1
|
Beltran-Reyes P, Ostrosky-Zeichner L, Gonzalez-Lara MF. Update on diagnosis and treatment of fungal meningitis: lessons from recent outbreaks. Curr Opin Infect Dis 2024; 37:437-442. [PMID: 39259683 DOI: 10.1097/qco.0000000000001061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
PURPOSE OF REVIEW Recently, fungal meningitis outbreaks have occurred in association with neuraxial and epidural anesthesia in immunocompetent patients. Herein, we describe the course of those outbreaks, their diagnosis, treatment, prognosis, and lessons learned. RECENT FINDINGS Two outbreaks of Fusarium solani meningitis during 2022-2023 were associated with epidural anesthesia in two distant cities in Mexico (Durango and Matamoros). The initial etiological agent identification was delayed due to insensitivity of cultures. A Fusarium solani qPCR was validated and positive in 38% cerebrospinal fluid (CSF) samples from Durango, while BD-Glucan allowed early diagnosis of the index case in Matamoros. Antifungal treatment with voriconazole and liposomal amphotericin B (L-AmB) was recommended. Overall mortality was 51%. Once the cause was confirmed, some patients received fosmanogepix. SUMMARY Fungal meningitis outbreaks due to filamentous fungi are usually associated with direct epidural inoculation. They result in severe presentations and high mortality. Early diagnosis should be suspected, BD-Glucan CSF testing screening is recommended. Aggressive antifungal treatment based on antifungal susceptibility testing should be administered as early as possible. The advent of molecular diagnostic methods and new antifungal drugs may allow for timely diagnosis and treatment, increasing the chances of survival.
Collapse
Affiliation(s)
- Paula Beltran-Reyes
- Clinical Microbiology Department, Infectious Diseases Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| | - Luis Ostrosky-Zeichner
- Division of Infectious Diseases, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Maria F Gonzalez-Lara
- Clinical Microbiology Department, Infectious Diseases Department, Instituto Nacional de Ciencias Medicas y Nutricion Salvador Zubiran, Mexico City, Mexico
| |
Collapse
|
2
|
Ötkün S, Erdenliğ Gürbi Lek S. Whole-genome sequencing-based analysis of Brucella species isolated from ruminants in various regions of Türki̇ye. BMC Infect Dis 2024; 24:1220. [PMID: 39472798 PMCID: PMC11524016 DOI: 10.1186/s12879-024-09921-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 09/11/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Brucellosis, a zoonotic disease in Türkiye, which has significant direct and indirect impacts on the healthcare system and livestock. This study, which aimed to investigate the differences among Brucella spp. isolates originating from different regions of Türkiye, for implications for public health and veterinary medicine. METHOD Twenty-one isolates from ruminants and two isolates from humans obtained from various regions of Türkiye were utilized in the study. The isolates were identified and biotyped using traditional microbiological procedures, and whole-genome sequencing (WGS) was performed. This was followed by single nucleotide polymorphism (SNP)--based phylogenetic analysis and WGS-based analysis of virulence and resistance genes. Additionally, phenotypic antimicrobial resistance and phage susceptibilities were determined. The obtained data were then compared for concordance, ensuring the validity and reliability of the results. RESULTS Our study, employing culture methods, polymerase chain reaction (PCR), and WGS analyses, identified 11 Brucella melitensis (bv 3 (n = 9), one each bv 1 and bv 2) and 12 B. abortus (bv 3 (n = 11), bv 9 (n = 1)) isolates All B. abortus isolates were of bovine origin, while the B. melitensis isolates were from sheep (n = 7), goat (n = 1), ram (n = 1), and humans (n = 2). In the whole-genome SNP-based phylogenetic tree, all B. melitensis strains were found to be of the IIb subtype of genotype II associated with the Eastern Mediterranean lineage. Ten different genotypes were identified in the SNP analysis of the isolates, with a maximum SNP difference of 278 and a minimum SNP difference of 4 among these genotypes. According to the WGS-SNP-based phylogenetic tree of B. abortus isolates, they were grouped in clade C1. In the SNP analysis, where ten different genotypes were identified, the SNP difference among these genotypes was a maximum of 316 and a minimum of 6. In the in silico MLST analysis performed with WGS data, B. melitensis isolates were identified as ST8 and ST102 genotypes, while B. abortus isolates were identified as ST2 and ST3 genotypes. The dominant genotypes were ST8 for B. melitensis and ST2 for B. abortus, respectively. Virulence gene analysis conducted based on WGS data of the 23 B. abortus and B. melitensis isolates revealed 43 virulence gene-associated regions in all strains, irrespective of species, host, or isolation year. Although classical resistance-related genes were not detected by WGS-based antimicrobial resistance gene analysis, phenotypic resistance analysis revealed resistance to azithromycin, rifampin, and trimethoprim/sulfamethoxazole in B. abortus and B. melitensis isolates. CONCLUSION Both B. melitensis and B. abortus were circulating species in animals and human. The dominant genotypes were ST8 for B. melitensis and ST2 for B. abortus, respectively. All B. melitensis strains were found to be of the IIb subtype of genotype II associated with the Eastern Mediterranean lineage, while B. abortus isolates, they were grouped in clade C1. Further, a comprehensive study with a sufficient number of isolates covering all regions of Türkiye would provide more accurate information about the current epidemiological situation in the country.
