development of the lymphatic system. Interestingly, TNF-α-specific networks overlapped with the following canonical signaling pathways: PPAR, death receptor, and apoptosis. Finally, LPS-specific networks overlapped with the LPS/IL-1 mediated inhibition of RXR. Because NF-kappaB occupied a central position in several networks, we further determined whether this transcription factor was part of the responses to BCG. Electrophoretic mobility shift assays confirmed the participation of NF-kappaB in the mouse bladder responses to BCG. In addition, BCG treatment of a human urothelial cancer cell line (J82) also increased the binding activity of NF-kappaB, as determined by precipitation of the chromatin by a NF-kappaB-p65 antibody and Q-PCR of genes bearing a NF-kappaB consensus sequence. Next, we tested the hypothesis of whether small GTPases such as LRG-47 are involved in the uptake of BCG by the bladder urothelium. Conclusion As expected, BCG treatment induces the transcription of genes belonging to common pro-inflammatory networks. However, BCG also induces unique genes belonging to molecular networks involved in axonal guidance and lymphatic system development within the bladder target organ. In addition, NF-kappaB seems to play a predominant role in the bladder responses to BCG therapy. Finally, in intact urothelium, BCG-GFP internalizes in LRG-47-positive vesicles. These results provide a molecular framework for the further study of the involvement of immune and nervous systems in the bladder responses to BCG therapy.
Collapse
Affiliation(s)
- Marcia R Saban
- College of Medicine, Department of Physiology, Oklahoma University Health Sciences Center (OUHSC), Oklahoma City, OK 73104, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Simons MP, Nauseef WM, Griffith TS. Neutrophils and TRAIL: insights into BCG immunotherapy for bladder cancer. Immunol Res 2007; 39:79-93. [DOI: 10.1007/s12026-007-0084-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/30/2022]
|
22
|
Simons MP, Moore JM, Kemp TJ, Griffith TS. Identification of the mycobacterial subcomponents involved in the release of tumor necrosis factor-related apoptosis-inducing ligand from human neutrophils. Infect Immun 2006; 75:1265-71. [PMID: 17194806 PMCID: PMC1828584 DOI: 10.1128/iai.00938-06] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Intravesical administration of Mycobacterium bovis bacillus Calmette-Guérin (BCG) continues to be a successful immunotherapy for superficial bladder cancer. Recently, workers in our laboratory observed expression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) on neutrophils in voided urine following BCG therapy. Neutrophils released a soluble and functional form of TRAIL when they were stimulated in vitro with BCG, and the activity was localized predominantly to the cell wall fraction. In this study, we examined the ability of individual mycobacterial components to stimulate TRAIL release from neutrophils. Our results demonstrated that cell wall-derived lipoarabinomannan (LAM), mycolyl arabinogalactan-peptidoglycan complex, and a Triton X-114 (Tx114)-solubilized protein pool were effective agonists of TRAIL release from neutrophils. Mycobacterial DNA was also an agonist of TRAIL release from neutrophils. Furthermore, purified antigen 85 ABC complex and alpha-crystallin (HspX), two major cell wall antigens present in the Tx114 pool, induced TRAIL release from neutrophils. The Tx114 pool stimulated HEK-293 cells expressing either Toll-like receptor 2/1 (TLR2/1) or TLR2/6, but only HspX was able to stimulate TLR2/6-expressing cells. TLR4/MD2/CD14-expressing cells responded only to LAM. Collectively, these results suggested that TRAIL release from neutrophils was induced through the recognition of multiple mycobacterial components by TLR2 and TLR4.
Collapse
Affiliation(s)
- Mark P Simons
- Department of Urology, 3204 MERF, University of Iowa, 375 Newton Road, Iowa City, IA 52242-1089, USA
| | | | | | | |
Collapse
|
23
|
Dorer DE, Czepluch W, Lambeth MR, Dunn AC, Reitinger C, Aldwell FE, McLellan AD. Lymphatic tracing and T cell responses following oral vaccination with live Mycobacterium bovis (BCG). Cell Microbiol 2006; 9:544-53. [PMID: 17018037 DOI: 10.1111/j.1462-5822.2006.00810.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Oral vaccination of mice with lipid-encapsulated Mycobacterium bovis bacille Calmette-Guérin (BCG) expands a subset of interferon-gamma (IFN-gamma)-secreting T cells and mediates protection against aerosol mycobacterial challenge. We have traced the movement of the live vaccine through the regional lymphatics of mice and monitored the resultant immune response. Six hours after oral vaccination BCG was detected in low numbers systemically and in draining lymphatic tissue. However, after 48 h, BCG was predominantly associated with alimentary tract lymphatic tissues, such as the cervical and mesenteric lymph nodes and Peyer's patches. Lymphocytes that produced IFN-gamma in response to PPD-B or BCG-pulsed dendritic cells predominated in the spleen and were almost exclusively CD4(+), CD44(+) and CD62L(-), thus resembling an effector memory T cell population. Despite the fact that an oral route was used for immunization, splenic IFN-gamma-secreting T cells in vaccinated mice did not express the mucosal homing antigens alpha(4)beta(7) integrin or alphaIEL (CD103). However, a proportion of BCG-specific CD4(+) T cells expressed the CD29 integrin (beta(1)) chain, potentially involved in lung homing function. Thus, oral priming with M. bovis BCG appears to induce a subset of spleen-resident CD4(+) T cells with the potential to provide protective immunity in the lung.
