1
|
Alfaro-Sifuentes R, Lares-Jiménez LF, Rojas-Hernández S, Carrasco-Yépez MM, Rojas-Ortega DA, Rodriguez-Anaya LZ, Gonzalez-Galaviz JR, Lares-Villa F. Immunogens in Balamuthia mandrillaris: a proteomic exploration. Parasitol Res 2024; 123:173. [PMID: 38536506 DOI: 10.1007/s00436-024-08193-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
Balamuthia mandrillaris is the causative agent of granulomatous amoebic encephalitis, a rare and often fatal infection affecting the central nervous system. The amoeba is isolated from diverse environmental sources and can cause severe infections in both immunocompromised and immunocompetent individuals. Given the limited understanding of B. mandrillaris, our research aimed to explore its protein profile, identifying potential immunogens crucial for early granulomatous amoebic encephalitis diagnosis. Cultures of B. mandrillaris and other amoebas were grown under axenic conditions, and total amoebic extracts were obtained. Proteomic analyses, including two-dimensional electrophoresis and mass spectrometry, were performed. A 50-kDa band showed a robust recognition of antibodies from immunized BALB/c mice; peptides contained in this band were matched with elongation factor-1 alpha, which emerged as a putative key immunogen. Besides, lectin blotting revealed the presence of glycoproteins in B. mandrillaris, and confocal microscopy demonstrated the focal distribution of the 50-kDa band throughout trophozoites. Cumulatively, these observations suggest the participation of the 50-kDa band in adhesion and recognition mechanisms. Thus, these collective findings demonstrate some protein characteristics of B. mandrillaris, opening avenues for understanding its pathogenicity and developing diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Rosalía Alfaro-Sifuentes
- Programa de Doctorado en Ciencias Especialidad en Biotecnología, Departamento de Biotecnología y Ciencias Alimentarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| | - Luis Fernando Lares-Jiménez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México
| | - Saul Rojas-Hernández
- Laboratorio de Inmunología Molecular, Instituto Politécnico Nacional, Escuela Superior de Medicina, Salvador Díaz Mirón Esq. Plan de San Luis S/N, Miguel Hidalgo, Casco de Santo Tomas, Ciudad de México, México
| | | | - Diego Alexander Rojas-Ortega
- Centro de Investigación en Ciencias de La Salud (CICSA), FCS, Universidad Anáhuac México, 52786, Huixquilucan, Estado de México, México
| | | | | | - Fernando Lares-Villa
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, 85000, Ciudad Obregón, Sonora, México.
| |
Collapse
|
2
|
Siddiqui R, Boghossian A, Kawish M, Jabri T, Shah MR, Anuar TS, Al-Shareef Z, Khan NA. Nanocarrier Drug Conjugates Exhibit Potent Anti-Naegleria fowleri and Anti-Balamuthia mandrillaris Properties. Diseases 2023; 11:diseases11020058. [PMID: 37092440 PMCID: PMC10123729 DOI: 10.3390/diseases11020058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023] Open
Abstract
Given the opportunity and access, pathogenic protists (Balamuthia mandrillaris and Naegleria fowleri) can produce fatal infections involving the central nervous system. In the absence of effective treatments, there is a need to either develop new antimicrobials or enhance the efficacy of existing compounds. Nanocarriers as drug delivery systems are gaining increasing attention in the treatment of parasitic infections. In this study, novel nanocarriers conjugated with amphotericin B and curcumin were evaluated for anti-amoebic efficacy against B. mandrillaris and N. fowleri. The results showed that nanocarrier conjugated amphotericin B exhibited enhanced cidal properties against both amoebae tested compared with the drug alone. Similarly, nanocarrier conjugated curcumin exhibited up to 75% cidal effects versus approx. 50% cidal effects for curcumin alone. Cytopathogenicity assays revealed that the pre-treatment of both parasites with nanoformulated-drugs reduced parasite-mediated host cellular death compared with the drugs alone. Importantly, the cytotoxic effects of amphotericin B on human cells alone were reduced when conjugated with nanocarriers. These are promising findings and further suggest the need to explore nanocarriers as a means to deliver medicine against parasitic infections.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi 75270, Pakistan
| | - Tengku Shahrul Anuar
- Centre for Medical Laboratory Technology Studies, Faculty of Health Sciences, Universiti Teknologi MARA, PuncakAlam Campus, Selangor 42300, Malaysia
| | - Zainab Al-Shareef
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
3
|
Siddiqui R, Boghossian A, Alqassim SS, Kawish M, Gul J, Jabri T, Shah MR, Khan NA. Anti-Balamuthia mandrillaris and anti-Naegleria fowleri effects of drugs conjugated with various nanostructures. Arch Microbiol 2023; 205:170. [PMID: 37017767 DOI: 10.1007/s00203-023-03518-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/08/2023] [Accepted: 03/25/2023] [Indexed: 04/06/2023]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are protist pathogens that can cause fatal infections. Despite mortality rate of > 90%, there is no effective therapy. Treatment remains problematic involving repurposed drugs, e.g., azoles, amphotericin B and miltefosine but requires early diagnosis. In addition to drug discovery, modifying existing drugs using nanotechnology offers promise in the development of therapeutic interventions against these parasitic infections. Herein, various drugs conjugated with nanoparticles were developed and evaluated for their antiprotozoal activities. Characterizations of the drugs' formulations were accomplished utilizing Fourier-transform infrared spectroscopy, efficiency of drug entrapment, polydispersity index, zeta potential, size, and surface morphology. The nanoconjugates were tested against human cells to determine their toxicity in vitro. The majority of drug nanoconjugates exhibited amoebicidal effects against B. mandrillaris and N. fowleri. Amphotericin B-, Sulfamethoxazole-, Metronidazole-based nanoconjugates are of interest since they exhibited significant amoebicidal effects against both parasites (p < 0.05). Furthermore, Sulfamethoxazole and Naproxen significantly diminished host cell death caused by B. mandrillaris by up to 70% (p < 0.05), while Amphotericin B-, Sulfamethoxazole-, Metronidazole-based drug nanoconjugates showed the highest reduction in host cell death caused by N. fowleri by up to 80%. When tested alone, all of the drug nanoconjugates tested in this study showed limited toxic effects against human cells in vitro (less than 20%). Although these are promising findings, prospective work is warranted to comprehend the mechanistic details of nanoconjugates versus amoebae as well as their in vivo testing, to develop antimicrobials against the devastating infections caused by these parasites.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Saif S Alqassim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, 505055, Dubai, United Arab Emirates
| | - Muhammad Kawish
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Jasra Gul
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Tooba Jabri
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Muhammad Raza Shah
- International Centre for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, University of Karachi, Karachi, 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey.
- Department of Clinical Sciences, College of Medicine, University of Sharjah, University City, 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
4
|
Law CTY, Nivesvivat T, Xiong Q, Kulkeaw K, Shi L, Ruenchit P, Suwanpakdee D, Suwanpakdee P, Tongkrajang N, Sarasombath PT, Tsui SKW. Mitochondrial genome diversity of Balamuthia mandrillaris revealed by a fatal case of granulomatous amoebic encephalitis. Front Microbiol 2023; 14:1162963. [PMID: 37213512 PMCID: PMC10196457 DOI: 10.3389/fmicb.2023.1162963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 04/06/2023] [Indexed: 05/23/2023] Open
Abstract
Introduction Balamuthia (B.) mandrillaris is a free-living amoeba that can cause rare yet fatal granulomatous amoebic encephalitis (GAE). However, efficacious treatment for GAE is currently unavailable, especially when genomic studies on B. mandrillaris are limited. Methods In this study, B. mandrillaris strain KM-20 was isolated from the brain tissue of a GAE patient, and its mitochondrial genome was de novo assembled using high-coverage Nanopore long reads and Illumina short reads. Results and Discussion Phylogenetic and comparative analyses revealed a range of diversification in the mitochondrial genome of KM-20 and nine other B. mandrillaris strains. According to the mitochondrial genome alignment, one of the most variable regions was observed in the ribosomal protein S3 (rps3), which was caused by an array of novel protein tandem repeats. The repeating units in the rps3 protein tandem region present significant copy number variations (CNVs) among B. mandrillaris strains and suggest KM-20 as the most divergent strain for its highly variable sequence and highest copy number in rps3. Moreover, mitochondrial heteroplasmy was observed in strain V039, and two genotypes of rps3 are caused by the CNVs in the tandem repeats. Taken together, the copy number and sequence variations of the protein tandem repeats enable rps3 to be a perfect target for clinical genotyping assay for B. mandrillaris. The mitochondrial genome diversity of B. mandrillaris paves the way to investigate the phylogeny and diversification of pathogenic amoebae.
Collapse
Affiliation(s)
- Cherie Tsz-Yiu Law
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Thirapa Nivesvivat
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Qing Xiong
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kasem Kulkeaw
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ling Shi
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Pichet Ruenchit
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Detchvijitr Suwanpakdee
- Infectious Disease Unit, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Piradee Suwanpakdee
- Neurology Division, Department of Pediatrics, Phramongkutklao Hospital, Bangkok, Thailand
| | - Nongnat Tongkrajang
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Patsharaporn T. Sarasombath
- Siriraj Integrative Center for Neglected Parasitic Diseases, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Patsharaporn T. Sarasombath, ;
| | - Stephen Kwok-Wing Tsui
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- Hong Kong Bioinformatics Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
- *Correspondence: Stephen Kwok-Wing Tsui,
| |
Collapse
|
5
|
Molecular Diagnosis of Encephalitis/Meningoencephalitis Caused by Free-Living Amoebae from a Tertiary Center in India. Pathogens 2022; 11:pathogens11121509. [PMID: 36558843 PMCID: PMC9783764 DOI: 10.3390/pathogens11121509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Pathogenic free-living amoeba (FLA) such as Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris are causative agents of fatal amoebic encephalitis/meningoencephalitis. The diagnosis of such infections is challenging due to a lack of clinical suspicion and expertise in microscopic identification. We evaluated the performance of molecular assays for the timely and accurate detection of FLA-causing central nervous system (CNS) afflictions. METHODS This study included samples from 156 patients with suspected encephalitis/meningoencephalitis, including 149 cerebrospinal fluid (CSF) samples, 5 brain tissue biopsies, and 2 brain abscess samples. All the samples were subjected to PCR-based detection of Acanthamoeba spp., N. fowleri, and B. mandrillaris. The diagnostic characteristics and the inter-rater reliability scores were evaluated for parasite-specific polymerase chain reaction (PCR) using culture on non-nutrient agar (NNA)/microscopy or histopathological examination as a confirmatory test for Acanthamoeba spp. and N. fowleri and histopathology for B. mandrillaris. RESULTS We detected 11 samples positive for FLA, including 6 Acanthamoeba spp., 3 B. mandrillaris, and 2 N. fowleri. Furthermore, all 11 samples were positive according to the confirmatory tests, i.e., culture on NNA/microscopy/histopathology in the case of Acanthamoeba spp. and N. fowleri and histopathology of tissue biopsies for B. mandrillaris. The inter-rater reliability between the PCRs and the confirmatory tests for the detection of Acanthamoeba spp., N. fowleri, and B. mandrillaris was 100%. CONCLUSIONS The PCR-based detection of FLA in patients suspected of encephalitis/meningoencephalitis was found to be fast, efficient, and reliable in our study. We suggest the use of these PCRs in laboratories to obtain additional data on their efficiency in diagnosing FLA infections of the CNS. The present study was conducted with a small sample size of 156 patient samples, and we found only six Acanthamoeba spp., three B. mandrillaris, and two N. fowleri. The present study should be conducted on a larger sample size for better evaluation of the primer pairs.