Collapse
Affiliation(s)
- Songül Ötkün
- Departman of Veterinary Microbiology, Fakulty of Veterinary Medicine, Siirt University, Siirt, Türkiye.
| | - Sevil Erdenliğ Gürbi Lek
- Departman of Veterinary Microbiology, Fakulty of Veterinary Medicine, Harran University, Şanlıurfa, Türkiye
| |
Collapse
|
3
|
Li Y, Rivers J, Mathis S, Li Z, Chochua S, Metcalf BJ, Beall B, McGee L. Genomic cluster formation among invasive group A streptococcal infections in the USA: a whole-genome sequencing and population-based surveillance study. THE LANCET. MICROBE 2024:100927. [PMID: 39419051 DOI: 10.1016/s2666-5247(24)00169-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Clusters of invasive group A streptococcal (iGAS) infection, linked to genomically closely related group A streptococcal (GAS) isolates (referred to as genomic clusters), pose public health threats, and are increasingly identified through whole-genome sequencing (WGS) analysis. In this study, we aimed to assess the risk of genomic cluster formation among iGAS cases not already part of existing genomic clusters. METHODS In this WGS and population-based surveillance study, we analysed iGAS case isolates from the Active Bacterial Core surveillance (ABCs), which is part of the US Centers for Disease Control and Prevention's Emerging Infections Program, in ten US states from Jan 1, 2015, to Dec 31, 2019. We included all residents in ABCs sites with iGAS infections meeting the case definition and excluded non-conforming GAS infections and cases with whole-genome assemblies of the isolate containing fewer than 1·5 million total bases or more than 150 contigs. For iGAS cases we collected basic demographics, underlying conditions, and risk factors for infection from medical records, and for isolates we included emm types, antimicrobial resistance, and presence of virulence-related genes. Two iGAS cases were defined as genomically clustered if their isolates differed by three or less single-nucleotide variants. An iGAS case not clustered with any previous cases at the time of detection, with a minimum trace-back time of 1 year, was defined as being at risk of cluster formation. We monitored each iGAS case at risk for a minimum of 1 year to identify any cluster formation event, defined as the detection of a subsequent iGAS case clustered with the case at risk. We used the Kaplan-Meier method to estimate the cumulative incidence of cluster formation events over time. We used Cox regression to assess associations between features of cases at risk upon detection and subsequent cluster formation. We developed a random survival forest machine-learning model based on a derivation cohort (random selection of 50% of cases at risk) to predict cluster formation risk. This model was validated using a validation cohort consisting of the remaining 50% of cases at risk. FINDINGS We identified 2764 iGAS cases at risk from 2016 to 2018, of which 656 (24%) formed genomic clusters by the end of 2019. Overall, the cumulative incidence of cluster formation was 0·057 (95% CI 0·048-0·066) at 30 days after detection, 0·12 (0·11-0·13) at 90 days after detection, and 0·16 (0·15-0·18) at 180 days after detection. A higher risk of cluster formation was associated with emm type (adjusted hazard ratio as compared with emm89 was 2·37 [95% CI 1·71-3·30] for emm1, 2·72 [1·82-4·06] for emm3, 2·28 [1·49-3·51] for emm6, 1·47 [1·05-2·06] for emm12, and 2·21 [1·38-3·56] for emm92), homelessness (1·42 [1·01-1·99]), injection drug use (2·08 [1·59-2·72]), residence in a long-term care facility (1·78 [1·29-2·45]), and the autumn-winter season (1·34 [1·14-1·57]) in multivariable Cox regression analysis. The machine-learning model stratified the validation cohort (n=1382) into groups at low (n=370), moderate (n=738), and high (n=274) risk. The 90-day risk of cluster formation was 0·03 (95% CI 0·01-0·05) for the group at low risk, 0·10 (0·08-0·13) for the group at moderate risk, and 0·21 (0·17-0·25) for the group at high risk. These results were consistent with the cross-validation outcomes in the derivation cohort. INTERPRETATION Using population-based surveillance data, we found that pathogen, host, and environment factors of iGAS cases were associated with increased likelihood of subsequent genomic cluster formation. Groups at high risk were consistently identified by a predictive model which could inform prevention strategies, although future work to refine the model, incorporating other potential risk factors such as host contact patterns and immunity to GAS, is needed to improve its predictive performance. FUNDING Centers for Disease Control and Prevention.
