1
|
Xu X, Wang Z, Lu E, Lin T, Du H, Li Z, Ma J. Rapid detection of carbapenem-resistant Escherichia coli and carbapenem-resistant Klebsiella pneumoniae in positive blood cultures via MALDI-TOF MS and tree-based machine learning models. BMC Microbiol 2025; 25:44. [PMID: 39856543 PMCID: PMC11760114 DOI: 10.1186/s12866-025-03755-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Bloodstream infection (BSI) is a systemic infection that predisposes individuals to sepsis and multiple organ dysfunction syndrome. Early identification of infectious agents and determination of drug-resistant phenotypes can help patients with BSI receive timely, effective, and targeted treatment and improve their survival. This study was based on matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), Decision Tree (DT), Random Forest (RF), Gradient Boosting Machine (GBM), eXtreme Gradient Boosting (XGBoost), and Extremely Randomized Trees (ERT) models were constructed to classify carbapenem-resistant Escherichia coli (CREC) and carbapenem-resistant Klebsiella pneumoniae (CRKP). Bacterial species were identified by MALDI-TOF MS in positive blood cultures isolated via the serum isolation gel method, and E. coli and K. pneumoniae in positive blood cultures were collected and placed into machine learning models to predict susceptibility to carbapenems. The aim of this study was to provide rapid detection of CREC and CRKP in blood cultures, to shorten the turnaround time for laboratory reporting, and to provide a basis for early clinical intervention and rational use of antibiotics. RESULTS The collected MALDI-TOF MS data of 640 E. coli and 444 K. pneumoniae were analysed by machine learning algorithms. The area under the receiver operating characteristic curve (AUROC) for the diagnosis of E. coli susceptibility to carbapenems by the DT, RF, GBM, XGBoost, and ERT models were 0.95, 1.00, 0.99, 0.99, and 1.00, respectively, and the accuracy in predicting 149 E. coli-positive blood cultures were 0.89, 0.92, 0.90, 0.92, and 0.86, respectively. The AUROC for the diagnosis of K. pneumoniae susceptibility to carbapenems by the DT, RF, GBM, XGBoost, and ERT models were 0.78, 0.95, 0.93, 0.90, and 0.95, respectively, and the accuracy in predicting 127 K. pneumoniae-positive blood cultures were 0.76, 0.86, 0.81, 0.80, and 0.76, respectively. CONCLUSIONS Machine learning models constructed by MALDI-TOF MS were able to directly predict the susceptibility of E. coli and K. pneumoniae in positive blood cultures to carbapenems. This rapid identification of CREC and CRKP reduces detection time and contributes to early warning and response to potential antibiotic resistance problems in the clinic. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Xiaobo Xu
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Zhaofeng Wang
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Erjie Lu
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Tao Lin
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Hengchao Du
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Zhongfei Li
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China
| | - Jiahong Ma
- Department of Clinical Laboratory, Zhejiang Rong Jun Hospital, Jiaxing, 314000, China.
| |
Collapse
|
2
|
Hidalgo-Tenorio C, Bou G, Oliver A, Rodríguez-Aguirregabiria M, Salavert M, Martínez-Martínez L. The Challenge of Treating Infections Caused by Metallo-β-Lactamase-Producing Gram-Negative Bacteria: A Narrative Review. Drugs 2024; 84:1519-1539. [PMID: 39467989 PMCID: PMC11652570 DOI: 10.1007/s40265-024-02102-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2024] [Indexed: 10/30/2024]
Abstract
Gram-negative multidrug-resistant (MDR) bacteria, including Enterobacterales, Acinetobacter baumannii, and Pseudomonas aeruginosa, pose a significant challenge in clinical practice. Infections caused by metallo-β-lactamase (MBL)-producing Gram-negative organisms, in particular, require careful consideration due to their complexity and varied prevalence, given that the microbiological diagnosis of these pathogens is intricate and compounded by challenges in assessing the efficacy of anti-MBL antimicrobials. We discuss both established and new approaches in the treatment of MBL-producing Gram-negative infections, focusing on 3 strategies: colistin; the recently approved combination of aztreonam with avibactam (or with ceftazidime/avibactam); and cefiderocol. Despite its significant activity against various Gram-negative pathogens, the efficacy of colistin is limited by resistance mechanisms, while nephrotoxicity and acute renal injury call for careful dosing and monitoring in clinical practice. Aztreonam combined with avibactam (or with avibactam/ceftazidime if aztreonam plus avibactam is not available) exhibits potent activity against MBL-producing Gram-negative pathogens. Cefiderocol in monotherapy is effective against a wide range of multidrug-resistant organisms, including MBL producers, and favorable clinical outcomes have been observed in various clinical trials and case series. After examining scientific evidence in the management of infections caused by MBL-producing Gram-negative bacteria, we have developed a comprehensive clinical algorithm to guide therapeutic decision making. We recommend reserving colistin as a last-resort option for MDR Gram-negative infections. Cefiderocol and aztreonam/avibactam represent favorable options against MBL-producing pathogens. In the case of P. aeruginosa with MBL-producing enzymes and with difficult-to-treat resistance, cefiderocol is the preferred option. Further research is needed to optimize treatment strategies and minimize resistance.
Collapse
Affiliation(s)
- Carmen Hidalgo-Tenorio
- Hospital Universitario Virgen de las Nieves de Granada, Instituto de Investigación Biosanitario de Granada (IBS-Granada), Granada, Spain.
- Departamento de Medicina, Universidad de Granada, Granada, Spain.
| | - German Bou
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña, A Coruña, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Antonio Oliver
- Servicio de Microbiología y Unidad de Investigación, Hospital Son Espases, IdISBa, Palma de Mallorca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | | | - Miguel Salavert
- Infectious Diseases Unit, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | - Luis Martínez-Martínez
- Microbiology Unit, Hospital Universitario Reina Sofía, Córdoba, Spain
- Department of Agricultural Chemistry, Soil Sciences and Microbiology, Universidad de Córdoba, Córdoba, Spain
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Córdoba, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
3
|
Ghazanfar H, Javed N, Reina R, Thartori O, Ghazanfar A, Patel H. Advances in Diagnostic Modalities for Helicobacter pylori Infection. Life (Basel) 2024; 14:1170. [PMID: 39337953 PMCID: PMC11432972 DOI: 10.3390/life14091170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/05/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Helicobacter pylori (H. pylori) infection is a widespread global health issue with a varying prevalence influenced by geography, socioeconomic status, and demographics. In the U.S., the prevalence is lower, though certain groups, such as older adults and immigrants from high-prevalence regions, show higher rates. The decrease in infection rates in developed countries is due to improved sanitation, antibiotics, and healthcare, whereas developing countries continue to experience high rates due to poor living conditions. H. pylori infection can be asymptomatic or cause symptoms like dyspepsia, abdominal pain, bloating, nausea, and loss of appetite. Pathophysiologically, H. pylori contribute to conditions such as gastritis, peptic ulcers, and gastric cancer through mechanisms including urease production and the release of virulence factors, leading to chronic inflammation and an increased cancer risk. Diagnostic methods for H. pylori have progressed significantly. Non-invasive techniques, such as serological assays, stool antigen tests, and urea breath tests, are practical and sensitive. Invasive methods, including endoscopic biopsy and molecular diagnostics, are more definitive but resource intensive. Recent advancements in diagnostic technology, including matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), biosensor technology, and next-generation sequencing (NGS), promise improved speed, accuracy, and accessibility. These innovations are expected to enhance the detection and management of H. pylori, potentially reducing the global disease burden. This review aims to discuss these diagnostic modalities with a focus on further advances under investigation.
Collapse
Affiliation(s)
- Haider Ghazanfar
- Division of Gastroenterology, BronxCare Health System, Bronx, NY 10457, USA
| | | | - Raul Reina
- BronxCare Health System, Bronx, NY 10457, USA
| | | | - Ali Ghazanfar
- Fauji Foundation Hospital, Rawalpindi 45000, Pakistan
| | - Harish Patel
- Division of Gastroenterology, BronxCare Health System, Bronx, NY 10457, USA
| |
Collapse
|
4
|
Peng B, Li H, Peng X. Understanding metabolic resistance strategy of clinically isolated antibiotic-resistant bacteria by proteomic approach. Expert Rev Proteomics 2024; 21:377-386. [PMID: 39387182 DOI: 10.1080/14789450.2024.2413439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024]
Abstract
INTRODUCTION Understanding the metabolic regulatory mechanisms leading to antibacterial resistance is important to develop effective control measures. AREAS COVERED In this review, we summarize the progress on metabolic mechanisms of antibiotic resistance in clinically isolated bacteria, as revealed using proteomic approaches. EXPERT OPINION Proteomic approaches are effective tools for uncovering clinically significant bacterial metabolic responses to antibiotics. Proteomics can disclose the associations between metabolic proteins, pathways, and networks with antibiotic resistance, and help identify their functional impact. The mechanisms by which metabolic proteins control the four generally recognized resistance mechanisms (decreased influx and targets, and increased efflux and enzymatic degradation) are particularly important. The proposed mechanism of reprogramming proteomics via key metabolites to enhance the killing efficiency of existing antibiotics needs attention.
Collapse
Affiliation(s)
- Bo Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Hui Li
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Xuanxian Peng
- State Key Laboratory of Bio-Control, School of Life Sciences, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Key Laboratory of Pharmaceutical Functional Genes, Sun Yat-sen University, Guangzhou, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
5
|
Calderaro A, Chezzi C. MALDI-TOF MS: A Reliable Tool in the Real Life of the Clinical Microbiology Laboratory. Microorganisms 2024; 12:322. [PMID: 38399726 PMCID: PMC10892259 DOI: 10.3390/microorganisms12020322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/25/2024] Open
Abstract
Matrix-Assisted Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) in the last decade has revealed itself as a valid support in the workflow in the clinical microbiology laboratory for the identification of bacteria and fungi, demonstrating high reliability and effectiveness in this application. Its use has reduced, by 24 h, the time to obtain a microbiological diagnosis compared to conventional biochemical automatic systems. MALDI-TOF MS application to the detection of pathogens directly in clinical samples was proposed but requires a deeper investigation, whereas its application to positive blood cultures for the identification of microorganisms and the detection of antimicrobial resistance are now the most useful applications. Thanks to its rapidity, accuracy, and low price in reagents and consumables, MALDI-TOF MS has also been applied to different fields of clinical microbiology, such as the detection of antibiotic susceptibility/resistance biomarkers, the identification of aminoacidic sequences and the chemical structure of protein terminal groups, and as an emerging method in microbial typing. Some of these applications are waiting for an extensive evaluation before confirming a transfer to the routine. MALDI-TOF MS has not yet been used for the routine identification of parasites; nevertheless, studies have been reported in the last few years on its use in the identification of intestinal protozoa, Plasmodium falciparum, or ectoparasites. Innovative applications of MALDI-TOF MS to viruses' identification were also reported, seeking further studies before adapting this tool to the virus's diagnostic. This mini-review is focused on the MALDI-TOF MS application in the real life of the diagnostic microbiology laboratory.
Collapse
Affiliation(s)
- Adriana Calderaro
- Department of Medicine and Surgery, University of Parma, Viale A. Gramsci 14, 43126 Parma, Italy;
| | | |
Collapse
|
6
|
Kalın G, Alp E, Chouaikhi A, Roger C. Antimicrobial Multidrug Resistance: Clinical Implications for Infection Management in Critically Ill Patients. Microorganisms 2023; 11:2575. [PMID: 37894233 PMCID: PMC10609422 DOI: 10.3390/microorganisms11102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/05/2023] [Accepted: 10/11/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing incidence of antimicrobial resistance (AMR) worldwide represents a serious threat in the management of sepsis. Due to resistance to the most common antimicrobials prescribed, multidrug-resistant (MDR) pathogens have been associated with delays in adequate antimicrobial therapy leading to significant increases in mortality, along with prolonged hospital length of stay (LOS) and increases in healthcare costs. In response to MDR infections and the delay of microbiological results, broad-spectrum antibiotics are frequently used in empirical antimicrobial therapy. This can contribute to the overuse and misuse of antibiotics, further promoting the development of resistance. Multiple measures have been suggested to combat AMR. This review will focus on describing the epidemiology and trends concerning MDR pathogens. Additionally, it will explore the crucial aspects of identifying patients susceptible to MDR infections and optimizing antimicrobial drug dosing, which are both pivotal considerations in the fight against AMR. Expert commentary: The increasing AMR in ICUs worldwide makes the empirical antibiotic therapy challenging in septic patients. An AMR surveillance program together with improvements in MDR identification based on patient risk stratification and molecular rapid diagnostic tools may further help tailoring antimicrobial therapies and avoid unnecessary broad-spectrum antibiotics. Continuous infusions of antibiotics, therapeutic drug monitoring (TDM)-based dosing regimens and combination therapy may contribute to optimizing antimicrobial therapy and limiting the emergence of resistance.
