1
|
Spielvogel I, Gębarowska E, Badora K, Waroszewski J, Budek K, Proćków J, Gałka B, Gębarowski T. Antibacterial and therapeutic potential of historic deposits of silesian healing clay - terra sigillataSilesiaca. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118853. [PMID: 39326814 DOI: 10.1016/j.jep.2024.118853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 08/22/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The increasing evolution of pathogen resistance is a global problem that requires novel solutions. Recently, an increased interest in ethnomedicinal sources can be observed in the derivation of new medicines. The return to traditional medicinal formulations handed down for generations is being followed, but it is necessary to revise them again, taking into account the generally accepted research protocol. AIM OF THE STUDY We aimed to evaluate the antimicrobial potential of historical deposits of Silesian healing clay (SHC), used in ethnomedicine against Gram-positive bacteria and to assess their biological activity using a primary dermal fibroblast line (NHDF) and a model monocyte line (THP1). MATERIALS AND METHODS Information on medicinal clay deposits that occur in Silesia and are traditionally used in ethnomedicine or ancient medicine and known as terra sigillata Silesiaca or SHC, was selected on available source materials and old prints and maps from the archives of the Polish Geological Institute (Wrocław, Poland). Subsequently, their places of occurrence were identified and traced in the field by taking three deposits from the Silesia territory: Upper Silesia (D1), Opole Silesia (D2), and Lower Silesian (D3) Voivodeships for analysis. Their basic parameters and antimicrobial efficacy against pathogenic bacteria, Gram-positive streptococci and staphylococci, including methicillin-resistant strains, were examined. The study evaluated the effects of clays on growth and vitality using a primary dermal fibroblast line (NHDF) and a monocytic line (THP1). Studies were performed on a cell culture model to determine the effects on tissue regeneration (fibroblasts) and anti-inflammatory effects (monocytes). The study attempted to identify the mechanism of antimicrobial action, especially the textural characteristics and geochemical composition, as well as the environmental reaction (pH). RESULTS SHCs were classified into the following textural classes: clay loam (D1), clay (D2), and sand (D3). The tested deposits have antimicrobial properties that reduce the bacterial population (104 CFU) compared to the control (108 CFU). The antimicrobial effect depends on the type of clay and the species or strain of bacteria used. In-house studies clearly showed that Staphylococcus aureus Pcm 2054 and Staphylococcus epidermidis MRSE ATCC 2538 cells were completely adsorbed by clay minerals from clay D3.13. Furthermore, 10% leachates also showed an antimicrobial effect, as a reduction in bacterial populations was observed ranging from 91 to 100%. The results showed stimulation of fibroblast culture proliferation and inhibition of the growth of inflammatory cells (monocytes). CONCLUSION SHCs tested have antimicrobial potential, in particular D2.7, D2.11, and D3.13. The D3.13 deposit had a bactericidal effect against the staphylococci tested. Aqueous solutions of clays also showed bacteriostatic effect. The results obtained in cell culture model tests indicate properties that modulate the healing process - stimulation of fibroblast growth (NHDF line) and inhibition of monocyte growth (THP1 line).
Collapse
Affiliation(s)
- Izabela Spielvogel
- Department of Physiotherapy, Institute of Physiotherapy, Opole University of Technology, Prószkowska 76, 45-758 Opole, Poland.
| | - Elżbieta Gębarowska
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Krzysztof Badora
- Institute of Environmental Engineering and Biotechnology, Opole University, Kominka 4a, 45-052 Opole, Poland.
| | - Jarosław Waroszewski
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Karolina Budek
- Division of Biogeochemistry and Environmental Microbiology, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Bernard Gałka
- Institute of Soil Science, Plant Nutrition and Environmental Protection, Faculty of Life Sciences and Technology, Wrocław University of Environmental and Life Sciences, ul. Grunwaldzka 53, 50-357 Wrocław, Poland.
| | - Tomasz Gębarowski
- Department of Biostructure and Animal Physiology, Wrocław University of Environmental and Life Sciences, Kożuchowska 1/3, 51-631 Wrocław, Poland.
| |
Collapse
|
2
|
Draveny M, Chauvet H, Rouam V, Jamme F, Masi M. Intracellular Quantification of an Antibiotic Metal Complex in Single Cells of Escherichia coli Using Cryo-X-ray Fluorescence Nanoimaging. ACS NANO 2024. [PMID: 39740123 DOI: 10.1021/acsnano.4c12664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
Abstract
Bacterial resistance is a major public health challenge. In Gram-negative bacteria, the synergy between multidrug efflux pumps and outer membrane impermeability determines the intracellular concentration of antibiotics. Consequently, it also dictates antibiotic activity on their respective targets. Previous research has employed spectrofluorimetry and synchrotron radiation-based DUV microscopy as tools for monitoring the accumulation of fluoroquinolone antibiotics in bacteria at population and single-cell scales, respectively. Here, we show that cryo-XRF nanoimaging allows intracellular localization and quantification of a fluoroquinolone metal complex accumulation in Escherichia coli with different efflux pump expression levels. This method offers a promising avenue for elucidating the intracellular behavior of a range of metallodrugs in bacteria and for designing novel agents with unique mechanisms of action.
Collapse
Affiliation(s)
- Margot Draveny
- Aix Marseille Univ, INSERM, SSA, MCT, 27 Bd Jean Moulin, Marseille 13005, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Hugo Chauvet
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Valérie Rouam
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Frédéric Jamme
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| | - Muriel Masi
- Aix Marseille Univ, INSERM, SSA, MCT, 27 Bd Jean Moulin, Marseille 13005, France
- Synchrotron SOLEIL, L'Orme des Merisiers, Départementale 128, Saint-Aubin 91190, France
| |
Collapse
|
3
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas AL, FitzGerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. Discovery of a Pseudomonas aeruginosa-specific small molecule targeting outer membrane protein OprH-LPS interaction by a multiplexed screen. Cell Chem Biol 2024:S2451-9456(24)00490-2. [PMID: 39732052 DOI: 10.1016/j.chembiol.2024.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/19/2024] [Accepted: 12/03/2024] [Indexed: 12/30/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa, a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT, a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal pathogen biology.
Collapse
Affiliation(s)
- Bradley E Poulsen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Thulasi Warrier
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sulyman Barkho
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | - Keith P Romano
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Tiantian White
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Xiao Yu
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Tomohiko Kawate
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Phuong H Nguyen
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kyra Raines
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kristina Ferrara
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - A Lorelei Golas
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Virendar Kaushik
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; 3 Point Bio LLC, Cambridge, MA 02142, USA
| | | | - Noam Shoresh
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Deborah T Hung
- Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
4
|
Elsebaei MM, Ezzat HG, Helal AM, El-Shershaby MH, Abdulrahman MS, Alsedawy M, Aljohani AKB, Almaghrabi M, Alsulaimany M, Almohaywi B, Alghamdi R, Miski SF, Musa A, Ahmed HEA. Rational design and synthesis of novel phenyltriazole derivatives targeting MRSA cell wall biosynthesis. RSC Adv 2024; 14:39977-39994. [PMID: 39713184 PMCID: PMC11659749 DOI: 10.1039/d4ra07367c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) is a major global health challenge. This study reports the design and synthesis of novel phenyltriazole derivatives as potential anti-MRSA agents. The new scaffold replaces the thiazole core with a 1,2,3-triazole ring, enhancing antimicrobial efficacy and physicochemical properties. A series of derivatives were synthesized and evaluated, with four compounds (20, 23, 29 and 30) showing significant activity against MRSA (MIC ≤ 4 μg mL-1). Compound 29 emerged as the most promising candidate, showing rapid bactericidal activity and superior performance over vancomycin in time-kill assays. It exhibited selective toxicity against bacterial cells, minimal cytotoxicity in human cell lines and low hemolytic activity. Mechanistic studies showed that compound 29 targets the bacterial cell wall by binding to penicillin-binding protein 2a (PBP2a), disrupting cell wall integrity. Additionally, it showed strong anti-biofilm activity and reduced MRSA biofilms by up to 40%. Preliminary pharmacokinetic profiles suggested a favorable profile, including a prolonged plasma half-life and good oral bioavailability. These results suggest that compound 29 is a promising lead for further development in the fight against MRSA.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Hany G Ezzat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed M Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed H El-Shershaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Moaz Alsedawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
5
|
Bagdad Y, Miteva MA. Recent Applications of Artificial Intelligence in Discovery of New Antibacterial Agents. Adv Appl Bioinform Chem 2024; 17:139-157. [PMID: 39650228 PMCID: PMC11624680 DOI: 10.2147/aabc.s484321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/25/2024] [Indexed: 12/11/2024] Open
Abstract
Antimicrobial resistance (AMR) represents today a major challenge for global public health, compromising the effectiveness of treatments against a multitude of bacterial infections. In recent decades, artificial intelligence (AI) has emerged as a promising technology for the identification and development of new antibacterial agents. This review focuses on AI methodologies applied to discover new antibacterial candidates. Case studies that identified small molecules and peptides showing antimicrobial activity and demonstrating efficiency against pathogenic resistant bacteria by employing AI are summarized. We also discuss the challenges and opportunities offered by AI, highlighting the importance of AI progress for the identification of new promising antibacterial drug candidates to combat the AMR.
Collapse
Affiliation(s)
- Youcef Bagdad
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| |
Collapse
|
6
|
Bennett F, Huang Y, Dong S, Jiang J, Hunter D, Zhao Z, Gu X, Scott JD, Tang H, Yang D, Xiao L, Scapin G, Fischmann T, Mirza A, Dayananth P, Painter RE, Villafania A, Garlisi CG, Zhang R, Mayhood TW, Si Q, Li N, Amin RP, Chen F, Bhatt B, Regan CP, Regan H, Lin X, Wu J, Leithead A, Young K, Pasternak A. Discovery of sulfone containing metallo-β-lactamase inhibitors with reduced bacterial cell efflux and histamine release issues. Bioorg Med Chem Lett 2024; 114:129989. [PMID: 39396683 DOI: 10.1016/j.bmcl.2024.129989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/15/2024]
Abstract
The design, syntheses and antibacterial evaluation of sulfone analogues of previously disclosed metallo-β-lactamase inhibitors (MBLis) are described. The novel derivatives were overall more effective in gram-negative bacterial cell-based assays when combined with imipenem and relebactam. The major contributors to the improved anti-bacterial activity are enhanced enzyme-inhibitor interactions and reduced bacterial cell efflux monitored via an efflux assay involving isogenic Pseudomonas aeruginosa efflux + and efflux - tool strains.
Collapse
Affiliation(s)
- Frank Bennett
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA.
| | - Yuhua Huang
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Shuzhi Dong
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Jinlong Jiang
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - David Hunter
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Zhiqiang Zhao
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Xin Gu
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Jack D Scott
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Haiqun Tang
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Dexi Yang
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| | - Li Xiao
- Merck & Co., Inc., Department of Computational and Structural Chemistry, 126 E. Lincoln Avenue., Rahway, NJ 07065, USA
| | - Giovanna Scapin
- Merck & Co., Inc., Department of Computational and Structural Chemistry, 126 E. Lincoln Avenue., Rahway, NJ 07065, USA
| | - Thierry Fischmann
- Merck & Co., Inc., Department of Computational and Structural Chemistry, 126 E. Lincoln Avenue., Rahway, NJ 07065, USA
| | - Asra Mirza
- Merck & Co., Inc., Department of Infectious Diseases, 770 Sumneytown Pike., West Point, PA 19486, USA
| | - Priya Dayananth
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Ronald E Painter
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Artjohn Villafania
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Charles G Garlisi
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Rumin Zhang
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Todd W Mayhood
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Qian Si
- Merck & Co., Inc., Department of Pharmacology, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Nianyu Li
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Rupesh P Amin
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Feifei Chen
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Bhavana Bhatt
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Christopher P Regan
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Hilary Regan
- Merck & Co., Inc., Department of Nonclinical Drug Safety, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Xinjie Lin
- Merck & Co., Inc., Department of Pharmacokinetics and Pharmacodynamics, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Jin Wu
- Merck & Co., Inc., Department of Pharmacokinetics and Pharmacodynamics, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Andrew Leithead
- Merck & Co., Inc., Department of Pharmaceutical Sciences, 770 Sumneytown Pike, West Point, PA 19486, USA
| | - Katherine Young
- Merck & Co., Inc., Department of Infectious Diseases, 770 Sumneytown Pike., West Point, PA 19486, USA
| | - Alexander Pasternak
- Merck & Co., Inc., Department of Medicinal Chemistry, 126 E. Lincoln Avenue, Rahway, NJ 07065, USA
| |
Collapse
|
7
|
Kifayat S, Almuqdadi HTA, Singh RP, Singh M, Abid M, Sanapalli BKR. An in silico approach for identification of lead compound as FtsZ inhibitor. Mol Divers 2024; 28:3937-3948. [PMID: 38775995 DOI: 10.1007/s11030-023-10787-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2024]
Abstract
The remarkable conservation of the FtsZ among Gram-positive and Gram-negative bacteria, a crucial GTPase in bacterial cell division, has emerged as a promising antibacterial drug target to combat antibacterial resistance. There have been several coordinated efforts to develop inhibitors against FtsZ which can also serve as potential candidates for future antibiotics. In the present study, a natural product-like library (≈50,000 compounds) was employed to conduct HTVS against Staphylococcus aureus FtsZ protein (PDB Id: 6KVP). Additionally, molecular docking was carried out in two modes, SP and XP docking, using the Schrödinger suite. The glide scores of ligands obtained by XP docking were further summarized and compared with the control ligands (ZI1- co-crystal and PC190723-a compound undergoing clinical trial). Using the Prime-MM-GBSA approach, BFE calculations were performed on the top XP-scored ligands (≈598 compounds). These hits were also evaluated for ADMET parameters using the Qikprop algorithm, SwissADME, and in silico carcinogenicity testing using Carcinopred-El. Based on the results, ligand 4-FtsZ complex was considered for the 300 ns MDS analysis to get insights into its binding modes within the catalytic pocket of FtsZ protein. The analysis revealed that the amide linkage sandwiched between the triazole and 1-oxa-8-azaspirodecan-8-ium moiety (Val203) as well as the aminoethyl group present at 1st position on the triazole moiety (Leu209, Leu200, Asp210, and Ala202) were responsible for the FtsZ inhibitory activity, owing to their crucial interactions with key amino acid residues. Further, the complex also displayed good protein-ligand stability, ultimately predicting ligand 4 as a potent lead compound for the inhibition of FtsZ. Thus, our in silico findings will serve as a framework for in-depth in-vitro and in-vivo investigations encouraging the development of FtsZ inhibitors as a new generation of antibacterial agents.