Collapse
Affiliation(s)
- Yuan Li
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - Joy Rivers
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | | | - Sopio Chochua
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Benjamin J Metcalf
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | | | - Lesley McGee
- Respiratory Diseases Branch, Division of Bacterial Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
4
|
Ugwu OPC, Alum EU, Ugwu JN, Eze VHU, Ugwu CN, Ogenyi FC, Okon MB. Harnessing technology for infectious disease response in conflict zones: Challenges, innovations, and policy implications. Medicine (Baltimore) 2024; 103:e38834. [PMID: 38996110 PMCID: PMC11245197 DOI: 10.1097/md.0000000000038834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/14/2024] [Indexed: 07/14/2024] Open
Abstract
Epidemic outbreaks of infectious diseases in conflict zones are complex threats to public health and humanitarian activities that require creativity approaches of reducing their damage. This narrative review focuses on the technology intersection with infectious disease response in conflict zones, and complexity of healthcare infrastructure, population displacement, and security risks. This narrative review explores how conflict-related destruction is harmful towards healthcare systems and the impediments to disease surveillance and response activities. In this regards, the review also considered the contributions of technological innovations, such as the improvement of epidemiological surveillance, mobile health (mHealth) technologies, genomic sequencing, and surveillance technologies, in strengthening infectious disease management in conflict settings. Ethical issues related to data privacy, security and fairness are also covered. By advisement on policy that focuses on investment in surveillance systems, diagnostic capacity, capacity building, collaboration, and even ethical governance, stakeholders can leverage technology to enhance the response to infectious disease in conflict settings and, thus, protect the global health security. This review is full of information for researchers, policymakers, and practitioners who are dealing with the issues of infectious disease outbreaks in conflicts worn areas.
Collapse
Affiliation(s)
| | - Esther Ugo Alum
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| | - Jovita Nnenna Ugwu
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| | - Val Hyginus Udoka Eze
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| | - Chinyere N Ugwu
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| | - Fabian C Ogenyi
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| | - Michael Ben Okon
- Department of Publication and Extension, Kampala International University, Uganda, Kampala, Uganda
| |
Collapse
|
5
|
Elgayar FA, Gouda MK, Badran AA, El Halfawy NM. Pathogenomics analysis of high-risk clone ST147 multidrug-resistant Klebsiella pneumoniae isolated from a patient in Egypt. BMC Microbiol 2024; 24:256. [PMID: 38987681 PMCID: PMC11234735 DOI: 10.1186/s12866-024-03389-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/19/2024] [Indexed: 07/12/2024] Open
Abstract
BACKGROUND The emergence of multi-drug-resistant Klebsiella pneumoniae (MDR-KP) represents a serious clinical health concern. Antibiotic resistance and virulence interactions play a significant role in the pathogenesis of K. pneumoniae infections. Therefore, tracking the clinical resistome and virulome through monitoring antibiotic resistance genes (ARG) and virulence factors in the bacterial genome using computational analysis tools is critical for predicting the next epidemic. METHODS In the current study, one hundred extended spectrum β-lactamase (ESBL)-producing clinical isolates were collected from Mansoura University Hospital, Egypt, in a six-month period from January to June 2022. One isolate was selected due to the high resistance phenotype, and the genetic features of MDR-KP recovered from hospitalized patient were investigated. Otherwise, the susceptibility to 25 antimicrobials was determined using the DL Antimicrobial Susceptibility