Collapse
|
6
|
Nisar MA, Ross KE, Brown MH, Bentham R, Hinds J, Whiley H. Molecular screening and characterization of Legionella pneumophila associated free-living amoebae in domestic and hospital water systems. WATER RESEARCH 2022; 226:119238. [PMID: 36270142 DOI: 10.1016/j.watres.2022.119238] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Free-living amoebae are ubiquitous in the environment and cause both opportunistic and non-opportunistic infections in humans. Some genera of amoebae are natural reservoirs of opportunistic plumbing pathogens, such as Legionella pneumophila. In this study, the presence of free-living amoebae and Legionella was investigated in 140 water and biofilm samples collected from Australian domestic (n = 68) and hospital water systems (n = 72). Each sample was screened in parallel using molecular and culture-based methods. Direct quantitative polymerase chain reaction (qPCR) assays showed that 41% samples were positive for Legionella, 33% for L. pneumophila, 11% for Acanthamoeba, and 55% for Vermamoeba vermiformis gene markers. Only 7% of samples contained culturable L. pneumophila serogroup (sg)1, L. pneumophila sg2-14, and non-pneumophila Legionella. In total, 69% of samples were positive for free-living amoebae using any method. Standard culturing found that 41% of the samples were positive for amoeba (either Acanthamoeba, Allovahlkampfia, Stenamoeba, or V. vermiformis). V. vermiformis showed the highest overall frequency of occurrence. Acanthamoeba and V. vermiformis isolates demonstrated high thermotolerance and osmotolerance and strong broad spectrum bacteriogenic activity against Gram-negative and Gram-positive bacteria. Importantly, all Legionella positive samples were also positive for amoeba, and this co-occurrence was statistically significant (p < 0.05). According to qPCR and fluorescence in situ hybridization, V. vermiformis and Allovahlkampfia harboured intracellular L. pneumophila. To our knowledge, this is the first time Allovahlkampfia and Stenamoeba have been demonstrated as hosts of L. pneumophila in potable water. These results demonstrate the importance of amoebae in engineered water systems, both as a pathogen and as a reservoir of Legionella. The high frequency of gymnamoebae detected in this study from Australian engineered water systems identifies an issue of significant public health concern. Future water management protocols should incorporate treatments strategies to control amoebae to reduce the risk to end users.
Collapse
Affiliation(s)
- Muhammad Atif Nisar
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Kirstin E Ross
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Melissa H Brown
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Richard Bentham
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia
| | - Jason Hinds
- Enware Australia Pty Ltd, Caringbah, NSW, Australia
| | - Harriet Whiley
- College of Science and Engineering, Flinders University, Bedford Park, SA, Australia.
| |
Collapse
|
7
|
Siddiqui R, El-Gamal MI, Boghossian A, Saeed BQ, Oh CH, Abdel-Maksoud MS, Alharbi AM, Alfahemi H, Khan NA. Imidazothiazole Derivatives Exhibited Potent Effects against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:1515. [PMID: 36358170 PMCID: PMC9686523 DOI: 10.3390/antibiotics11111515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 08/13/2023] Open
Abstract
Naegleria fowleri (N. fowleri) is a free-living, unicellular, opportunistic protist responsible for the fatal central nervous system infection, primary amoebic meningoencephalitis (PAM). Given the increase in temperatures due to global warming and climate change, it is estimated that the cases of PAM are on the rise. However, there is a current lack of awareness and effective drugs, meaning there is an urgent need to develop new therapeutic drugs. In this study, the target compounds were synthesized and tested for their anti-amoebic properties against N. fowleri. Most compounds exhibited significant amoebicidal effects against N. fowleri; for example, 1h, 1j, and 1q reduced N. fowleri's viability to 15.14%, 17.45% and 28.78%, respectively. Furthermore, the majority of the compounds showed reductions in amoeba-mediated host death. Of interest are the compounds 1f, 1k, and 1v, as they were capable of reducing the amoeba-mediated host cell death to 52.3%, 51%, and 56.9% from 100%, respectively. Additionally, these compounds exhibit amoebicidal properties as well; they were found to decrease N. fowleri's viability to 26.41%, 27.39%, and 24.13% from 100%, respectively. Moreover, the MIC50 values for 1e, 1f, and 1h were determined to be 48.45 µM, 60.87 µM, and 50.96 µM, respectively. Additionally, the majority of compounds were found to exhibit limited cytotoxicity, except for 1l, 1o, 1p, 1m, 1c, 1b, 1zb, 1z, 1y, and 1x, which exhibited negligible toxicity. It is anticipated that these compounds may be developed further as effective treatments against these devastating infections due to brain-eating amoebae.
Collapse
Affiliation(s)
- Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
| | - Mohammed I. El-Gamal
- Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Anania Boghossian
- College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Balsam Qubais Saeed
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah 27272, United Arab Emirates
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Chang-Hyun Oh
- Center of Biomaterials, Korea Institute of Science & Technology (KIST School), Seongbuk-gu, Seoul 02792, Korea
- Department of Biomolecular Sciences, University of Science & Technology (UST), Yuseong-gu, Daejeon 34113, Korea
| | - Mohammed S. Abdel-Maksoud
- Medicinal & Pharmaceutical Chemistry Department, Pharmaceutical and Drug Industries Research Division, National Research Centre (NRC), Dokki, Giza 12622, Egypt
| | - Ahmad M. Alharbi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - Hasan Alfahemi
- Department of Medical Microbiology, Faculty of Medicine, Al-Baha University, Al-Baha 65799, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul 34010, Turkey
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
8
|
Distribution and Current State of Molecular Genetic Characterization in Pathogenic Free-Living Amoebae. Pathogens 2022; 11:pathogens11101199. [PMID: 36297255 PMCID: PMC9612019 DOI: 10.3390/pathogens11101199] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/03/2022] [Accepted: 10/15/2022] [Indexed: 11/17/2022] Open
Abstract
Free-living amoebae (FLA) are protozoa widely distributed in the environment, found in a great diversity of terrestrial biomes. Some genera of FLA are linked to human infections. The genus Acanthamoeba is currently classified into 23 genotypes (T1-T23), and of these some (T1, T2, T4, T5, T10, T12, and T18) are known to be capable of causing granulomatous amoebic encephalitis (GAE) mainly in immunocompromised patients while other genotypes (T2, T3, T4, T5, T6, T10, T11, T12, and T15) cause Acanthamoeba keratitis mainly in otherwise healthy patients. Meanwhile, Naegleria fowleri is the causative agent of an acute infection called primary amoebic meningoencephalitis (PAM), while Balamuthia mandrillaris, like some Acanthamoeba genotypes, causes GAE, differing from the latter in the description of numerous cases in patients immunocompetent. Finally, other FLA related to the pathologies mentioned above have been reported; Sappinia sp. is responsible for one case of amoebic encephalitis; Vermamoeba vermiformis has been found in cases of ocular damage, and its extraordinary capacity as endocytobiont for microorganisms of public health importance such as Legionella pneumophila, Bacillus anthracis, and Pseudomonas aeruginosa, among others. This review addressed issues related to epidemiology, updating their geographic distribution and cases reported in recent years for pathogenic FLA.
Collapse
|
9
|
Zinc Oxide Nanoconjugates against Brain-Eating Amoebae. Antibiotics (Basel) 2022; 11:antibiotics11101281. [DOI: 10.3390/antibiotics11101281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are opportunistic protists, responsible for fatal central nervous system infections such as primary amoebic meningoencephalitis (PAM) and granulomatous amoebic encephalitis (GAE) with mortality rates higher than 90%. Threatening a rise in cases is the increase in temperature due to global warming. No effective treatment is currently available. Herein, nanotechnology was used to conjugate Zinc oxide with Ampicillin, Ceftrixon, Naringin, Amphotericin B, and Quericitin, and the amoebicidal activity and host cell cytotoxicity of these resulting compounds were investigated. The compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT were found to reduce N. fowleri viability to 35.5%, 39.6%, 52.0%, 50.8%, 35.9%, and 69.9%, respectively, and B. mandrillaris viability to 40.9%, 48.2%, 51.6%, 43.8%, and 62.4%, respectively, when compared with their corresponding controls. Furthermore, the compounds reduced N. fowleri-mediated and B. mandrillaris-mediated host cell death significantly. Additionally, the compounds showed limited cytotoxicity against human cells; cell toxicity was 35.5%, 36.4%, 30.9%, 36.6%, and 35.6%, respectively, for the compounds ZnO-CD-AMPi, ZnO-CD-CFT, ZnO-CD-Nar, ZnO-CD-AMB, and ZnO-CD-QT. Furthermore, the minimum inhibitory concentrations to inhibit amoeba growth by 50% were determined for N. fowleri and B. mandrillaris. The MIC50 for N. fowleri were determined to be 69.52 µg/mL, 82.05 µg/mL, 88.16 µg/mL, 95.61 µg/mL, and 85.69 µg/mL, respectively; the MIC50 of the compounds for B. mandrillaris were determined to be 113.9 µg/mL, 102.3 µg/mL, 106.9 µg/mL, 146.4 µg/mL, and 129.6 µg/mL, respectively. Translational research to further develop therapies based on these compounds is urgently warranted, given the lack of effective therapies currently available against these devastating infections.
Collapse
|
10
|
Khatoonaki H, Solhjoo K, Rezanezhad H, Armand B, Abdoli A, Taghipour A. Isolation and identification of potentially pathogenic free-living amoeba in dental-unit water samples. JOURNAL OF WATER AND HEALTH 2022; 20:1126-1136. [PMID: 35902994 DOI: 10.2166/wh.2022.097] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Although the presence of free-living amoebae (FLAs) in various water sources has been reported, few studies have been surveyed on their abundance in medical-unit and dental-unit water samples. The current study aimed to identify morphological and molecular characteristics of FLA isolates in the water samples of the dental unit in Iran. A total of 232 water samples were collected from 17 dental units. Then, filtration and cultivation were conducted on a non-nutrient agar (NNA) medium. Also, polymerase chain reaction (PCR) assay and sequencing were performed by using the genus/species-specific primers plus a common primer set on positive samples. One hundred and sixty-six samples were positive for FLA by the microscopic method, whereas 114 samples were positive by the molecular method with a common primer set. Considering the PCR assay with genus/species-specific primers, 23.27% (54/232) samples were identified as Acanthamoeba spp. (belonging to T4 genotype), 36.63% (85/232) as Vermamoeba vermiformis, and 1.72% (4/232) as Vahlkampfiidae family (Naegleria lovaniensis). These results highlight a need to improve filtration systems in dental units and periodic screenings for FLA in dental-unit water.