Collapse
Affiliation(s)
- Dominik E Dorer
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | | | | | | | | | | | | |
Collapse
|
24
|
Agarwal A, Verma S, Burra U, Murthy NS, Mohanty NK, Saxena S. Flow cytometric analysis of Th1 and Th2 cytokines in PBMCs as a parameter of immunological dysfunction in patients of superficial transitional cell carcinoma of bladder. Cancer Immunol Immunother 2006; 55:734-43. [PMID: 16283306 PMCID: PMC11041922 DOI: 10.1007/s00262-005-0045-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2005] [Accepted: 06/10/2005] [Indexed: 10/25/2022]
Abstract
Transitional cell carcinoma (TCC) is the commonest cancer of the bladder. Although majority of TCC can be diagnosed at an early stage and removed easily by transurethral resection of tumor (TURT), the management of this carcinoma is complicated due to frequent recurrences usually within 6 months to one-year period. An imbalance between the Th1 and Th2 immune responses has been attributed to immune dysregulation in various malignancies. The present study aims to evaluate the Th1 and Th2 balance in Peripheral Blood Mononuclear Cells of 41 TCC patients (20 recurrent and 21 non-recurrent) using flow cytometry. It also further assesses immunological and cellular factors influencing the anti-neoplastic activity of the TCC patients and in 21 normal healthy subjects in terms of their cytokine expression and various cell surface markers. The findings of the study revealed that the cell surface markers CD3+, CD4+ and CD8+ along with NK cells were found to be significantly lower in patients than healthy controls (p < 0.01). The mean percent expression of CD4+ was significantly lower in patients showing recurrence (23.9 +/- 9.84) as compared to patients with non-recurrence (31.1 +/- 12.27). The percentage of CD4+T-cells (mean +/- SD) producing IFN-gamma, IL-2 and TNF-alpha were statistically significantly reduced in patients (19.1 +/- 4.94, 52.3 +/- 20.86 and 12.8 +/- 4.49) as compared to healthy controls (23.3 +/- 3.67, 67.5 +/- 12.0 and 17.6 +/- 5.96 respectively), (p < 0.01, 0.018, 0.001). On the contrary, the mean levels of IL-4, IL-6 and IL-10 in patients (63.8+/-17.01, 60.4+/-14.79 and 65.7 +/- 14.84 respectively) were significantly higher as compared to healthy controls (24.4 +/- 8.77, 26.5 +/- 5.28 and 20.6 +/- 3.81 respectively), (p < 0.001). No statistically significant difference was observed in the cytokine expression between patients showing recurrence and non-recurrence. Patients with bladder cancer seem to develop a Th2 dominant status with a deficient type1 immune response. The lymphocyte evaluation along with cytokine measurement can provide a sensitive and valuable tool for evaluating the function of cell-mediated immunity in these patients and can also find application in therapeutic monitoring of bladder cancer patients as new targets for immunotherapy.
Collapse
Affiliation(s)
- A. Agarwal
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110 029 India
| | - S. Verma
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110 029 India
| | - U. Burra
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110 029 India
| | - N. S. Murthy
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110 029 India
| | - N. K. Mohanty
- Department of Urology, Safdarjung Hospital Campus, New Delhi, India
| | - S. Saxena
- Institute of Pathology (ICMR), Safdarjung Hospital Campus, New Delhi, 110 029 India
| |
Collapse
|
25
|
Fricke I, Mitchell D, Mittelstädt J, Lehan N, Heine H, Goldmann T, Böhle A, Brandau S. Mycobacteria Induce IFN-γ Production in Human Dendritic Cells via Triggering of TLR2. THE JOURNAL OF IMMUNOLOGY 2006; 176:5173-82. [PMID: 16621981 DOI: 10.4049/jimmunol.176.9.5173] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
IFN-gamma is of central importance for the induction of robust cell-mediated immunity and for the activation of APC. Recent studies using experimental murine systems have now suggested a fundamental role for APC-derived IFN-gamma during infection with intracellular pathogens. It is currently unknown whether human dendritic cells (DC) can respond to bacterial stimulation with production of IFN-gamma. To test this question, we used human monocyte-derived DC stimulated by Mycobacterium bovis bacillus Calmette-Guérin as a model system. We demonstrate production of IFN-gamma mRNA and protein on the single cell level. IFN-gamma in DC cultures was not simply produced by contaminating lymphocytes because production of DC-IFN-gamma could also be demonstrated in highly purified DC cultures containing virtually no T, B, and NK cells. TLR2 was identified as a key receptor involved in triggering production of DC-IFN-gamma. Interestingly, DC-IFN-gamma seems to participate in an autocrine DC activation loop, and production of DC-IFN-gamma could be enhanced by costimulation of DC with IL-12/IL-15/IL-18. In conclusion, we have demonstrated production of IFN-gamma by human DC on the single cell level, identified TLR2 as a pattern recognition receptor involved in this process, and elucidated some of the functional consequences of autocrine IFN-gamma production by human DC.