Collapse
Affiliation(s)
- Sumaiya Kifayat
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | | | - Ravindra Pal Singh
- Department of Pharmaceutics, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Mithilesh Singh
- Department of Pharmaceutical Chemistry, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India
| | - Mohammad Abid
- Medicinal Chemistry Laboratory, Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| | - Bharat Kumar Reddy Sanapalli
- Department of Pharmacology, NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, 303121, India.
- Department of Pharmacology, School of Pharmacy and Technology Management, SVKM's Narsee Monjee Institute of Management Studies (NMIMS) Deemed-to-Be-University, Jadcherla, Hyderabad, 509301, India.
| |
Collapse
|
8
|
Wang YT, Liu LT, Hou B, Yao CM, Wang XF, Lu B. Recent advances in studies on FtsZ inhibitors. Biochem Pharmacol 2024; 230:116551. [PMID: 39307317 DOI: 10.1016/j.bcp.2024.116551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 09/19/2024] [Indexed: 10/02/2024]
Abstract
With the abuse of antibiotics, multidrug resistant strains continue to emerge and spread rapidly. Therefore, there is an urgent need to develop new antimicrobial drugs. As a highly conserved cell division protein in bacteria, filamenting temperature-sensitive mutant Z (FtsZ) has been identified as a potential antimicrobial target. This paper reviews the structure, function, and action mechanism of FtsZ and a variety of natural and synthetic compounds targeting FtsZ, including 3-MBA derivatives, taxane derivatives, cinnamaldehyde, curcumin, quinoline and quinazoline derivatives, aromatic compounds, purpurin, and totarol. From these studies, FtsZ has a clear supporting role in the field of antimicrobial drug discovery. The urgent need and interest of antibacterial drugs will contribute to the discovery of new clinical drugs targeting FtsZ.
Collapse
Affiliation(s)
- Yan-Ting Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| | - Lan-Tian Liu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bo Hou
- School of Life Science and Technology, Xidian University, Xi'an 710126, PR China
| | - Chun-Meng Yao
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Xu-Fang Wang
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China
| | - Bin Lu
- Department of Biochemical Pharmacy, School of Pharmacy, Second Military Medical University/Naval Medical University, Shanghai 200433, PR China.
| |
Collapse
|
9
|
Farha MA, Tu MM, Brown ED. Important challenges to finding new leads for new antibiotics. Curr Opin Microbiol 2024; 83:102562. [PMID: 39603107 DOI: 10.1016/j.mib.2024.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/15/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Identification of new antibiotics remains a huge challenge. The last antibiotic of new chemical class and mechanism was discovered more than 30 years ago. Advances since have been largely incremental modifications to a limited number of chemical scaffolds. Discovering and developing truly new antibiotics is challenging: the science is complex, and the development process is time consuming and expensive. Herein, we focus on the discovery phase of modern antibacterial research and development. We argue that antibacterial discovery has been challenged by a poor understanding of bacterial permeability, by generic in vitro conventions that ignore the host, and by the inherent complexity of bacterial systems. Together, these factors have colluded to challenge modern, industrial, and reductionist approaches to antibiotic discovery. Nevertheless, advances in our understanding of many of these obstacles, including a new appreciation for the complexity of both host and pathogen biology, bode well for future efforts.
Collapse
Affiliation(s)
- Maya A Farha
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Megan M Tu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Eric D Brown
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; Michael G. DeGroote Institute of Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada.
| |
Collapse
|
10
|
Raghav S, Hitaishi P, Giri RP, Mukherjee A, Sharma VK, Ghosh SK. Selective assembly and insertion of ubiquicidin antimicrobial peptide in lipid monolayers. J Mater Chem B 2024; 12:11731-11745. [PMID: 39434705 DOI: 10.1039/d4tb01487a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Antimicrobial-resistant bacteria pose a significant threat to humans, prompting extensive research into developing new antimicrobial peptides (AMPs). The biomembrane is the first barrier of a biological cell, hence, comprehending the interaction and self-assembly of AMPs in and around such membranes is of great importance. In the present study, several biophysical techniques have been applied to explore the self-assembly of ubiquicidin (29-41), an archetypical AMP, in and around the phospholipid monolayers formed at air-water interface. Such a monolayer mimics one of the leaflets of a lipid bilayer. The surface pressure-area isotherm exhibits the strongest interaction with a negatively charged lipid, 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (sodium salt) (DPPG). The weakest affinity was towards the zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC). Another zwitterionic lipid, 1,2-dipalmitoyl-sn-glycero-3-phosphoethanolamine (DPPE), shows an intermediate affinity. This affinity was quantified by analyzing alterations in the effective mean molecular area of the lipid, the in-plane compressional modulus of the assembly, and the electrostatic potential induced by the presence of peptides. The precise organization of the peptide around the lipid monolayer at a sub-nanometre length scale was revealed using synchrotron-based X-ray reflectivity measurements from the air-water interface. Information about the selective interaction of the peptide with lipids and their varied orientation at the lipid-water interface could be useful in understanding the selectivity of AMP in developing new antibiotics.
Collapse
Affiliation(s)
- Sonam Raghav
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Prashant Hitaishi
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| | - Rajendra P Giri
- Institut für Experimentelle und Angewandte Physik, Christian-Albrechts-Universität Zu Kiel, 24098 Kiel, Germany
| | - Archana Mukherjee
- Radiopharmaceuticals Division, Bhabha Atomic Research Centre, Mumbai 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India.
| | - Veerendra K Sharma
- Homi Bhabha National Institute, Mumbai, 400094, India.
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Sajal K Ghosh
- Department of Physics, School of Natural Sciences, Shiv Nadar Institution of Eminence, NH 91, Tehsil Dadri, G. B. Nagar, Uttar Pradesh 201314, India.
| |
Collapse
|
11
|
Kongari R, Ray MD, Lehman SM, Plaut RD, Hinton DM, Stibitz S. The Transcriptional Program of Staphylococcus aureus Phage K Is Affected by a Host rpoC Mutation That Confers Phage K Resistance. Viruses 2024; 16:1773. [PMID: 39599887 PMCID: PMC11598898 DOI: 10.3390/v16111773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 11/01/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024] Open
Abstract
To better understand host-phage interactions and the genetic bases of phage resistance in a model system relevant to potential phage therapy, we isolated several spontaneous mutants of the USA300 S. aureus clinical isolate NRS384 that were resistant to phage K. Six of these had a single missense mutation in the host rpoC gene, which encodes the RNA polymerase β' subunit. To examine the hypothesis that mutations in the host RNA polymerase affect the transcription of phage genes, we performed RNA-seq analysis on total RNA samples collected from NRS384 wild-type (WT) and rpoCG17D mutant cultures infected with phage K, at different timepoints after infection. Infection of the WT host led to a steady increase of phage transcription relative to the host. Our analysis allowed us to define 53 transcriptional units and to categorize genes based on their temporal expression patterns. Predicted promoter sequences defined by conserved -35, -10, and, in some cases, extended -10 elements, were found upstream of early and middle genes. However, in many cases, sequences upstream of late genes did not contain clear, complete, canonical promoter sequences, suggesting that factors in addition to host RNA polymerase are required for their expression. Infection of the rpoCG17D mutant host led to a transcriptional pattern that was similar to that of the WT at early timepoints. However, beginning at 20 min after infection, transcription of late genes (such as phage structural genes and host lysis genes) was severely reduced. Our data indicate that the rpoCG17D mutation prevents the expression of phage late genes, resulting in a failed infection cycle for phage K. In addition to illuminating the global transcriptional landscape of phage K throughout the infection cycle, this study will inform our investigations into the basis of phage K's control of its transcriptional program as well as mechanisms of phage resistance.
Collapse
Affiliation(s)
- Rohit Kongari
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Melissa D. Ray
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Susan M. Lehman
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Roger D. Plaut
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| | - Deborah M. Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, United States Food and Drug Administration, Silver Spring, MD 20993, USA
| |
Collapse
|
12
|
Rieger CD, Soliman AM, Kaplia K, Ghosh N, Lopez AC, Venkatesan SA, Guevara Flores AG, Filiol Belin MA, Allen F, Reynolds M, McKenna B, Lavallee H, Weenie A, Favel T, Gendron F, Ziffle VE, El-Halfawy OM. The antimicrobial potential of traditional remedies of Indigenous peoples from Canada against MRSA planktonic and biofilm bacteria in wound infection mimetic conditions. Microbiol Spectr 2024; 12:e0234124. [PMID: 39530700 PMCID: PMC11619235 DOI: 10.1128/spectrum.02341-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the leading cause of wound infections, often progressing into serious invasive bloodstream infections. MRSA disproportionately affects Indigenous peoples in Canada with higher rates of skin and wound infections, an example of persistent gaps in health outcomes between Indigenous and non-Indigenous peoples precipitated by the legacy of colonialism. Conversely, Indigenous peoples have long used natural remedies for infections and other diseases; however, their knowledge was rarely considered for modern medicine. The stagnant antibiotic discovery pipeline and alarming rise of resistance to current antibiotics prompted us to turn to Indigenous medicine as an untapped source of antimicrobials. As such, we collected and prepared 85 extracts of medicinal plants of value to Indigenous peoples spanning the Canadian Prairies. We explored the antimicrobial potential of these extracts against MRSA under wound infection-mimetic conditions compared with culture media typically used to study bacterial antibiotic responses and biofilms but not adequately representative of infection sites. We identified extracts with MRSA growth inhibitory [e.g., bergamot, dock, gaillardia, and dandelion extracts] and biofilm prevention and eradication [e.g., gumweed extracts] activities. Extracts, including those of chokecherry, hoary puccoon, and Northern bedstraw, were only active under wound infection-mimetic conditions, highlighting the benefit of antibiotic discovery under host-relevant conditions. Testing growth inhibitory extracts against an S. aureus cross-resistance platform suggested that they act through mechanisms likely distinct from known antibiotic classes. Together, through an interdisciplinary partnership leveraging Western approaches and traditional Indigenous knowledge, we identified plant extracts with promising antimicrobial potential for drug-resistant MRSA wound infections.IMPORTANCEWe explored the antimicrobial potential of traditional Indigenous remedies against MRSA under wound infection-mimetic conditions. We chose to tackle MRSA wound infections because they constitute an Indigenous health priority, ensuring mutual benefits and reciprocity, which are important principles in partnerships between Indigenous and non-Indigenous researchers. Our partnerships strive to serve as steps towards reconciliation with Indigenous peoples in Canada and a roadmap inspiring similar interdisciplinary collaborations to tackle other healthcare priorities. We identified extracts with promising antibacterial growth inhibitory, biofilm prevention, and eradication activities against MRSA. The antimicrobial potential of some extracts was only observed under wound infection-mimetic conditions, a proof-of-concept that screening under infection-mimetic conditions reveals novel activity undetected under standard conditions. The natural product antimicrobial extracts discovered herein warrant further investigation into their mode of action and chemical composition; they may address the dire need for new antimicrobial and anti-biofilm activity to counter the AMR crisis.