Testing (AST) system. Whole genome sequencing (WGS) using Illumina NovaSeq 6000 was employed to provide genomic insights into K. pneumoniae WSF99 clinical isolate. RESULTS The isolate K. pneumoniae WSF99 was phenotypically resistant to the antibiotics under investigation via antibiotic susceptibility testing. WGS analysis revealed that WSF99 total genome length was 5.7 Mb with an estimated 5,718 protein-coding genes and a G + C content of 56.98 mol%. Additionally, the allelic profile of the WSF99 isolate was allocated to the high-risk clone ST147. Furthermore, diverse antibiotic resistance genes were determined in the genome that explain the high-level resistance phenotypes. Several β-lactamase genes, including blaCTX-M-15, blaTEM-1, blaTEM-12, blaSHV-11, blaSHV-67, and blaOXA-9, were detected in the WSF99 isolate. Moreover, a single carbapenemase gene, blaNDM-5, was predicted in the genome, positioned within a mobile cassette. In addition, other resistance genes were predicted in the genome including, aac(6')-Ib, aph(3')-VI, sul1, sul2, fosA, aadA, arr-2, qnrS1, tetA and tetC. Four plasmid replicons CoIRNAI, IncFIB(K), IncFIB(pQil), and IncR were predicted in the genome. The draft genome analysis revealed the occurrence of genetic mobile elements positioned around the ARGs, suggesting the ease of dissemination via horizontal gene transfer. CONCLUSIONS This study reports a comprehensive pathogenomic analysis of MDR-KP isolated from a hospitalized patient. These findings could be relevant for future studies investigating the diversity of antimicrobial resistance and virulence in Egypt.
Collapse
Affiliation(s)
- Fatma A Elgayar
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Mona K Gouda
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt
| | - Alaa Aboelnour Badran
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Nancy M El Halfawy
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Moharram Bek 21511, Alexandria, Egypt.
| |
Collapse
|
6
|
Huang YC, Chen FJ, Huang IW, Wu HC, Kuo SC, Huang TW, Lauderdale TL. Clonal expansion of Tn1546-like transposon-carrying vancomycin-resistant Enterococcus faecium, a nationwide study in Taiwan, 2004-2018. J Glob Antimicrob Resist 2024; 39:100-108. [PMID: 38996869 DOI: 10.1016/j.jgar.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 05/29/2024] [Accepted: 06/07/2024] [Indexed: 07/14/2024] Open
Abstract
OBJECTIVES The prevalence of vancomycin-resistant Enterococcus faecium (VREfm) has increased significantly in Taiwan. We investigated the molecular epidemiology of clinical VREfm isolates to increase our understanding on their spread and changes in population structure over a 14-year span. METHODS A total of 1113 E. faecium isolates were collected biennially from 2004 to 2018 in Taiwan. MICs were determined by broth microdilution. Whole-genome sequencing (WGS) was performed on 229 VREfm isolates to characterize their genetic environment of vancomycin resistance and wgMLST was used to investigate their clonal relationship. RESULTS Among the 229 isolates, ST17 and ST78 predominated, especially during the later years, and their prevalences increased from 14.6% (7/48) and 25.0% (12/48) in 2004-2010 to 47.5% (87/181) and 29.8% (54/181) in 2012-2018, respectively. Four types of vanA-carrying Tn1546 variants were detected, with type 1 and type 2 predominated. Type 1 Tn1546 contained an addition of IS1251, while type 2 resembled type 1 but had an addition of IS1678. wgMLST revealed several distinct clusters of ST17 and ST78 isolates, with type 1 Tn1546-harbouring ST17-Cluster 16 being the largest and most widespread clones throughout the study years. Type 2 Tn1546-carrying ST78 became a predominant clone (Cluster 21) after 2012. Isolates within these clusters are highly similar despite being from different hospitals, regions, and study year. CONCLUSION The increase of VREfm in Taiwan was attributed to horizontal transfer of vanA-carrying Tn1546 variants between different STs and spread of persistent clones. This study highlights the importance of integrating WGS into surveillance to combat antimicrobial resistance.