Collapse
Affiliation(s)
- Gamze Kalın
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Erciyes University, Kayseri 38280, Türkiye
| | - Emine Alp
- Department of Infectious Diseases and Clinical Microbiology, Faculty of Medicine, Ankara Yıldırım Beyazıt University, Ankara 06760, Türkiye;
| | - Arthur Chouaikhi
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
| | - Claire Roger
- Department of Anesthesiology and Intensive Care, Pain and Emergency Medicine, Nîmes-Caremeau University Hospital, Place du Professeur Robert Debré, CEDEX 9, 30029 Nîmes, France;
- UR UM 103 IMAGINE, Faculty of Medicine, Montpellier University, Chemin du Carreau de Lanes, 30029 Nîmes, France
| |
Collapse
|
7
|
Matsumura Y, Ikegaya K. MALDI-TOF MS Approaches for the Identification of the Susceptibility of Extended-Spectrum β-Lactamases in Escherichia coli. Microorganisms 2023; 11:1250. [PMID: 37317224 DOI: 10.3390/microorganisms11051250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 06/16/2023] Open
Abstract
The increase in multidrug-resistant microorganisms that produce extended-spectrum β-lactamases (ESBLs) and carbapenemases is a serious problem worldwide. Recently, matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF MS) has been used for the rapid detection of antibiotic-resistant bacteria. The objective of this study was to establish a method to detect ESBL-producing Escherichia coli by monitoring the hydrolyzation of cefotaxime (CTX) using MALDI-TOF MS. According to the ratio of the peak intensity of CTX and hydrolyzed-CTX-related compounds, the ESBL-producing strains could be clearly distinguished after 15 min of incubation. Moreover, the minimum inhibitory concentration (MIC) values for E. coli were 8 μg/mL and lower than 4 μg/mL, which could be distinguished after 30 min and 60 min of incubation, respectively. The enzymatic activity was determined using the difference in the signal intensity of the hydrolyzed CTX at 370 Da for the ESBL-producing strains incubated with or without clavulanate. The ESBL-producing strains with low enzymatic activity or blaCTX-M genes could be detected by monitoring the hydrolyzed CTX. These results show that this method can rapidly detect high-sensitivity ESBL-producing E. coli.
Collapse
Affiliation(s)
- Yuriko Matsumura
- Postgraduate School of Healthcare, Tokyo Healthcare University, 4-1-17 Higashi-Gotanda, Shinagawa-ku, Tokyo 141-8648, Japan
| | - Kazuko Ikegaya
- Shizuoka City Shimizu Hospital, 1231, Miyakami, Shimizu-ku, Shizuoka 424-8638, Japan
| |
Collapse
|
8
|
Šebela M. The use of matrix-assisted laser desorption/ionization mass spectrometry in enzyme activity assays and its position in the context of other available methods. MASS SPECTROMETRY REVIEWS 2023; 42:1008-1031. [PMID: 34549449 DOI: 10.1002/mas.21733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/28/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
Activity assays are indispensable for studying biochemical properties of enzymes. The purposes of measuring activity are wide ranging from a simple detection of the presence of an enzyme to kinetic experiments evaluating the substrate specificity, reaction mechanisms, and susceptibility to inhibitors. Common activity assay methods include spectroscopy, electrochemical sensors, or liquid chromatography coupled with various detection techniques. This review focuses on the use of matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) as a growing and modern alternative, which offers high speed of analysis, sensitivity, versatility, possibility of automation, and cost-effectiveness. It may reveal reaction intermediates, side products or measure more enzymes at once. The addition of an internal standard or calculating the ratios of the substrate and product peak intensities and areas overcome the inherent inhomogeneous distribution of analyte and matrix in the sample spot, which otherwise results in a poor reproducibility. Examples of the application of MALDI-TOF MS for assaying hydrolases (including peptidases and β-lactamases for antibiotic resistance tests) and other enzymes are provided. Concluding remarks summarize advantages and challenges coming from the present experience, and draw future perspectives such as a screening of large libraries of chemical compounds for their substrate or inhibitory properties towards enzymes.
Collapse
Affiliation(s)
- Marek Šebela
- Department of Biochemistry, Faculty of Science, and CATRIN, Palacký University, Olomouc, Czech Republic
| |
Collapse
|
9
|
Zhang YM, Tsao MF, Chang CY, Lin KT, Keller JJ, Lin HC. Rapid identification of carbapenem-resistant Klebsiella pneumoniae based on matrix-assisted laser desorption ionization time-of-flight mass spectrometry and an artificial neural network model. J Biomed Sci 2023; 30:25. [PMID: 37069555 PMCID: PMC10108464 DOI: 10.1186/s12929-023-00918-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/04/2023] [Indexed: 04/19/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is a clinically critical pathogen that causes severe infection. Due to improper antibiotic administration, the prevalence of CRKP infection has been increasing considerably. In recent years, the utilization of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) has enabled the identification of bacterial isolates at the families and species level. Moreover, machine learning (ML) classifiers based on MALDI-TOF MS have been recently considered a novel method to detect clinical antimicrobial-resistant pathogens. METHODS A total of 2683 isolates (369 CRKP cases and 2314 carbapenem-susceptible Klebsiella pneumoniae [CSKP]) collected in the clinical laboratories of Taipei Medical University Hospital (TMUH) were included in this study, and 80% of data was split into the training data set that were submitted for the ML model. The remaining 20% of data was used as the independent data set for external validation. In this study, we established an artificial neural network (ANN) model to analyze all potential peaks on mass spectrum simultaneously. RESULTS Our artificial neural network model for detecting CRKP isolates showed the best performance of area under the receiver operating characteristic curve (AUROC = 0.91) and of area under precision-recall curve (AUPRC = 0.90). Furthermore, we proposed the top 15 potential biomarkers in probable CRKP isolates at 2480, 4967, 12,362, 12,506, 12,855, 14,790, 15,730, 16,176, 16,218, 16,758, 16,919, 17,091, 18,142, 18,998, and 19,095 Da. CONCLUSIONS Compared with the prior MALDI-TOF and machine learning studies of CRKP, the amount of data in our study was more sufficient and allowing us to conduct external validation. With better generalization abilities, our artificial neural network model can serve as a reliable screening tool for CRKP isolates in clinical practice. Integrating our model into the current workflow of clinical laboratories can assist the rapid identification of CRKP before the completion of traditional antimicrobial susceptibility testing. The combination of MADLI-TOF MS and machine learning techniques can support physicians in selecting suitable antibiotics, which has the potential to enhance the patients' outcomes and lower the prevalence of antimicrobial resistance.
Collapse
Affiliation(s)
- Yu-Ming Zhang
- School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Mei-Fen Tsao
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Ching-Yu Chang
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Kuan-Ting Lin
- Department of Business Administration, National Taiwan University, Taipei, Taiwan
| | - Joseph Jordan Keller
- Western Michigan University Homer Stryker M.D. School of Medicine, Department of Psychiatry, Kalamazoo, MI, USA
| | - Hsiu-Chen Lin
- Department of Clinical Pathology, Taipei Medical University Hospital, Taipei, Taiwan.
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu-Hsing St, Taipei, 11031, Taiwan.
| |
Collapse
|
10
|
Hleba L, Hlebova M, Kovacikova E, Kovacik A. MALDI-TOF MS Indirect Beta-Lactamase Detection in Ampicillin-Resistant Haemophilus influenzae. Microorganisms 2023; 11:microorganisms11041018. [PMID: 37110441 PMCID: PMC10142446 DOI: 10.3390/microorganisms11041018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Rapid identification of beta-lactamase-producing strains of Haemophilus influenzae plays key role in diagnostics in clinical microbiology. Therefore, the aim of this study was the rapid determination of beta-lactamase's presence in H. influenzae isolates via indirect detection of degradation ampicillin products using MALDI-TOF MS. H. influenzae isolates were subjected to antibiotic resistance testing using disk diffusion and MIC methodologies. Beta-lactamase activity was tested using MALDI-TOF MS, and results were compared to spectral analysis of alkaline hydrolysis. Resistant and susceptible strains of H. influenzae were distinguished, and strains with a high MIC level were identified as beta-lactamase-producing. Results indicate that MALDI-TOF mass spectrometry is also suitable for the rapid identification of beta-lactamase-producing H. influenzae. This observation and confirmation can accelerate identification of beta-lactamase strains of H. influenzae in clinical microbiology, which can have an impact on health in general.
Collapse
Affiliation(s)
- Lukas Hleba
- Institute of Biotechnology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Eva Kovacikova
- AgroBioTech Research Centre, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| | - Anton Kovacik
- Institute of Applied Biology, Faculty of Biotechnology and Food Sciences, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
11
|
Li C, McCrone S, Warrick JW, Andes DR, Hite Z, Volk CF, Rose WE, Beebe DJ. Under-oil open microfluidic systems for rapid phenotypic antimicrobial susceptibility testing. LAB ON A CHIP 2023; 23:2005-2015. [PMID: 36883560 PMCID: PMC10581760 DOI: 10.1039/d3lc00066d] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Antimicrobial susceptibility testing (AST) remains the cornerstone of effective antimicrobial selection and optimization in patients. Despite recent advances in rapid pathogen identification and resistance marker detection with molecular diagnostics (e.g., qPCR, MALDI-TOF MS), phenotypic (i.e., microbial culture-based) AST methods - the gold standard in hospitals/clinics - remain relatively unchanged over the last few decades. Microfluidics-based phenotypic AST has been growing fast in recent years, aiming for rapid (i.e., turnaround time <8 h), high-throughput, and automated species identification, resistance detection, and antibiotics screening. In this pilot study, we describe the application of a multi-liquid-phase open microfluidic system, named under-oil open microfluidic systems (UOMS), to achieve a rapid phenotypic AST. UOMS provides an open microfluidics-based solution for rapid phenotypic AST (UOMS-AST) by implementing and recording a pathogen's antimicrobial activity in micro-volume testing units under an oil overlay. UOMS-AST allows free physical access (e.g., by standard pipetting) to the system and label-free, single-cell resolution optical access. UOMS-AST can accurately and rapidly determine antimicrobial activities [including susceptibility/resistance breakpoint and minimum inhibitory concentration (MIC)] from nominal sample/bacterial cells in a system aligned with clinical laboratory standards where open systems and optical microscopy are predominantly adopted. Further, we combine UOMS-AST with a cloud lab data analytic technique for real-time image analysis and report generation to provide a rapid (<4 h) sample-to-report turnaround time, shedding light on its utility as a versatile (e.g., low-resource setting and manual laboratory operation, or high-throughput automated system) phenotypic AST platform for hospital/clinic use.
Collapse
Affiliation(s)
- Chao Li
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sue McCrone
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Jay W. Warrick
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David R. Andes
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Zachary Hite
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Cecilia F. Volk
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Warren E. Rose
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Medicine, Division of Infectious Diseases, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - David J. Beebe
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA
| |
Collapse
|
12
|
Yu T, Fu Y, He J, Zhang J, Xianyu Y. Identification of Antibiotic Resistance in ESKAPE Pathogens through Plasmonic Nanosensors and Machine Learning. ACS NANO 2023; 17:4551-4563. [PMID: 36867448 DOI: 10.1021/acsnano.2c10584] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Antibiotic-resistant ESKAPE pathogens cause nosocomial infections that lead to huge morbidity and mortality worldwide. Rapid identification of antibiotic resistance is vital for the prevention and control of nosocomial infections. However, current techniques like genotype identification and antibiotic susceptibility testing are generally time-consuming and require large-scale equipment. Herein, we develop a rapid, facile, and sensitive technique to determine the antibiotic resistance phenotype among ESKAPE pathogens through plasmonic nanosensors and machine learning. Key to this technique is the plasmonic sensor array that contains gold nanoparticles functionalized with peptides differing in hydrophobicity and surface charge. The plasmonic nanosensors can interact with pathogens to generate bacterial fingerprints that alter the surface plasmon resonance (SPR) spectra of nanoparticles. In combination with machine learning, it enables the identification of antibiotic resistance among 12 ESKAPE pathogens in less than 20 min with an overall accuracy of 89.74%. This machine-learning-based approach allows for the identification of antibiotic-resistant pathogens from patients and holds great promise as a clinical tool for biomedical diagnosis.
Collapse
Affiliation(s)
- Ting Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ying Fu
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Jintao He
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jun Zhang
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
| | - Yunlei Xianyu
- State Key Laboratory of Fluid Power and Mechatronic Systems, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, People's Republic of China
- Key Laboratory of Precision Medicine in Diagnosis and Monitoring Research of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou 310016, People's Republic of China
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, People's Republic of China
- Ningbo Research Institute, Zhejiang University, Ningbo 315100, People's Republic of China
| |
Collapse
|
13
|
França A. The Role of Coagulase-Negative Staphylococci Biofilms on Late-Onset Sepsis: Current Challenges and Emerging Diagnostics and Therapies. Antibiotics (Basel) 2023; 12:antibiotics12030554. [PMID: 36978421 PMCID: PMC10044083 DOI: 10.3390/antibiotics12030554] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/24/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023] Open
Abstract
Infections are one of the most significant complications of neonates, especially those born preterm, with sepsis as one of the principal causes of mortality. Coagulase-negative staphylococci (CoNS), a group of staphylococcal species that naturally inhabit healthy human skin and mucosa, are the most common cause of late-onset sepsis, especially in preterms. One of the risk factors for the development of CoNS infections is the presence of implanted biomedical devices, which are frequently used for medications and/or nutrient delivery, as they serve as a scaffold for biofilm formation. The major concerns related to CoNS infections have to do with the increasing resistance to multiple antibiotics observed among this bacterial group and biofilm cells’ increased tolerance to antibiotics. As such, the treatment of CoNS biofilm-associated infections with antibiotics is increasingly challenging and considering that antibiotics remain the primary form of treatment, this issue will likely persist in upcoming years. For that reason, the development of innovative and efficient therapeutic measures is of utmost importance. This narrative review assesses the current challenges and emerging diagnostic tools and therapies for the treatment of CoNS biofilm-associated infections, with a special focus on late-onset sepsis.