Collapse
Affiliation(s)
- Colin D. Rieger
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, Canada
| | - Ahmed M. Soliman
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafr-Elsheikh University, Kafr El-Sheikh, Egypt
| | - Kateryna Kaplia
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- Kingston University, Faculty of Health, Science, Social Care and Education, Kingston, United Kingdom
| | - Nilrup Ghosh
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- IISER Kolkata, West Bengal, India
| | - Alexa Cervantes Lopez
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Surya Arcot Venkatesan
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- Engineering and Technology, Rajalakshmi Engineering College, Kanchipuram, Tamil Nadu, India
| | - Abraham Gildaro Guevara Flores
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- Department of Chemistry, Autonomous University of Nuevo Leon (Medicine College), San Nicolás de los Garza, Mexico
| | - Matheus Antônio Filiol Belin
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
- Universidade Estadual Paulista (UNESP), Campus de Botucatu. Faculdade de Medicina (FMB), São Paulo, Brazil
| | - Florence Allen
- Elder from Peter Ballantyne Cree Nation in Saskatchewan, Treaty 6 Territory, Saskatchewan, Canada
| | - Margaret Reynolds
- Elder from English River First Nation in Saskatchewan, Treaty 10 Territory, Saskatchewan, Canada
| | - Betty McKenna
- Elder from Shoal River Band in Manitoba, Treaty 4 Territory, Saskatchewan, Canada
| | - Harold Lavallee
- Elder from Piapot First Nation in Saskatchewan, Treaty 4 Territory, Saskatchewan, Canada
| | - Archie Weenie
- Elder from Sweetgrass First Nation in Saskatchewan, Treaty 6 Territory, Saskatchewan, Canada
| | - Thomas Favel
- Elder from Kawacatoose First Nation in Saskatchewan, Treaty 4 Territory, Saskatchewan, Canada
| | - Fidji Gendron
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
| | - Vincent E. Ziffle
- Department of Indigenous Knowledge and Science, Faculty of Science, First Nations University of Canada, Regina, Canada
| | - Omar M. El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
13
|
Romano KP, Bagnall J, Warrier T, Sullivan J, Ferrara K, Orzechowski M, Nguyen PH, Raines K, Livny J, Shoresh N, Hung DT. Perturbation-specific transcriptional mapping for unbiased target elucidation of antibiotics. Proc Natl Acad Sci U S A 2024; 121:e2409747121. [PMID: 39467118 PMCID: PMC11551328 DOI: 10.1073/pnas.2409747121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
The rising prevalence of antibiotic resistance threatens human health. While more sophisticated strategies for antibiotic discovery are being developed, target elucidation of new chemical entities remains challenging. In the postgenomic era, expression profiling can play an important role in mechanism-of-action (MOA) prediction by reporting on the cellular response to perturbation. However, the broad application of transcriptomics has yet to fulfill its promise of transforming target elucidation due to challenges in identifying the most relevant, direct responses to target inhibition. We developed an unbiased strategy for MOA prediction, called perturbation-specific transcriptional mapping (PerSpecTM), in which large-throughput expression profiling of wild-type or hypomorphic mutants, depleted for essential targets, enables a computational strategy to address this challenge. We applied PerSpecTM to perform reference-based MOA prediction based on the principle that similar perturbations, whether chemical or genetic, will elicit similar transcriptional responses. Using this approach, we elucidated the MOAs of three molecules with activity against Pseudomonas aeruginosa by comparing their expression profiles to those of a reference set of antimicrobial compounds with known MOAs. We also show that transcriptional responses to small-molecule inhibition resemble those resulting from genetic depletion of essential targets by clustered regularly interspaced short palindromic repeats interference (CRISPRi) by PerSpecTM, demonstrating proof of concept that correlations between expression profiles of small-molecule and genetic perturbations can facilitate MOA prediction when no chemical entities exist to serve as a reference. Empowered by PerSpecTM, this work lays the foundation for an unbiased, readily scalable, systematic reference-based strategy for MOA elucidation that could transform antibiotic discovery efforts.
Collapse
Affiliation(s)
- Keith P. Romano
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Division of Pulmonary and Critical Care Medicine, Brigham and Women’s Hospital, Boston, MA02115
| | - Josephine Bagnall
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Thulasi Warrier
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jaryd Sullivan
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kristina Ferrara
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Marek Orzechowski
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Phuong H. Nguyen
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| | - Kyra Raines
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
| | - Jonathan Livny
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Noam Shoresh
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
| | - Deborah T. Hung
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA02142
- Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA02114
- Department of Genetics, Harvard Medical School, Boston, MA02115
| |
Collapse
|
14
|
Hagiya H. Ethical consumption of antimicrobial agents: A proposal for a new concept in promoting antimicrobial stewardship. Am J Med Sci 2024; 368:553-555. [PMID: 38969286 DOI: 10.1016/j.amjms.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/23/2024] [Accepted: 07/01/2024] [Indexed: 07/07/2024]
Affiliation(s)
- Hideharu Hagiya
- Department of Infectious Diseases, Okayama University Hospital, Okayama, Japan.
| |
Collapse
|
15
|
Bann SJ, Cochrane SA. A novel approach for the synthesis of the cyclic lipopeptide globomycin. RSC Med Chem 2024:d4md00685b. [PMID: 39493230 PMCID: PMC11528322 DOI: 10.1039/d4md00685b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/06/2024] [Indexed: 11/05/2024] Open
Abstract
Cyclic lipopeptides (CLiPs) are a highly diverse class of secondary metabolites produced by bacteria and fungi. Examples of CLiPs have been found that possess potent antimicrobial activity against multidrug-resistant Gram-negative bacteria. Globomycin is a 19-membered CLiP that kills both Gram-positive and Gram-negative bacteria through inhibition of lipoprotein signal peptidase II (Lsp). It can only be obtained in small quantities from its Streptomyces producer strain, so there has been much interest in development of synthetic methods to access globomycin and analogues. Globomycin contains an N-terminal anti-α-methyl-β-hydroxy nonanoyl lipid tail, whose hydroxyl group forms an ester with the C-terminal carboxylate. Constructing the anti-arrangement between the α-methyl and β-hydroxy is synthetically challenging and previous globomycin syntheses are not compatible with diversification of the lipid tail after the stereocenters have been installed. Herein, we describe a new approach for the synthesis of globomycin that allows for facile lipid diversification. Using an anti-Evans Aldol condensation, a common intermediate is obtained that allows different "lipid swapping" through Grubbs-catalyzed cross-metathesis. Upon auxiliary cleavage, the resulting lipid can then be utilized in solid-phase peptide synthesis. Given the plethora of lipopeptides that contain β-hydroxy lipids, this method offers a convenient approach for convergent generation of lipopeptide analogues.
Collapse
Affiliation(s)
- Samantha J Bann
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| | - Stephen A Cochrane
- School of Chemistry and Chemical Engineering, Queen's University Belfast David Keir Building, Stranmillis Road Belfast BT9 5AG UK
| |
Collapse
|
16
|
Kofoed EM, Aliagas I, Crawford T, Mao J, Harris SF, Xu M, Wang S, Wu P, Ma F, Clark K, Sims J, Xu Y, Peng Y, Skippington E, Yang Y, Reeder J, Ubhayakar S, Baumgardner M, Yan Z, Chen J, Park S, Zhang H, Yen CW, Lorenzo M, Skelton N, Liang X, Chen L, Hoag B, Li CS, Liu Z, Wai J, Liu X, Liang J, Tan MW. Discovery of GuaB inhibitors with efficacy against Acinetobacter baumannii infection. mBio 2024; 15:e0089724. [PMID: 39207111 PMCID: PMC11481871 DOI: 10.1128/mbio.00897-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 07/25/2024] [Indexed: 09/04/2024] Open
Abstract
Guanine nucleotides are required for growth and viability of cells due to their structural role in DNA and RNA, and their regulatory roles in translation, signal transduction, and cell division. The natural antibiotic mycophenolic acid (MPA) targets the rate-limiting step in de novo guanine nucleotide biosynthesis executed by inosine-5´-monophosphate dehydrogenase (IMPDH). MPA is used clinically as an immunosuppressant, but whether in vivo inhibition of bacterial IMPDH (GuaB) is a valid antibacterial strategy is controversial. Here, we describe the discovery of extremely potent small molecule GuaB inhibitors (GuaBi) specific to pathogenic bacteria with a low frequency of on-target spontaneous resistance and bactericidal efficacy in vivo against Acinetobacter baumannii mouse models of infection. The spectrum of GuaBi activity includes multidrug-resistant pathogens that are a critical priority of new antibiotic development. Co-crystal structures of A. baumannii, Staphylococcus aureus, and Escherichia coli GuaB proteins bound to inhibitors show comparable binding modes of GuaBi across species and identifies key binding site residues that are predictive of whole-cell activity across both Gram-positive and Gram-negative clades of Bacteria. The clear in vivo efficacy of these small molecule GuaB inhibitors in a model of A. baumannii infection validates GuaB as an essential antibiotic target. IMPORTANCE The emergence of multidrug-resistant bacteria worldwide has renewed interest in discovering antibiotics with novel mechanism of action. For the first time ever, we demonstrate that pharmacological inhibition of de novo guanine biosynthesis is bactericidal in a mouse model of Acinetobacter baumannii infection. Structural analyses of novel inhibitors explain differences in biochemical and whole-cell activity across bacterial clades and underscore why this discovery may have broad translational impact on treatment of the most recalcitrant bacterial infections.
Collapse
Affiliation(s)
- Eric M. Kofoed
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | - Ignacio Aliagas
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Terry Crawford
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Jialin Mao
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Seth F. Harris
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Min Xu
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Shumei Wang
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Ping Wu
- Department of Structural Biology, Genentech Inc., South San Francisco, California, USA
| | - Fang Ma
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Kevin Clark
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Jessica Sims
- Department of Developmental Sciences Safety Assessment, Genentech Inc., South San Francisco, California, USA
| | - Yiming Xu
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | - Yutian Peng
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| | | | - Ying Yang
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Janina Reeder
- Department of Bioinformatics, Genentech Inc., South San Francisco, California, USA
| | - Savita Ubhayakar
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Matt Baumgardner
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Zhengyin Yan
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Jacob Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Summer Park
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Hua Zhang
- Department of Translational Immunology, Genentech Inc., South San Francisco, California, USA
| | - Chun-Wan Yen
- Department of Small Molecule Pharmaceutical Science, Genentech Inc., South San Francisco, California, USA
| | - Maria Lorenzo
- Department of Protein Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Nicholas Skelton
- Department of Discovery Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Xiaorong Liang
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Liuxi Chen
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Bridget Hoag
- Department of Biochemistry and Cellular Pharmacology, Genentech Inc., South San Francisco, California, USA
| | | | | | - John Wai
- WuXi AppTec Co., Ltd., Shanghai, China
| | - Xingrong Liu
- Department of Drug Metabolism and Pharmacokinetics, Genentech Inc., South San Francisco, California, USA
| | - Jun Liang
- Department of Medicinal Chemistry, Genentech Inc., South San Francisco, California, USA
| | - Man Wah Tan
- Department of Infectious Diseases, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
17
|
Peng X, Zeng Z, Hassan S, Xue Y. The potential of marine natural Products: Recent Advances in the discovery of Anti-Tuberculosis agents. Bioorg Chem 2024; 151:107699. [PMID: 39128242 DOI: 10.1016/j.bioorg.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/30/2024] [Accepted: 08/04/2024] [Indexed: 08/13/2024]
Abstract
Tuberculosis (TB) is an infectious airborne disease caused by Mycobacterium tuberculosis. Since the 1990 s, many countries have made significant progress in reducing the incidence of TB and associated mortality by improving health services and strengthening surveillance systems. Nevertheless, due to the emergence of multidrug-resistant TB (MDR-TB), alongside extensively drug-resistant TB (XDR-TB) and TB-HIV co-infection, TB remains one of the lead causes of death arising from infectious disease worldwide, especially in developing countries and disadvantaged populations. Marine natural products (MNPs) have received a large amount of attention in recent years as a source of pharmaceutical constituents and lead compounds, and are expected to offer significant resources and potential in the fields of drug development and biotechnology in the years to come. This review summarizes 169 marine natural products and their synthetic derivatives displaying anti-TB activity from 2013 to the present, including their structures, sources and functions. Partial synthetic information and structure-activity relationships (SARs) are also included.
Collapse
Affiliation(s)
- Xinyu Peng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Ziqian Zeng
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China
| | - Said Hassan
- Institute of Biotechnology and Microbiology, Bacha Khan University, Charsadda 24540, Pakistan
| | - Yongbo Xue
- School of Pharmaceutical Sciences (Shenzhen), Sun Yat-Sen University, Shenzhen 518107, China.
| |
Collapse
|
18
|
Abd El-Haleem A, Ammar U, Masci D, El-Ansary S, Abdel Rahman D, Abou-Elazm F, El-Dydamony N. Discovery of Benzopyrone-Based Candidates as Potential Antimicrobial and Photochemotherapeutic Agents through Inhibition of DNA Gyrase Enzyme B: Design, Synthesis, In Vitro and In Silico Evaluation. Pharmaceuticals (Basel) 2024; 17:1197. [PMID: 39338359 PMCID: PMC11434840 DOI: 10.3390/ph17091197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/16/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial DNA gyrase is considered one of the validated targets for antibacterial drug discovery. Benzopyrones have been reported as promising derivatives that inhibit bacterial DNA gyrase B through competitive binding into the ATP binding site of the B subunit. In this study, we designed and synthesized twenty-two benzopyrone-based derivatives with different chemical features to assess their antimicrobial and photosensitizing activities. The antimicrobial activity was evaluated against B. subtilis, S. aureus, E. coli, and C. albicans. Compounds 6a and 6b (rigid tetracyclic-based derivatives), 7a-7f (flexible-linker containing benzopyrones), and 8a-8f (rigid tricyclic-based compounds) exhibited promising results against B. subtilis, S. aureus, and E. coli strains. Additionally, these compounds demonstrated photosensitizing activities against the B. subtilis strain. Both in silico molecular docking and in vitro DNA gyrase supercoiling inhibitory assays were performed to study their potential mechanisms of action. Compounds 8a-8f exhibited the most favorable binding interactions, engaging with key regions within the ATP binding site of the DNA gyrase B domain. Moreover, compound 8d displayed the most potent IC50 value (0.76 μM) compared to reference compounds (novobiocin = 0.41 μM and ciprofloxacin = 2.72 μM). These results establish a foundation for structure-based optimization targeting DNA gyrase inhibition with antibacterial activity.