Collapse
Affiliation(s)
- Hadi Khatoonaki
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran E-mail:
| | - Kavous Solhjoo
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran E-mail: ; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Hassan Rezanezhad
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran E-mail: ; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Belal Armand
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Furtwangen, Germany
| | - Amir Abdoli
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran E-mail: ; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Ali Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran E-mail: ; Zoonoses Research Center, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
11
|
Levinson S, Kumar KK, Wang H, Tayyar R, Dunning M, Toland A, Budvytiene I, Vogel H, Chang A, Banaei N, Shuer L. Balamuthia mandrillaris brain infection: a rare cause of a ring-enhancing central nervous system lesion. Illustrative case. JOURNAL OF NEUROSURGERY: CASE LESSONS 2022; 3:CASE2268. [PMID: 36303497 PMCID: PMC9379710 DOI: 10.3171/case2268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND An 80-year-old man presented with subacute mental status change, dizziness, and left-sided vision loss. Magnetic resonance imaging demonstrated a ring-enhancing right parietooccipital lesion. OBSERVATIONS Biopsy and laboratory testing demonstrated an amoebic Balamuthia mandrillaris infection. Fewer than 200 cases of this infection have been recognized in the United States, and no standardized treatment regimen currently exists. LESSONS Rapid antimicrobial therapy with miltefosine, azithromycin, fluconazole, flucytosine, sulfadiazine, and albendazole was initiated. The pathophysiology, diagnosis, and management of this infection and the patient’s course were reviewed. The importance of biopsy for pathologic and laboratory diagnosis and rapid treatment initiation with a multidisciplinary team was reinforced.
Collapse
Affiliation(s)
| | | | | | - Ralph Tayyar
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California
| | - Megan Dunning
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California
| | | | | | | | - Amy Chang
- Division of Infectious Diseases and Geographic Medicine, Stanford University, Palo Alto, California
| | | | | |
Collapse
|
12
|
Zhang Z, Liang J, Wei R, Feng X, Wang L, Wang L, Zhao P, Yu H, Gu Y, Yao Z. Facial Balamuthia mandrillaris infection with neurological involvement in an immunocompetent child. THE LANCET. INFECTIOUS DISEASES 2022; 22:e93-e100. [PMID: 34838200 DOI: 10.1016/s1473-3099(21)00334-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Cutaneous infection by Balamuthia mandrillaris is a rare condition that is sometimes complicated by life-threatening CNS involvement. It often evades timely diagnosis due to its rarity and non-specific clinical manifestations. Patients can be either immunocompetent or immunocompromised. It is probably transmitted via inhalation or inoculation through broken skin, and then spreads to the brain and other organs through haematogenous spread. It is important for clinicians to be aware of this disease because rapid diagnosis and subsequent therapy has, in some cases, been associated with survival. In this Grand Round, we report the case of a 7-year-old boy who presented with large, chronic plaques on his face. Several biopsies showed non-specific granulomatous inflammation. The patient deteriorated rapidly and died within 1 month of displaying abnormal symptoms in the CNS. Immunohistochemical staining of skin tissue identified B mandrillaris as the infectious agent. The diagnosis was confirmed with PCR, which detected B mandrillaris DNA in formalin-fixed skin tissue sections. B mandrillaris infection should be considered in the differential diagnosis of patients with chronic granulomatous lesions. We also reviewed the epidemiology, B mandrillaris in nature and in the laboratory, clinical manifestations, histopathology, diagnosis, and treatment of infection.
Collapse
Affiliation(s)
- Zhen Zhang
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Jianying Liang
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ruoqu Wei
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiaobo Feng
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Dermatology, Xijing Hospital, Fourth Military Medical University, Xian, China
| | - Liuhui Wang
- Department of Dermatology, Children's Hospital of Fudan University, Shanghai, China
| | - Piaoping Zhao
- Department of Dermatology, Children's Hospital of Fudan University, Shanghai, China
| | - Hong Yu
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yan Gu
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Zhirong Yao
- Department of Dermatology, Xinhua Hospital, and Institute of Dermatology, Shanghai Jiaotong University School of Medicine, Shanghai, China.
| |
Collapse
|
13
|
Kim JY, Yi MH, Kim M, Yeom JS, Yoo HD, Kim SM, Yong TS. Diagnosis of Balamuthia mandrillaris Encephalitis by Thymine-Adenine Cloning Using Universal Eukaryotic Primers. Ann Lab Med 2022; 42:196-202. [PMID: 34635613 PMCID: PMC8548236 DOI: 10.3343/alm.2022.42.2.196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/07/2021] [Accepted: 09/14/2021] [Indexed: 12/12/2022] Open
Abstract
Background Identifying the causal pathogen of encephalitis remains a clinical challenge. A 50-year-old man without a history of neurological disease was referred to our department for the evaluation of an intracranial lesion observed on brain magnetic resonance imaging (MRI) scans, and the pathology results suggested protozoal infection. We identified the species responsible for encephalitis using thymine–adenine (TA) cloning, suitable for routine clinical practice. Methods We extracted DNA from a paraffin-embedded brain biopsy sample and performed TA cloning using two universal eukaryotic primers targeting the V4-5 and V9 regions of the 18S rRNA gene. The recombinant plasmids were extracted, and the inserted amplicons were identified by Sanger sequencing and a homology search of sequences in the National Center for Biotechnology Information Basic Local Alignment Search Tool. Results The infection was confirmed to be caused by the free-living amoeba Balamuthia mandrillaris. Two of 41 colonies recombinant with 18S V4-5 primers and 35 of 63 colonies recombinant with the 18S V9 primer contained B. mandrillaris genes; all other colonies contained human genes. Pathogen-specific PCR ruled out Entamoeba histolytica, Naegleria fowleri, Acanthamoeba spp., and Toxoplasma gondii infections. Conclusions This is the first report of B. mandrillaris-induced encephalitis in Korea based on molecular identification. TA cloning with the 18S rRNA gene is a feasible and affordable diagnostic tool for the detection of infectious agents of unknown etiology.
Collapse
Affiliation(s)
- Ju Yeong Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Myung-Hee Yi
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Myungjun Kim
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| | - Joon-Sup Yeom
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Hyun Dong Yoo
- Department of Neurosurgery, Eulji University Hospital, College of Medicine, Eulji University, Daejeon, Korea
| | - Seong Min Kim
- Department of Neurosurgery, Eulji University Hospital, College of Medicine, Eulji University, Daejeon, Korea
| | - Tai-Soon Yong
- Department of Environmental Medical Biology, Institute of Tropical Medicine, Arthropods of Medical Importance Resource Bank, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
14
|
Hu J, Zhang Y, Yu Y, Yu H, Guo S, Shi D, He J, Hu C, Yang J, Fang X, Xiao Y. Encephalomyelitis Caused by Balamuthia mandrillaris in a Woman With Breast Cancer: A Case Report and Review of the Literature. Front Immunol 2022; 12:768065. [PMID: 35069540 PMCID: PMC8766823 DOI: 10.3389/fimmu.2021.768065] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 12/10/2021] [Indexed: 11/13/2022] Open
Abstract
Balamuthia mandrillaris is one cause of a rare and severe brain infection called granulomatous amoebic encephalitis (GAE), which has a mortality rate of >90%. Diagnosis of Balamuthia GAE is difficult because symptoms are non-specific. Here, we report a case of Balamuthia amoebic encephalomyelitis (encephalitis and myelitis) in a woman with breast cancer. She sustained trauma near a garbage dump 2 years ago and subsequently developed a skin lesion with a Mycobacterium abscessus infection. She experienced dizziness, lethargy, nausea and vomiting, inability to walk, and deterioration of consciousness. Next-generation sequencing of cerebrospinal fluid (CSF) samples revealed B. mandrillaris, and MRI of both brain and spinal cord showed abnormal signals. T-cell receptor (TCR) sequencing of the CSF identified the Top1 TCR. A combination of amphotericin B, flucytosine, fluconazole, sulfamethoxazole, trimethoprim, clarithromycin, pentamidine, and miltefosine was administrated, but she deteriorated gradually and died on day 27 post-admission.
Collapse
Affiliation(s)
- Juan Hu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yiqi Zhang
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yongwei Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Huili Yu
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siruo Guo
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ding Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianqin He
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Hu
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiqi Yang
- Department of Neurosurgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xueling Fang
- Intensive Care Unit, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yonghong Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
15
|
Maehara T, Mizuno T, Tokoro M, Hara T, Tomita Y, Makioka K, Motegi SI, Yamazaki A, Matsumura N, Nobusawa S, Yokoo H. An autopsy case of granulomatous amebic encephalitis caused by Balamuthia mandrillaris involving prior amebic dermatitis. Neuropathology 2022; 42:190-196. [PMID: 35165936 PMCID: PMC9546287 DOI: 10.1111/neup.12798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/20/2021] [Accepted: 11/21/2021] [Indexed: 11/29/2022]
Abstract
An 82‐year‐old man, who was healthy and had worked as a farmer, experienced worsening neurological symptoms over a seven‐month period, which eventually caused his death. Multiple fluctuating brain lesions were detected radiographically. Clinically, sarcoidosis was ranked high among the differential diagnoses because of the presence of skin lesions showing granulomatous inflammation, confirmed by biopsy. The patient's cerebrospinal fluid was also examined, but no definitive diagnosis was made while he was alive. An autopsy revealed multiple granulomatous amebic encephalitis lesions in the brain. Genetic and immunohistochemical analyses identified Balamuthia (B.) mandrillaris, a free‐living ameba, which resides in soil and fresh water, as the causative organism. A retrospective examination revealed B. mandrillaris in the biopsied skin as well as cerebrospinal fluid, strongly suggesting that the ameba had spread into the brain percutaneously. Few studies have detailed the cutaneous pathology of B. mandrillaris infections. In general, granulomatous amebic encephalitis is extremely difficult to diagnose without autopsy, but the present case provides a clue that could allow similar cases to be diagnosed earlier; that is, the presence of skin lesions.
Collapse
Affiliation(s)
- Tatsuro Maehara
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tetsushi Mizuno
- Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Masaharu Tokoro
- Department of Global Infectious Diseases, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Tatsuru Hara
- Department of Parasitology, Kurume University School of Medicine, Kurume, Japan
| | - Yui Tomita
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kouki Makioka
- Department of Neurology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sei-Ichiro Motegi
- Department of Dermatology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Ayako Yamazaki
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Nozomi Matsumura
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
16
|
Ai J, Zhang H, Yu S, Li J, Chen S, Zhang W, Mao R. A case of fatal amoebic encephalitis caused by Balamuthia mandrillaris, China. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 97:105190. [PMID: 34954104 DOI: 10.1016/j.meegid.2021.105190] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/05/2021] [Accepted: 12/13/2021] [Indexed: 06/14/2023]
Abstract
We reported a case of B.mandrillaris amoebic encephalitis in mainland China. Metagenomics next-generation sequencing helped initial diagnosis and then polymerase chain reaction of the B.mandrillaris in the infected nasal skin tissues reported positive and amoeba cysts were found in the tissue under microscopic observation.