Collapse
Affiliation(s)
- Ying-Chi Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Feng-Jui Chen
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - I-Wen Huang
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Han-Chieh Wu
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Shu-Chen Kuo
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| | - Tzu-Wen Huang
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| | - Tsai-Ling Lauderdale
- National Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Taiwan
| |
Collapse
|
7
|
Muchaamba F, Stephan R. A Comprehensive Methodology for Microbial Strain Typing Using Fourier-Transform Infrared Spectroscopy. Methods Protoc 2024; 7:48. [PMID: 38921827 PMCID: PMC11207048 DOI: 10.3390/mps7030048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/29/2024] [Accepted: 06/04/2024] [Indexed: 06/27/2024] Open
Abstract
Timely and accurate detection and characterization of microbial threats is crucial for effective infection and outbreak management. Additionally, in food production, rapid microbe identification is indispensable for maintaining quality control and hygiene standards. Current methods for typing microbial strains often rely on labor-intensive, time-consuming, and expensive DNA- and sera-serotyping techniques, limiting their applicability in rapid-response scenarios. In this context, the IR Biotyper®, utilizing Fourier-transform infrared (FTIR) spectroscopy, offers a novel approach, providing specific spectra for fast strain typing within 3 h. This methodology article serves as a comprehensive resource for researchers and technicians aiming to utilize FTIR spectroscopy for microbial strain typing. It encompasses detailed guidelines on sample preparation, data acquisition, and analysis techniques, ensuring the generation of reliable and reproducible results. We highlight the IR Biotyper®'s rapid and accurate discrimination capabilities, showcasing its potential for real-time pathogen monitoring and source-tracking to enhance public health and food safety. We propose its integration as an early screening method, followed by more detailed analysis with whole-genome sequencing, to optimize detection accuracy and response efficiency in microbial surveillance systems.
Collapse
Affiliation(s)
- Francis Muchaamba
- Institute for Food Safety and Hygiene, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 272, CH-8057 Zurich, Switzerland
| | | |
Collapse
|
8
|
Liébana-Rodríguez M, Portillo-Calderón I, Fernández-Sierra MA, Delgado-Valverde M, Martín-Hita L, Gutiérrez-Fernández J. Nosocomial outbreak caused by Serratia marcescens in a neonatology intensive care unit in a regional hospital. Analysis and improvement proposals. ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2024; 42:286-293. [PMID: 37331927 DOI: 10.1016/j.eimce.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/04/2023] [Indexed: 06/20/2023]
Abstract
OBJECTIVES Serratia marcescens (SM) may cause nosocomial outbreaks in Neonatal Intensive Care Units (NICU). We describe an outbreak of SM in a NICU and propose additional prevention and control recommendations. METHODS Between March 2019 and January 2020, samples were taken from patients in the NICU (rectal, pharyngeal, axillary and other locations) and from 15 taps and their sinks. Control measures were implemented including thorough cleaning of incubators, health education to staff and neonates'relatives, and use of single-dose containers. PFGE was performed in 19 isolates from patients and in 5 environmental samples. RESULTS From the first case in March 2019 to the detection of the outbreak, a month elapsed. Finally, 20 patients were infected and 5 colonized. 80% of infected neonates had conjunctivitis, 25% bacteremia, 15% pneumonia, 5% wound infection, and 5% urinary tract infection. Six neonates had two foci of infection. Among the 19 isolates studied, 18 presented the same pulsotype and only one of the isolates from the sinkhole showed a clonal relationship with those of the outbreak. Initial measures established were ineffective to control de outbreak and were implemented with exhaustive cleaning, use of individual eye drops, environmental sampling and changing sinks. CONCLUSION This outbreak presented a high number of neonates affected due to its late detection and torpid evolution. The microorganisms isolated from the neonates were related to an environmental isolate. Additional prevention and control measures are proposed, including routine weekly microbiological sampling.