Collapse
Affiliation(s)
- Akram Abd El-Haleem
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| | - Usama Ammar
- School of Applied Sciences, Edinburgh Napier University, Sighthill Campus, 9 Sighthill Court, Edinburgh EH11 4BN, UK
| | - Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Sohair El-Ansary
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Doaa Abdel Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Fatma Abou-Elazm
- Department of Microbiology and Immunology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt;
| | - Nehad El-Dydamony
- Pharmaceutical Chemistry Department, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, Al-Motamayez District, 6th of October City P.O. Box 77, Egypt; (S.E.-A.); (N.E.-D.)
| |
Collapse
|
19
|
Hu XL, Gan HQ, Gui WZ, Yan KC, Sessler JL, Yi D, Tian H, He XP. Superresolution imaging of antibiotic-induced structural disruption of bacteria enabled by photochromic glycomicelles. Proc Natl Acad Sci U S A 2024; 121:e2408716121. [PMID: 39226360 PMCID: PMC11406247 DOI: 10.1073/pnas.2408716121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/29/2024] [Indexed: 09/05/2024] Open
Abstract
Bacterial evolution, particularly in hospital settings, is leading to an increase in multidrug resistance. Understanding the basis for this resistance is critical as it can drive discovery of new antibiotics while allowing the clinical use of known antibiotics to be optimized. Here, we report a photoactive chemical probe for superresolution microscopy that allows for the in situ probing of antibiotic-induced structural disruption of bacteria. Conjugation between a spiropyran (SP) and galactose via click chemistry produces an amphiphilic photochromic glycoprobe, which self-assembles into glycomicelles in water. The hydrophobic inner core of the glycomicelles allows encapsulation of antibiotics. Photoirradiation then serves to convert the SP to the corresponding merocyanine (MR) form. This results in micellar disassembly allowing for release of the antibiotic in an on-demand fashion. The glycomicelles of this study adhere selectively to the surface of a Gram-negative bacterium through multivalent sugar-lectin interaction. Antibiotic release from the glycomicelles then induces membrane collapse. This dynamic process can be imaged in situ by superresolution spectroscopy owing to the "fluorescence blinking" of the SP/MR photochromic pair. This research provides a high-precision imaging tool that may be used to visualize how antibiotics disrupt the structural integrity of bacteria in real time.
Collapse
Affiliation(s)
- Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Hui-Qi Gan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Wen-Zhen Gui
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Kai-Cheng Yan
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
- Department of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Jonathan L Sessler
- Department of Chemistry, The University of Texas at Austin, Austin, TX 78712-1224
| | - Dong Yi
- Research Center for Systems Biosynthesis, China State Institute of Pharmaceutical Industry, National Key Laboratory of Lead Druggability Research, Shanghai 201203, China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, China
- National Center for Liver Cancer, The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China
| |
Collapse
|
20
|
Best W, Ferrell M, Boris A, Heydarian N, Panlilio H, Rice CV. Acquisition of Resistance to PEGylated Branched Polyethylenimine Increases Pseudomonas Aeruginosa Susceptibility to Aminoglycosides. ChemMedChem 2024; 19:e202300689. [PMID: 38806411 PMCID: PMC11368615 DOI: 10.1002/cmdc.202300689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 05/24/2024] [Accepted: 05/24/2024] [Indexed: 05/30/2024]
Abstract
PEGylated branched polyethylenimine (PEG-BPEI) has antibacterial and antibiofilm properties. Exposure to PEG-BPEI through serial passage leads to resistant P. aeruginosa strains. The minimum inhibitory concentration (MIC) of 600 Da BPEI and PEGylated 600 Da BPEI (PEG-BPEI) in the wild-type PAO1 strain is 16 μg/ml while, after 15 serial passages, the MIC increased to 1024 μg/mL. An additional 15 rounds of serial passage in the absence of BPEI or PEG-BPEI did not change the 1024 μg/mL MIC. Gentamicin, Neomycin, and Tobramycin, cationic antibiotics that inhibit protein synthesis, have a 16-32 fold reduction of MIC values in PEG350-BPEI resistant strains, suggesting increased permeation. The influx of these antibiotics occurs using a self-mediated uptake mechanism, suggesting changes to the outer membrane Data show that resistance causes changes in genes related to outer membrane lipopolysaccharide (LPS) assembly. Mutations were noted in the gene coding for the polymerase Wzy that participates in the assembly of the O-antigen region. Other mutations were noted with wbpE and wbpI of the Wbp pathway responsible for the enzymatic synthesis of ManNAc(3NAc)A in the LPS of P. aeruginosa. These changes suggest that an altered gene product could lead to PEG-BPEI resistance. Nevertheless, the increased susceptibility to aminoglycosides could prevent the emergence of PEG-BPEI resistant bacterial populations.
Collapse
Affiliation(s)
- William Best
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Maya Ferrell
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Andrew Boris
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Neda Heydarian
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Hannah Panlilio
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| | - Charles V. Rice
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, 101 Stephenson Parkway, Norman, OK 73069
| |
Collapse
|
21
|
Kiepas AB, Hoskisson PA, Pritchard L. 16S rRNA phylogeny and clustering is not a reliable proxy for genome-based taxonomy in Streptomyces. Microb Genom 2024; 10. [PMID: 39254673 PMCID: PMC11385388 DOI: 10.1099/mgen.0.001287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Streptomyces is among the most extensively studied genera of bacteria but its complex taxonomy remains contested and is suspected to contain significant species-level misclassification. Resolving the classification of Streptomyces would benefit many areas of applied microbiology that rely on an accurate ground truth for grouping of related organisms, including comparative genomics-based searches for novel antimicrobials. We survey taxonomic conflicts between 16S rRNA and whole genome-based Streptomyces classifications using 2276 publicly available Streptomyces genome assemblies and 48 981 publicly available full-length 16S rRNA Streptomyces sequences from silva, Greengenes, Ribosomal Database Project (RDP), and NCBI (National Centre for Biotechnology Information) databases. We construct a full-length 16S gene tree for 14 239 distinct Streptomyces sequences that resolves three major lineages of Streptomyces, but whose topology is not consistent with existing taxonomic assignments. We use these sequence data to delineate 16S and whole genome landscapes for Streptomyces, demonstrating that 16S and whole-genome classifications are frequently in disagreement, and that 16S zero-radius Operational Taxonomic Units (zOTUs) are often inconsistent with Average Nucleotide Identity (ANI)-based taxonomy. Our results strongly imply that 16S rRNA sequence data does not map to taxonomy sufficiently well to delineate Streptomyces species routinely. We propose that alternative marker sequences should be adopted by the community for classification and metabarcoding. Insofar as Streptomyces taxonomy has been determined or supported by 16S sequence data and may in parts be in error, we also propose that reclassification of the genus by alternative approaches may benefit the Streptomyces community.
Collapse
Affiliation(s)
- Angelika B Kiepas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Paul A Hoskisson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Leighton Pritchard
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| |
Collapse
|
22
|
Saikia S, Chetia P. Antibiotics: From Mechanism of Action to Resistance and Beyond. Indian J Microbiol 2024; 64:821-845. [PMID: 39282166 PMCID: PMC11399512 DOI: 10.1007/s12088-024-01285-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 04/15/2024] [Indexed: 09/18/2024] Open
Abstract
Antibiotics are the super drugs that have revolutionized modern medicine by curing many infectious diseases caused by various microbes. They efficiently inhibit the growth and multiplication of the pathogenic microbes without causing adverse effects on the host. However, prescribing suboptimal antibiotic and overuse in agriculture and animal husbandry have led to the emergence of antimicrobial resistance, one of the most serious threats to global health at present. The efficacy of a new antibiotic is high when introduced; however, a small bacterial population attains resistance gradually and eventually survives. Understanding the mode of action of these miracle drugs, as well as their interaction with targets is very complex. However, it is necessary to fulfill the constant need for novel therapeutic alternatives to address the inevitable development of resistance. Therefore, considering the need of the hour, this article has been prepared to discuss the mode of action and recent advancements in the field of antibiotics. Efforts has also been made to highlight the current scenario of antimicrobial resistance and drug repurposing as a fast-track solution to combat the issue.
Collapse
Affiliation(s)
- Shyamalima Saikia
- Molecular Plant Taxonomy and Bioinformatics Research Laboratory, Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| | - Pankaj Chetia
- Department of Life Sciences, Dibrugarh University, Dibrugarh, Assam 786004 India
| |
Collapse
|
23
|
Bellucci MC, Romani C, Sani M, Volonterio A. Dual Antibiotic Approach: Synthesis and Antibacterial Activity of Antibiotic-Antimicrobial Peptide Conjugates. Antibiotics (Basel) 2024; 13:783. [PMID: 39200083 PMCID: PMC11352213 DOI: 10.3390/antibiotics13080783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/01/2024] Open
Abstract
In recent years, bacterial resistance to conventional antibiotics has become a major concern in the medical field. The global misuse of antibiotics in clinics, personal use, and agriculture has accelerated this resistance, making infections increasingly difficult to treat and rendering new antibiotics ineffective more quickly. Finding new antibiotics is challenging due to the complexity of bacterial mechanisms, high costs and low financial incentives for the development of new molecular scaffolds, and stringent regulatory requirements. Additionally, innovation has slowed, with many new antibiotics being modifications of existing drugs rather than entirely new classes. Antimicrobial peptides (AMPs) are a valid alternative to small-molecule antibiotics offering several advantages, including broad-spectrum activity and a lower likelihood of inducing resistance due to their multifaceted mechanisms of action. However, AMPs face challenges such as stability issues in physiological conditions, potential toxicity to human cells, high production costs, and difficulties in large-scale manufacturing. A reliable strategy to overcome the drawbacks associated with the use of small-molecule antibiotics and AMPs is combination therapy, namely the simultaneous co-administration of two or more antibiotics or the synthesis of covalently linked conjugates. This review aims to provide a comprehensive overview of the literature on the development of antibiotic-AMP conjugates, with a particular emphasis on critically analyzing the design and synthetic strategies employed in their creation. In addition to the synthesis, the review will also explore the reported antibacterial activity of these conjugates and, where available, examine any data concerning their cytotoxicity.
Collapse
Affiliation(s)
- Maria Cristina Bellucci
- Department of Food, Environmental, and Nutritional Sciences, Università degli Studi di Milano, Via Celoria 2, 20131 Milano, Italy;
| | - Carola Romani
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| | - Monica Sani
- Consiglio Nazionale delle Ricerche, Istituto di Scienze e Tecnologie Chimica “G. Natta” (SCITEC), Via Mario Bianco 9, 20131 Milano, Italy;
| | - Alessandro Volonterio
- Department of Chemistry, Materials, and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via Mancinelli 7, 20131 Milano, Italy;
| |
Collapse
|
24
|
Zou Z, Singh P, Pinkner JS, Obernuefemann CLP, Xu W, Nye TM, Dodson KW, Almqvist F, Hultgren SJ, Caparon MG. Dihydrothiazolo ring-fused 2-pyridone antimicrobial compounds treat Streptococcus pyogenes skin and soft tissue infection. SCIENCE ADVANCES 2024; 10:eadn7979. [PMID: 39093975 PMCID: PMC11296344 DOI: 10.1126/sciadv.adn7979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
We have developed GmPcides from a peptidomimetic dihydrothiazolo ring-fused 2-pyridone scaffold that has antimicrobial activities against a broad spectrum of Gram-positive pathogens. Here, we examine the treatment efficacy of GmPcides using skin and soft tissue infection (SSTI) and biofilm formation models by Streptococcus pyogenes. Screening our compound library for minimal inhibitory (MIC) and minimal bactericidal (MBC) concentrations identified GmPcide PS757 as highly active against S. pyogenes. Treatment of S. pyogenes biofilm with PS757 revealed robust efficacy against all phases of biofilm formation by preventing initial biofilm development, ceasing biofilm maturation and eradicating mature biofilm. In a murine model of S. pyogenes SSTI, subcutaneous delivery of PS757 resulted in reduced levels of tissue damage, decreased bacterial burdens, and accelerated rates of wound healing, which were associated with down-regulation of key virulence factors, including M protein and the SpeB cysteine protease. These data demonstrate that GmPcides show considerable promise for treating S. pyogenes infections.
Collapse
Affiliation(s)
- Zongsen Zou
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Pardeep Singh
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Jerome S. Pinkner
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chloe L. P. Obernuefemann
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Wei Xu
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Taylor M. Nye
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Karen W. Dodson
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | - Scott J. Hultgren
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael G. Caparon
- Department of Molecular Microbiology, Center for Women’s Infectious Disease Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
25
|
Meng J, Li M, Zheng Z, Sun Z, Yang S, Ouyang G, Wang Z, Zhou X. Application of natural-products repurposing strategy to discover novel FtsZ inhibitors: Bactericidal evaluation and the structure-activity relationship of sanguinarine and its analogs. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 203:106016. [PMID: 39084807 DOI: 10.1016/j.pestbp.2024.106016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/21/2024] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
The novel bactericidal target-filamentous temperature-sensitive protein Z (FtsZ)-has drawn the attention of pharmacologists to address the emerging issues with drug/pesticide resistance caused by pathogenic bacteria. To enrich the structural diversity of FtsZ inhibitors, the antibacterial activity and structure-activity relationship (SAR) of natural sanguinarine and its analogs were investigated by using natural-products repurposing strategy. Notably, sanguinarine and chelerythrine exerted potent anti-Xanthomonas oryzae pv. oryzae (Xoo) activity, with EC50 values of 0.96 and 0.93 mg L-1, respectively, among these molecules. Furthermore, these two compounds could inhibit the GTPase activity of XooFtsZ, with IC50 values of 241.49 μM and 283.14 μM, respectively. An array of bioassays including transmission electron microscopy (TEM), fluorescence titration, and Fourier transform infrared spectroscopy (FT-IR) co-verified that sanguinarine and chelerythrine were potential XooFtsZ inhibitors that could interfere with the assembly of FtsZ filaments by inhibiting the GTPase hydrolytic ability of XooFtsZ protein. Additionally, the pot experiment suggested that chelerythrine and sanguinarine demonstrated excellent curative activity with values of 59.52% and 54.76%, respectively. Excitedly, these two natural compounds also showed outstanding druggability, validated by acceptable drug-like properties and low toxicity on rice. Overall, the results suggested that chelerythrine was a new and potential XooFtsZ inhibitor to develop new bactericide and provided important guiding values for rational drug design of FtsZ inhibitors. Notably, our findings provide a novel strategy to discover novel, promising and green bacterial compounds for the management of plant bacterial diseases.