Collapse
Affiliation(s)
- Angela França
- Centre of Biological Engineering, LIBRO—Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- LABBELS—Associate Laboratory in Biotechnology and Bioengineering and Microelectromechanical Systems, Braga and Guimarães, Portugal
| |
Collapse
|
14
|
Husain U, Verma P, Suvirya S, Priyadarshi K, Gupta P. An overview of mycetoma and its diagnostic dilemma: Time to move on to advanced techniques. Indian J Dermatol Venereol Leprol 2023; 89:12-17. [PMID: 36331840 DOI: 10.25259/ijdvl_615_2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 06/01/2022] [Indexed: 02/01/2023]
Abstract
The neglected tropical disease mycetoma can become extremely devastating, and can be caused both by fungi and bacteria; these are popularly known as eumycetoma and actinomycetoma respectively. The classical triad of the disease is subcutaneous swelling, multiple discharging sinuses and the presence of macroscopic granules. The present study aims to highlight the existing diagnostic modalities and the need to incorporate newer and more advanced laboratory techniques like pan fungal/pan bacterial 16S rRNA gene polymerase chain reaction (PCR) and sequencing, Matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS), rolling circle amplification (RCA), loop-mediated isothermal amplification (LAMP) and recombinase polymerase amplification (RPA). It is important for the medical team to be aware of the various diagnostic options (both existing and future), so that diagnosis of such a debilitating disease is never missed, both by clinicians and microbiologists/pathologists. The newer diagnostic methods discussed in this article will help in rapid, accurate diagnosis thus facilitating early treatment initiation, and decreasing the overall morbidity of the disease. In the Indian context, newer technologies need to be made available more widely. Making clinicians aware and promoting research and development in mycetoma diagnostics is the need of the hour.
Collapse
Affiliation(s)
- Uneza Husain
- Department of Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parul Verma
- Department of Dermatology, Venereology, and Leprosy, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Swastika Suvirya
- Department of Dermatology, Venereology, and Leprosy, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Ketan Priyadarshi
- Department of Microbiology, Jawaharlal Institute of Postgraduate Medical Education and Research, Pondicherry, India
| | - Prashant Gupta
- Department of Microbiology, King George's Medical University, Lucknow, Uttar Pradesh, India
| |
Collapse
|
15
|
Studentova V, Sudova V, Bitar I, Paskova V, Moravec J, Pompach P, Volny M, Novak P, Hrabak J. Preferred β-lactone synthesis can explain high rate of false-negative results in the detection of OXA-48-like carbapenemases. Sci Rep 2022; 12:22235. [PMID: 36564543 PMCID: PMC9789108 DOI: 10.1038/s41598-022-26735-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
The resistance to carbapenems is usually mediated by enzymes hydrolyzing β-lactam ring. Recently, an alternative way of the modification of the antibiotic, a β-lactone formation by OXA-48-like enzymes, in some carbapenems was identified. We focused our study on a deep analysis of OXA-48-like-producing Enterobacterales, especially strains showing poor hydrolytic activity. In this study, well characterized 74 isolates of Enterobacterales resistant to carbapenems were used. Carbapenemase activity was determined by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), liquid chromatography/mass spectrometry (LC-MS), Carba-NP test and modified Carbapenem Inactivation Method (mCIM). As meropenem-derived β-lactone possesses the same molecular weight as native meropenem (MW 383.46 g/mol), β-lactonization cannot be directly detected by MALDI-TOF MS. In the spectra, however, the peaks of m/z = 340.5 and 362.5 representing decarboxylated β-lactone and its sodium adduct were detected in 25 out of 35 OXA-48-like producers. In the rest 10 isolates, decarboxylated hydrolytic product (m/z = 358.5) and its sodium adduct (m/z = 380.5) have been detected. The peak of m/z = 362.5 was detected in 3 strains co-producing OXA-48-like and NDM-1 carbapenemases. The respective signal was identified in no strain producing class A or class B carbapenemase alone showing its specificity for OXA-48-like carbapenemases. Using LC-MS, we were able to identify meropenem-derived β-lactone directly according to the different retention time. All strains with a predominant β-lactone production showed negative results of Carba NP test. In this study, we have demonstrated that the strains producing OXA-48-like carbapenemases showing false-negative results using Carba NP test and MALDI-TOF MS preferentially produced meropenem-derived β-lactone. We also identified β-lactone-specific peak in MALDI-TOF MS spectra and demonstrated the ability of LC-MS to detect meropenem-derived β-lactone.
Collapse
Affiliation(s)
- Vendula Studentova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Vendula Sudova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Clinical Biochemistry and Haematology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Ibrahim Bitar
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Veronika Paskova
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| | - Jiri Moravec
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic
| | - Petr Pompach
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Michael Volny
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Petr Novak
- grid.418800.50000 0004 0555 4846Institute of Microbiology of the Czech Academy of Sciences, BIOCEV, Prumyslova 595, 252 50 Vestec, Czech Republic
| | - Jaroslav Hrabak
- grid.4491.80000 0004 1937 116XBiomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 76, 323 00 Pilsen, Czech Republic ,grid.4491.80000 0004 1937 116XDepartment of Microbiology, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 80, 323 00 Pilsen, Czech Republic
| |
Collapse
|
16
|
Rabaan AA, Eljaaly K, Alhumaid S, Albayat H, Al-Adsani W, Sabour AA, Alshiekheid MA, Al-Jishi JM, Khamis F, Alwarthan S, Alhajri M, Alfaraj AH, Tombuloglu H, Garout M, Alabdullah DM, Mohammed EAE, Yami FSA, Almuhtaresh HA, Livias KA, Mutair AA, Almushrif SA, Abusalah MAHA, Ahmed N. An Overview on Phenotypic and Genotypic Characterisation of Carbapenem-Resistant Enterobacterales. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:1675. [PMID: 36422214 PMCID: PMC9696003 DOI: 10.3390/medicina58111675] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 08/26/2023]
Abstract
Improper use of antimicrobials has resulted in the emergence of antimicrobial resistance (AMR), including multi-drug resistance (MDR) among bacteria. Recently, a sudden increase in Carbapenem-resistant Enterobacterales (CRE) has been observed. This presents a substantial challenge in the treatment of CRE-infected individuals. Bacterial plasmids include the genes for carbapenem resistance, which can also spread to other bacteria to make them resistant. The incidence of CRE is rising significantly despite the efforts of health authorities, clinicians, and scientists. Many genotypic and phenotypic techniques are available to identify CRE. However, effective identification requires the integration of two or more methods. Whole genome sequencing (WGS), an advanced molecular approach, helps identify new strains of CRE and screening of the patient population; however, WGS is challenging to apply in clinical settings due to the complexity and high expense involved with this technique. The current review highlights the molecular mechanism of development of Carbapenem resistance, the epidemiology of CRE infections, spread of CRE, treatment options, and the phenotypic/genotypic characterisation of CRE. The potential of microorganisms to acquire resistance against Carbapenems remains high, which can lead to even more susceptible drugs such as colistin and polymyxins. Hence, the current study recommends running the antibiotic stewardship programs at an institutional level to control the use of antibiotics and to reduce the spread of CRE worldwide.
Collapse
Affiliation(s)
- Ali A. Rabaan
- Molecular Diagnostic Laboratory, Johns Hopkins Aramco Healthcare, Dhahran 31311, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia
- Department of Public Health and Nutrition, The University of Haripur, Haripur 22610, Pakistan
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85716, USA
| | - Saad Alhumaid
- Administration of Pharmaceutical Care, Al-Ahsa Health Cluster, Ministry of Health, Al-Ahsa 31982, Saudi Arabia
| | - Hawra Albayat
- Infectious Disease Department, King Saud Medical City, Riyadh 7790, Saudi Arabia
| | - Wasl Al-Adsani
- Department of Medicine, Infectious Diseases Hospital, Kuwait City 63537, Kuwait
- Department of Infectious Diseases, Hampton Veterans Administration Medical Center, Hampton, VA 23667, USA
| | - Amal A. Sabour
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Maha A. Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jumana M. Al-Jishi
- Internal Medicine Department, Qatif Central Hospital, Qatif 635342, Saudi Arabia
| | - Faryal Khamis
- Infection Diseases Unit, Department of Internal Medicine, Royal Hospital, Muscat 1331, Oman
| | - Sara Alwarthan
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Mashael Alhajri
- Department of Internal Medicine, College of Medicine, Imam Abdulrahman Bin Faisal University, Ammam 34212, Saudi Arabia
| | - Amal H. Alfaraj
- Pediatric Department, Abqaiq General Hospital, First Eastern Health Cluster, Abqaiq 33261, Saudi Arabia
| | - Huseyin Tombuloglu
- Department of Genetics Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 34221, Saudi Arabia
| | - Mohammed Garout
- Department of Community Medicine and Health Care for Pilgrims, Faculty of Medicine, Umm Al-Qura University, Makkah 21955, Saudi Arabia
| | - Duaa M. Alabdullah
- Molecular Diagnostic Laboratory, Dammam Regional Laboratory and Blood Bank, Dammam 31411, Saudi Arabia
| | - Elmoeiz Ali Elnagi Mohammed
- Department of Clinical Laboratory Sciences, Prince Sultan Military College of Health Sciences, Dhahran 34313, Saudi Arabia
| | - Fatimah S. Al Yami
- Department of Medical Laboratory, King Fahad Military Medical Complex, Dhahran 34313, Saudi Arabia
| | - Haifa A. Almuhtaresh
- Department of Clinical Laboratories Services, Dammam Medical Complex, Dammam Health Network, Dammam 5343, Saudi Arabia
| | - Kovy Arteaga Livias
- Facultad de Ciencias de la Salud, Universidad Científica del Sur, Lima 15001, Peru
- Facultad de Medicina, Universidad Nacional Hermilio Valdizán, Huánuco 10000, Peru
| | - Abbas Al Mutair
- Research Center, Almoosa Specialist Hospital, Al-Ahsa 36342, Saudi Arabia
- College of Nursing, Princess Norah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia
- School of Nursing, Wollongong University, Wollongong, NSW 2522, Australia
- Nursing Department, Prince Sultan Military College of Health Sciences, Dhahran 33048, Saudi Arabia
| | - Shawqi A. Almushrif
- Department of Microbiology and Hematology Laboratory, Dammam Comprehensive Screening Centre, Dammam 31433, Saudi Arabia
| | | | - Naveed Ahmed
- Department of Medical Microbiology and Parasitology, School of Medical Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Malaysia
| |
Collapse
|
17
|
Hleba L, Hlebova M, Kovacik A, Petrova J, Maskova Z, Cubon J, Massanyi P. Use of MALDI-TOF MS to Discriminate between Aflatoxin B1-Producing and Non-Producing Strains of Aspergillus flavus. Molecules 2022; 27:molecules27227861. [PMID: 36431961 PMCID: PMC9692738 DOI: 10.3390/molecules27227861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Aflatoxin B1 (AFB1) is one of the most toxic mycotoxins. One of the producers of AFB1 is Aspergillus flavus. Therefore, its rapid identification plays a key role in various sectors of the food and feed industry. MALDI-TOF mass spectrometry is one of the fastest and most accurate methods today. Therefore, the aim of this research was to develop the rapid identification of producing and non-producing strains of A. flavus based on the entire mass spectrum. To accomplish the main goal a different confirmatory MALDI-TOF MS and TLC procedures such as direct AFB1 identification by scraping from TLC plates, A. flavus mycelium, nutrient media around A. flavus growth, and finally direct AFB1 identification from infected wheat and barley grains had to be conducted. In this experiment, MALDI-TOF mass spectrometry with various modifications was the main supporting technology. All confirmatory methods confirmed the presence of AFB1 in the samples of aflatoxin-producing strains of A. flavus and vice versa; AFB1 was not detected in the case of non-producing strains. Entire mass spectra (from 2 to 20 kDa) of aflatoxin-producing and non-producing A. flavus strains were collected, statistically analyzed and clustered. An in-depth analysis of the obtained entire mass spectra showed differences between AFB1-producing and non-producing strains of A. flavus. Statistical and cluster analysis divided AFB1-producing and non-producing strains of A. flavus into two monasteries. The results indicate that it is possible to distinguish between AFB1 producers and non-producers by comparing the entire mass spectra using MALDI-TOF MS. Finally, we demonstrated that if there are established local AFB1-producing and non-producing strains of A. flavus, the entire mass spectrum database identification of aflatoxigenic A. flavus strains can be even faster and cheaper, without the need to identify the toxin itself.
Collapse
Affiliation(s)
- Lukas Hleba
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
- Correspondence:
| | - Miroslava Hlebova
- Department of Biology, Faculty of Natural Sciences, University of Ss. Cyril and Methodius, Nám. J. Herdu 2, 917 01 Trnava, Slovakia
| | - Anton Kovacik
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Jana Petrova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Zuzana Maskova
- Faculty of Biotechnology and Food Sciences, Institute of Biotechnology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Juraj Cubon
- Faculty of Biotechnology and Food Sciences, Institute of Food Sciences, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| | - Peter Massanyi
- Faculty of Biotechnology and Food Sciences, Institute of Applied Biology, Slovak University of Agriculture in Nitra, Tr. Andreja Hlinku 2, 949 76 Nitra, Slovakia
| |
Collapse
|
18
|
Li D, Yi J, Han G, Qiao L. MALDI-TOF Mass Spectrometry in Clinical Analysis and Research. ACS MEASUREMENT SCIENCE AU 2022; 2:385-404. [PMID: 36785658 PMCID: PMC9885950 DOI: 10.1021/acsmeasuresciau.2c00019] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/15/2022] [Accepted: 07/15/2022] [Indexed: 05/04/2023]
Abstract
In the decade after being awarded the Nobel Prize in Chemistry in 2002, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been widely used as an analytical chemistry tool for the detection of large and small molecules (e.g., polymers, proteins, peptides, nucleic acids, amino acids, lipids, etc.) and for clinical analysis and research (e.g., pathogen identification, genetic disorders screening, cancer diagnosis, etc.). In view of the fast development of MALDI-TOF MS in clinical usage, this review systematically summarizes the most important applications of MALDI-TOF MS in clinical analysis and research by analyzing MALDI TOF MS-related reviews collected in the Web of Science database. On the basis of the analysis of keyword co-occurrence of over 2000 review articles, four themes consisting of "pathogen identification", "disease diagnosis", "nucleic acids analysis", and "small molecules analysis" were found. For each theme, the review further outlined their application implications, analytical methods, and systems as well as limitations that need to be addressed. Overall, the review summarizes and elaborates on the clinical applications of MALDI-TOF MS, providing a comprehensive picture for researchers embarking on MALDI TOF MS-related clinical analysis and research.