Collapse
Affiliation(s)
- Jingwen Ai
- Huashan Hospital of Fudan University, Shanghai, China
| | - Hanyue Zhang
- Huashan Hospital of Fudan University, Shanghai, China.
| | - Shenglei Yu
- Huashan Hospital of Fudan University, Shanghai, China
| | - Jian Li
- Huashan Hospital of Fudan University, Shanghai, China
| | - Shu Chen
- Huashan Hospital of Fudan University, Shanghai, China.
| | - Wenhong Zhang
- Huashan Hospital of Fudan University, Shanghai, China
| | - Richeng Mao
- Huashan Hospital of Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Various brain-eating amoebae: the protozoa, the pathogenesis, and the disease. Front Med 2021; 15:842-866. [PMID: 34825341 DOI: 10.1007/s11684-021-0865-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 04/25/2021] [Indexed: 10/19/2022]
Abstract
Among various genera of free-living amoebae prevalent in nature, some members are identified as causative agents of human encephalitis, in which Naegleria fowleri followed by Acanthamoeba spp. and Balamuthia mandrillaris have been successively discovered. As the three dominant genera responsible for infections, Acanthamoeba and Balamuthia work as opportunistic pathogens of granulomatous amoebic encephalitis in immunocompetent and immunocompromised individuals, whereas Naegleria induces primary amoebic meningoencephalitis mostly in healthy children and young adults as a more violent and deadly disease. Due to the lack of typical symptoms and laboratory findings, all these amoebic encephalitic diseases are difficult to diagnose. Considering that subsequent therapies are also affected, all these brain infections cause significant mortality worldwide, with more than 90% of the cases being fatal. Along with global warming and population explosion, expanding areas of human and amoebae activity in some regions lead to increased contact, resulting in more serious infections and drawing increased public attention. In this review, we summarize the present information of these pathogenic free-living amoebae, including their phylogeny, classification, biology, and ecology. The mechanisms of pathogenesis, immunology, pathophysiology, clinical manifestations, epidemiology, diagnosis, and therapies are also discussed.
Collapse
|
18
|
Bhosale NK, Parija SC. Balamuthia mandrillaris: An opportunistic, free-living ameba - An updated review. Trop Parasitol 2021; 11:78-88. [PMID: 34765527 PMCID: PMC8579774 DOI: 10.4103/tp.tp_36_21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 01/08/2023] Open
Abstract
Balamuthia mandrillaris is an opportunistic, free-living ameba that is pathogenic to humans. It has a worldwide distribution but is mainly detected in warmer regions. Balamuthia infections are rare but have been reported in both immunocompetent and immunocompromised individuals of all ages. B. mandrillaris can enter through wounds on the skin or the nose and cause cutaneous lesions and the usually fatal Balamuthia amebic encephalitis (BAE). Infection usually spreads from the lungs or through nerve fibers, and attacks the central nervous system, forming granulomatous lesions and necrosis in the brain. Balamuthia infection is usually chronic, and patients initially present with nonspecific symptoms, including headache, nausea, myalgia, and low-grade fever. As the disease progresses, the patient becomes paralyzed and comatose, often leading to death. Lack of knowledge of predisposing factors, specific treatment, and standardized detection tools have resulted in a nearly cent percent fatality rate. Although only about 200 cases have been reported worldwide since its characterization in the 1990s, the number of reported cases has increased over the years. BAE is an emerging disease and a major health concern. Few patients have survived Balamuthia infections with antimicrobial treatment that has largely been empirical. Early diagnosis is the key and requires familiarity with the disease and a high degree of suspicion on the part of the diagnostician. There are currently no specific treatment and prevention recommendations. This review highlights our current understanding of B. mandrillaris in terms of its pathogenicity, genomics, and novel diagnostic and therapeutic approaches against BAE infections.
Collapse
Affiliation(s)
- Namrata K Bhosale
- Department of Microbiology, Mahatma Gandhi Medical College and Research Institute, Puducherry, India
| | | |
Collapse
|
19
|
Biglarnia F, Solhjoo K, Rezanezhad H, Taghipour A, Armand B. Isolation and identification of potentially pathogenic free-living amoeba in dialysis fluid samples of hydraulic systems in hemodialysis units. Trans R Soc Trop Med Hyg 2021; 116:454-461. [PMID: 34676414 DOI: 10.1093/trstmh/trab155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/03/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Free-living amoeba (FLA), including Acanthamoeba, Naegleria, Balamuthia and Vermamoeba, have been isolated from water, sand, soil, dust and air. Numerous studies considered that FLA are a significant cause of neurological and ocular complications in high-risk groups, including immunocompromised individuals. The present study aimed to identify morphological and molecular characteristics of FLA isolates in dialysis fluid samples of hydraulic systems in hemodialysis units in Iran. METHODS A total of 328 dialysis fluid samples were collected from 16 dialysis machines, including 164 samples before hemodialysis sessions (after cleaning) and 164 samples after hemodialysis sessions (before cleaning). Filtration and cultivation were performed on non-nutrient agar medium. Also, PCR and sequencing were applied by using the genus-specific primers along with a common primer set on positive samples. RESULTS Both morphology and molecular investigations showed that 22.5% (74/328) of dialysis fluid samples were positive for FLA. There was a positive relationship between the high frequency of FLA after hemodialysis sessions (before cleaning) compared with before hemodialysis sessions (after cleaning) (OR=2.86; 95% CI 1.5 to 5.45). Considering the PCR assay, 16.46% (54/328) samples were identified as Acanthamoeba spp. (belonging to T3 and T4 genotypes), 5.18% (17/328) as Vermamoeba vermiformis and 0.91% (3/328) as Vahlkampfiidae family (Naegleria australiensis, Naegleria pagei and Allovahlkampfia). CONCLUSION The present results support a need to improve filtration and purification methods for dialysis fluid of hydraulic systems in hemodialysis units. They also highlight the relevance of periodic screenings for FLA-related diseases in hemodialysis patients.
Collapse
Affiliation(s)
- Farzaneh Biglarnia
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran
| | - Kavous Solhjoo
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran.,Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Hassan Rezanezhad
- Department of Medical Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167715258, Iran.,Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Ali Taghipour
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom 7167712521, Iran
| | - Belal Armand
- Institute of Precision Medicine, Medical and Life Sciences Faculty, Furtwangen University, Furtwangen 78120, Germany
| |
Collapse
|
20
|
Mungroo MR, Khan NA, Maciver S, Siddiqui R. Opportunistic free-living amoebal pathogens. Pathog Glob Health 2021; 116:70-84. [PMID: 34602025 DOI: 10.1080/20477724.2021.1985892] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Pathogenic free-living amoebae affecting the central nervous system are known to cause granulomatous amoebic encephalitis (GAE) or primary amoebic meningoencephalitis (PAM). Although hosts with impaired immunity are generally at a higher risk of severe disease, amoebae such as Naegleria fowleri and Balamuthia mandrillaris can instigate disease in otherwise immunocompetent individuals, whereas Acanthamoeba species mostly infect immunocompromised people. Acanthamoeba also cause a sight-threatening eye infection, mostly in contact lens wearers. Although infections due to pathogenic amoebae are considered rare, recently, these deadly amoebae were detected in water supplies in the USA. This is of particular concern, especially with global warming further exacerbating the problem. Herein, we describe the epidemiology, presentation, diagnosis, and management of free-living amoeba infections.
Collapse
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University City, Sharjah, United Arab Emirates.,Research Institute of Health and Medical Sciences, University of Sharjah, Sharjah, UAE
| | - Sutherland Maciver
- Centre for Discovery Brain Sciences, Edinburgh Medical School: Biomedical Sciences, University of Edinburgh, Edinburgh, UK
| | - Ruqaiyyah Siddiqui
- College of Arts and Sciences, American University of Sharjah, Sharjah, UAE
| |
Collapse
|
21
|
USE OF A HUMAN INDIRECT IMMUNOFLUORESCENCE ANTIBODY ASSAY FOR BALAMUTHIA MANDRILLARIS IN A GROUP OF CAPTIVE NORTHWEST BORNEAN ORANGUTANS ( PONGO PYGMAEUS PYGMAEUS). J Zoo Wildl Med 2021; 52:310-314. [PMID: 33827191 DOI: 10.1638/2019-0018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2020] [Indexed: 11/21/2022] Open
Abstract
Granulomatous amoebic encephalitis caused by the free-living amoeba Balamuthia mandrillaris is a highly fatal disease that was first isolated from a mandrill (Mandrillus sphinx), and has since been diagnosed in several nonhuman primates including orangutans. Indirect immunofluorescence antibody (IFA) techniques for Balamuthia have been used in the fields of human medicine and epidemiology both for exposure assessment and screening of clinical patients for antemortem diagnosis. Stored serum samples from five captive Northwest Bornean orangutans (Pongo pygmaeus pygmaeus), including one who had died from B. mandrillaris infection, housed at a single facility were screened with a human IFA assay for B. mandrillaris. Only the single, clinically affected individual was seropositive, and the results suggest that the use of the available human B. mandrillaris IFA assay is a novel diagnostic option for detection of Balamuthia antibodies in this species. A validated screening serological test could be used in individuals exhibiting signs consistent with granulomatous amoebic encephalitis to facilitate earlier antemortem diagnosis of Balamuthia infection, which is critical if treatment is to be pursued. This pilot study presents the use of serological detection methods for B. mandrillaris screening in a nonhuman primate. Subsequent use of the B. mandrillaris IFA assay in the larger captive population should be pursued for validation of the test and to provide further information on seroprevalence and evaluation of risk factors for exposure to Balamuthia and subsequent development of disease.
Collapse
|
22
|
Rice CA, Colon BL, Chen E, Hull MV, Kyle DE. Discovery of repurposing drug candidates for the treatment of diseases caused by pathogenic free-living amoebae. PLoS Negl Trop Dis 2020; 14:e0008353. [PMID: 32970675 PMCID: PMC7546510 DOI: 10.1371/journal.pntd.0008353] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 10/09/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022] Open
Abstract
Diseases caused by pathogenic free-living amoebae include primary amoebic meningoencephalitis (Naegleria fowleri), granulomatous amoebic encephalitis (Acanthamoeba spp.), Acanthamoeba keratitis, and Balamuthia amoebic encephalitis (Balamuthia mandrillaris). Each of these are difficult to treat and have high morbidity and mortality rates due to lack of effective therapeutics. Since repurposing drugs is an ideal strategy for orphan diseases, we conducted a high throughput phenotypic screen of 12,000 compounds from the Calibr ReFRAME library. We discovered a total of 58 potent inhibitors (IC50 <1 μM) against N. fowleri (n = 19), A. castellanii (n = 12), and B. mandrillaris (n = 27) plus an additional 90 micromolar inhibitors. Of these, 113 inhibitors have never been reported to have activity against Naegleria, Acanthamoeba or Balamuthia. Rapid onset of action is important for new anti-amoeba drugs and we identified 19 compounds that inhibit N. fowleri in vitro within 24 hours (halofuginone, NVP-HSP990, fumagillin, bardoxolone, belaronib, and BPH-942, solithromycin, nitracrine, quisinostat, pabinostat, pracinostat, dacinostat, fimepinostat, sanguinarium, radicicol, acriflavine, REP3132, BC-3205 and PF-4287881). These compounds inhibit N. fowleri in vitro faster than any of the drugs currently used for chemotherapy. The results of these studies demonstrate the utility of phenotypic screens for discovery of new drugs for pathogenic free-living amoebae, including Acanthamoeba for the first time. Given that many of the repurposed drugs have known mechanisms of action, these compounds can be used to validate new targets for structure-based drug design.