Collapse
Affiliation(s)
- Ingo Fricke
- Division of Immunotherapy, Research Center Borstel, Parkallee 1-40, 23845 Borstel, Germany
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Zhang G, Chen F, Xu Y, Cao Y, Crist S, McKerrow A, Iwamoto Y, See WA. Autocrine over expression of fibronectin by human transitional carcinoma cells impairs bacillus Calmette-Guerin adherence and signaling. J Urol 2004; 172:1496-500. [PMID: 15371878 DOI: 10.1097/01.ju.0000140193.95528.91] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE Bacillus Calmette-Guerin (BCG) binds to the tumor cell as a result of mycobacterial receptors for fibronectin (FN). Cell surface bound FN serves as a bridge through which BCG attaches to the tumor cell. Despite the importance of FN studies have demonstrated an idiosyncratic decrease in BCG adherence in response to exogenous FN. We evaluated the effect of exogenous and autocrine FN on the ability of BCG to adhere to the tumor cell surface and initiate cellular signaling. MATERIALS AND METHODS BCG adherence to parental 253J and FN over expressing 253JTGFbeta1-8 cells as well as to the intrinsic FN expressing cell line 647V was quantified using green fluorescent protein-BCG. Experiments were performed to assess the effect of FN on BCG initiated signal transduction through nuclear factor kappaB and AP1. Finally, the integrity of the BCG activated signaling pathway in transforming growth factor-beta1/FN over expressors was assessed using antibody mediated cross-linking of the FN receptor. RESULTS BCG adherence was decreased in cell lines with high autocrine expression of FN. Exogenous FN prevented BCG induced transactivation of nuclear factor kappaB and AP1 reporter constructs. No BCG stimulated signaling to these reporters could be detected in FN over expressing 253J cells. NonFN dependent alpha5beta1 cross-linking initiated signal transduction in FN over expressing cells. CONCLUSIONS We propose that by saturating cellular and BCG receptors excess FN expression decreases the ability of cellular or mycobacterial bound FN to bind vacant receptors on BCG or on the cell. Excess FN inhibits BCG adherence and BCG initiated signal transduction.
Collapse
Affiliation(s)
- Guangjian Zhang
- Department of Urology, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Luo Y, Yamada H, Chen X, Ryan AA, Evanoff DP, Triccas JA, O'Donnell MA. Recombinant Mycobacterium bovis bacillus Calmette-Guérin (BCG) expressing mouse IL-18 augments Th1 immunity and macrophage cytotoxicity. Clin Exp Immunol 2004; 137:24-34. [PMID: 15196240 PMCID: PMC1809079 DOI: 10.1111/j.1365-2249.2004.02522.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Interleukin-18 (IL-18) has been demonstrated to synergize with BCG for induction of a T-helper-type 1 (Th1) immune response. Since successful treatment of superficial bladder cancer with BCG requires proper induction of Th1 immunity, we have developed a recombinant (r) BCG strain that functionally secretes mouse (m) IL-18. This rBCG-mIL-18 strain significantly increased production of the major Th1 cytokine IFN-gamma in splenocyte cultures, at levels comparable to that elicited by control BCG plus exogenous rIL-18. IFN-gamma production by splenocytes was eliminated by addition of neutralizing anti-IL-18 antibody. Endogenous IL-12 played a favourable role whereas IL-10 played an adverse role in rBCG-mIL-18-induced IFN-gamma production. Enhanced host antimycobacterial immunity was observed in mice infected with rBCG-mIL-18 which showed less splenic enlargement and reduced bacterial load compared to control mice infected with BCG. Further, splenocytes from rBCG-mIL-18-infected mice, in response to BCG antigen, displayed increased production of IFN-gamma and GMCSF, decreased production of IL-10, elevated cellular proliferation and higher differentiation of IFN-gamma-secreting cells. rBCG-mIL-18 also enhanced BCG-induced macrophage cytotoxicity against bladder cancer MBT-2 cells in a dose-dependent manner. Neutralizing all endogenous macrophage-derived cytokines tested (IL-12, IL-18 and TNF-alpha) as well as IFN-gamma severely diminished the rBCG-mIL-18-induced macrophage cytolytic activity, indicating a critical role for these cytokines in this process. Cytokine analysis for supernatants of macrophage-BCG mixture cultures manifested higher levels of IFN-gamma and TNF-alpha in rBCG-mIL-18 cultures than in control BCG cultures. Taken together, this rBCG-mIL-18 strain augments BCG's immunostimulatory property and may serve as a better agent for bladder cancer immunotherapy and antimycobacterial immunization.