Collapse
|
19
|
Boutal H, Moguet C, Pommiès L, Simon S, Naas T, Volland H. The Revolution of Lateral Flow Assay in the Field of AMR Detection. Diagnostics (Basel) 2022; 12:1744. [PMID: 35885647 PMCID: PMC9317642 DOI: 10.3390/diagnostics12071744] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/16/2022] Open
Abstract
The global spread of antimicrobial resistant (AMR) bacteria represents a considerable public health concern, yet their detection and identification of their resistance mechanisms remain challenging. Optimal diagnostic tests should provide rapid results at low cost to enable implementation in any microbiology laboratory. Lateral flow assays (LFA) meet these requirements and have become essential tools to combat AMR. This review presents the versatility of LFA developed for the AMR detection field, with particular attention to those directly triggering β-lactamases, their performances, and specific limitations. It considers how LFA can be modified by detecting not only the enzyme, but also its β-lactamase activity for a broader clinical sensitivity. Moreover, although LFA allow a short time-to-result, they are generally only implemented after fastidious and time-consuming techniques. We present a sample processing device that shortens and simplifies the handling of clinical samples before the use of LFA. Finally, the capacity of LFA to detect amplified genetic determinants of AMR by isothermal PCR will be discussed. LFA are inexpensive, rapid, and efficient tools that are easy to implement in the routine workflow of laboratories as new first-line tests against AMR with bacterial colonies, and in the near future directly with biological media.
Collapse
Affiliation(s)
- Hervé Boutal
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Christian Moguet
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Lilas Pommiès
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Stéphanie Simon
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| | - Thierry Naas
- Bacteriology-Hygiene Unit, APHP, Hôpital Bicêtre, 94270 Le Kremlin-Bicêtre, France;
- Team Resist, UMR1184, Université Paris-Saclay—INSERM—CEA, LabEx Lermit, 91190 Gif-sur-Yvette, France
- Associated French National Reference Center for Antibiotic Resistance: Carbapenemase-Producing Enterobacteriaceae, 94270 Le Kremlin-Bicêtre, France
| | - Hervé Volland
- Département Médicaments et Technologies Pour la Santé (DMTS), Université Paris Saclay, CEA, INRAE, SPI, 91191 Gif-sur-Yvette, France; (H.B.); (C.M.); (L.P.); (S.S.)
| |
Collapse
|
20
|
Catalán P, Wood E, Blair JMA, Gudelj I, Iredell JR, Beardmore RE. Seeking patterns of antibiotic resistance in ATLAS, an open, raw MIC database with patient metadata. Nat Commun 2022; 13:2917. [PMID: 35614098 PMCID: PMC9133080 DOI: 10.1038/s41467-022-30635-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 05/09/2022] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance represents a growing medical concern where raw, clinical datasets are under-exploited as a means to track the scale of the problem. We therefore sought patterns of antibiotic resistance in the Antimicrobial Testing Leadership and Surveillance (ATLAS) database. ATLAS holds 6.5M minimal inhibitory concentrations (MICs) for 3,919 pathogen-antibiotic pairs isolated from 633k patients in 70 countries between 2004 and 2017. We show most pairs form coherent, although not stationary, timeseries whose frequencies of resistance are higher than other databases, although we identified no systematic bias towards including more resistant strains in ATLAS. We sought data anomalies whereby MICs could shift for methodological and not clinical or microbiological reasons and found artefacts in over 100 pathogen-antibiotic pairs. Using an information-optimal clustering methodology to classify pathogens into low and high antibiotic susceptibilities, we used ATLAS to predict changes in resistance. Dynamics of the latter exhibit complex patterns with MIC increases, and some decreases, whereby subpopulations' MICs can diverge. We also identify pathogens at risk of developing clinical resistance in the near future.
Collapse
Affiliation(s)
- Pablo Catalán
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
- Grupo Interdisciplinar de Sistemas Complejos, Departamento de Matemáticas, Universidad Carlos III de Madrid, 28911, Leganés, Spain.
| | - Emily Wood
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jessica M A Blair
- Institute of Microbiology and Infection, College of Medical and Dental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ivana Gudelj
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Jonathan R Iredell
- Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Westmead Hospital,Western Sydney Local Health District, Sydney, NSW, Australia
- School of Medicine, Sydney Medical School, University of Sydney, Sydney, NSW, Australia
| | - Robert E Beardmore
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4QD, UK.
| |
Collapse
|
21
|
Rivero J, Zurita A, Cutillas C, Callejón R. The Use of MALDI-TOF MS as a Diagnostic Tool for Adult Trichuris Species. Front Vet Sci 2022; 9:867919. [PMID: 35647091 PMCID: PMC9132177 DOI: 10.3389/fvets.2022.867919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/13/2022] [Indexed: 01/07/2023] Open
Abstract
Trichuriasis is considered a neglected tropical disease, being the second most common helminthiasis in humans. Detection of Trichuris in routine diagnosis is usually done by microscopic detection of eggs in fecal samples. Other molecular analyses are more reliable and could be used, but these analyses are not routinely available in clinical microbiology laboratories. The use of matrix-assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is increasing since the last decades due to its recent evidence as a potential role for reliable identification of microorganisms and a few nematodes. But, for parasites detection, normalized protocols and the acquisition and introduction of new species to the database are required. We carried out a preliminary study confirming the usefulness of MALDI-TOF MS for the rapid and reliable identification of Trichuris suis used as control and the creation of an internal database. To create main spectra profiles (MSPs), the different parts of five whipworms (esophagus and intestine) were used, developing different tests to verify the repeatability and reproducibility of the spectra. Thus, to validate the new internal database, 20 whipworms, separating the esophagus and intestine, were used, of which 100% were accurately identified as T. suis, but could not distinguish between both parts of the worm. Log score values ranged between 1.84 and 2.36, meaning a high-quality identification. The results confirmed that MALDI-TOF MS was able to identify Trichuris species. Additionally, a MALDI-TOF MS profile of T. suis proteome was carried out to develop the first internal database of spectra for the diagnosis of trichuriasis and other Trichuris spp.
Collapse
|
22
|
Feucherolles M, Nennig M, Becker SL, Martiny D, Losch S, Penny C, Cauchie HM, Ragimbeau C. Combination of MALDI-TOF Mass Spectrometry and Machine Learning for Rapid Antimicrobial Resistance Screening: The Case of Campylobacter spp. Front Microbiol 2022; 12:804484. [PMID: 35250909 PMCID: PMC8894766 DOI: 10.3389/fmicb.2021.804484] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 12/28/2021] [Indexed: 01/15/2023] Open
Abstract
While MALDI-TOF mass spectrometry (MS) is widely considered as the reference method for the rapid and inexpensive identification of microorganisms in routine laboratories, less attention has been addressed to its ability for detection of antimicrobial resistance (AMR). Recently, some studies assessed its potential application together with machine learning for the detection of AMR in clinical pathogens. The scope of this study was to investigate MALDI-TOF MS protein mass spectra combined with a prediction approach as an AMR screening tool for relevant foodborne pathogens, such as Campylobacter coli and Campylobacter jejuni. A One-Health panel of 224 C. jejuni and 116 C. coli strains was phenotypically tested for seven antimicrobial resistances, i.e., ciprofloxacin, erythromycin, tetracycline, gentamycin, kanamycin, streptomycin, and ampicillin, independently, and were submitted, after an on- and off-plate protein extraction, to MALDI Biotyper analysis, which yielded one average spectra per isolate and type of extraction. Overall, high performance was observed for classifiers detecting susceptible as well as ciprofloxacin- and tetracycline-resistant isolates. A maximum sensitivity and a precision of 92.3 and 81.2%, respectively, were reached. No significant prediction performance differences were observed between on- and off-plate types of protein extractions. Finally, three putative AMR biomarkers for fluoroquinolones, tetracyclines, and aminoglycosides were identified during the current study. Combination of MALDI-TOF MS and machine learning could be an efficient and inexpensive tool to swiftly screen certain AMR in foodborne pathogens, which may enable a rapid initiation of a precise, targeted antibiotic treatment.
Collapse
Affiliation(s)
- Maureen Feucherolles
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- *Correspondence: Maureen Feucherolles,
| | - Morgane Nennig
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| | - Sören L. Becker
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Delphine Martiny
- National Reference Centre for Campylobacter, Laboratoire des Hôpitaux Universitaires de Bruxelles-Universitaire Laboratorium Brussel (LHUB-ULB), Brussels, Belgium
- Université de Mons (UMONS), Mons, Belgium
| | - Serge Losch
- Laboratoire de Médecine Vétérinaire de l’Etat, Dudelange, Luxembourg
| | - Christian Penny
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Chambre des Députés du Grand-Duché de Luxembourg, Parliamentary Research Service, Luxembourg, Luxembourg
| | - Henry-Michel Cauchie
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology, Belval, Luxembourg
- Henry-Michel Cauchie,
| | - Catherine Ragimbeau
- Laboratoire National de Santé, Epidemiology and Microbial Genomics, Dudelange, Luxembourg
| |
Collapse
|
23
|
Noun M, Akoumeh R, Abbas I. Cell and Tissue Imaging by TOF-SIMS and MALDI-TOF: An Overview for Biological and Pharmaceutical Analysis. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2022; 28:1-26. [PMID: 34809729 DOI: 10.1017/s1431927621013593] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The potential of mass spectrometry imaging (MSI) has been demonstrated in cell and tissue research since 1970. MSI can reveal the spatial distribution of a wide range of atomic and molecular ions detected from biological sample surfaces, it is a powerful and valuable technique used to monitor and detect diverse chemical and biological compounds, such as drugs, lipids, proteins, and DNA. MSI techniques, notably matrix-assisted laser desorption/ionization time of flight (MALDI-TOF) and time of flight secondary ion mass spectrometry (TOF-SIMS), witnessed a dramatic upsurge in studying and investigating biological samples especially, cells and tissue sections. This advancement is attributed to the submicron lateral resolution, the high sensitivity, the good precision, and the accurate chemical specificity, which make these techniques suitable for decoding and understanding complex mechanisms of certain diseases, as well as monitoring the spatial distribution of specific elements, and compounds. While the application of both techniques for the analysis of cells and tissues is thoroughly discussed, a briefing of MALDI-TOF and TOF-SIMS basis and the adequate sampling before analysis are briefly covered. The importance of MALDI-TOF and TOF-SIMS as diagnostic tools and robust analytical techniques in the medicinal, pharmaceutical, and toxicology fields is highlighted through representative published studies.
Collapse
Affiliation(s)
- Manale Noun
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Rayane Akoumeh
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| | - Imane Abbas
- Lebanese Atomic Energy Commission - NCSR, Beirut, Lebanon
| |
Collapse
|
24
|
Carbapenemase Producing Klebsiella pneumoniae (KPC): What Is the Best MALDI-TOF MS Detection Method. Antibiotics (Basel) 2021; 10:antibiotics10121549. [PMID: 34943761 PMCID: PMC8698427 DOI: 10.3390/antibiotics10121549] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/14/2021] [Accepted: 12/16/2021] [Indexed: 12/21/2022] Open
Abstract
Klebsiella pneumoniae carbapenemase (KPC)-producing bacteria is a group of highly dangerous antibiotic resistant Gram-negative Enterobacteriaceae. They cause infections associated with significant morbidity and mortality. Therefore, the rapid detection of KPC-producing bacteria plays a key role in clinical microbiology. Matrix assisted laser desorption/ionization time-of- flight (MALDI-TOF) is a rapidly evolving technology that finds application in various clinical, scientific, and industrial disciplines. In the present study, we demonstrated three different procedures of carbapenemase-producing K. pneumoniae (KPC) detection. The most basic model of MALDI-TOF instrument MS Microflex LT was used, operating in the linear ion-positive mode, commonly used in modern clinical laboratories. The first procedure was based on indirect monitoring of carbapenemase production with direct detection of hydrolyzed carbapenem antibiotic degradation products in the mass spectrum. The second procedure was based on direct detection of blaKPC accompanying peak with an 11,109 Da in the mass spectrum of carbapenemase-producing K. pneumoniae (KPC), which represents the cleaved protein (pKpQIL_p019) expressed by pKpQIL plasmid. In addition, several unique peaks were detected in the carbapenemase-producing K. pneumoniae (KPC) mass spectrum. The third procedure was the identification of carbapenemase-producing K. pneumoniae (KPC) based on the protein fingerprint using local database created from the whole mass spectra. By comparing detection procedures, we determined that the third procedure was very fast and relatively easy. However, it requires previous verification of carbapenemase-producing K. pneumoniae (KPC) using other methods as genetic blaKPC identification, detection of carbapenem degradation products, and accompanying peak with 11,109 Da, which represents cleaved pKpQIL_p019 protein expressed by pKpQIL plasmid. Detection of carbapenemase-producing K. pneumoniae using MALDI-TOF provides fast and accurate results that may help to reduce morbidity and mortality in hospital setting when applied in diagnostic situations.