Collapse
Affiliation(s)
- Jiao Meng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Mei Li
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhicheng Zheng
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhaoju Sun
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Guiping Ouyang
- School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Zhenchao Wang
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China; School of Pharmaceutical Sciences, Guizhou University, Huaxi District, Guiyang, 550025, China.
| | - Xiang Zhou
- State Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China.
| |
Collapse
|
26
|
Avci FG. Unraveling bacterial stress responses: implications for next-generation antimicrobial solutions. World J Microbiol Biotechnol 2024; 40:285. [PMID: 39073503 PMCID: PMC11286680 DOI: 10.1007/s11274-024-04090-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
The accelerated spread of antimicrobial-resistant bacteria has caused a serious health problem and rendered antimicrobial treatments ineffective. Innovative approaches are crucial to overcome the health threat posed by resistant pathogens and prevent the emergence of untreatable infections. Triggering stress responses in bacteria can diminish susceptibility to various antimicrobials by inducing resistance mechanisms. Therefore, a thorough understanding of stress response control, especially in relation to antimicrobial resistance, offers valuable perspectives for innovative and efficient therapeutic approaches to combat antimicrobial resistance. The aim of this study was to evaluate the stress responses of 8 different bacteria by analyzing reporter metabolites, around which significant alterations were observed, using a pathway-driven computational approach. For this purpose, the transcriptomic data that the bacterial pathogens were grown under 11 different stress conditions mimicking the human host environments were integrated with the genome-scale metabolic models of 8 pathogenic species (Enterococcus faecalis OG1R, Escherichia coli EPEC O127:H6 E2348/69, Escherichia coli ETEC H10407, Escherichia coli UPEC 536, Klebsiella pneumoniae MGH 78578, Pseudomonas aeruginosa PAO1, Staphylococcus aureus MRSA252, and Staphylococcus aureus MSSA476). The resulting reporter metabolites were enriched in multiple metabolic pathways, with cofactor biosynthesis being the most important. The results of this study will serve as a guide for the development of antimicrobial agents as they provide a first insight into potential drug targets.
Collapse
Affiliation(s)
- Fatma Gizem Avci
- Department of Bioengineering, Faculty of Engineering and Natural Sciences, Üsküdar University, Istanbul, Türkiye.
- Genetics of Prokaryotes, Faculty of Biology and Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany.
| |
Collapse
|
27
|
Zhang Y, Luo M, Shi X, Li A, Zhou W, Yin Y, Wang H, Wong WL, Feng X, He Q. Pyrgos[ n]cages: Redefining antibacterial strategy against drug resistance. SCIENCE ADVANCES 2024; 10:eadp4872. [PMID: 39058779 PMCID: PMC11277403 DOI: 10.1126/sciadv.adp4872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024]
Abstract
Amid rising antibiotic resistance, the quest for advanced antibacterial agents to surpass microbial adaptation is paramount. This study introduces Pyrgos[n]cages (n = 1 to 4), pioneering multidecker cationic covalent organic cages engineered to combat drug-resistant bacteria via a dual-targeting approach. Synthesized through successive photocatalytic bromination and cage-forming reactions, these architectures stand out for their dense positive charge distribution, exceptional stability, and substantial rigidity. Pyrgos[n]cages exhibit potent bactericidal activity by disrupting bacterial membrane potential and binding to DNA. Notably, these structures show unparalleled success in eradicating both extracellular and intracellular drug-resistant pathogens in diverse infection scenarios, with antibacterial efficiency markedly increasing over 100-fold as the decker number rises from 1 to 3. This study provides an advance in antibacterial tactics and underscores the transformative potential of covalent organic cages in devising enduring countermeasures against antibiotic-resistant microbial threats.
Collapse
Affiliation(s)
- Yi Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Miaomiao Luo
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xiangling Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Aimin Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Wei Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuyao Yin
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing 100044, China
| | - Wing-Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR 999077, China
| | - Xinxin Feng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
28
|
Zhu J, Xie R, Gao R, Zhao Y, Yodsanit N, Zhu M, Burger JC, Ye M, Tong Y, Gong S. Multimodal nanoimmunotherapy engages neutrophils to eliminate Staphylococcus aureus infections. NATURE NANOTECHNOLOGY 2024; 19:1032-1043. [PMID: 38632494 DOI: 10.1038/s41565-024-01648-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/12/2024] [Indexed: 04/19/2024]
Abstract
The increasing prevalence of antimicrobial resistance in Staphylococcus aureus necessitates alternative therapeutic approaches. Neutrophils play a crucial role in the fight against S. aureus but suffer from deficiencies in function leading to increased infection. Here we report a nanoparticle-mediated immunotherapy aimed at potentiating neutrophils to eliminate S. aureus. The nanoparticles consist of naftifine, haemoglobin (Hb) and a red blood cell membrane coating. Naftifine disrupts staphyloxanthin biosynthesis, Hb reduces bacterial hydrogen sulfide levels and the red blood cell membrane modifies bacterial lipid composition. Collectively, the nanoparticles can sensitize S. aureus to host oxidant killing. Furthermore, in the infectious microenvironment, Hb triggers lipid peroxidation in S. aureus, promoting neutrophil chemotaxis. Oxygen supplied by Hb can also significantly enhance the bactericidal capability of the recruited neutrophils by restoring neutrophil respiratory burst via hypoxia relief. This multimodal nanoimmunotherapy demonstrates excellent therapeutic efficacy in treating antimicrobial-resistant S. aureus persisters, biofilms and S. aureus-induced infection in mice.
Collapse
Affiliation(s)
- Jingcheng Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Ruosen Xie
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ruixuan Gao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yi Zhao
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Nisakorn Yodsanit
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Min Zhu
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jacobus C Burger
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Mingzhou Ye
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yao Tong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Shaoqin Gong
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI, USA.
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
29
|
Li Q, Fang W, Chen S, Li G, Jiang C, Zhuang Y, Li L, Liu P, Guo X, Hu G, Liu P, Gao X. Characterization of Escherichia coli pathogenicity and drug resistance in yolk peritonitis. Poult Sci 2024; 103:103814. [PMID: 38718538 PMCID: PMC11097060 DOI: 10.1016/j.psj.2024.103814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/19/2024] Open
Abstract
Yolk Peritonitis can lead to a rapid decline in egg production, which seriously affects the health of laying hens and the profitability of chicken farms. Escherichia coli (E. coli) is the most common cause of yolk peritonitis in laying hens. In this study, bacterial samples were collected from the ovaries and fallopian tubes of laying hens with suspected yolk peritonitis from a laying farm in Jiangsu Province, and their pathogenicity and drug resistance were investigated. Initially, morphological and biochemical detection methods were employed to isolate and identify the pathogenic bacteria. The results showed that a total of 16 strains of E. coli were isolated from laying hens with yolk peritonitis. Subsequently, the drug resistance and pathogenicity of a randomly selected E. coli strain were analyzed and predicted by genome sequencing technology, and the drug resistance of E. coli was verified by drug sensitivity test and PCR. Finally, the virulence was verified by infection experiment in mice. The study revealed that the egg-yolk peritonitis in laying hens was caused by E. coli infection, and the genome sequencing analysis revealed that the bacteria had multidrug resistance and high virulence. The drug susceptibility testing indicates that E. coli exhibited resistance to aminoglycosides, β-lactam, macrolides, fluoroquinolones, and sulfonamides. In this study, resistance genes including KdpE, aadA5, APH(3 ")-ID, APH(6)-ID, and TEM-1 were identified, and their expression levels varied across different stages of bacterial growth. The results of virulence analysis indicated a mortality rate of 50% in mice infected with E. coli at a concentration of 2.985 × 107 CFU/mL. E. coli infection resulted in damage to various tissues and organs in mice, with the intestinal tissue structure being the most severely affected. This study provides a reference for the study of drug resistance mechanisms in E. coli and provides valuable insights into the selection of drugs for the treatment of vitelline peritonitis.
Collapse
Affiliation(s)
- Qingqing Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Weile Fang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Shupeng Chen
- Jiangxi Agricultural Engineering Vocational college, Nanchang 330045, PR China
| | - Guyue Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Chenxi Jiang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Yu Zhuang
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Lin Li
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Pei Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Xiaoquan Guo
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Guoliang Hu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Ping Liu
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China
| | - Xiaona Gao
- Jiangxi Provincial Key Laboratory for Animal Health, Institute of Animal Population Health, College of Animal Science and Technology, Jiangxi Agricultural University, Zhangshu 331200, PR China.
| |
Collapse
|
30
|
Enright AL, Heelan WJ, Ward RD, Peters JM. CRISPRi functional genomics in bacteria and its application to medical and industrial research. Microbiol Mol Biol Rev 2024; 88:e0017022. [PMID: 38809084 PMCID: PMC11332340 DOI: 10.1128/mmbr.00170-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024] Open
Abstract
SUMMARYFunctional genomics is the use of systematic gene perturbation approaches to determine the contributions of genes under conditions of interest. Although functional genomic strategies have been used in bacteria for decades, recent studies have taken advantage of CRISPR (clustered regularly interspaced short palindromic repeats) technologies, such as CRISPRi (CRISPR interference), that are capable of precisely modulating expression of all genes in the genome. Here, we discuss and review the use of CRISPRi and related technologies for bacterial functional genomics. We discuss the strengths and weaknesses of CRISPRi as well as design considerations for CRISPRi genetic screens. We also review examples of how CRISPRi screens have defined relevant genetic targets for medical and industrial applications. Finally, we outline a few of the many possible directions that could be pursued using CRISPR-based functional genomics in bacteria. Our view is that the most exciting screens and discoveries are yet to come.
Collapse
Affiliation(s)
- Amy L. Enright
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - William J. Heelan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ryan D. Ward
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jason M. Peters
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, Wisconsin, USA
- DOE Great Lakes Bioenergy Research Center University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Center for Genomic Science Innovation, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
31
|
Cuervo L, Méndez C, Salas JA, Olano C, Malmierca MG. Volatile communication in Actinobacteria: a language for secondary metabolism regulation. Microb Cell Fact 2024; 23:181. [PMID: 38890640 PMCID: PMC11186294 DOI: 10.1186/s12934-024-02456-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 06/08/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Volatile compounds are key elements in the interaction and communication between organisms at both interspecific and intraspecific levels. In complex bacterial communities, the emission of these fast-acting chemical messengers allows an exchange of information even at a certain distance that can cause different types of responses in the receiving organisms. The changes in secondary metabolism as a consequence of this interaction arouse great interest in the field of searching for bioactive compounds since they can be used as a tool to activate silenced metabolic pathways. Regarding the great metabolic potential that the Actinobacteria group presents in the production of compounds with attractive properties, we evaluated the reply the emitted volatile compounds can generate in other individuals of the same group. RESULTS We recently reported that volatile compounds released by different streptomycete species trigger the modulation of biosynthetic gene clusters in Streptomyces spp. which finally leads to the activation/repression of the production of secondary metabolites in the recipient strains. Here we present the application of this rationale in a broader bacterial community to evaluate volatiles as signaling effectors that drive the activation of biosynthesis of bioactive compounds in other members of the Actinobacteria group. Using cocultures of different actinobacteria (where only the volatile compounds reach the recipient strain) we were able to modify the bacterial secondary metabolism that drives overproduction (e.g., granaticins, actiphenol, chromomycins) and/or de novo production (e.g., collismycins, skyllamycins, cosmomycins) of compounds belonging to different chemical species that present important biological activities. CONCLUSIONS This work shows how the secondary metabolism of different Actinobacteria species can vary significantly when exposed in co-culture to the volatile compounds of other phylum-shared bacteria, these effects being variable depending on strains and culture media. This approach can be applied to the field of new drug discovery to increase the battery of bioactive compounds produced by bacteria that can potentially be used in treatments for humans and animals.
Collapse
Affiliation(s)
- Lorena Cuervo
- Department Functional Biology, University of Oviedo, 33006, Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006, Oviedo, Spain
| | - Carmen Méndez
- Department Functional Biology, University of Oviedo, 33006, Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006, Oviedo, Spain
| | - José A Salas
- Department Functional Biology, University of Oviedo, 33006, Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006, Oviedo, Spain
| | - Carlos Olano
- Department Functional Biology, University of Oviedo, 33006, Oviedo, Spain
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006, Oviedo, Spain
- Health Research Institute of Asturias (ISPA), 33006, Oviedo, Spain
| | - Mónica G Malmierca
- Department Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
- University Institute of Oncology of Asturias (I.U.O.P.A), University of Oviedo, 33006, Oviedo, Spain.