Collapse
Affiliation(s)
- Christopher A. Rice
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (CAR); (DEK)
| | - Beatrice L. Colon
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
| | - Emily Chen
- Calibr at Scripps Research, La Jolla, California, United States of America
| | - Mitchell V. Hull
- Calibr at Scripps Research, La Jolla, California, United States of America
| | - Dennis E. Kyle
- Department of Cellular Biology, University of Georgia, Athens, Georgia, United States of America
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- * E-mail: (CAR); (DEK)
| |
Collapse
|
23
|
Aoki R, Sakakima T, Ohashi A, Niwa R, Matsuyama M, Etori F, Watanabe N, Yagita K, Tanaka T. A Japanese case of amoebic meningoencephalitis initially diagnosed by cerebrospinal fluid cytology. Clin Case Rep 2020; 8:1728-1734. [PMID: 32983486 PMCID: PMC7495867 DOI: 10.1002/ccr3.2953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/24/2020] [Indexed: 11/21/2022] Open
Abstract
Microscopy can detect the presence of amoebic trophozoites in cerebrospinal fluid and tissue. The infection was confirmed in the present case by polymerase chain reaction and immunohistochemistry, but we were unable to achieve a cure. Our case rapidly progressed without any skin lesions.
Collapse
Affiliation(s)
- Ryogo Aoki
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | | | - Asuka Ohashi
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | - Riyoko Niwa
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | - Masashi Matsuyama
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | - Fumimasa Etori
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | - Naoki Watanabe
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| | - Kenji Yagita
- Department of ParasitologyNational Institute of Infectious DiseasesTokyoJapan
| | - Takuji Tanaka
- Department of Diagnostic Pathology (DDP) & Research Center of Diagnostic Pathology (RC-DiP)Gifu Municipal HospitalGifuJapan
| |
Collapse
|
24
|
Kanwal, Mungroo MR, Anwar A, Ali F, Khan S, Abdullah MA, Siddiqui R, Khan KM, Khan NA. Synthetic nanoparticle-conjugated bisindoles and hydrazinyl arylthiazole as novel antiamoebic agents against brain-eating amoebae. Exp Parasitol 2020; 218:107979. [PMID: 32866583 DOI: 10.1016/j.exppara.2020.107979] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/30/2020] [Accepted: 08/24/2020] [Indexed: 12/12/2022]
Abstract
Balamuthia mandrillaris and Naegleria fowleri are free-living amoebae that can cause life-threatening infections involving the central nervous system. The high mortality rates of these infections demonstrate an urgent need for novel treatment options against the amoebae. Considering that indole and thiazole compounds possess wide range of antiparasitic properties, novel bisindole and thiazole derivatives were synthesized and evaluated against the amoebae. The antiamoebic properties of four synthetic compounds i.e., two new bisindoles (2-Bromo-4-(di (1H-indol-3-yl)methyl)phenol (denoted as A1) and 2-Bromo-4-(di (1H-indol-3-yl)methyl)-6-methoxyphenol (A2)) and two known thiazole (4-(3-Nitrophenyl)-2-(2-(pyridin-3-ylmethylene)hydrazinyl)thiazole (A3) and 4-(Biphenyl-4-yl)-2-(2-(1-(pyridin-4-yl)ethylidene)hydrazinyl)thiazole (A4)) were evaluated against B. mandrillaris and N. fowleri. The ability of silver nanoparticle (AgNPs) conjugation to enrich antiamoebic activities of the compounds was also investigated. The synthetic heterocyclic compounds demonstrated up to 53% and 69% antiamoebic activities against B. mandrillaris and N. fowleri respectively, while resulting in up to 57% and 68% amoebistatic activities, respectively. Antiamoebic activities of the compounds were enhanced by up to 71% and 51% against B. mandrillaris and N. fowleri respectively, after conjugation with AgNPs. These compounds exhibited potential antiamoebic effects against B. mandrillaris and N. fowleri and conjugation of synthetic heterocyclic compounds with AgNPs enhanced their activity against the amoebae.
Collapse
Affiliation(s)
- Kanwal
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia; H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Mohammad Ridwane Mungroo
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia.
| | - Farman Ali
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Simal Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Petaling Jaya, Selangor, 47500, Malaysia
| | - Mohd Azmuddin Abdullah
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu, 21030, Malaysia
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam, 31441, Saudi Arabia.
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, American University of Sharjah, Sharjah, 26666, United Arab Emirates.
| |
Collapse
|
25
|
Anwar A, Khan NA, Siddiqui R. Repurposing of Drugs Is a Viable Approach to Develop Therapeutic Strategies against Central Nervous System Related Pathogenic Amoebae. ACS Chem Neurosci 2020; 11:2378-2384. [PMID: 32073257 DOI: 10.1021/acschemneuro.9b00613] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Brain-eating amoebae including Acanthamoeba spp., Naegleria fowleri, and Balamuthia mandrillaris cause rare infections of the central nervous system that almost always result in death. The high mortality rate, lack of interest for drug development from pharmaceutical industries, and no available effective drugs present an alarming challenge. The current drugs employed in the management and therapy of these devastating diseases are amphotericin B, miltefosine, chlorhexidine, pentamidine, and voriconazole which are generally used in combination. However, clinical evidence shows that these drugs have limited efficacy and high host cell cytotoxicity. Repurposing of drugs is a practical approach to utilize commercially available, U.S. Food and Drug Administration approved drugs for one disease against rare diseases caused by brain-eating amoebae. In this Perspective, we highlight some of the success stories of drugs repositioned against neglected parasitic diseases and identify future potential for effective and sustainable drug development against brain-eating amoebae infections.
Collapse
Affiliation(s)
- Ayaz Anwar
- Department of Biological Sciences, School of Science and Technology, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| |
Collapse
|
26
|
Mungroo MR, Shahbaz MS, Anwar A, Saad SM, Khan KM, Khan NA, Siddiqui R. Aryl Quinazolinone Derivatives as Novel Therapeutic Agents against Brain-Eating Amoebae. ACS Chem Neurosci 2020; 11:2438-2449. [PMID: 31961126 DOI: 10.1021/acschemneuro.9b00596] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Naegleria fowleri and Balamuthia mandrillaris are protist pathogens that infect the central nervous system, causing primary amoebic meningoencephalitis and granulomatous amoebic encephalitis with mortality rates of over 95%. Quinazolinones and their derivatives possess a wide spectrum of biological properties, but their antiamoebic effects against brain-eating amoebae have never been tested before. In this study, we synthesized a variety of 34 novel arylquinazolinones derivatives (Q1-Q34) by altering both quinazolinone core and aryl substituents. To study the antiamoebic activity of these synthetic arylquinazolinones, amoebicidal and amoebistatic assays were performed against N. fowleri and B. mandrillaris. Moreover, amoebae-mediated host cells cytotopathogenicity and cytotoxicity assays were performed against human keratinocytes cells in vitro. The results revealed that selected arylquinazolinones derivatives decreased the viability of B. mandrillaris and N. fowleri significantly (P < 0.05) and reduced cytopathogenicity of both parasites. Furthermore, these compounds were also found to be least cytotoxic against HaCat cells. Considering that nanoparticle-based materials possess potent in vitro activity against brain-eating amoebae, we conjugated quinazolinones derivatives with silver nanoparticles and showed that activities of the drugs were enhanced successfully after conjugation. The current study suggests that quinazolinones alone as well as conjugated with silver nanoparticles may serve as potent therapeutics against brain-eating amoebae.
Collapse
Affiliation(s)
| | - Muhammad Saquib Shahbaz
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Ayaz Anwar
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | | | - Khalid Mohammed Khan
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, Sharjah 26666, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, Sunway University, Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Cope JR, Landa J, Nethercut H, Collier SA, Glaser C, Moser M, Puttagunta R, Yoder JS, Ali IK, Roy SL. The Epidemiology and Clinical Features of Balamuthia mandrillaris Disease in the United States, 1974-2016. Clin Infect Dis 2020; 68:1815-1822. [PMID: 30239654 DOI: 10.1093/cid/ciy813] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 09/14/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Balamuthia mandrillaris is a free-living ameba that causes rare, nearly always fatal disease in humans and animals worldwide. B. mandrillaris has been isolated from soil, dust, and water. Initial entry of Balamuthia into the body is likely via the skin or lungs. To date, only individual case reports and small case series have been published. METHODS The Centers for Disease Control and Prevention (CDC) maintains a free-living ameba (FLA) registry and laboratory. To be entered into the registry, a Balamuthia case must be laboratory-confirmed. Several sources were used to complete entries in the registry, including case report forms, CDC laboratory results, published case reports, and media information. SAS© version 9.3 software was used to calculate descriptive statistics and frequencies. RESULTS We identified 109 case reports of Balamuthia disease between 1974 and 2016. Most (99%) had encephalitis. The median age was 36 years (range 4 months to 91 years). Males accounted for 68% of the case patients. California had the highest number of case reports, followed by Texas and Arizona. Hispanics constituted 55% for those with documented ethnicity. Exposure to soil was commonly reported. Among those with a known outcome, 90% of patients died. CONCLUSIONS Balamuthia disease in the United States is characterized by a highly fatal encephalitis that affects patients of all ages. Hispanics were disproportionately affected. The southwest region of the United States reported the most cases. Clinician awareness of Balamuthia as a cause of encephalitis might lead to earlier diagnosis and initiation of treatment, resulting in better outcomes.
Collapse
Affiliation(s)
- Jennifer R Cope
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Janet Landa
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.,James A. Ferguson Emerging Infectious Diseases Fellowship Program, Baltimore, Maryland
| | - Hannah Nethercut
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia.,Oak Ridge Institute for Science and Education, Tennessee
| | - Sarah A Collier
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Melanie Moser
- Office of Financial Resources, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Raghuveer Puttagunta
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Jonathan S Yoder
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Ibne K Ali
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Sharon L Roy
- Parasitic Diseases Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
28
|
Guzmán-Téllez P, Martínez-Castillo M, Flores-Huerta N, Rosales-Morgan G, Pacheco-Yépez J, la Garza MD, Serrano-Luna J, Shibayama M. Lectins as virulence factors in Entamoeba histolytica and free-living amoebae. Future Microbiol 2020; 15:919-936. [PMID: 32716210 DOI: 10.2217/fmb-2019-0275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Currently, there is growing interest in the identification and purification of microbial lectins due to their involvement in the pathogenicity mechanisms of pathogens, such as Entamoeba histolytica and free-living amoebae. The Gal/GalNAc lectin from E. histolytica participates in adhesion, cytotoxicity and regulation of immune responses. Furthermore, mannose- and galactose-binding protein have been described in Acanthamoeba castellanii and Balamuthia mandrillaris, respectively and they also contribute to host damage. Finally, in Naegleria fowleri, molecules containing mannose and fucose are implicated in adhesion and cytotoxicity. Considering their relevance in the pathogenesis of the diseases caused by these protozoa, lectins appear to be promising targets in the diagnosis, vaccination and treatment of these infections.