Collapse
|
25
|
Huang Y, Li J, Wang Q, Tang K, Li C. Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J Microbiol Methods 2021; 192:106385. [PMID: 34843862 DOI: 10.1016/j.mimet.2021.106385] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 11/17/2022]
Abstract
Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) represent a serious threat to public health and their timely detection is essential for patient management and the prevention of nosocomial infections. Here, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to rapidly identify dominant KPC-Kp in China, by using an automated detection of a KPC-specific peak (at 4521 m/z) by a genetic algorithm using ClinProTools software. Whole-genome sequencing (WGS) was used to understand the genetic environment of the blaKPC-2 gene. In this study, we analyzed 235 K. pneumoniae Chinese clinical isolates, of which 175 (93 KPC-positive isolates and 82 KPC-negative isolates) isolates were used to build a model to select a KPC-specific peak, and another 60 isolates for external validation. In addition, all the spectra were visually inspected by the FlexAnalysis software to evaluate the accuracy of the automated detection. The results showed a 4521 m/z peak found in all blaKPC-2-positive isolates but absent in blaKPC-2-negative isolates. Interestingly, all KPC-Kp belonged to ST11, the dominant clone in China. WGS analysis of a representative isolate showed that the genetic environment of KPC-2 was IS26-ISKpn27-blaKPC-2-ΔISKpn6-Tn1721, similar to the KPC-2 genetic environment of ST11 KPC-Kp previously reported in China. Therefore, the 4521 m/z peak is closely related to ST11 KPC-Kp. In summary, we used MALDI-TOF MS to quickly detect KPC-Kp in the process of routine bacterial identification without increasing costs or requiring further knowledge, which has broad application prospects in drug resistance analysis and infection control.
Collapse
Affiliation(s)
- Yun Huang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Juan Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Qianyu Wang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Kewen Tang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China
| | - Congrong Li
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, Hubei Province, China.
| |
Collapse
|
26
|
Buszewski B, Maślak E, Złoch M, Railean-Plugaru V, Kłodzińska E, Pomastowski P. A new approach to identifying pathogens, with particular regard to viruses, based on capillary electrophoresis and other analytical techniques. Trends Analyt Chem 2021; 139:116250. [PMID: 34776563 PMCID: PMC8573725 DOI: 10.1016/j.trac.2021.116250] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fast determination, identification and characterization of pathogens is a significant challenge in many fields, from industry to medicine. Standard approaches (e.g., culture media and biochemical tests) are known to be very time-consuming and labor-intensive. Conversely, screening techniques demand a quick and low-cost grouping of microbial isolates, and current analysis call for broad reports of pathogens, involving the application of molecular, microscopy, and electromigration techniques, DNA fingerprinting and also MALDI-TOF methods. The present COVID-19 pandemic is a crisis that affects rich and poor countries alike. Detection of SARS-CoV-2 in patient samples is a critical tool for monitoring disease spread, guiding therapeutic decisions and devising social distancing protocols. The goal of this review is to present an innovative methodology based on preparative separation of pathogens by electromigration techniques in combination with simultaneous analysis of the proteome, lipidome, and genome using laser desorption/ionization analysis.
Collapse
Affiliation(s)
- Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewelina Maślak
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland.,Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Viorica Railean-Plugaru
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| | - Ewa Kłodzińska
- Institute of Sport - National Research Institute, Department of Analytical Chemistry and Instrumental Analysis, 01-982, Warsaw, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Torun, 87-100, Torun, Poland
| |
Collapse
|
27
|
Clinically Applicable System for Rapidly Predicting Enterococcus faecium Susceptibility to Vancomycin. Microbiol Spectr 2021; 9:e0091321. [PMID: 34756065 PMCID: PMC8579932 DOI: 10.1128/spectrum.00913-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecium is a clinically important pathogen that can cause significant morbidity and death. In this study, we aimed to develop a machine learning (ML) algorithm-based rapid susceptibility method to distinguish vancomycin-resistant E. faecium (VREfm) and vancomycin-susceptible E. faecium (VSEfm) strains. A predictive model was developed and validated to distinguish VREfm and VSEfm strains by analyzing the matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) spectra of unique E. faecium isolates from different specimen types. The algorithm used 5,717 mass spectra, including 2,795 VREfm and 2,922 VSEfm mass spectra, and was externally validated with 2,280 mass spectra of isolates (1,222 VREfm and 1,058 VSEfm strains). A random forest-based algorithm demonstrated overall good classification performances for the isolates from the specimens, with mean accuracy, sensitivity, and specificity of 0.78, 0.79, and 0.77, respectively, with 10-fold cross-validation, timewise validation, and external validation. Furthermore, the algorithm provided rapid results, which would allow susceptibility prediction prior to the availability of phenotypic susceptibility results. In conclusion, an ML algorithm designed using mass spectra obtained from the routine workflow may be able to rapidly differentiate VREfm strains from VSEfm strains; however, susceptibility results must be confirmed by routine methods, given the demonstrated performance of the assay. IMPORTANCE A modified binning method was incorporated to cluster MS shifting ions into a set of representative peaks based on a large-scale MS data set of clinical VREfm and VSEfm isolates, including 2,795 VREfm and 2,922 VSEfm isolates. Predictions with the algorithm were significantly more accurate than empirical antibiotic use, the accuracy of which was 0.50, based on the local epidemiology. The algorithm improved the accuracy of antibiotic administration, compared to empirical antibiotic prescription. An ML algorithm designed using MALDI-TOF MS spectra obtained from the routine workflow accurately differentiated VREfm strains from VSEfm strains, especially in blood and sterile body fluid samples, and can be applied to facilitate the rapid and accurate clinical testing of pathogens.
Collapse
|
28
|
Salim NO, Fuad FAA, Khairuddin F, Seman WMKW, Jonet MA. Purifying and Characterizing Bacterially Expressed Soluble Lactate Dehydrogenase from Plasmodium knowlesi for the Development of Anti-Malarial Drugs. Molecules 2021; 26:molecules26216625. [PMID: 34771034 PMCID: PMC8588329 DOI: 10.3390/molecules26216625] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/11/2021] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Plasmodium lactate dehydrogenase (pLH) is one of the enzymes in glycolysis with potential target for chemotherapy. This study aimed to clone, overexpress and characterize soluble recombinant lactate dehydrogenase from Plasmodium knowlesi in a bacterial system. Synthetic P. knowlesi lactate dehydrogenase (Pk-LDH) gene was cloned into pET21a expression vector, transformed into Escherichia coli strain BL21 (DE3) expression system and then incubated for 18 h, 20 °C with the presence of 0.5 mM isopropyl β-d-thiogalactoside in Terrific broth supplemented with Magnesium sulfate, followed by protein purifications using Immobilized Metal Ion Affinity Chromatography and size exclusion chromatography (SEC). Enzymatic assay was conducted to determine the activity of the enzyme. SDS-PAGE analysis revealed that protein of 34 kDa size was present in the soluble fraction. In SEC, a single peak corresponding to the size of Pk-LDH protein was observed, indicating that the protein has been successfully purified. From MALDI-TOF analysis findings, a peptide score of 282 was established, which is significant for lactate dehydrogenase from P. knowlesi revealed via MASCOT analysis. Secondary structure analysis of CD spectra indicated 79.4% α helix and 1.37% β strand structure. Specific activity of recombinant Pk-LDH was found to be 475.6 U/mg, confirming the presence of active protein. Soluble Pk-LDH that is biologically active was produced, which can be used further in other malaria studies.
Collapse
Affiliation(s)
- Nurhainis Ogu Salim
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50728, W.P. Kuala Lumpur, Malaysia;
- Parasitology Unit, Institute for Medical Research, National Institutes of Health (NIH), Ministry of Health Malaysia NIH Complex, Bandar Setia Alam, Shah Alam 40170, Selangor, Malaysia
| | - Fazia Adyani Ahmad Fuad
- Department of Biotechnology Engineering, Faculty of Engineering, International Islamic University Malaysia, P.O. Box 10, Kuala Lumpur 50728, W.P. Kuala Lumpur, Malaysia;
- Correspondence: ; Tel.: +603-6421-4577
| | - Farahayu Khairuddin
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| | - Wan Mohd Khairulikhsan Wan Seman
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| | - Mohd Anuar Jonet
- Malaysia Genome Institute, National Institutes of Biotechnology Malaysia, Jalan Bangi, Kajang 43000, Selangor, Malaysia; (F.K.); (W.M.K.W.S.); (M.A.J.)
| |
Collapse
|
29
|
Şen Karaman D, Pamukçu A, Karakaplan MB, Kocaoglu O, Rosenholm JM. Recent Advances in the Use of Mesoporous Silica Nanoparticles for the Diagnosis of Bacterial Infections. Int J Nanomedicine 2021; 16:6575-6591. [PMID: 34602819 PMCID: PMC8478671 DOI: 10.2147/ijn.s273062] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/24/2021] [Indexed: 12/11/2022] Open
Abstract
Public awareness of infectious diseases has increased in recent months, not only due to the current COVID-19 outbreak but also because of antimicrobial resistance (AMR) being declared a top-10 global health threat by the World Health Organization (WHO) in 2019. These global issues have spiked the realization that new and more efficient methods and approaches are urgently required to efficiently combat and overcome the failures in the diagnosis and therapy of infectious disease. This holds true not only for current diseases, but we should also have enough readiness to fight the unforeseen diseases so as to avoid future pandemics. A paradigm shift is needed, not only in infection treatment, but also diagnostic practices, to overcome the potential failures associated with early diagnosis stages, leading to unnecessary and inefficient treatments, while simultaneously promoting AMR. With the development of nanotechnology, nanomaterials fabricated as multifunctional nano-platforms for antibacterial therapeutics, diagnostics, or both (known as "theranostics") have attracted increasing attention. In the research field of nanomedicine, mesoporous silica nanoparticles (MSN) with a tailored structure, large surface area, high loading capacity, abundant chemical versatility, and acceptable biocompatibility, have shown great potential to integrate the desired functions for diagnosis of bacterial infections. The focus of this review is to present the advances in mesoporous materials in the form of nanoparticles (NPs) or composites that can easily and flexibly accommodate dual or multifunctional capabilities of separation, identification and tracking performed during the diagnosis of infectious diseases together with the inspiring NP designs in diagnosis of bacterial infections.
Collapse
Affiliation(s)
- Didem Şen Karaman
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Ayşenur Pamukçu
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Technologies, İzmir, Turkey
| | - M Baran Karakaplan
- İzmir Kâtip Çelebi University, Graduate School of Natural and Applied Sciences, Department of Biomedical Engineering, İzmir, Turkey
| | - Ozden Kocaoglu
- Biomedical Engineering Department, Faculty of Engineering and Architecture, İzmir Katip Çelebi University, İzmir, 35620, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, 20520, Finland
| |
Collapse
|
30
|
Application and Perspectives of MALDI-TOF Mass Spectrometry in Clinical Microbiology Laboratories. Microorganisms 2021; 9:microorganisms9071539. [PMID: 34361974 PMCID: PMC8307939 DOI: 10.3390/microorganisms9071539] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/06/2021] [Accepted: 07/18/2021] [Indexed: 12/11/2022] Open
Abstract
Early diagnosis of severe infections requires of a rapid and reliable diagnosis to initiate appropriate treatment, while avoiding unnecessary antimicrobial use and reducing associated morbidities and healthcare costs. It is a fact that conventional methods usually require more than 24–48 h to culture and profile bacterial species. Mass spectrometry (MS) is an analytical technique that has emerged as a powerful tool in clinical microbiology for identifying peptides and proteins, which makes it a promising tool for microbial identification. Matrix assisted laser desorption ionization–time of flight MS (MALDI–TOF MS) offers a cost- and time-effective alternative to conventional methods, such as bacterial culture and even 16S rRNA gene sequencing, for identifying viruses, bacteria and fungi and detecting virulence factors and mechanisms of resistance. This review provides an overview of the potential applications and perspectives of MS in clinical microbiology laboratories and proposes its use as a first-line method for microbial identification and diagnosis.
Collapse
|
31
|
Jain MC, Nadaraja AV, Narang R, Zarifi MH. Rapid and real-time monitoring of bacterial growth against antibiotics in solid growth medium using a contactless planar microwave resonator sensor. Sci Rep 2021; 11:14775. [PMID: 34285253 PMCID: PMC8292355 DOI: 10.1038/s41598-021-94139-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 07/05/2021] [Indexed: 11/10/2022] Open
Abstract
Infection diagnosis and antibiotic susceptibility testing (AST) are pertinent clinical microbiology practices that are in dire need of improvement, due to the inadequacy of current standards in early detection of bacterial response to antibiotics and affordability of contemporarily used methods. This paper presents a novel way to conduct AST which hybridizes disk diffusion AST with microwave resonators for rapid, contactless, and non-invasive sensing and monitoring. In this research, the effect of antibiotic (erythromycin) concentrations on test bacterium, Escherichia coli (E. coli) cultured on solid agar medium (MH agar) are monitored through employing a microwave split-ring resonator. A one-port microwave resonator operating at a 1.76 GHz resonant frequency, featuring a 5 mm2 sensitive sensing region, was designed and optimized to perform this. Upon introducing uninhibited growth of the bacteria, the sensor measured 0.005 dB/hr, with a maximum change of 0.07 dB over the course of 15 hours. The amplitude change decreased to negligible values to signify inhibited growth of the bacteria at higher concentrations of antibiotics, such as a change of 0.005 dB in resonant amplitude variation while using 45 µg of antibiotic. Moreover, this sensor demonstrated decisive results of antibiotic susceptibility in under 6 hours and shows great promise to expand automation to the intricate AST workflow in clinical settings, while providing rapid, sensitive, and non-invasive detection capabilities.