- Health Research Institute of Asturias (ISPA), 33006, Oviedo, Spain.
| |
Collapse
|
32
|
Li Z, Baidoun R, Brown AC. Toxin-triggered liposomes for the controlled release of antibiotics to treat infections associated with the gram-negative bacterium, Aggregatibacter actinomycetemcomitans. Colloids Surf B Biointerfaces 2024; 238:113870. [PMID: 38555763 PMCID: PMC11148792 DOI: 10.1016/j.colsurfb.2024.113870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 03/14/2024] [Accepted: 03/20/2024] [Indexed: 04/02/2024]
Abstract
Antibiotic resistance has become an urgent threat to health care in recent years. The use of drug delivery systems provides advantages over conventional administration of antibiotics and can slow the development of antibiotic resistance. In the current study, we developed a toxin-triggered liposomal antibiotic delivery system, in which the drug release is enabled by the leukotoxin (LtxA) produced by the Gram-negative pathogen, Aggregatibacter actinomycetemcomitans. LtxA has previously been shown to mediate membrane disruption by promoting a lipid phase change in nonlamellar lipids, such as 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine-N-methyl (N-methyl-DOPE). In addition, LtxA has been observed to bind strongly and nearly irreversibly to membranes containing large amounts of cholesterol. Here, we designed a liposomal delivery system composed of N-methyl-DOPE and cholesterol to take advantage of these interactions. Specifically, we hypothesized that liposomes composed of N-methyl-DOPE and cholesterol, encapsulating antibiotics, would be sensitive to LtxA, enabling controlled antibiotic release. We observed that liposomes composed of N-methyl-DOPE were sensitive to the presence of low concentrations of LtxA, and cholesterol increased the extent and kinetics of content release. The liposomes were stable under various storage conditions for at least 7 days. Finally, we showed that antibiotic release occurs selectively in the presence of an LtxA-producing strain of A. actinomycetemcomitans but not in the presence of a non-LtxA-expressing strain. Together, these results demonstrate that the designed liposomal vehicle enables toxin-triggered delivery of antibiotics to LtxA-producing strains of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Ziang Li
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Rani Baidoun
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA
| | - Angela C Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, 5 E Packer Ave, Bethlehem, PA 18015, USA.
| |
Collapse
|
33
|
Naknaen A, Samernate T, Saeju P, Nonejuie P, Chaikeeratisak V. Nucleus-forming jumbophage PhiKZ therapeutically outcompetes non-nucleus-forming jumbophage Callisto. iScience 2024; 27:109790. [PMID: 38726363 PMCID: PMC11079468 DOI: 10.1016/j.isci.2024.109790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/21/2024] [Accepted: 04/16/2024] [Indexed: 05/12/2024] Open
Abstract
With the recent resurgence of phage therapy in modern medicine, jumbophages are currently under the spotlight due to their numerous advantages as anti-infective agents. However, most significant discoveries to date have primarily focused on nucleus-forming jumbophages, not their non-nucleus-forming counterparts. In this study, we compare the biological characteristics exhibited by two genetically diverse jumbophages: 1) the well-studied nucleus-forming jumbophage, PhiKZ; and 2) the newly discovered non-nucleus-forming jumbophage, Callisto. Single-cell infection studies further show that Callisto possesses different replication machinery, resulting in a delay in phage maturation compared to that of PhiKZ. The therapeutic potency of both phages was examined in vitro and in vivo, demonstrating that PhiKZ holds certain superior characteristics over Callisto. This research sheds light on the importance of the subcellular infection machinery and the organized progeny maturation process, which could potentially provide valuable insight in the future development of jumbophage-based therapeutics.
Collapse
Affiliation(s)
- Ampapan Naknaen
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Thanadon Samernate
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Panida Saeju
- Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Poochit Nonejuie
- Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | | |
Collapse
|
34
|
Hossain TJ. Methods for screening and evaluation of antimicrobial activity: A review of protocols, advantages, and limitations. Eur J Microbiol Immunol (Bp) 2024; 14:97-115. [PMID: 38648108 PMCID: PMC11097785 DOI: 10.1556/1886.2024.00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 04/05/2024] [Indexed: 04/25/2024] Open
Abstract
Infectious diseases pose a formidable global challenge, compounded by the emergence of antimicrobial resistance. Consequently, researchers are actively exploring novel antimicrobial compounds as potential solutions. This endeavor underscores the pivotal role of methods employed for screening and evaluating antimicrobial activity-a critical step in discovery and characterization of antimicrobial agents. While traditional techniques such as well-diffusion, disk-diffusion, and broth-dilution are commonly utilized in antimicrobial assays, they may encounter limitations concerning reproducibility and speed. Additionally, a diverse array of antimicrobial assays including cross-streaking, poisoned-food, co-culture, time-kill kinetics, resazurin assay, bioautography, etc., are routinely employed in antimicrobial evaluations. Advanced techniques such as flow-cytometry, impedance analysis, and bioluminescent technique may offer rapid and sensitive results, providing deeper insights into the impact of antimicrobials on cellular integrity. However, their higher cost and limited accessibility in certain laboratory settings may present challenges. This article provides a comprehensive overview of assays designed to characterize antimicrobial activity, elucidating their underlying principles, protocols, advantages, and limitations. The primary objective is to enhance understanding of the methodologies designed for evaluating antimicrobial agents in our relentless battle against infectious diseases. By selecting the appropriate antimicrobial testing method, researchers can discern suitable conditions and streamline the identification of effective antimicrobial agents.
Collapse
Affiliation(s)
- Tanim Jabid Hossain
- Department of Biochemistry and Molecular Biology, University of Chittagong, Chattogram, Bangladesh
- Biochemistry and Pathogenesis of Microbes – BPM Unit, Laboratory for Health, Omics and Pathway Exploration (HOPE Research), Chattogram, Bangladesh
| |
Collapse
|
35
|
Habjan E, Schouten GK, Speer A, van Ulsen P, Bitter W. Diving into drug-screening: zebrafish embryos as an in vivo platform for antimicrobial drug discovery and assessment. FEMS Microbiol Rev 2024; 48:fuae011. [PMID: 38684467 PMCID: PMC11078164 DOI: 10.1093/femsre/fuae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 02/24/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024] Open
Abstract
The rise of multidrug-resistant bacteria underlines the need for innovative treatments, yet the introduction of new drugs has stagnated despite numerous antimicrobial discoveries. A major hurdle is a poor correlation between promising in vitro data and in vivo efficacy in animal models, which is essential for clinical development. Early in vivo testing is hindered by the expense and complexity of existing animal models. Therefore, there is a pressing need for cost-effective, rapid preclinical models with high translational value. To overcome these challenges, zebrafish embryos have emerged as an attractive model for infectious disease studies, offering advantages such as ethical alignment, rapid development, ease of maintenance, and genetic manipulability. The zebrafish embryo infection model, involving microinjection or immersion of pathogens and potential antibiotic hit compounds, provides a promising solution for early-stage drug screening. It offers a cost-effective and rapid means of assessing the efficacy, toxicity and mechanism of action of compounds in a whole-organism context. This review discusses the experimental design of this model, but also its benefits and challenges. Additionally, it highlights recently identified compounds in the zebrafish embryo infection model and discusses the relevance of the model in predicting the compound's clinical potential.
Collapse
Affiliation(s)
- Eva Habjan
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Gina K Schouten
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Alexander Speer
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
| | - Peter van Ulsen
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Wilbert Bitter
- Department of Medical Microbiology and Infection Control, Amsterdam UMC, Location VU Medical Center,De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands
- Section Molecular Microbiology of A-LIFE, Vrije Universiteit, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
36
|
Chen JX, Dong HM, Cai YX, Tian LX, Yang ZC. Synthesis of narrow-spectrum anti-mycobacterial molecules without effect on the diversity of gut microbiota in mice based on the structure of rifampicin. Bioorg Chem 2024; 146:107282. [PMID: 38537334 DOI: 10.1016/j.bioorg.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/25/2024] [Accepted: 03/10/2024] [Indexed: 04/13/2024]
Abstract
Rifampicin (RIF) is a broad-spectrum antimicrobial agent that is also a first-line drug for treating tuberculosis (TB). Based on the naphthyl ring structure of RIF this study synthesized 16 narrow-spectrum antimicrobial molecules that were specifically anti-Mycobacterium tuberculosis (Mtb). The most potent candidate was 2-((6-hydroxynaphthalen-2-yl) methylene) hydrazine-1-carbothioamide (compound 3c) with minimum inhibitory concentration (MIC) of 1 μg/mL against Mtb. Synergistic anti-Mtb test indicated that none of the combinations of 3c with the major anti-TB drugs are antagonistic. Consistent with RIF, compound 3c induced large amounts of reactive oxygen radicals (ROS) in the cells of Mtb. The killing kinetics of compound 3c and RIF are very similar. Furthermore, molecular docking showed that compound 3c was able to access the RIF binding pocket of the β subunit of Mtb RNA polymerase (RNAP). Experiments in mice showed that compound 3c increased the variety of intestinal flora in mice, while RIF significantly decreased the diversity of intestinal flora in mice. In addition, compound 3c is non-toxic to animal cells with a selection index (SI) much more than 10. The evidence from this study suggests that the further development of 3c could contribute to the development of novel drug for TB treatment.
Collapse
Affiliation(s)
- Jun-Xian Chen
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Hong-Mei Dong
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Yu-Xiang Cai
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Li-Xia Tian
- College of Pharmacy, Guizhou University, Guiyang 550025, China
| | - Zai-Chang Yang
- College of Pharmacy, Guizhou University, Guiyang 550025, China; State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550014, China.
| |
Collapse
|
37
|
Zheng EJ, Valeri JA, Andrews IW, Krishnan A, Bandyopadhyay P, Anahtar MN, Herneisen A, Schulte F, Linnehan B, Wong F, Stokes JM, Renner LD, Lourido S, Collins JJ. Discovery of antibiotics that selectively kill metabolically dormant bacteria. Cell Chem Biol 2024; 31:712-728.e9. [PMID: 38029756 PMCID: PMC11031330 DOI: 10.1016/j.chembiol.2023.10.026] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 08/13/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023]
Abstract
There is a need to discover and develop non-toxic antibiotics that are effective against metabolically dormant bacteria, which underlie chronic infections and promote antibiotic resistance. Traditional antibiotic discovery has historically favored compounds effective against actively metabolizing cells, a property that is not predictive of efficacy in metabolically inactive contexts. Here, we combine a stationary-phase screening method with deep learning-powered virtual screens and toxicity filtering to discover compounds with lethality against metabolically dormant bacteria and favorable toxicity profiles. The most potent and structurally distinct compound without any obvious mechanistic liability was semapimod, an anti-inflammatory drug effective against stationary-phase E. coli and A. baumannii. Integrating microbiological assays, biochemical measurements, and single-cell microscopy, we show that semapimod selectively disrupts and permeabilizes the bacterial outer membrane by binding lipopolysaccharide. This work illustrates the value of harnessing non-traditional screening methods and deep learning models to identify non-toxic antibacterial compounds that are effective in infection-relevant contexts.
Collapse
Affiliation(s)
- Erica J Zheng
- Program in Chemical Biology, Harvard University, Cambridge, MA 02138, USA; Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jacqueline A Valeri
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Ian W Andrews
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aarti Krishnan
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Parijat Bandyopadhyay
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Melis N Anahtar
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Alice Herneisen
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - Fabian Schulte
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Brooke Linnehan
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Felix Wong
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan M Stokes
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8N 3Z5, Canada
| | - Lars D Renner
- Leibniz Institute of Polymer Research and the Max Bergmann Center of Biomaterials, 01062 Dresden, Germany
| | - Sebastian Lourido
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, MIT, Cambridge, MA 02139, USA
| | - James J Collins
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Institute for Medical Engineering & Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Harvard-MIT Program in Health Sciences and Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Rijal R, Gomer RH. Gallein potentiates isoniazid's ability to suppress Mycobacterium tuberculosis growth. Front Microbiol 2024; 15:1369763. [PMID: 38690363 PMCID: PMC11060752 DOI: 10.3389/fmicb.2024.1369763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
Mycobacterium tuberculosis (Mtb), the bacterium that causes tuberculosis (TB), can be difficult to treat because of drug tolerance. Increased intracellular polyphosphate (polyP) in Mtb enhances tolerance to antibiotics, and capsular polyP in Neisseria gonorrhoeae potentiates resistance to antimicrobials. The mechanism by which bacteria utilize polyP to adapt to antimicrobial pressure is not known. In this study, we found that Mtb adapts to the TB frontline antibiotic isoniazid (INH) by enhancing the accumulation of cellular, extracellular, and cell surface polyP. Gallein, a broad-spectrum inhibitor of the polyphosphate kinase that synthesizes polyP, prevents this INH-induced increase in extracellular and cell surface polyP levels. Gallein and INH work synergistically to attenuate Mtb's ability to grow in in vitro culture and within human macrophages. Mtb when exposed to INH, and in the presence of INH, gallein inhibits cell envelope formation in most but not all Mtb cells. Metabolomics indicated that INH or gallein have a modest impact on levels of Mtb metabolites, but when used in combination, they significantly reduce levels of metabolites involved in cell envelope synthesis and amino acid, carbohydrate, and nucleoside metabolism, revealing a synergistic effect. These data suggest that gallein represents a promising avenue to potentiate the treatment of TB.
Collapse
Affiliation(s)
- Ramesh Rijal
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| | - Richard H. Gomer
- Gomer Lab, Department of Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
39
|
Zhao X, Cao X, Qiu H, Liang W, Jiang Y, Wang Q, Wang W, Li C, Li Y, Han B, Tang K, Zhao L, Zhang X, Wang X, Liang H. Rational molecular design converting fascaplysin derivatives to potent broad-spectrum inhibitors against bacterial pathogens via targeting FtsZ. Eur J Med Chem 2024; 270:116347. [PMID: 38552428 DOI: 10.1016/j.ejmech.2024.116347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/21/2024]
Abstract
The filamentous temperature-sensitive mutant Z protein (FtsZ), a key player in bacterial cell division machinery, emerges as an attractive target to tackle the plight posed by the ever growing antibiotic resistance over the world. Therefore in this regard, agents with scaffold diversities and broad-spectrum antibacterial activity against Gram-positive and Gram-negative pathogens are highly needed. In this study, a new class of marine-derived fascaplysin derivatives has been designed and synthesized by Suzuki-Miyaura cross-coupling. Some compounds exhibited potent bactericidal activities against a panel of Gram-positive (MIC = 0.024-6.25 μg/mL) and Gram-negative (MIC = 1.56-12.5 μg/mL) bacteria including methicillin-resistant S. aureus (MRSA). They exerted their effects by dual action mechanism via disrupting the integrity of the bacterial cell membrane and targeting FtsZ protein. These compounds stimulated polymerization of FtsZ monomers and bundling of the polymers, and stabilized the resulting polymer network, thus leading to the dysfunction of FtsZ in cell division. In addition, these agents showed negligible hemolytic activity and low cytotoxicity to mammalian cells. The studies on docking and molecular dynamics simulations suggest that these inhibitors bind to the hydrophilic inter-domain cleft of FtsZ protein and the insights obtained in this study would facilitate the development of potential drugs with broad-spectrum bioactivities.