Collapse
Affiliation(s)
- Paula Guzmán-Téllez
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Moisés Martínez-Castillo
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
- Department of Experimental Medicine, Liver, Pancreas & Motility Laboratory (HIPAM), School of Medicine, National Autonomous University of Mexico (UNAM) Mexico City, Mexico
| | - Nadia Flores-Huerta
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Gabriela Rosales-Morgan
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Judith Pacheco-Yépez
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Ciudad de México, México
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Jesús Serrano-Luna
- Department of Cell Biology, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| | - Mineko Shibayama
- Department of Infectomics & Molecular Pathogenesis, Center for Research & Advanced Studies of The National Polytechnic Institute, Av. IPN 2508, Mexico City 07360, Mexico
| |
Collapse
|
29
|
Gondim BLC, da Silva Catarino J, de Sousa MAD, de Oliveira Silva M, Lemes MR, de Carvalho-Costa TM, de Lima Nascimento TR, Machado JR, Rodrigues V, Oliveira CJF, Cançado Castellano LR, da Silva MV. Nanoparticle-Mediated Drug Delivery: Blood-Brain Barrier as the Main Obstacle to Treating Infectious Diseases in CNS. Curr Pharm Des 2020; 25:3983-3996. [PMID: 31612822 DOI: 10.2174/1381612825666191014171354] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 09/19/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND Parasitic infections affecting the central nervous system (CNS) present high morbidity and mortality rates and affect millions of people worldwide. The most important parasites affecting the CNS are protozoans (Plasmodium sp., Toxoplasma gondii, Trypanosoma brucei), cestodes (Taenia solium) and free-living amoebae (Acantamoeba spp., Balamuthia mandrillaris and Naegleria fowleri). Current therapeutic regimens include the use of traditional chemicals or natural compounds that have very limited access to the CNS, despite their elevated toxicity to the host. Improvements are needed in drug administration and formulations to treat these infections and to allow the drug to cross the blood-brain barrier (BBB). METHODS This work aims to elucidate the recent advancements in the use of nanoparticles as nanoscaled drug delivery systems (NDDS) for treating and controlling the parasitic infections that affect the CNS, addressing not only the nature and composition of the polymer chosen, but also the mechanisms by which these nanoparticles may cross the BBB and reach the infected tissue. RESULTS There is a strong evidence in the literature demonstrating the potential usefulness of polymeric nanoparticles as functional carriers of drugs to the CNS. Some of them demonstrated the mechanisms by which drugloaded nanoparticles access the CNS and control the infection by using in vivo models, while others only describe the pharmacological ability of these particles to be utilized in in vitro environments. CONCLUSION The scarcity of the studies trying to elucidate the compatibility as well as the exact mechanisms by which NDDS might be entering the CNS infected by parasites reveals new possibilities for further exploratory projects. There is an urgent need for new investments and motivations for applying nanotechnology to control parasitic infectious diseases worldwide.
Collapse
Affiliation(s)
- Brenna Louise Cavalcanti Gondim
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil.,Post-Graduation Program in Dentistry, Department of Dentistry, State University of Paraíba, Campina Grande, Paraíba, Brazil
| | - Jonatas da Silva Catarino
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Mariana de Oliveira Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Marcela Rezende Lemes
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | | | - Tatiana Rita de Lima Nascimento
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Juliana Reis Machado
- Department of Pathology, Genetics and Evolution, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Virmondes Rodrigues
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Carlo José Freire Oliveira
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| | - Lúcio Roberto Cançado Castellano
- Human Immunology Research and Education Group-GEPIH, Technical School of Health, Federal University of Paraiba, Joao Pessoa, Paraiba, Brazil
| | - Marcos Vinicius da Silva
- Department of Microbiology, Immunology and Parasitology, Federal University of Triangulo Mineiro, Uberaba, Minas Gerais, Brazil
| |
Collapse
|
30
|
Affiliation(s)
- Mohammad Ridwane Mungroo
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Naveed Ahmed Khan
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| | - Ruqaiyyah Siddiqui
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, University City, Sharjah, United Arab Emirates
| |
Collapse
|
31
|
Yang Y, Hu X, Min L, Dong X, Guan Y. Balamuthia mandrillaris-Related Primary Amoebic Encephalitis in China Diagnosed by Next Generation Sequencing and a Review of the Literature. Lab Med 2020; 51:e20-e26. [PMID: 31711180 DOI: 10.1093/labmed/lmz079] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Encephalitis is caused by infection, immune mediated diseases, or primary inflammatory diseases. Of all the causative infectious pathogens, 90% are viruses or bacteria. Granulomatous amoebic encephalitis (GAE), caused by Balamuthia mandrillaris, is a rare but life-threatening disease. Diagnosis and therapy are frequently delayed due to the lack of specific clinical manifestations. METHOD A healthy 2 year old Chinese male patient initially presented with a nearly 2 month history of irregular fever. We present this case of granulomatous amoebic encephalitis caused by B. mandrillaris. Next generation sequencing of the patient's cerebrospinal fluid (CSF) was performed to identify an infectious agent. RESULT The results of next generation sequencing of the CSF showed that most of the mapped reads belonged to Balamuthia mandrillaris. CONCLUSION Next generation sequencing (NGS) is an unbiased and rapid diagnostic tool. The NGS method can be used for the rapid identification of causative pathogens. The NGS method should be widely applied in clinical practice and help clinicians provide direction for the diagnosis of diseases, especially for rare and difficult cases.
Collapse
Affiliation(s)
- Yinan Yang
- Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiaobin Hu
- School of Public Health, Lanzhou University, Cheng Guan District, Lanzhou, Gansu, China
| | - Li Min
- Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Xiangyu Dong
- Department of Pediatrics, Lanzhou University Second Hospital, Lanzhou, Gansu, China
| | - Yuanlin Guan
- Chief Information Officer, Hugobiotech MicrobeCode Biotechnology Co. Ltd., Xi'an, Shaanxi, China
| |
Collapse
|
32
|
Novel Azoles as Antiparasitic Remedies against Brain-Eating Amoebae. Antibiotics (Basel) 2020; 9:antibiotics9040188. [PMID: 32316387 PMCID: PMC7235764 DOI: 10.3390/antibiotics9040188] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/09/2020] [Accepted: 04/09/2020] [Indexed: 12/12/2022] Open
Abstract
Balamuthia mandrillaris and Naegleria fowleri are opportunistic protozoan pathogens capable of producing infection of the central nervous system with more than 95% mortality rate. Previously, we have synthesized several compounds with antiamoebic properties; however, synthesis of compounds that are analogues of clinically used drugs is a highly desirable approach that can lead to effective drug development against these devastating infections. In this regard, compounds belonging to the azole class possess wide range of antimicrobial properties and used clinically. In this study, six novel benzimidazole, indazole, and tetrazole derivatives were synthesized and tested against brain-eating amoebae. These compounds were tested for their amoebicidal and static properties against N. fowleri and B. mandrillaris. Furthermore, the compounds were conjugated with silver nanoparticles and characterized. The synthetic heterocyclic compounds showed up to 72% and 65% amoebicidal activities against N. fowleri and B. mandrillaris respectively, while expressing up to 75% and 70% amoebistatic activities, respectively. Following conjugation with silver nanoparticles, amoebicidal activities of the drugs increased by up to 46 and 36% versus B. mandrillaris and N. fowleri. Minimal effects were observed when the compounds were evaluated against human cells using cytotoxicity assays. In summary, azole compounds exhibited potent activity against N. fowleri and B. mandrillaris. Moreover, conjugation of the azole compounds with silver nanoparticles further augmented the capabilities of the compounds against amoebae.
Collapse
|
33
|
Hasni I, Chelkha N, Baptiste E, Mameri MR, Lachuer J, Plasson F, Colson P, La Scola B. Investigation of potential pathogenicity of Willaertia magna by investigating the transfer of bacteria pathogenicity genes into its genome. Sci Rep 2019; 9:18318. [PMID: 31797948 PMCID: PMC6892926 DOI: 10.1038/s41598-019-54580-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 11/10/2019] [Indexed: 12/14/2022] Open
Abstract
Willaertia magna c2c maky is a thermophilic amoeba closely related to the genus Naegleria. This free-living amoeba has the ability to eliminate Legionella pneumophila, which is an amoeba-resisting bacterium living in an aquatic environment. To prevent the proliferation of L. pneumophila in cooling towers, the use of W. magna as natural biocide has been proposed. To provide a better understanding of the W. magna genome, whole-genome sequencing was performed through the study of virulence factors and lateral gene transfers. This amoeba harbors a genome of 36.5 megabases with 18,519 predicted genes. BLASTp analyses reported protein homology between 136 W. magna sequences and amoeba-resistant microorganisms. Horizontal gene transfers were observed based on the basis of the phylogenetic reconstruction hypothesis. We detected 15 homologs of N. fowleri genes related to virulence, although these latter were also found in the genome of N. gruberi, which is a non-pathogenic amoeba. Furthermore, the cytotoxicity test performed on human cells supports the hypothesis that the strain c2c maky is a non-pathogenic amoeba. This work explores the genomic repertory for the first draft genome of genus Willaertia and provides genomic data for further comparative studies on virulence of related pathogenic amoeba, N. fowleri.
Collapse
Affiliation(s)
- Issam Hasni
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.,Amoéba, Chassieu, France
| | - Nisrine Chelkha
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Emeline Baptiste
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | | | - Joel Lachuer
- ProfileXpert/Viroscan3D, UCBL UMS 3453 CNRS - US7 INSERM, Lyon, France.,Inserm U1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, Lyon, France.,Université de Lyon, Lyon, France
| | | | - Philippe Colson
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France
| | - Bernard La Scola
- Aix-Marseille Université UM63, Institut de Recherche pour le Développement IRD 198, Assistance Publique - Hôpitaux de Marseille (AP-HM), Microbes, Evolution, Phylogeny and Infection (MEΦI), Institut Hospitalo-Universitaire (IHU) - Méditerranée Infection, Marseille, France.
| |
Collapse
|
34
|
A homogeneously enhancing mass evolving into multiple hemorrhagic and necrotic lesions in amoebic encephalitis with necrotizing vasculitis. Clin Imaging 2019; 60:48-52. [PMID: 31864199 DOI: 10.1016/j.clinimag.2019.10.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/16/2019] [Accepted: 10/25/2019] [Indexed: 02/06/2023]
Abstract
BACKGROUND Granulomatous amoebic encephalitis (GAE) is a rare and mostly fatal disease. Without specific symptoms, laboratory findings, or radiologic characteristics, establishing a correct diagnosis is challenging. In many cases of GAE, multiple ring-enhancing lesions with perifocal edema are observed on magnetic resonance imaging (MRI); a solitary and homogeneously enhancing mass masquerading as a malignant lymphoma that evolved into multiple hemorrhagic and necrotic lesions has rarely been reported in GAE. CASE DESCRIPTION An immunocompetent 68-year-old man presented with transient right hemiparesis due to epilepsy. MRI revealed a well- and homogeneously enhancing mass with perifocal edema and restricted diffusion in the left parietal subcortical region. As malignant lymphoma was suspected based on MRI findings and an elevated β2-microglobulin level in the cerebrospinal fluid, an open biopsy was performed; the pathological diagnosis was inconclusive but suggested a granulomatous disease. Although steroid therapy was administrated, subsequently the mass lesion gradually enlarged. After a second surgery for removal of the mass lesion, multiple hemorrhagic and necrotic lesions developed at the primary site and additionally in the brainstem. The patient entered a comatose state and died 3 months after admission. Histopathological examination and polymerase chain reaction analysis of the specimen revealed posthumously GAE caused by Balamuthia mandrillaris with necrotizing vasculitis. CONCLUSION A solitary mass lesion initially mimicked a malignant lymphoma, and subsequently evolved into multiple hemorrhagic and necrotic lesions detected on T2*-weighted and susceptibility-weighted imaging. Such serial changes noted on MRI seem characteristic and suggestive of necrotizing vasculitis of GAE.