Collapse
Affiliation(s)
- Mandeep Chhajer Jain
- Okanagan Microelectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Anupama Vijaya Nadaraja
- Okanagan Microelectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Rakesh Narang
- Okanagan Microelectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada
| | - Mohammad Hossein Zarifi
- Okanagan Microelectronics and Gigahertz Applications Laboratory, School of Engineering, University of British Columbia, Kelowna, BC, V1V 1V7, Canada.
| |
Collapse
|
32
|
Wilhelm CM, Forni GDR, Carneiro MDS, Barth AL. Establishing a quantitative index of meropenem hydrolysis for the detection of KPC- and NDM-producing bacteria by MALDI-TOF MS. J Microbiol Methods 2021; 187:106268. [PMID: 34118333 DOI: 10.1016/j.mimet.2021.106268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/23/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND Matrix Assisted Laser Desorption Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS), commonly used for microorganism identification, can also be applied for the detection of carbapenemase-producing bacteria by the evaluation of carbapenem hydrolysis. Since KPC- and NDM-producing bacteria are related to high mortality rates, diagnostic assays for its detection are essential. The aim of this study was to develop and evaluate a method to establish a quantitative measure (hydrolysis index - HI) to detect meropenem hydrolysis by MLADI-TOF MS. METHODS blaKPC and blaNDM positive and negative Klebsiella pneumoniae isolates and Escherichia coli ATCC 25922 (control) were incubated in a meropenem solution for 2 h. Protein extraction from these suspensions were submitted to MALDI-TOF MS analysis. The intensity of peaks at 384 m/z and 379 m/z of each isolate were used to establish the HI as follows: HI = (Peak intensity384 Test / Peak intensity379 Test) / (Peak intensity384 Control / Peak intensity379 Control). Receiver Operating Characteristic curve was used to determine a cutoff value to differentiate carbapenemase-producing from carbapenemase non-producing bacteria. RESULTS As all carbapenemase-producing K. pneumoniae presented HI ≤0.55 and all carbapenemase non-producing isolates presented a HI ≥0.57, the index of 0.56 was established as a cutoff value to differentiate carbapenemase (KPC and NDM) producing and non-producing bacteria.
Collapse
Affiliation(s)
- Camila Mörschbächer Wilhelm
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Giovanna de Ross Forni
- Graduação em Biomedicina, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Maiara Dos Santos Carneiro
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Afonso Luís Barth
- Programa de Pós-Graduação em Ciências Farmacêuticas, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Laboratório de Pesquisa em Resistência Bacteriana (LABRESIS), Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil.
| |
Collapse
|
33
|
Esener N, Maciel-Guerra A, Giebel K, Lea D, Green MJ, Bradley AJ, Dottorini T. Mass spectrometry and machine learning for the accurate diagnosis of benzylpenicillin and multidrug resistance of Staphylococcus aureus in bovine mastitis. PLoS Comput Biol 2021; 17:e1009108. [PMID: 34115749 PMCID: PMC8221797 DOI: 10.1371/journal.pcbi.1009108] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/23/2021] [Accepted: 05/22/2021] [Indexed: 01/16/2023] Open
Abstract
Staphylococcus aureus is a serious human and animal pathogen threat exhibiting extraordinary capacity for acquiring new antibiotic resistance traits in the pathogen population worldwide. The development of fast, affordable and effective diagnostic solutions capable of discriminating between antibiotic-resistant and susceptible S. aureus strains would be of huge benefit for effective disease detection and treatment. Here we develop a diagnostics solution that uses Matrix-Assisted Laser Desorption/Ionisation-Time of Flight Mass Spectrometry (MALDI-TOF) and machine learning, to identify signature profiles of antibiotic resistance to either multidrug or benzylpenicillin in S. aureus isolates. Using ten different supervised learning techniques, we have analysed a set of 82 S. aureus isolates collected from 67 cows diagnosed with bovine mastitis across 24 farms. For the multidrug phenotyping analysis, LDA, linear SVM, RBF SVM, logistic regression, naïve Bayes, MLP neural network and QDA had Cohen's kappa values over 85.00%. For the benzylpenicillin phenotyping analysis, RBF SVM, MLP neural network, naïve Bayes, logistic regression, linear SVM, QDA, LDA, and random forests had Cohen's kappa values over 85.00%. For the benzylpenicillin the diagnostic systems achieved up to (mean result ± standard deviation over 30 runs on the test set): accuracy = 97.54% ± 1.91%, sensitivity = 99.93% ± 0.25%, specificity = 95.04% ± 3.83%, and Cohen's kappa = 95.04% ± 3.83%. Moreover, the diagnostic platform complemented by a protein-protein network and 3D structural protein information framework allowed the identification of five molecular determinants underlying the susceptible and resistant profiles. Four proteins were able to classify multidrug-resistant and susceptible strains with 96.81% ± 0.43% accuracy. Five proteins, including the previous four, were able to classify benzylpenicillin resistant and susceptible strains with 97.54% ± 1.91% accuracy. Our approach may open up new avenues for the development of a fast, affordable and effective day-to-day diagnostic solution, which would offer new opportunities for targeting resistant bacteria.
Collapse
MESH Headings
- Animals
- Bacterial Proteins/chemistry
- Cattle
- Computational Biology
- Diagnosis, Computer-Assisted/methods
- Diagnosis, Computer-Assisted/statistics & numerical data
- Diagnosis, Computer-Assisted/veterinary
- Drug Resistance, Multiple, Bacterial
- Female
- Humans
- Mastitis, Bovine/diagnosis
- Mastitis, Bovine/drug therapy
- Mastitis, Bovine/microbiology
- Methicillin-Resistant Staphylococcus aureus/chemistry
- Methicillin-Resistant Staphylococcus aureus/drug effects
- Methicillin-Resistant Staphylococcus aureus/isolation & purification
- Microbial Sensitivity Tests
- Models, Molecular
- Penicillin G/pharmacology
- Protein Interaction Maps
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
- Staphylococcal Infections/diagnosis
- Staphylococcal Infections/drug therapy
- Staphylococcal Infections/veterinary
- Staphylococcus aureus/chemistry
- Staphylococcus aureus/drug effects
- Staphylococcus aureus/isolation & purification
- Supervised Machine Learning
- United Kingdom
Collapse
Affiliation(s)
- Necati Esener
- University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, United Kingdom
| | - Alexandre Maciel-Guerra
- University of Nottingham School of Computer Science, Jubilee Campus, Nottingham, United Kingdom
| | | | - Daniel Lea
- Digital Research Service, University of Nottingham, Sutton Bonington, United Kingdom
| | - Martin J. Green
- University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, United Kingdom
| | - Andrew J. Bradley
- University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, United Kingdom
- Quality Milk Management Services ltd, Easton, United Kingdom
| | - Tania Dottorini
- University of Nottingham, School of Veterinary Medicine and Science, Sutton Bonington, United Kingdom
| |
Collapse
|
34
|
Wang G, Song G, Xu Y. A Rapid Antimicrobial Susceptibility Test for Klebsiella pneumoniae Using a Broth Micro-Dilution Combined with MALDI TOF MS. Infect Drug Resist 2021; 14:1823-1831. [PMID: 34025124 PMCID: PMC8132464 DOI: 10.2147/idr.s305280] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022] Open
Abstract
Background Matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) is a novel method that can be used to identify pathogens and has potential applications in the detection of drug-resistant bacteria. Purpose To evaluate the ability of a MALDI-TOF MS-based broth micro-dilution method in detecting the minimum inhibitory concentration (MIC) values of Klebsiella pneumoniae to ceftriaxone and imipenem. Materials and Methods Sixty strains of K. pneumoniae with different levels of resistance to carbapenems and cephalosporins were randomly collected. The 0.5 McFarland (Mc) concentration of the bacterial suspension was inoculated in cation-adjusted Mueller-Hinton broth (CAMHB) with a final cell turbidity of 5×105 CFU/mL. The broth was incubated with serial concentrations of antibiotics. After centrifuging the bacterial suspensions, the lysed cells were analyzed by MALDI-TOF MS to identify the growth-promoting or inhibitory effects on K. pneumoniae. The molecular mechanisms of resistance were investigated by PCR and DNA sequencing analysis. Results The expression of known resistance genes (blaKPC, blaFOX, blaDHA, blaCTX-M and blaTEM) was detected in the 30 carbapenems-resistant strains. The agreement between the MIC values derived from the MALDI-TOF MS analysis and from the broth micro-dilution method was 61.7% for ceftriaxone and 71.7% for imipenem. According to the Clinical and Laboratory Standards Institute (CLSI) breakpoint of resistance to ceftriaxone and imipenem, the 60 isolates were accurately classified as resistant or susceptible isolates with 100% sensitivity and 100% specificity. Conclusion The transmission and infection of multidrug-resistant bacteria could be better managed and treated with the rapid identification of strains and antimicrobial susceptibility. A MALDI-TOF MS-based susceptibility test could be used to identify resistance of K. pneumoniae within a short time-frame. This approach could potentially be used as a supplementary antimicrobial susceptibility test that could be investigated on more bacterial species combined with different antibiotics.
Collapse
Affiliation(s)
- Gang Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| | - Guobin Song
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China.,Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Yuanhong Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People's Republic of China
| |
Collapse
|
35
|
MALDI-TOF Mass Spectroscopy Applications in Clinical Microbiology. Adv Pharmacol Pharm Sci 2021; 2021:9928238. [PMID: 34041492 PMCID: PMC8121603 DOI: 10.1155/2021/9928238] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/30/2021] [Indexed: 02/07/2023] Open
Abstract
There is a range of proteomics methods to spot and analyze bacterial protein contents such as liquid chromatography-mass spectrometry (LC-MS), two-dimensional gel electrophoresis, and matrix-assisted laser desorption/ionization mass spectrometry (MALDI-TOF MS), which give comprehensive information about the microorganisms that may be helpful within the diagnosis and coverings of infections. Microorganism identification by mass spectrometry is predicted on identifying a characteristic spectrum of every species so matched with an outsized database within the instrument. MALDI-TOF MS is one of the diagnostic methods, which is a straightforward, quick, and precise technique, and is employed in microbial diagnostic laboratories these days and may replace other diagnostic methods. This method identifies various microorganisms such as bacteria, fungi, parasites, and viruses, which supply comprehensive information. One of the MALDI-TOF MS's crucial applications is bacteriology, which helps identify bacterial species, identify toxins, and study bacterial antibiotic resistance. By knowing these cases, we will act more effectively against bacterial infections.
Collapse
|
36
|
Robertson J, McGoverin C, White JR, Vanholsbeeck F, Swift S. Rapid Detection of Escherichia coli Antibiotic Susceptibility Using Live/Dead Spectrometry for Lytic Agents. Microorganisms 2021; 9:924. [PMID: 33925816 PMCID: PMC8147107 DOI: 10.3390/microorganisms9050924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
Antibiotic resistance is a serious threat to public health. The empiric use of the wrong antibiotic occurs due to urgency in treatment combined with slow, culture-based diagnostic techniques. Inappropriate antibiotic choice can promote the development of antibiotic resistance. We investigated live/dead spectrometry using a fluorimeter (Optrode) as a rapid alternative to culture-based techniques through application of the LIVE/DEAD® BacLightTM Bacterial Viability Kit. Killing was detected by the Optrode in near real-time when Escherichia coli was treated with lytic antibiotics-ampicillin and polymyxin B-and stained with SYTO 9 and/or propidium iodide. Antibiotic concentration, bacterial growth phase, and treatment time used affected the efficacy of this detection method. Quantification methods of the lethal action and inhibitory action of the non-lytic antibiotics, ciprofloxacin and chloramphenicol, respectively, remain to be elucidated.
Collapse
Affiliation(s)
- Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Cushla McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Joni R. White
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand; (C.M.); (F.V.)
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand; (J.R.W.); (S.S.)
| |
Collapse
|
37
|
Carrascosa C, Martínez R, Sanjuán E, Millán R, Del Rosario-Quintana C, Acosta F, García A, Jaber JR. Identification of the Pseudomonas fluorescens group as being responsible for blue pigment on fresh cheese. J Dairy Sci 2021; 104:6548-6558. [PMID: 33838893 DOI: 10.3168/jds.2020-19517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022]
Abstract
New cases of blue cheese discoloration has led to recent research to identify the causal agent and factors that favor blue pigment appearing. Nonetheless, very few reports have described the source of contamination and the measurements to eradicate the microbiological source on cheese farms by determining the relation between blue discoloration on fresh cheese and the Pseudomonas fluorescens group. Thus, 60 samples from a cheese farm (cheese, equipment surfaces, tap water, and raw and pasteurized milk) were analyzed by phenotypical, MALDI-TOF, 16S rRNA sequencing and pulsed-field gel electrophoresis tests to determine the causal agent. The results obtained by pulsed-field gel electrophoresis with restriction enzymes XbaI and SpeI confirmed tap water as the initial contaminated source. The above-mentioned result was essential to avoid Pseudomonas contamination due to the most residual microorganisms being inactivated through a new disinfection program.