Collapse
Affiliation(s)
- Y Luo
- Department of Urology, University of Iowa Hospitals and Clinics, Iowa City, IA 52242-1089, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Cowley SC, Av-Gay Y. Monitoring promoter activity and protein localization in Mycobacterium spp. using green fluorescent protein. Gene 2001; 264:225-31. [PMID: 11250077 DOI: 10.1016/s0378-1119(01)00336-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Two green fluorescent protein (Gfp) fusion vectors were constructed for use in Mycobacterium spp. The first plasmid facilitates quantification of mycobacterial promoter activity. The second vector permits construction of translational fusions of mycobacterial proteins to Gfp in order to study subcellular localization including protein secretion. Using this translational fusion construct, we verify that a Gfp fusion to the putative secreted M. tuberculosis protein ChoD is translocated to the extracellular milieu when cloned and expressed in Mycobacterium smegmatis.
Collapse
Affiliation(s)
- S C Cowley
- Department of Medicine, Division of Infectious Diseases, University of British Columbia, 2733 Heather St., Vancouver, British Columbia, Canada V5Z 3J5
| | | |
Collapse
|
29
|
Luo Y, Chen X, Han R, O'Donnell MA. Recombinant bacille Calmette-Guérin (BCG) expressing human interferon-alpha 2B demonstrates enhanced immunogenicity. Clin Exp Immunol 2001; 123:264-70. [PMID: 11207657 PMCID: PMC1905993 DOI: 10.1046/j.1365-2249.2001.01428.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To increase its immunostimulatory properties, BCG was genetically engineered to secrete recombinant human interferon-alpha 2B (rhIFN-alpha) under control of the mycobacterial heat shock protein (hsp)60 promoter and the alpha antigen signal sequence. Expression of rhIFN-alpha was readily detectable by ELISA and on Western blotting. When compared with control BCG, rhIFN-alpha BCG was substantially more active in inducing the production of IFN-gamma and IFN-inducible protein 10 (IP-10) from human peripheral blood mononuclear cells, while IL-10 production was correspondingly decreased. These effects were reversible upon antibody neutralization of rhIFN-alpha. Among 10 patients tested, rhIFN-alpha BCG enhanced IFN-gamma production in all patients ranging from 1.4- to 23.7-fold with a general trend toward greatest enhancement among those with weakest baseline responses to control BCG. Correspondingly, rhIFN-alpha BCG decreased IL-10 production in all patients by 1.2-4.8-fold. The onset of IFN-gamma production induced by rhIFN-alpha BCG was also more rapid, occurring within 4 h after stimulation versus > 24 h with wild-type BCG. The observation that the maximum IFN-gamma induction depends on the simultaneous presence of both IFN-alpha and BCG highlights the advantages of rhIFN-alpha BCG. Taken together, these immunostimulatory properties of rhIFN-alpha BCG suggest that it may be a superior agent for immunotherapeutic protocols involving live BCG in humans.
Collapse
Affiliation(s)
- Y Luo
- Division of Urology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
30
|
ZHANG GUANGJIAN, CRIST SCOTTA, MCKERROW AMYK, XU YONG, LADEHOFF DAVIDC, SEE WILLIAMA. AUTOCRINE IL-6 PRODUCTION BY HUMAN TRANSITIONAL CARCINOMA CELLS UPREGULATES EXPRESSION OF THE α5β1 FIBRONECTIN RECEPTOR. J Urol 2000. [DOI: 10.1016/s0022-5347(05)67678-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- GUANG-JIAN ZHANG
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| | - SCOTT A. CRIST
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| | - AMY K. MCKERROW
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| | - YONG XU
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| | - DAVID C. LADEHOFF
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| | - WILLIAM A. SEE
- From the University of Iowa Department of Urology, Iowa City, Iowa, and the Medical College of Wisconsin Division of Urology, Milwaukee, Wisconsin
| |
Collapse
|
31
|
MUTATED RAS p21 AS A TARGET FOR CANCER THERAPY IN MOUSE TRANSITIONAL CELL CARCINOMA. J Urol 1999. [DOI: 10.1097/00005392-199910000-00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
|