Collapse
|
35
|
Hara T, Yagita K, Sugita Y. Pathogenic free-living amoebic encephalitis in Japan. Neuropathology 2019; 39:251-258. [PMID: 31243796 DOI: 10.1111/neup.12582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 11/29/2022]
Abstract
Over 600 cases of amoebic encephalitis caused by pathogenic free-living amoebas (Balamuthia mandrillaris, Acanthamoeba spp., and Naegleria fowleri) have been reported worldwide, and in Japan, 24 cases have been reported from the first case in 1976 up to 2018. Among these cases, 18 were caused by B. mandrillaris, four by Acanthamoeba spp., one by N. fowleri, and one was of unknown etiology. Additionally, eight cases were diagnosed with encephalitis due to pathogenic free-living amoebas before death, but only three cases were successfully treated. Unfortunately, all other cases were diagnosed by autopsy. These facts indicate that an adequate diagnosis is difficult, because encephalitis due to pathogenic free-living amoebas does not show typical symptoms or laboratory findings. Moreover, because the number of cases is limited, other cases might have been missed outside of those diagnosed by autopsy. Cases of encephalitis caused by B. mandrillaris have been reported from all over Japan, with B. mandrillaris recently isolated from soil in Aomori prefecture. Therefore, encephalitis caused by pathogenic free-living amoebas should be added to the differential diagnosis of encephalitis patients.
Collapse
Affiliation(s)
- Tatsuru Hara
- Department of Parasitology, Kurume University School of Medicine, Kurume, Japan
| | - Kenji Yagita
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Japan
| | - Yasuo Sugita
- Department of Pathology, Kurume University School of Medicine, Kurume, Japan
| |
Collapse
|
36
|
Kum SJ, Lee HW, Jung HR, Choe M, Kim SP. Amoebic Encephalitis Caused by Balamuthia mandrillaris. J Pathol Transl Med 2019; 53:327-331. [PMID: 31121998 PMCID: PMC6755651 DOI: 10.4132/jptm.2019.05.14] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/14/2019] [Indexed: 11/17/2022] Open
Abstract
We present the case of a 71-year-old man who was diagnosed with amoebic encephalitis caused by Balamuthiamandrillaris. He had rheumatic arthritis for 30 years and had undergone continuous treatment with immunosuppressants. First, he complained of partial spasm from the left thigh to the left upper limb. Magnetic resonance imaging revealed multifocal enhancing nodules in the cortical and subcortical area of both cerebral hemispheres, which were suggestive of brain metastases. However, the patient developed fever with stuporous mentality and an open biopsy was performed immediately. Microscopically, numerous amoebic trophozoites, measuring 20 to 25 µm in size, with nuclei containing one to four nucleoli and some scattered cysts having a double-layered wall were noted in the background of hemorrhagic necrosis. Based on the microscopic findings, amoebic encephalitis caused by Balamuthiamandrillaris was diagnosed. The patient died on the 10th day after being admitted at the hospital. The diagnosis of amoebic encephalitis in the early stage is difficult for clinicians. Moreover, most cases undergo rapid deterioration, resulting in fatal consequences. In this report, we present the first case of B. mandrillaris amoebic encephalitis with fatal progression in a Korean patient.
Collapse
Affiliation(s)
- Su Jung Kum
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Won Lee
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Hye Ra Jung
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Misun Choe
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| | - Sang Pyo Kim
- Department of Pathology, Keimyung University School of Medicine, Daegu, Korea
| |
Collapse
|
37
|
Mitoma H, Manto M. Disruption of the Blood-Brain Barrier During Neuroinflammatory and Neuroinfectious Diseases. NEUROIMMUNE DISEASES 2019. [PMCID: PMC7121618 DOI: 10.1007/978-3-030-19515-1_7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the organ of highest metabolic demand, utilizing over 25% of total body glucose utilization via an enormous vasculature with one capillary every 73 μm, the brain evolves a barrier at the capillary and postcapillary venules to prevent toxicity during serum fluctuations in metabolites and hormones, to limit brain swelling during inflammation, and to prevent pathogen invasion. Understanding of neuroprotective barriers has since evolved to incorporate the neurovascular unit (NVU), the blood-cerebrospinal fluid (CSF) barrier, and the presence of CNS lymphatics that allow leukocyte egress. Identification of the cellular and molecular participants in BBB function at the NVU has allowed detailed analyses of mechanisms that contribute to BBB dysfunction in various disease states, which include both autoimmune and infectious etiologies. This chapter will introduce some of the cellular and molecular components that promote barrier function but may be manipulated by inflammatory mediators or pathogens during neuroinflammation or neuroinfectious diseases.
Collapse
Affiliation(s)
- Hiroshi Mitoma
- Medical Education Promotion Center, Tokyo Medical University, Tokyo, Japan
| | - Mario Manto
- Department of Neurology, CHU-Charleroi, Charleroi, Belgium, Department of Neurosciences, University of Mons, Mons, Belgium
| |
Collapse
|
38
|
Gabriel S, Khan NA, Siddiqui R. Occurrence of free-living amoebae (Acanthamoeba, Balamuthia, Naegleria) in water samples in Peninsular Malaysia. JOURNAL OF WATER AND HEALTH 2019; 17:160-171. [PMID: 30758312 DOI: 10.2166/wh.2018.164] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The aim of this study was to determine the occurrence of free-living amoebae (FLA) in Peninsular Malaysia and to compare different methodologies to detect them from water samples. Water samples were collected from tap water, recreational places, water dispensers, filtered water, etc. and tested for FLA using both cultivation and polymerase chain reaction (PCR) via plating assays and centrifugation methods. Amoebae DNA was extracted using Instagene matrix and PCR was performed using genus-specific primers. Of 250 samples, 142 (56.8%) samples were positive for presence of amoebae, while 108 (43.2%) were negative. Recreational water showed higher prevalence of amoebae than tap water. PCR for the plating assays revealed the presence of Acanthamoeba in 91 (64%) samples and Naegleria in 99 (70%) of samples analysed. All samples tested were negative for B. mandrillaris. In contrast, the centrifugation method was less effective in detecting amoebae as only one sample revealed the presence of Acanthamoeba and 52 (29%) samples were positive for Naegleria. PCR assays were specific and sensitive, detecting as few as 10 cells. These findings show the vast distribution and presence of FLA in all 11 states of Peninsular Malaysia. Further studies could determine the possible presence of pathogenic species and strains of free-living amoebae in public water supplies in Malaysia.
Collapse
Affiliation(s)
- Shobana Gabriel
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, 47500, Malaysia E-mail:
| | - Naveed Ahmed Khan
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, 47500, Malaysia E-mail:
| | - Ruqaiyyah Siddiqui
- Department of Biological Sciences, School of Science and Technology, Sunway University, Selangor, 47500, Malaysia E-mail:
| |
Collapse
|
39
|
Fatal Balamuthia mandrillaris Encephalitis. Case Rep Infect Dis 2019; 2019:9315756. [PMID: 30838148 PMCID: PMC6374803 DOI: 10.1155/2019/9315756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 01/01/2019] [Accepted: 01/17/2019] [Indexed: 11/18/2022] Open
Abstract
Balamuthia mandrillaris is a rare cause of granulomatous meningoencephalitis associated with high mortality. We report a 69-year-old Caucasian female who presented with a 3-day history of worsening confusion and difficulty with speech. On admission, she was disoriented and had expressive dysphasia. Motor examination revealed a right arm pronator drift. Cerebellar examination showed slowing of finger-nose testing on the left. She was HIV-negative, but the absolute CD4 count was low. Neuroimaging showed three cavitary, peripherally enhancing brain lesions, involving the right frontal lobe, the left basal ganglia, and the left cerebellar hemisphere. She underwent right frontal craniotomy with removal of tan, creamy, partially liquefied necrotic material from the brain, consistent with granulomatous amoebic encephalitis on tissue staining. Immunohistochemical studies and PCR tests confirmed infection with Balamuthia mandrillaris. She was started on pentamidine, sulfadiazine, azithromycin, fluconazole, flucytosine, and miltefosine. The postoperative course was complicated by an ischemic stroke, and she died a few weeks later.
Collapse
|
40
|
Tarai B, Agarwal P, Krishnamoorthi S, Mewara A, Khurana S. Fatal Amoebic Meningoencephalitis Caused by Balamuthia mandrillaris in a Sarcoidosis Patient. Jpn J Infect Dis 2018; 71:474-476. [DOI: 10.7883/yoken.jjid.2018.179] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
| | | | | | - Abhishek Mewara
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research
| | - Sumeeta Khurana
- Department of Medical Parasitology, Postgraduate Institute of Medical Education and Research
| |
Collapse
|
41
|
Piper KJ, Foster H, Susanto D, Maree CL, Thornton SD, Cobbs CS. Fatal Balamuthia mandrillaris brain infection associated with improper nasal lavage. Int J Infect Dis 2018; 77:18-22. [PMID: 30243910 DOI: 10.1016/j.ijid.2018.09.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 09/09/2018] [Accepted: 09/13/2018] [Indexed: 10/28/2022] Open
Abstract
We report the case of a 69-year-old female who presented with a chronic nasal skin rash, new onset focal seizure, and a cerebral ring-enhancing lesion after a year of improper nasal irrigation. Despite aggressive and novel anti-amoebic treatment, she died as a result of a Balamuthia mandrillaris brain infection.