Collapse
Affiliation(s)
- Conrado Carrascosa
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain.
| | - Remigio Martínez
- Red de Grupos de Investigación en Recursos Faunísticos, Instituto de Biotecnología Ganadera y Cinegética (INBIO), Facultad de Veterinaria, Universidad de Extremadura, 10003 Cáceres, Spain
| | - Esther Sanjuán
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| | - Rafael Millán
- Food Hygiene Unit, Department of Animal Pathology, Animal Production, Bromatology, and Food Technology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| | - Cristóbal Del Rosario-Quintana
- Microbiology Service, Complejo Hospitalario Materno-Insular de Gran Canaria, Canary Health Service, 35016, Las Palmas de Gran Canaria, Spain
| | - Félix Acosta
- Grupo de Investigación de Acuicultura (GIA), Instituto EcoAqua, Universidad de Las Palmas de Gran Canaria, Spain
| | - Alfredo García
- Department of Animal Production, CICYTEX-La Orden, 06187 Junta de Extremadura, Spain
| | - José R Jaber
- Department of Morphology, Faculty of Veterinary, Universidad de Las Palmas de Gran Canaria, Arucas, 35413 Las Palmas, Spain
| |
Collapse
|
38
|
Qiu W, Nagl S. Automated Miniaturized Digital Microfluidic Antimicrobial Susceptibility Test Using a Chip-Integrated Optical Oxygen Sensor. ACS Sens 2021; 6:1147-1156. [PMID: 33720687 DOI: 10.1021/acssensors.0c02399] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We present the first digital microfluidic (DMF) antimicrobial susceptibility test (AST) using an optical oxygen sensor film for in-situ and real-time continuous measurement of extracellular dissolved oxygen (DO). The device allows one to monitor bacterial growth across the entire cell culture area, and the fabricated device was utilized for a miniaturized and automated AST. The oxygen-sensitive probe platinum(II)-5,10,15,20-tetrakis-(2,3,4,5,6-pentafluorophenyl)-porphyrin was embedded in a Hyflon AD 60 polymer and spin-coated as a 100 nm thick layer onto an ITO glass serving as the DMF ground electrode. This DMF-integrated oxygen sensing film was found to cause no negative effects to the droplet manipulation or cell growth on the chip. The developed DMF platform was used to monitor the DO consumption during Escherichia coli (E. coli) growth caused by cellular respiration. A rapid and reliable twofold dilution procedure was developed and performed, and the AST with E. coli ATCC 25922 in the presence of ampicillin, chloramphenicol, and tetracycline at different concentrations from 0.5 to 8 μg mL-1 was investigated. All sample dispensation, dilution, and mixing were performed automatically on the chip within 10 min. The minimum inhibitory concentration values measured from the DMF chip were consistent with those from the standard broth microdilution method but requiring only minimal sample handling and working with much smaller sample volumes.
Collapse
Affiliation(s)
- Wenting Qiu
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| | - Stefan Nagl
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR, China
| |
Collapse
|
39
|
Kubo Y, Ueda O, Nagamitsu S, Yamanishi H, Nakamura A, Komatsu M. Novel strategy of rapid typing of Shiga toxin-producing Escherichia coli using MALDI Biotyper and ClinProTools analysis. J Infect Chemother 2021; 27:1137-1142. [PMID: 33745812 DOI: 10.1016/j.jiac.2021.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 02/14/2021] [Accepted: 03/01/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Rapid detection of Shiga toxin-producing Escherichia coli (STEC) is essential. Matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows rapid, accurate, and low-cost microbial identification. We aimed to examine the discrimination ability of MALDI Biotyper (Bruker Daltonics) between STEC and non-STEC. METHODS In total, 234 strains (79 STEC strains and 155 non-STEC strains) isolated from stool between 2009 and 2014 were measured by MALDI Biotyper and mass spectra of 2000-20,000 m/z were analyzed with ClinProTools (Bruker Daltonics). Eighty-three strains were randomly extracted to produce STEC detection models using 3 algorithms, and 151 strains were used as validation samples to verify STEC detection performance and discrimination performance of Shiga toxins with the STEC detection models. RESULTS The STEC detection model with Quick Classifier (QC) algorithm was the most sensitive: sensitivity, 84.1% (37/44); specificity, 94.4% (101/107). Discrimination between STEC and non-STEC was excellent, but individual discrimination of Shiga toxins was not possible. CONCLUSION MALDI Biotyper may be a useful rapid diagnostic method for STEC infection.
Collapse
Affiliation(s)
- Yumi Kubo
- FALCO Biosystems K. K., Tokai Central Laboratory, Test Group Microbiology, Aichi, Japan.
| | | | - Sawa Nagamitsu
- FALCO Biosystems K. K., Okayama Laboratory, Test Group Microbiology, Okayama, Japan.
| | - Hachiro Yamanishi
- Department of Clinical Laboratory Science, Faculty of Health Care, Tenri Health Care University, Japan.
| | - Akihiro Nakamura
- Department of Clinical Laboratory Science, Faculty of Health Care, Tenri Health Care University, Japan.
| | - Masaru Komatsu
- Department of Clinical Laboratory Science, Faculty of Health Care, Tenri Health Care University, Japan.
| |
Collapse
|
40
|
Sogawa K, Takano S, Ishige T, Yoshitomi H, Kagawa S, Furukawa K, Takayashiki T, Kuboki S, Nomura F, Ohtsuka M. Usefulness of the MALDI-TOF MS technology with membrane filter protocol for the rapid identification of microorganisms in perioperative drainage fluids of hepatobiliary pancreatic surgery. PLoS One 2021; 16:e0246002. [PMID: 33539441 PMCID: PMC7861402 DOI: 10.1371/journal.pone.0246002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 01/12/2021] [Indexed: 12/04/2022] Open
Abstract
Surgical site infections (SSIs) are significant and frequent perioperative complications, occurring due to the contamination of the surgical site. The late detection of SSIs, especially organ/space SSIs which are the more difficult to treat, often leads to severe complications. An effective method that can identify bacteria with a high accuracy, leading to the early detection of organ/space SSIs, is needed. Ninety-eight drainage fluid samples obtained from 22 patients with hepatobiliary pancreatic disease were analyzed to identify microorganisms using matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) with a new membrane filtration protocol and rapid BACpro® pretreatment compared to sole rapid BACpro® pretreatment. The levels of detail of rapid BACpro® pretreatment with or without filtration were also evaluated for the accuracy of bacterial identification. We found that reliable scores for E. coli and E. faecalis were obtained by inoculation with 1.0 × 104 CFU/ml after preparation of the membrane filter with rapid BACpro®, indicating approximately 10-folds more sensitive compared to sole rapid BACpro® pretreatment in drainage fluid specimens. Among 60 bacterial positive colonies in drainage fluid specimens, the MALDI-TOF MS and the membrane filtration with rapid BACpro® identified 53 isolates (88.3%) with a significantly higher accuracy, compared to 25 isolates in the rapid BACpro® pretreatment group (41.7%) (p < 0.001). Among the 78 strains, 14 enteric Gram-negative bacteria (93.0%) and 55 Gram-positive cocci (87.3%) were correctly identified by the membrane filtration with rapid BACpro® with a high reliability. This novel protocol could identify bacterial species within 30 min, at $2-$3 per sample, thus leading to cost and time savings. MALDI-TOF MS with membrane filter and rapid BACpro® is a quick and reliable method for bacterial identification in drainage fluids. The shortened analysis time will enable earlier selection of suitable antibiotics for treatment of organ/space SSIs to improve patients' outcomes.
Collapse
Affiliation(s)
- Kazuyuki Sogawa
- Department of Biochemistry, School of Life and Environmental Science, Azabu University, Kanagawa, Japan
| | - Shigetsugu Takano
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Takayuki Ishige
- Division of Laboratory Medicine, Chiba University Hospital, Chiba, Japan
| | - Hideyuki Yoshitomi
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Shingo Kagawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsunori Furukawa
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Tsukasa Takayashiki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Satoshi Kuboki
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Fumio Nomura
- Divisions of Clinical Mass Spectrometry and Clinical Genetics, Chiba University Hospital, Chiba, Japan
| | - Masayuki Ohtsuka
- Department of General Surgery, Graduate School of Medicine, Chiba University, Chiba, Japan
| |
Collapse
|
41
|
Fiamanya S, Cipolla L, Prieto M, Stelling J. Exploring the value of MALDI-TOF MS for the detection of clonal outbreaks of Burkholderia contaminans. J Microbiol Methods 2020; 181:106130. [PMID: 33383044 DOI: 10.1016/j.mimet.2020.106130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Molecular genetics has risen in both output and affordability to become the gold standard in diagnosis, however it is not yet available for most routine clinical microbiology due to cost and the level of skill it requires. Matrix assisted laser desorption/ionisation - time of flight mass spectrometry (MALDI-TOF MS) approaches may be useful in bridging the gap between low-resolution phenotypic methods and bulky genotypic methods in the goal of epidemiological source-typing of microbes. Burkholderia has been shown to be identifiable at the subspecies level using MALDI-TOF MS. There have not yet been studies assessing the ability of MALDI-TOF MS to source-type Burkholderia contaminans isolates into epidemiologically relevant outbreak clusters. METHODS 55 well-characterised B. contaminans isolates were used to create a panel for analysis of MALDI-TOF MS biomarker peaks and their relation to outbreak strains, location, source, patient, diagnosis and isolate genetics. Unsupervised clustering was performed and classification models were generated using biostatistical analysis software. RESULTS B. contaminans spectra derived from MALDI-TOF MS were of sufficiently high resolution to identify 100% of isolates. Unsupervised clustering methods showed poor evidence of spectra clustering by all characteristics measured. Classification algorithms were discriminatory, with Genetic Algorithm models showing 100% recognition capability for all outbreaks, the pulsed-field gel electrophoresis (PFGE) typeability model, and 96.63% recognition for the location model. A consistent peak at m/z of approximately 6943 was identified in all non-typeable strains but in none of the typeable strains. CONCLUSIONS MALDI-TOF MS successfully discriminates B. contaminans isolates into clonal, epidemiological clusters, and can recognise isolates non-typeable by PFGE. Further work should investigate this capability, and include peptide studies and genomic sequencing to identify individual proteins or genes responsible for this non-typeablity, particularly at the peak weight identified.
Collapse
Affiliation(s)
- Selali Fiamanya
- Oxford University Clinical Academic Graduate School, John Radcliffe Hospital, Oxford OX3 9DU, United Kingdom.
| | - Lucía Cipolla
- Servicio Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas 'Dr. C. G. Malbrán', Av Velez Sarsfield 563, 1281 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mónica Prieto
- Servicio Bacteriología Especial, Instituto Nacional de Enfermedades Infecciosas 'Dr. C. G. Malbrán', Av Velez Sarsfield 563, 1281 Ciudad Autónoma de Buenos Aires, Argentina
| | - John Stelling
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, 75 Francis Street, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School 25 Shattuck Street, Boston, MA 02115, USA
| |
Collapse
|
42
|
Oho M, Funashima Y, Nagasawa Z, Miyamoto H, Sueoka E. Rapid detection method of carbapenemase-producing Enterobacteriaceae by MALDI-TOF MS with imipenem/cilastatin (KB) disc and zinc sulfate solution. J Infect Chemother 2020; 27:205-210. [PMID: 33008738 DOI: 10.1016/j.jiac.2020.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/20/2020] [Accepted: 09/08/2020] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Carbapenemase-producing Enterobacteriaceae (CPE) is a major global health threat, and development of rapid detection methods is desired. Here, we established a cost-effective and relatively rapid CPE detection method using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS). METHODS We examined 134 CPE strains (IMP-type, NDM-type, VIM-type, KPC-type, OXA-48-like-type, and GES-type) and 107 non-CPE strains, previously confirmed by genetic tests. The proposed MALDI-TOF MS method involves mixing of a carbapenem drug [here, the commercially available imipenem (IPM) KB disc] and the bacterial strains to be tested, and the consequent drug hydrolysis owing to bacterial carbapenemase activity is confirmed by a waveform spectrum before and after 2 h of the mixing. As metallo-beta-lactamases require zinc in their active site, the false-negatives obtained from our method were cultured in presence of zinc sulfate solution and tested again. RESULTS Based on the presence or absence of the IPM (+cyano-4-hydroxy-cinnamic acid)-specific waveform peak near 489.45 m/z (±500 ppm), the detection sensitivity and specificity of our method for CPE were determined to be 94.8% and 91.6%, respectively. Seven false-negatives of IMP-type (4), VIM-type (2), and GES-type (1) were found, of which the IMP- and VIM-types tested positive as CPE after culture with zinc sulfate solution. Thus, the overall detection sensitivity improved to 99.3%. CONCLUSION Our study proposes a new approach for CPE detection using MALDI-TOF MS. Moreover, we propose cultivation of test strains with zinc sulfate solution for efficient detection of IMP-type CPE, not only for MALDI-TOF MS, but also for other detection methods.
Collapse
Affiliation(s)
- Megumi Oho
- Department of Clinical Laboratory, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| | - Yumiko Funashima
- Department of Medical Technology and Sciences, School of Health Sciences, Fukuoka International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Zenzo Nagasawa
- Department of Medical Technology and Sciences, School of Health Sciences, Fukuoka International University of Health and Welfare, 137-1 Enokizu, Okawa, Fukuoka, 831-8501, Japan
| | - Hiroshi Miyamoto
- Division of Microbiology, Department of Pathology & Microbiology, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan.
| | - Eisaburo Sueoka
- Department of Clinical Laboratory, Saga University Hospital, 5-1-1 Nabeshima, Saga, 849-8501, Japan; Department of Laboratory Medicine, Faculty of Medicine, Saga University, 5-1-1 Nabeshima, Saga, 849-8501, Japan
| |
Collapse
|
43
|
Insufficient repeatability and reproducibility of MALDI-TOF MS-based identification of MRSA. Folia Microbiol (Praha) 2020; 65:895-900. [PMID: 32613406 DOI: 10.1007/s12223-020-00799-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 05/07/2020] [Indexed: 10/23/2022]
Abstract
Rapid identification of methicillin-resistant Staphylococcus aureus (MRSA) is essential for proper initial antibiotic therapy and timely set up of hygienic measures. Recently, detection of MRSA using MALDI-TOF mass spectrometer mediated by the peptide-phenol-soluble modulin (PSM-mec)-linked to the class A mec gene complex present in SCCmec cassettes types II, III, and VIII of MRSA strains, has been commercially available. We present here a multicentre study on MALDI-TOF MS detection of MRSA evincing a poor repeatability and reproducibility of the assay. The sensitivity of the assay varies between 50 and 90% in strains carrying psmMEC and psmδ genes encoding for PSM-mec and δ-toxin (a member of the PSM peptide family), respectively. No false positive results were found. The very major error calculation was 30% and the major error achieved 0%. Interlaboratory repeatability varies between 0 and 100%. No significant difference was observed with the use of different cultivation media. Our data showed a poor sensitivity of the method excluding it from the use in routine laboratory testing.