Collapse
Affiliation(s)
- Xing Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China; Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Xuanyu Cao
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Hongda Qiu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Weida Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yinli Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China
| | - Weile Wang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Chengxi Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yang Li
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Bowen Han
- Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China
| | - Keqi Tang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Lingling Zhao
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Xuan Zhang
- Health Science Center, Ningbo University, Ningbo, 315211, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, China.
| | - Xiao Wang
- Health Science Center, Ningbo University, Ningbo, 315211, China.
| | - Hongze Liang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
40
|
Ghosh S, Sen S, Jash M, Ghosh S, Jana A, Roy R, Mukherjee N, Mukherjee D, Sarkar J, Ghosh S. Synergistic Augmentation of Beta-Lactams: Exploring Quinoline-Derived Amphipathic Small Molecules as Antimicrobial Potentiators against Methicillin-Resistant Staphylococcus aureus. ACS Infect Dis 2024; 10:1267-1285. [PMID: 38442370 DOI: 10.1021/acsinfecdis.3c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The escalation of bacterial resistance against existing therapeutic antimicrobials has reached a critical peak, leading to the rapid emergence of multidrug-resistant strains. Stringent pathways in novel drug discovery hinder our progress in this survival race. A promising approach to combat emerging antibiotic resistance involves enhancing conventional ineffective antimicrobials using low-toxicity small molecule adjuvants. Recent research interest lies in weak membrane-perturbing agents with unique cyclic hydrophobic components, addressing a significant gap in antimicrobial drug exploration. Our study demonstrates that quinoline-based amphipathic small molecules, SG-B-52 and SG-B-22, significantly reduce MICs of selected beta-lactam antibiotics (ampicillin and amoxicillin) against lethal methicillin-resistant Staphylococcus aureus (MRSA). Mechanistically, membrane perturbation, depolarization, and ROS generation drive cellular lysis and death. These molecules display minimal in vitro and in vivo toxicity, showcased through hemolysis assays, cell cytotoxicity analysis, and studies on albino Wistar rats. SG-B-52 exhibits impressive biofilm-clearing abilities against MRSA biofilms, proposing a strategy to enhance beta-lactam antibiosis and encouraging the development of potent antimicrobial potentiators.
Collapse
Affiliation(s)
- Surojit Ghosh
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Samya Sen
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Moumita Jash
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Satyajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Aniket Jana
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Rajsekhar Roy
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Nabanita Mukherjee
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Dipro Mukherjee
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| | - Jayita Sarkar
- Centre for Research and Development of Scientific Instruments (CRDSI), Indian Institute of Technology, Jodhpur, Rajasthan, 342030, India
| | - Surajit Ghosh
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- Smart Healthcare Department, Interdisciplinary Research Platform, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
- iHUB Drishti Foundation, Indian Institute of Technology, Jodhpur, Rajasthan 342030, India
| |
Collapse
|
41
|
Manrique PD, Leus IV, López CA, Mehla J, Malloci G, Gervasoni S, Vargiu AV, Kinthada RK, Herndon L, Hengartner NW, Walker JK, Rybenkov VV, Ruggerone P, Zgurskaya HI, Gnanakaran S. Predicting permeation of compounds across the outer membrane of P. aeruginosa using molecular descriptors. Commun Chem 2024; 7:84. [PMID: 38609430 PMCID: PMC11015012 DOI: 10.1038/s42004-024-01161-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
The ability Gram-negative pathogens have at adapting and protecting themselves against antibiotics has increasingly become a public health threat. Data-driven models identifying molecular properties that correlate with outer membrane (OM) permeation and growth inhibition while avoiding efflux could guide the discovery of novel classes of antibiotics. Here we evaluate 174 molecular descriptors in 1260 antimicrobial compounds and study their correlations with antibacterial activity in Gram-negative Pseudomonas aeruginosa. The descriptors are derived from traditional approaches quantifying the compounds' intrinsic physicochemical properties, together with, bacterium-specific from ensemble docking of compounds targeting specific MexB binding pockets, and all-atom molecular dynamics simulations in different subregions of the OM model. Using these descriptors and the measured inhibitory concentrations, we design a statistical protocol to identify predictors of OM permeation/inhibition. We find consistent rules across most of our data highlighting the role of the interaction between the compounds and the OM. An implementation of the rules uncovered in our study is shown, and it demonstrates the accuracy of our approach in a set of previously unseen compounds. Our analysis sheds new light on the key properties drug candidates need to effectively permeate/inhibit P. aeruginosa, and opens the gate to similar data-driven studies in other Gram-negative pathogens.
Collapse
Affiliation(s)
- Pedro D Manrique
- Physics Department, George Washington University, Washington, 20052, DC, USA.
| | - Inga V Leus
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - César A López
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Jitender Mehla
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Giuliano Malloci
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Silvia Gervasoni
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Attilio V Vargiu
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Rama K Kinthada
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Liam Herndon
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - Nicolas W Hengartner
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA
| | - John K Walker
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, 63103, MO, USA
| | - Valentin V Rybenkov
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - Paolo Ruggerone
- Department of Physics, University of Cagliari, Monserrato, 20052, CA, Italy
| | - Helen I Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, 73019, OK, USA
| | - S Gnanakaran
- Theoretical Biology and Biophysics Group, Los Alamos National Laboratory, Los Alamos, 87545, NM, USA.
| |
Collapse
|
42
|
Yoon Y, Song S. Structural Insights into the Lipopolysaccharide Transport (Lpt) System as a Novel Antibiotic Target. J Microbiol 2024; 62:261-275. [PMID: 38816673 DOI: 10.1007/s12275-024-00137-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/15/2024] [Accepted: 04/15/2024] [Indexed: 06/01/2024]
Abstract
Lipopolysaccharide (LPS) is a critical component of the extracellular leaflet within the bacterial outer membrane, forming an effective physical barrier against environmental threats in Gram-negative bacteria. After LPS is synthesized and matured in the bacterial cytoplasm and the inner membrane (IM), LPS is inserted into the outer membrane (OM) through the ATP-driven LPS transport (Lpt) pathway, which is an energy-intensive process. A trans-envelope complex that contains seven Lpt proteins (LptA-LptG) is crucial for extracting LPS from the IM and transporting it across the periplasm to the OM. The last step in LPS transport involves the mediation of the LptDE complex, facilitating the insertion of LPS into the outer leaflet of the OM. As the Lpt system plays an essential role in maintaining the impermeability of the OM via LPS decoration, the interactions between these interconnected subunits, which are meticulously regulated, may be potential targets for the development of new antibiotics to combat multidrug-resistant Gram-negative bacteria. In this review, we aimed to provide an overview of current research concerning the structural interactions within the Lpt system and their implications to clarify the function and regulation of LPS transport in the overall process of OM biogenesis. Additionally, we explored studies on the development of therapeutic inhibitors of LPS transport, the factors that limit success, and future prospects.
Collapse
Affiliation(s)
- Yurim Yoon
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Saemee Song
- Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea.
| |
Collapse
|
43
|
Sahoo R, Jadhav S, Nema V. Journey of technological advancements in the detection of antimicrobial resistance. J Formos Med Assoc 2024; 123:430-441. [PMID: 37598038 DOI: 10.1016/j.jfma.2023.08.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023] Open
Abstract
Increased uses rather an extensive misuse of antibiotics due to easy availability and easy access have resulted in antibiotic resistance as a global crisis. The speed of discovery of new antibiotics has slowed down recently. Therefore, there is a need to reduce the rate of increase in resistance against the presently available antibiotics, or else many infections may be left untreatable or difficult to be treated due to the high prevalence of resistance. The judicious use of broad-spectrum antibiotics can control the increase in resistance profile. Various techniques are presently being used for the detection of antibiotic resistance. Conventional phenotypic methods are preferred that are highly reliable but are much more time-consuming. The patients cannot spare more time as the infection keeps increasing. The results with genotypic methods are obtained within 24 h as compared to phenotypic methods. Hence, recent molecular methods like qPCR can be used for detection. In this review, we present an overview of various methods useful for the detection of antibiotic resistance, with emphasis on their advantages and limitations. The review also emphasizes qPCR to be the most preferred method out of all because of various advantageous factors.
Collapse
Affiliation(s)
- Rituparna Sahoo
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Sushama Jadhav
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India
| | - Vijay Nema
- ICMR-National AIDS Research Institute, 73 G MIDC Bhosari, Pune, 411 026, India.
| |
Collapse
|
44
|
Möller AM, Vázquez-Hernández M, Kutscher B, Brysch R, Brückner S, Marino EC, Kleetz J, Senges CHR, Schäkermann S, Bandow JE, Narberhaus F. Common and varied molecular responses of Escherichia coli to five different inhibitors of the lipopolysaccharide biosynthetic enzyme LpxC. J Biol Chem 2024; 300:107143. [PMID: 38458396 PMCID: PMC10998244 DOI: 10.1016/j.jbc.2024.107143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/10/2024] Open
Abstract
A promising yet clinically unexploited antibiotic target in difficult-to-treat Gram-negative bacteria is LpxC, the key enzyme in the biosynthesis of lipopolysaccharides, which are the major constituents of the outer membrane. Despite the development of dozens of chemically diverse LpxC inhibitor molecules, it is essentially unknown how bacteria counteract LpxC inhibition. Our study provides comprehensive insights into the response against five different LpxC inhibitors. All compounds bound to purified LpxC from Escherichia coli. Treatment of E. coli with these compounds changed the cell shape and stabilized LpxC suggesting that FtsH-mediated proteolysis of the inactivated enzyme is impaired. LpxC inhibition sensitized E. coli to vancomycin and rifampin, which poorly cross the outer membrane of intact cells. Four of the five compounds led to an accumulation of lyso-phosphatidylethanolamine, a cleavage product of phosphatidylethanolamine, generated by the phospholipase PldA. The combined results suggested an imbalance in lipopolysaccharides and phospholipid biosynthesis, which was corroborated by the global proteome response to treatment with the LpxC inhibitors. Apart from LpxC itself, FabA and FabB responsible for the biosynthesis of unsaturated fatty acids were consistently induced. Upregulated compound-specific proteins are involved in various functional categories, such as stress reactions, nucleotide, or amino acid metabolism and quorum sensing. Our work shows that antibiotics targeting the same enzyme do not necessarily elicit identical cellular responses. Moreover, we find that the response of E. coli to LpxC inhibition is distinct from the previously reported response in Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Anna-Maria Möller
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | | | - Blanka Kutscher
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Raffael Brysch
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Simon Brückner
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Emily C Marino
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia Kleetz
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Christoph H R Senges
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Sina Schäkermann
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Julia E Bandow
- Applied Microbiology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany
| | - Franz Narberhaus
- Microbial Biology, Faculty of Biology and Biotechnology, Ruhr University Bochum, Bochum, Germany.
| |
Collapse
|
45
|
Fernandes PO, Dias ALT, Dos Santos Júnior VS, Sá Magalhães Serafim M, Sousa YV, Monteiro GC, Coutinho ID, Valli M, Verzola MMSA, Ottoni FM, Pádua RMD, Oda FB, Dos Santos AG, Andricopulo AD, da Silva Bolzani V, Mota BEF, Alves RJ, de Oliveira RB, Kronenberger T, Maltarollo VG. Machine Learning-Based Virtual Screening of Antibacterial Agents against Methicillin-Susceptible and Resistant Staphylococcus aureus. J Chem Inf Model 2024; 64:1932-1944. [PMID: 38437501 DOI: 10.1021/acs.jcim.4c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
The application of computer-aided drug discovery (CADD) approaches has enabled the discovery of new antimicrobial therapeutic agents in the past. The high prevalence of methicillin-resistantStaphylococcus aureus(MRSA) strains promoted this pathogen to a high-priority pathogen for drug development. In this sense, modern CADD techniques can be valuable tools for the search for new antimicrobial agents. We employed a combination of a series of machine learning (ML) techniques to select and evaluate potential compounds with antibacterial activity against methicillin-susceptible S. aureus (MSSA) and MRSA strains. In the present study, we describe the antibacterial activity of six compounds against MSSA and MRSA reference (American Type Culture Collection (ATCC)) strains as well as two clinical strains of MRSA. These compounds showed minimal inhibitory concentrations (MIC) in the range from 12.5 to 200 μM against the different bacterial strains evaluated. Our results constitute relevant proven ML-workflow models to distinctively screen for novel MRSA antibiotics.