Collapse
Affiliation(s)
- Keenan J Piper
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA.
| | - Haidn Foster
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA; University of Cincinnati College of Medicine, 3235 Eden Avenue, Cincinnati, OH 45267, USA.
| | - Daniel Susanto
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA; Radia Inc., 500 17th Ave, Seattle, WA 98122, USA.
| | - Cynthia L Maree
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA.
| | - Sean D Thornton
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA; CellNetix Pathology and Laboratories, 1124 Columbia St Suite 200, Seattle, WA 98104, USA.
| | - Charles S Cobbs
- Swedish Medical Group, 550 17th Avenue Suite 540, Seattle, WA 98122, USA.
| |
Collapse
|
42
|
Takei K, Toyoshima M, Nakamura M, Sato M, Shimizu H, Inoue C, Shimizu Y, Yagita K. An Acute Case of Granulomatous Amoebic Encephalitis-Balamuthia mandrillaris Infection. Intern Med 2018; 57:1313-1316. [PMID: 29321406 PMCID: PMC5980817 DOI: 10.2169/internalmedicine.0011-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A 74-year-old woman who exhibited drowsiness was referred to our hospital. Enhanced head magnetic resonance imaging (MRI) revealed multiple ring-enhancing lesions and lesions showing partial mild hemorrhaging. The patient gradually progressed to a comatose condition with notable brain deterioration of unknown cause on follow-up MRI. On day nine, the patient inexplicably died, although brain herniation was suspected. Autopsy and histopathology revealed numerous amoebic trophozoites in the perivascular spaces and within the necrotic tissue. Brain immunostaining tested positive for Balamuthia mandrillaris. Infection due to free-living amoeba is rare in Japan; however, it may increase in the near future due to unknown reasons.
Collapse
Affiliation(s)
| | | | | | | | | | - Chihiro Inoue
- Department of Pathology, Tohoku University School of Medicine, Japan
| | - Yoshio Shimizu
- Department of Pathology, Tohoku University School of Medicine, Japan
| | - Kenji Yagita
- Department of Parasitology, National Institute of Infectious Diseases, Japan
| |
Collapse
|
43
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
44
|
Abstract
Acanthamoeba spp. and Balamuthia mandrillaris are causative agents of granulomatous amoebic encephalitis (GAE), while Naegleria fowleri causes primary amoebic meningoencephalitis (PAM). PAM is an acute infection that lasts a few days, while GAE is a chronic to subacute infection that can last up to several months. Here, we present a literature review of 86 case reports from 1968 to 2016, in order to explore the affinity of these amoebae for particular sites of the brain, diagnostic modalities, treatment options, and disease outcomes in a comparative manner.
Collapse
|
45
|
Molecular identification of bacterial endosymbionts of Sappinia strains. Parasitol Res 2016; 116:549-558. [PMID: 27830372 DOI: 10.1007/s00436-016-5319-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 10/28/2016] [Indexed: 10/20/2022]
Abstract
The genus Sappinia comprises free-living amoebae occurring worldwide in a variety of habitats such as soils, plant matter and freshwater ponds, but also animal faeces, and includes at present three species, S. pedata, S. diploidea and S. platani. The genus is potentially pathogenic, as indicated by the identification of S. pedata in a case of human amoebic encephalitis. Electron microscopy studies on some strains already revealed intracellular bacteria in Sappinia. In the current study, we performed 16S ribosomal RNA gene (rDNA) analysis of these bacterial endosymbionts. We first inferred relationships among Sappinia strains on the basis of 18S rDNA, demonstrating that S. pedata emerged as sister to a larger clade including S. diploidea, S. platani and a few 'S. diploidea-like' strains. Thus, bacterial 16S rDNA was searched for in representative strains of each Sappinia species/subgroup. We found that Sappinia strains were associated to distinct species of Flavobacterium or Pedobacter (phylum Bacteroidetes). These appear to be distributed following the amoebal host subgroups, and are not directly related to other Bacteroidetes species known as interacting with free-living amoebae. While all the endosymbionts' close relatives are known to grow on agar, bacteriological media inoculated with amoebal extracts remained negative. Overall, results indicate that the recovered bacteria are likely specific obligate endosymbionts of Sappinia species. Further studies, including additional amoebal strains and deep morphological and molecular analyses, will be necessary to confirm this hypothesis.
Collapse
|
46
|
Ahmed Khan N, Baqir H, Siddiqui R. The immortal amoeba: a useful model to study cellular differentiation processes? Pathog Glob Health 2016; 109:305-6. [PMID: 26878933 DOI: 10.1080/20477724.2015.1103504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Naveed Ahmed Khan
- 1 Department of Biological Sciences, Faculty of Science and Technology, Sunway University , Bandar Sunway, Malaysia
| | | | | |
Collapse
|
47
|
Gjeltema JL, Troan B, Muehlenbachs A, Liu L, Da Silva AJ, Qvarnstrom Y, Tobias JR, Loomis MR, De Voe RS. Amoebic meningoencephalitis and disseminated infection caused by Balamuthia mandrillaris in a Western lowland gorilla (Gorilla gorilla gorilla). J Am Vet Med Assoc 2016; 248:315-21. [PMID: 26799111 DOI: 10.2460/javma.248.3.315] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
CASE DESCRIPTION A 22-year-old male gorilla (Gorilla gorilla gorilla) housed in a zoo was evaluated for signs of lethargy, head-holding, and cervical stiffness followed by development of neurologic abnormalities including signs of depression, lip droop, and tremors. CLINICAL FINDINGS Physical examination under general anesthesia revealed a tooth root abscess and suboptimal body condition. A CBC and serum biochemical analysis revealed mild anemia, neutrophilia and eosinopenia consistent with a stress leukogram, and signs consistent with dehydration. Subsequent CSF analysis revealed lymphocytic pleocytosis and markedly increased total protein concentration. TREATMENT AND OUTCOME Despite treatment with antimicrobials, steroids, and additional supportive care measures, the gorilla's condition progressed to an obtunded mentation with grand mal seizures over the course of 10 days. Therefore, the animal was euthanized and necropsy was performed. Multifocal areas of malacia and hemorrhage were scattered throughout the brain; on histologic examination, these areas consisted of necrosis and hemorrhage associated with mixed inflammation, vascular necrosis, and intralesional amoebic trophozoites. Tan foci were also present in the kidneys and pancreas. Immunohistochemical testing positively labeled free-living amoebae within the brain, kidneys, eyes, pancreas, heart, and pulmonary capillaries. Subsequent PCR assay of CSF and frozen kidney samples identified the organism as Balamuthia mandrillaris, confirming a diagnosis of amoebic meningoencephalitis. CLINICAL RELEVANCE Infection with B mandrillaris has been reported to account for 2.8% of captive gorilla deaths in North America over the past 19 years. Clinicians working with gorillas should have a high index of suspicion for this diagnosis when evaluating and treating animals with signs of centrally localized neurologic disease.
Collapse
|
48
|
Niyyati M, Karamati SA, Lorenzo Morales J, Lasjerdi Z. Isolation of Balamuthia mandrillaris from soil samples in North-Western Iran. Parasitol Res 2016; 115:541-5. [PMID: 26468147 DOI: 10.1007/s00436-015-4770-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/01/2015] [Indexed: 01/11/2023]
Abstract
Balamuthia mandrillaris is an opportunistic free-living amoebae (FLA) which has been reported as the causative agent of the fatal Balamuthia amoebic encephalitis (BAE). Currently, the transmission dynamics of this pathogen remain poorly understood although the organism has been associated with soils, and thus, soil exposure has been identified as a risk factor for this pathogenic amoeba. Nevertheless, environmental isolation of B. mandrillaris is a rare event and strains of this amoebic species have been isolated from soil and dust sources only in seven previous reports (Iran, Mexico, USA, Peru, Costa Rica, Guinea Bissau, and Jamaica). In Iran, a previous study reported the isolation of B. mandrillaris from dust collected in the city of Tehran and free of known infectious involvement. Therefore, in this work, 55 soil samples collected from public and recreational areas of East Azerbaijan, North-Western Iran, were investigated for the presence of this pathogen. Samples were cultured in 2% non-nutrient agar plates and were monitored for the presence of B. mandrillaris-like trophozoites and/or cysts. Those samples that were positive for these amoebae by microscopic criteria were then confirmed by PCR amplification and DNA sequencing of the mitochondrial 16S ribosomal DNA (rDNA) of B. mandrillaris. The obtained results revealed the presence of this emerging pathogen in 5 of 55 samples included in the study. Homology analysis of the obtained DNA sequences revealed high similarity with previously isolated strains from clinical and environmental sources. To the best of our knowledge, this is the first report on the isolation of B. mandrillaris from soil sources in Iran related to human activity and the second time that this pathogen is isolated from the environment in this country.
Collapse
|
49
|
Abstract
ABSTRACT
Parasites are an important cause of human disease worldwide. The clinical severity and outcome of parasitic disease is often dependent on the immune status of the host. Specific parasitic diseases discussed in this chapter are amebiasis, giardiasis, cryptosporidiosis, cyclosporiasis, cystoisosporiasis, microsporidosis, granulomatous amebic encephalitis, toxoplasmosis, leishmaniasis, Chagas disease, malaria, babesiosis, strongyloidiasis, and scabies.
Collapse
|
50
|
LATIFI AR, NIYYATI M, LORENZO-MORALES J, HAGHIGHI A, SEYYED TABAEI SJ, LASJERDI Z. Presence of Balamuthia mandrillaris in hot springs from Mazandaran province, northern Iran. Epidemiol Infect 2016; 144:2456-61. [PMID: 27086943 PMCID: PMC9150520 DOI: 10.1017/s095026881600073x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/27/2016] [Accepted: 03/26/2016] [Indexed: 11/06/2022] Open
Abstract
Balamuthia mandrillaris is an opportunistic free-living amoeba that has been reported to cause cutaneous lesions and Balamuthia amoebic encephalitis. The biology and environmental distribution of B. mandrillaris is still poorly understood and isolation of this pathogen from the environment is a rare event. Previous studies have reported that the presence of B. mandrillaris in the environment in Iran may be common. However, no clinical cases have been reported so far in this country. In the present study, a survey was conducted in order to evaluate the presence of B. mandrillaris in hot-spring samples of northern Iran. A total of 66 water samples were analysed using morphological and molecular tools. Positive samples by microscopy were confirmed by performing PCR amplification of the 16S rRNA gene of B. mandrillaris. Sequencing of the positive amplicons was also performed to confirm morphological data. Two of the 66 collected water samples were positive for B. mandrillaris after morphological and molecular identification. Interestingly, both positive hot springs had low pH values and temperatures ranging from 32 °C to 42 °C. Many locals and tourists use both hot springs due to their medicinal properties and thus contact with water bodies containing the organism increases the likelihood of infection. To the best of our knowledge, this is the first report on the isolation of B. mandrillaris from hot-spring sources related to human activity. Therefore, B. mandrillaris should be considered as a possible causative agent if cases of encephalitis are suspected following immersion in hot springs in addition to Acanthamoeba and Naegleria.
Collapse
Affiliation(s)
- A. R. LATIFI
- Research Centre for Cellular and Molecular Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - M. NIYYATI
- Research Centre for Cellular and Molecular Biology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - J. LORENZO-MORALES
- University Institute of Tropical Diseases and Public Health of the Canary Islands, University of La Laguna, Tenerife, Canary Islands, Spain
| | - A. HAGHIGHI
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S. J. SEYYED TABAEI
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Z. LASJERDI
- Department of Medical Parasitology and Mycology, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|