Collapse
|
44
|
Nomura F, Tsuchida S, Murata S, Satoh M, Matsushita K. Mass spectrometry-based microbiological testing for blood stream infection. Clin Proteomics 2020; 17:14. [PMID: 32435163 PMCID: PMC7222329 DOI: 10.1186/s12014-020-09278-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/04/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The most successful application of mass spectrometry (MS) in laboratory medicine is identification (ID) of microorganisms using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) in blood stream infection. We describe MALDI-TOF MS-based bacterial ID with particular emphasis on the methods so far developed to directly identify microorganisms from positive blood culture bottles with MALDI-TOF MS including our own protocols. We touch upon the increasing roles of Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) as well. MAIN BODY Because blood culture bottles contain a variety of nonbacterial proteins that may interfere with analysis and interpretation, appropriate pretreatments are prerequisites for successful ID. Pretreatments include purification of bacterial pellets and short-term subcultures to form microcolonies prior to MALDI-TOF MS analysis. Three commercial protocols are currently available: the Sepsityper® kit (Bruker Daltonics), the Vitek MS blood culture kit (bioMerieux, Inc.), and the rapid BACpro® II kit (Nittobo Medical Co., Tokyo). Because these commercially available kits are costly and bacterial ID rates using these kits are not satisfactory, particularly for Gram-positive bacteria, various home-brew protocols have been developed: 1. Stepwise differential sedimentation of blood cells and microorganisms, 2. Combination of centrifugation and lysis procedures, 3. Lysis-vacuum filtration, and 4. Centrifugation and membrane filtration technique (CMFT). We prospectively evaluated the performance of this CMFT protocol compared with that of Sepsityper® using 170 monomicrobial positive blood cultures. Although preliminary, the performance of the CMFT was significantly better than that of Sepsityper®, particularly for Gram-positive isolates. MALDI-TOF MS-based testing of polymicrobial blood specimens, however, is still challenging. Also, its contribution to assessment of susceptibility and resistance to antibiotics is still limited. For this purpose, liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) should be more useful because this approach can identify as many as several thousand peptide sequences. CONCLUSION MALDI-TOF MS is now an essential tool for rapid bacterial ID of pathogens that cause blood stream infection. For the purpose of assessment of susceptibility and resistance to antibiotics of the pathogens, the roles of liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) will increase in the future.
Collapse
Affiliation(s)
- Fumio Nomura
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Sachio Tsuchida
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Syota Murata
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Mamoru Satoh
- Division of Clinical Mass Spectrometry, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| | - Kazuyuki Matsushita
- Division of Laboratory Medicine, Chiba University Hospital, 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan
| |
Collapse
|
45
|
Dai Y, Li C, Yi J, Qin Q, Liu B, Qiao L. Plasmonic Colloidosome-Coupled MALDI-TOF MS for Bacterial Heteroresistance Study at Single-Cell Level. Anal Chem 2020; 92:8051-8057. [PMID: 32362117 DOI: 10.1021/acs.analchem.0c00494] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yuchen Dai
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Chenyu Li
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Jia Yi
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Qin Qin
- Changhai Hospital, The Naval Military Medical University, Changhai Road 168, Shanghai, China
| | - Baohong Liu
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| | - Liang Qiao
- Department of Chemistry, Shanghai Stomatological Hospital, Fudan University, Handan Road 220, Shanghai, China
| |
Collapse
|
46
|
Church DL, Naugler C. Essential role of laboratory physicians in transformation of laboratory practice and management to a value-based patient-centric model. Crit Rev Clin Lab Sci 2020; 57:323-344. [PMID: 32180485 DOI: 10.1080/10408363.2020.1720591] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The laboratory is a vital part of the continuum of patient care. In fact, there are few programs in the healthcare system that do not rely on ready access and availability of complex diagnostic laboratory services. The existing transactional model of laboratory "medical practice" will not be able to meet the needs of the healthcare system as it rapidly shifts toward value-based care and precision medicine, which demands that practice be based on total system indicators, clinical effectiveness, and patient outcomes. Laboratory "value" will no longer be focused primarily on internal testing quality and efficiencies but rather on the relative cost of diagnostic testing compared to direct improvement in clinical and system outcomes. The medical laboratory as a "business" focused on operational efficiency and cost-controls must transform to become an essential clinical service that is a tightly integrated equal partner in direct patient care. We would argue that this paradigm shift would not be necessary if laboratory services had remained a "patient-centric" medical practice throughout the last few decades. This review is focused on the essential role of laboratory physicians in transforming laboratory practice and management to a value-based patient-centric model. Value-based practice is necessary not only to meet the challenges of the new precision medicine world order but also to bring about sustainable healthcare service delivery.
Collapse
Affiliation(s)
- Deirdre L Church
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| | - Christopher Naugler
- Department of Pathology and Laboratory Medicine, Faculty of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Community Health Sciences, Faculty of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
47
|
Huang TS, Lee SSJ, Lee CC, Chang FC. Detection of carbapenem-resistant Klebsiella pneumoniae on the basis of matrix-assisted laser desorption ionization time-of-flight mass spectrometry by using supervised machine learning approach. PLoS One 2020; 15:e0228459. [PMID: 32027671 PMCID: PMC7004327 DOI: 10.1371/journal.pone.0228459] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 01/15/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Carbapenem-resistant Klebsiella pneumoniae (CRKP) is emerging as a significant pathogen causing healthcare-associated infections. Matrix-assisted laser desorption/ionisation mass spectrometry time-of-flight mass spectrometry (MALDI-TOF MS) is used by clinical microbiology laboratories to address the need for rapid, cost-effective and accurate identification of microorganisms. We evaluated application of machine learning methods for differentiation of drug resistant bacteria from susceptible ones directly using the profile spectra of whole cells MALDI-TOF MS in 46 CRKP and 49 CSKP isolates. METHODS We developed a two-step strategy for data preprocessing consisting of peak matching and a feature selection step before supervised machine learning analysis. Subsequently, five machine learning algorithms were used for classification. RESULTS Random forest (RF) outperformed other four algorithms. Using RF algorithm, we correctly identified 93% of the CRKP and 100% of the CSKP isolates with an overall classification accuracy rate of 97% when 80 peaks were selected as input features. CONCLUSIONS We conclude that CRKPs can be differentiated from CSKPs through RF analysis. We used direct colony method, and only one spectrum for an isolate for analysis, without modification of current protocol. This allows the technique to be easily incorporated into clinical practice in the future.
Collapse
Affiliation(s)
- Tsi-Shu Huang
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Susan Shin-Jung Lee
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chia-Chien Lee
- Division of Microbiology, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Fu-Chuen Chang
- Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung, Taiwan
| |
Collapse
|
48
|
Hassan SU, Zhang X. Microfluidics as an Emerging Platform for Tackling Antimicrobial Resistance (AMR): A Review. CURR ANAL CHEM 2020. [DOI: 10.2174/1573411015666181224145845] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Background:
Antimicrobial resistance (AMR) occurs when microbes become resistant to
antibiotics causing complications and limited treatment options. AMR is more significant where antibiotics
use is excessive or abusive and the strains of bacteria become resistant to antibiotic treatments.
Current technologies for bacteria and its resistant strains identification and antimicrobial susceptibility
testing (AST) are mostly central-lab based in hospitals, which normally take days to
weeks to get results. These tools and procedures are expensive, laborious and skills based. There is
an ever-increasing demand for developing point-of-care (POC) diagnostics tools for rapid and near
patient AMR testing. Microfluidics, an important and fundamental technique to develop POC devices,
has been utilized to tackle AMR in healthcare. This review mainly focuses on the current development
in the field of microfluidics for rapid AMR testing.
Method:
Due to the limitations of conventional AMR techniques, microfluidic-based platforms have
been developed for better understandings of bacterial resistance, smart AST and minimum inhibitory
concentration (MIC) testing tools and development of new drugs. This review aims to summarize the
recent development of AST and MIC testing tools in different formats of microfluidics technology.
Results:
Various microfluidics devices have been developed to combat AMR. Miniaturization and
integration of different tools has been attempted to produce handheld or standalone devices for rapid
AMR testing using different formats of microfluidics technology such as active microfluidics, droplet
microfluidics, paper microfluidics and capillary-driven microfluidics.
Conclusion:
Current conventional AMR detection technologies provide time-consuming, costly,
labor-intensive and central lab-based solutions, limiting their applications. Microfluidics has been
developed for decades and the technology has emerged as a powerful tool for POC diagnostics of antimicrobial
resistance in healthcare providing, simple, robust, cost-effective and portable diagnostics.
The success has been reported in research articles; however, the potential of microfluidics technology
in tackling AMR has not been fully achieved in clinical settings.
Collapse
Affiliation(s)
- Sammer-ul Hassan
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| | - Xunli Zhang
- Department of Mechanical Engineering, Faculty of Engineering and Physical Sciences, University of Southampton, Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
49
|
Screening of biomarkers of drug resistance or virulence in ESCAPE pathogens by MALDI-TOF mass spectrometry. Sci Rep 2019; 9:18945. [PMID: 31831867 PMCID: PMC6908712 DOI: 10.1038/s41598-019-55430-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 11/13/2019] [Indexed: 12/27/2022] Open
Abstract
Rapid identification and characterisation of drug-resistant bacterial pathogens have an important role in diagnostic and antimicrobial stewardship. Response time in the diagnosis of not only the etiological agent but also in antimicrobial susceptibility results is of utmost importance in patient treatment. In this study, matrix-assisted laser desorption ionisation–time of flight (MALDI-TOF) mass spectrometry (MS) was used to screen for biomarkers of ESCAPE (vancomycin-resistant Enterococcus faecium, methicillin-resistant Staphylococcus aureus, hypervirulent NAP1/ribotype 027 Clostridioides [Clostridium] difficile, multidrug resistant Acinetobacter baumannii, multidrug resistant Pseudomonas aeruginosa, and carbapenem-resistant Enterobacteriaceae) pathogens to predict antimicrobial resistance or hypervirulence. Several biomarkers of drug-resistant genotypes in S. aureus, A. baumannii, P. aeruginosa, and K. pneumoniae, as well as hypervirulence in C. difficile, were detected. The fastest possible susceptibility testing with MALDI-TOF MS is simultaneous detection of a characteristic drug-resistant peak and species identification in the same spectra generated in routine processing. According to our approach, resistance or virulence biomarker peaks can be identified while performing routine microbiology analysis, and no additional assays nor prolonged incubation time is needed. Outstanding biomarker peaks detected in our study should be further analysed by additional methods to identify the specific proteins involved.
Collapse
|
50
|
Maus A, Bisha B, Fagerquist C, Basile F. Detection and identification of a protein biomarker in antibiotic-resistant Escherichia coli using intact protein LC offline MALDI-MS and MS/MS. J Appl Microbiol 2019; 128:697-709. [PMID: 31715076 DOI: 10.1111/jam.14507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/15/2019] [Accepted: 11/04/2019] [Indexed: 11/29/2022]
Abstract
AIMS The identification and differentiation of antibiotic-resistant bacteria by matrix-assisted laser desorption/ionization-time of flight-mass spectrometry (MALDI-TOF-MS) profiling remains a challenge due to the difficulty in detecting unique protein biomarkers associated with this trait. To expand the detectable proteome in antibiotic-resistant bacteria, we describe a method implementing offline LC protein separation/fractionation prior to MALDI-ToF-MS and top-down MALDI-ToF/ToF-MS (tandem MS or MS/MS) for the analysis of several antibiotic-resistant Escherichia coli isolates. METHODS AND RESULTS Coupling offline LC with MALDI-ToF-MS increased the number of detected protein signals in the typically analyzed mass regions (m/z 3000-20 000) by a factor of 13. Using the developed LC-MALDI-ToF-MS protocol in conjunction with supervised principal components analysis, we detected a protein biomarker at m/z 9355 which correlated to β-lactam resistance among the E. coli bacteria tested. Implementing a top-down MALDI-ToF/ToF-MS approach, the prefractionated protein biomarker was inferred as a DNA-binding HU protein, likely translated from the blaCMY-2 gene (encoding AmpC-type β-lactamase) in the incompatibility plasmid complex A/C (IncA/C). CONCLUSIONS Our results demonstrate the utility of LC-MALDI-MS and MS/MS to extend the number of proteins detected and perform MALDI-accessible protein biomarker discovery in microorganisms. SIGNIFICANCE AND IMPACT OF THE STUDY This outcome is significant since it expands the detectable bacterial proteome via MALDI-ToF-MS.
Collapse
Affiliation(s)
- A Maus
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| | - B Bisha
- Department of Animal Science, University of Wyoming, Laramie, WY, USA
| | - C Fagerquist
- U.S. Department of Agriculture, Western Regional Research Center, Agricultural Research Service, Albany, CA, USA
| | - F Basile
- Department of Chemistry, University of Wyoming, Laramie, WY, USA
| |
Collapse
|