Collapse
Affiliation(s)
- Philipe Oliveira Fernandes
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Anna Letícia Teotonio Dias
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Valtair Severino Dos Santos Júnior
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Mateus Sá Magalhães Serafim
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Yamara Viana Sousa
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Gustavo Claro Monteiro
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Isabel Duarte Coutinho
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Marilia Valli
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Marina Mol Sena Andrade Verzola
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Flaviano Melo Ottoni
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Rodrigo Maia de Pádua
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Fernando Bombarda Oda
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - André Gonzaga Dos Santos
- Departamento de Fármacos e Medicamentos, Faculdade de Ciências Farmacêuticas, Universidade Estadual Paulista (UNESP), Araraquara 14.800-903, Brazil
| | - Adriano Defini Andricopulo
- Departamento de Física e Ciência Interdisciplinar, Instituto de Física, Universidade de São Paulo (USP), São Carlos, São Paulo 13.563-120, Brazil
| | - Vanderlan da Silva Bolzani
- Departamento de Química Orgânica, Instituto de Química, Universidade Estadual Paulista (UNESP), Araraquara, São Paulo 14.800-900, Brazil
| | - Bruno Eduardo Fernandes Mota
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Ricardo José Alves
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| | - Thales Kronenberger
- Institute of Pharmacy, Pharmaceutical/Medicinal Chemistry and Tübingen Center for Academic Drug Discovery, Eberhard Karls University Tübingen, 72076 Tübingen, Germany
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, 70211 Kuopio, Finland
| | - Vinícius Gonçalves Maltarollo
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais 31.270-901, Brazil
| |
Collapse
|
46
|
Poulsen BE, Warrier T, Barkho S, Bagnall J, Romano KP, White T, Yu X, Kawate T, Nguyen PH, Raines K, Ferrara K, Golas A, Fitzgerald M, Boeszoermenyi A, Kaushik V, Serrano-Wu M, Shoresh N, Hung DT. "Multiplexed screen identifies a Pseudomonas aeruginosa -specific small molecule targeting the outer membrane protein OprH and its interaction with LPS". BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.16.585348. [PMID: 38559044 PMCID: PMC10980007 DOI: 10.1101/2024.03.16.585348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The surge of antimicrobial resistance threatens efficacy of current antibiotics, particularly against Pseudomonas aeruginosa , a highly resistant gram-negative pathogen. The asymmetric outer membrane (OM) of P. aeruginosa combined with its array of efflux pumps provide a barrier to xenobiotic accumulation, thus making antibiotic discovery challenging. We adapted PROSPECT 1 , a target-based, whole-cell screening strategy, to discover small molecule probes that kill P. aeruginosa mutants depleted for essential proteins localized at the OM. We identified BRD1401, a small molecule that has specific activity against a P. aeruginosa mutant depleted for the essential lipoprotein, OprL. Genetic and chemical biological studies identified that BRD1401 acts by targeting the OM β-barrel protein OprH to disrupt its interaction with LPS and increase membrane fluidity. Studies with BRD1401 also revealed an interaction between OprL and OprH, directly linking the OM with peptidoglycan. Thus, a whole-cell, multiplexed screen can identify species-specific chemical probes to reveal novel pathogen biology.
Collapse
|
47
|
Dong S, Zhao Z, Tang H, Li G, Pan J, Gu X, Jiang J, Xiao L, Scapin G, Hunter DN, Yang D, Huang Y, Bennett F, Yang SW, Mandal M, Tang H, Su J, Tudge C, deJesus RK, Ding FX, Lombardo M, Hicks JD, Fischmann T, Mirza A, Dayananth P, Painter RE, Villafania A, Garlisi CG, Zhang R, Mayhood TW, Si Q, Li N, Amin RP, Bhatt B, Chen F, Regan CP, Regan H, Lin X, Wu J, Leithead A, Pollack SR, Scott JD, Nargund RP, Therien AG, Black T, Young K, Pasternak A. Structure Guided Discovery of Novel Pan Metallo-β-Lactamase Inhibitors with Improved Gram-Negative Bacterial Cell Penetration. J Med Chem 2024; 67:3400-3418. [PMID: 38387069 DOI: 10.1021/acs.jmedchem.3c01614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
The use of β-lactam (BL) and β-lactamase inhibitor combination to overcome BL antibiotic resistance has been validated through clinically approved drug products. However, unmet medical needs still exist for the treatment of infections caused by Gram-negative (GN) bacteria expressing metallo-β-lactamases. Previously, we reported our effort to discover pan inhibitors of three main families in this class: IMP, VIM, and NDM. Herein, we describe our work to improve the GN coverage spectrum in combination with imipenem and relebactam. This was achieved through structure- and property-based optimization to tackle the GN cell penetration and efflux challenges. A significant discovery was made that inhibition of both VIM alleles, VIM-1 and VIM-2, is essential for broad GN coverage, especially against VIM-producing P. aeruginosa. In addition, pharmacokinetics and nonclinical safety profiles were investigated for select compounds. Key findings from this drug discovery campaign laid the foundation for further lead optimization toward identification of preclinical candidates.
Collapse
Affiliation(s)
- Shuzhi Dong
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Zhiqiang Zhao
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haiqun Tang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Guoqing Li
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jianping Pan
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Xin Gu
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jinlong Jiang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Li Xiao
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Giovanna Scapin
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - David N Hunter
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Dexi Yang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Yuhua Huang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Frank Bennett
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Shu-Wei Yang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Mihirbaran Mandal
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Haifeng Tang
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jing Su
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Clare Tudge
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | | | - Fa-Xiang Ding
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew Lombardo
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jacqueline D Hicks
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Thierry Fischmann
- Computational and Structural Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Asra Mirza
- Antibacterial/Antifungal, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Priya Dayananth
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Ronald E Painter
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Artjohn Villafania
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Charles G Garlisi
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rumin Zhang
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Todd W Mayhood
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Qian Si
- Quantitative Biosciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Nianyu Li
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Rupesh P Amin
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Bhavana Bhatt
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Feifei Chen
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Christopher P Regan
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Hillary Regan
- Nonclinical Drug Safety, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Xinjie Lin
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jin Wu
- Pharmacokinetics Pharmacodynamics and Drug Metabolism, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Andrew Leithead
- Discovery Pharmaceutical Sciences, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Scott R Pollack
- Discovery Process Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Jack D Scott
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Ravi P Nargund
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Alex G Therien
- Exploratory Science Center, Merck & Co., Inc., Cambridge, Massachusetts 02139, United States
| | - Todd Black
- Antibacterial/Antifungal, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Katherine Young
- Antibacterial/Antifungal, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Alexander Pasternak
- Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| |
Collapse
|
48
|
Sue K, Cadelis MM, Rouvier F, Bourguet-Kondracki ML, Brunel JM, Copp BR. Antimicrobial Indole-3-Carboxamido-Polyamine Conjugates Target Bacterial Membranes and Are Antibiotic Potentiators. Biomolecules 2024; 14:261. [PMID: 38540682 PMCID: PMC10967822 DOI: 10.3390/biom14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 11/03/2024] Open
Abstract
Small molecules that can restore the action of legacy antibiotics toward drug-resistant bacteria represent an area of ongoing research interest. We have previously reported indole-3-glyoxylamido and indole-3-acetamido-polyamine conjugates that exhibit intrinsic activity toward bacterial and fungal species, and the ability to enhance the action of doxycycline toward the Gram-negative bacteria Pseudomonas aeruginosa; however, these desirable activities were commonly associated with unfavorable cytotoxicity and/or red blood cell hemolytic properties. In this paper, we report the synthesis and biological investigation of a new class of α,ω-di(indole-3-carboxamido)polyamine derivatives, leading to the identification of several analogues that exhibit antimicrobial- and antibiotic-potentiating activities without detectable cytotoxic or hemolytic properties. 5-Bromo-substituted indole analogues 3 and 12-18 were generally more broad-spectrum in their activity than others in the set, with 13b (polyamine PA-3-6-3) being particularly notable for its anti-Staphylococcus aureus, Acinetobacter baumannii, and Cryptococcus neoformans activities (MIC ≤ 0.28 µM). The same analogue also restored the action of doxycycline toward P. aeruginosa with a 21-fold enhancement, while the corresponding 5-bromo-indole-3-carboxamide-PA3-7-3 analogue was able to enhance the action of both doxycycline and erythromycin toward P. aeruginosa and Escherichia coli, respectively. The analogue 13b was capable of disrupting the bacterial membrane of both S. aureus and methicillin-resistant S. aureus (MRSA) and the outer membrane of P. aeruginosa, suggesting that membrane perturbation could be a mechanism of action of both intrinsic antimicrobial activities and antibiotic potentiation.
Collapse
Affiliation(s)
- Kenneth Sue
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Melissa M. Cadelis
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
- School of Medical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Florent Rouvier
- Membranes et Cibles Thérapeutiques, SSA, INSERM, Aix-Marseille Universite, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marie-Lise Bourguet-Kondracki
- Laboratoire Molécules de Communication et Adaptation des Micro-Organismes, UMR 7245 CNRS, Muséum National d’Histoire Naturelle, 57 Rue Cuvier (C.P. 54), 75005 Paris, France
| | - Jean Michel Brunel
- Membranes et Cibles Thérapeutiques, SSA, INSERM, Aix-Marseille Universite, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Brent R. Copp
- School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| |
Collapse
|
49
|
Zhang K, Limwongyut J, Moreland AS, Wei SCJ, Jim Jia Min T, Sun Y, Shin SJ, Kim SY, Jhun BW, Pethe K, Bazan GC. An anti-mycobacterial conjugated oligoelectrolyte effective against Mycobacterium abscessus. Sci Transl Med 2024; 16:eadi7558. [PMID: 38381846 DOI: 10.1126/scitranslmed.adi7558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Infections caused by nontuberculous mycobacteria have increased more than 50% in the past two decades and more than doubled in the elderly population. Mycobacterium abscessus (Mab), one of the most prevalent of these rapidly growing species, is intrinsically resistant to numerous antibiotics. Current standard-of-care treatments are not satisfactory, with high failure rate and notable adverse effects. We report here a potent anti-Mab compound from the flexible molecular framework afforded by conjugated oligoelectrolytes (COEs). A screen of structurally diverse, noncytotoxic COEs identified a lead compound, COE-PNH2, which was bactericidal against replicating, nonreplicating persisters and intracellular Mab.COE-PNH2 had low propensity for resistance development, with a frequency of resistance below 1.25 × 10-9 and showed no detectable resistance upon serial passaging. Mechanism of action studies were in line with COE-PNH2 affecting the physical and functional integrity of the bacterial envelope and disrupting the mycomembrane and associated essential bioenergetic pathways. Moreover, COE-PNH2 was well-tolerated and efficacious in a mouse model of Mab lung infection. This study highlights desirable in vitro and in vivo potency and safety index of this COE structure, which represents a promising anti-mycobacterial to tackle an unmet medical need.
Collapse
Affiliation(s)
- Kaixi Zhang
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Jakkarin Limwongyut
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Alex S Moreland
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
| | - Samuel Chan Jun Wei
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Tania Jim Jia Min
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
| | - Yan Sun
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
| | - Sung Jae Shin
- Department of Microbiology, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul 03722, South Korea
| | - Su-Young Kim
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Byung Woo Jhun
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, South Korea
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University, 59 Nanyang Drive, 636921 Singapore, Singapore
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- National Centre for Infectious Diseases (NCID), 16 Jalan Tan Tock Seng, 308442 Singapore, Singapore
| | - Guillermo C Bazan
- Department of Chemistry, National University of Singapore, 4 Science Drive 2, 117543 Singapore, Singapore
- Center for Polymers and Organic Solids, Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA 93106, USA
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), 60 Nanyang Drive, 639798 Singapore, Singapore
- Institute for Functional Intelligent Materials (I-FIM), National University of Singapore, 117544 Singapore, Singapore
| |
Collapse
|
50
|
Attal H, Huang Z, Kuan WS, Weng Y, Tan HY, Seow E, Peng LL, Lim HC, Chow A. N-of-1 Trials of Antimicrobial Stewardship Interventions to Optimize Antibiotic Prescribing for Upper Respiratory Tract Infection in Emergency Departments: Protocol for a Quasi-Experimental Study. JMIR Res Protoc 2024; 13:e50417. [PMID: 38381495 PMCID: PMC10918537 DOI: 10.2196/50417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Antimicrobial stewardship programs attempting to optimize antibiotic therapy and clinical outcomes mainly focus on inpatient and outpatient settings. The lack of antimicrobial stewardship program studies in the emergency department (ED) represents a gap in tackling the problem of antimicrobial resistance as EDs treat a substantial number of upper respiratory tract infection cases throughout the year. OBJECTIVE We intend to implement two evidence-based interventions: (1) patient education and (2) providing physician feedback on their prescribing rates. We will incorporate evidence from a literature review and contextualizing the interventions based on findings from a local qualitative study. METHODS Our study uses a quasi-experimental design to evaluate the effects of interventions over time in the EDs of 4 public hospitals in Singapore. We will include an initial control period of 18 months. In the next 6 months, we will randomize 2 EDs to receive 1 intervention (ie, patient education) and the other 2 EDs to receive the alternative intervention (ie, physician feedback). All EDs will receive the second intervention in the subsequent 6 months on top of the ongoing intervention. Data will be collected for another 6 months to assess the persistence of the intervention effects. The information leaflets will be handed to patients at the EDs before they consult with the physician, while feedback to individual physicians by senior doctors is in the form of electronic text messages. The feedback will contain the physicians' antibiotic prescribing rate compared with the departments' overall antibiotic prescribing rate and a bite-size message on good antibiotic prescribing practices. RESULTS We will analyze the data using segmented regression with difference-in-difference estimation to account for concurrent cluster comparisons. CONCLUSIONS Our proposed study assesses the effectiveness of evidence-based, context-specific interventions to optimize antibiotic prescribing in EDs. These interventions are aligned with Singapore's national effort to tackle antimicrobial resistance and can be scaled up if successful. TRIAL REGISTRATION ClinicalTrials.gov NCT05451863; https://clinicaltrials.gov/study/NCT05451836. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID) DERR1-10.2196/50417.
Collapse
Affiliation(s)
- Hersh Attal
- Accident & Emergency Department, Changi General Hospital, Singapore, Singapore
| | - Zhilian Huang
- Department of Preventive and Population Medicine, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, Singapore, Singapore
| | - Win Sen Kuan
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yanyi Weng
- Department of Emergency Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| | - Hann Yee Tan
- Acute and Emergency Care Department, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Eillyne Seow
- Acute and Emergency Care Department, Khoo Teck Puat Hospital, Singapore, Singapore
| | - Li Lee Peng
- Department of Emergency Medicine, National University Hospital, Singapore, Singapore
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Hoon Chin Lim
- Accident & Emergency Department, Changi General Hospital, Singapore, Singapore
| | - Angela Chow
- Department of Preventive and Population Medicine, Office of Clinical Epidemiology, Analytics, and Knowledge, Tan Tock Seng Hospital, Singapore, Singapore
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|