Collapse
Affiliation(s)
- María Liébana-Rodríguez
- Departamento de Medicina Preventiva y Salud Pública, Hospital Virgen de las Nieves, Instituto de Investigación Biosanitaria de Granada, Ibs-Granada, Granada, Spain
| | - Inés Portillo-Calderón
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena. Instituto de Biomedicina de Sevilla (IBiS). Sevilla, Spain
| | - María Amelia Fernández-Sierra
- Departamento de Medicina Preventiva y Salud Pública, Hospital Virgen de las Nieves, Instituto de Investigación Biosanitaria de Granada, Ibs-Granada, Granada, Spain
| | - Mercedes Delgado-Valverde
- Unidad de Enfermedades Infecciosas y Microbiología, Hospital Universitario Virgen Macarena. Instituto de Biomedicina de Sevilla (IBiS). Sevilla, Spain
| | - Lina Martín-Hita
- Departamento de Microbiología, Hospital Virgen de las Nieves, Instituto de Investigación Biosanitaria de Granada (Ibs-Granada), Granada, Spain
| | - José Gutiérrez-Fernández
- Departamento de Microbiología, Hospital Virgen de las Nieves, Instituto de Investigación Biosanitaria de Granada (Ibs-Granada), Granada, Spain; Departamento de Microbiología, Universidad de Granada-Instituto de Investigación Biosanitaria de Granada (Ibs-Granada), Granada, Spain.
| |
Collapse
|
9
|
Nodari R, Arghittu M, Bailo P, Cattaneo C, Creti R, D’Aleo F, Saegeman V, Franceschetti L, Novati S, Fernández-Rodríguez A, Verzeletti A, Farina C, Bandi C. Forensic Microbiology: When, Where and How. Microorganisms 2024; 12:988. [PMID: 38792818 PMCID: PMC11123702 DOI: 10.3390/microorganisms12050988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/30/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Forensic microbiology is a relatively new discipline, born in part thanks to the development of advanced methodologies for the detection, identification and characterization of microorganisms, and also in relation to the growing impact of infectious diseases of iatrogenic origin. Indeed, the increased application of medical practices, such as transplants, which require immunosuppressive treatments, and the growing demand for prosthetic installations, associated with an increasing threat of antimicrobial resistance, have led to a rise in the number of infections of iatrogenic origin, which entails important medico-legal issues. On the other hand, the possibility of detecting minimal amounts of microorganisms, even in the form of residual traces (e.g., their nucleic acids), and of obtaining gene and genomic sequences at contained costs, has made it possible to ask new questions of whether cases of death or illness might have a microbiological origin, with the possibility of also tracing the origin of the microorganisms involved and reconstructing the chain of contagion. In addition to the more obvious applications, such as those mentioned above related to the origin of iatrogenic infections, or to possible cases of infections not properly diagnosed and treated, a less obvious application of forensic microbiology concerns its use in cases of violence or violent death, where the characterization of the microorganisms can contribute to the reconstruction of the case. Finally, paleomicrobiology, e.g., the reconstruction and characterization of microorganisms in historical or even archaeological remnants, can be considered as a sister discipline of forensic microbiology. In this article, we will review these different aspects and applications of forensic microbiology.
Collapse
Affiliation(s)
- Riccardo Nodari
- Department of Pharmacological and Biomolecular Sciences (DiSFeB), University of Milan, 20133 Milan, Italy
| | - Milena Arghittu
- Analysis Laboratory, ASST Melegnano e Martesana, 20077 Vizzolo Predabissi, Italy
| | - Paolo Bailo
- Section of Legal Medicine, School of Law, University of Camerino, 62032 Camerino, Italy
| | - Cristina Cattaneo
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Roberta Creti
- Antibiotic Resistance and Special Pathogens Unit, Department of Infectious Diseases, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco D’Aleo
- Microbiology and Virology Laboratory, GOM—Grande Ospedale Metropolitano, 89124 Reggio Calabria, Italy
| | - Veroniek Saegeman
- Microbiology and Infection Control, Vitaz Hospital, 9100 Sint-Niklaas, Belgium
| | - Lorenzo Franceschetti
- LABANOF, Laboratory of Forensic Anthropology and Odontology, Section of Forensic Medicine, Department of Biomedical Sciences for Health, University of Milan, 20133 Milan, Italy
| | - Stefano Novati
- Department of Infectious Diseases, Fondazione IRCCS Policlinico San Matteo, University of Pavia, 27100 Pavia, Italy
| | - Amparo Fernández-Rodríguez
- Microbiology Department, Biology Service, Instituto Nacional de Toxicología y Ciencias Forenses, 41009 Madrid, Spain
| | - Andrea Verzeletti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health University of Brescia, 25123 Brescia, Italy
| | - Claudio Farina
- Microbiology and Virology Laboratory, ASST Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Claudio Bandi
- Romeo ed Enrica Invernizzi Paediatric Research Centre, Department of Biosciences, University of Milan, 20133 Milan, Italy
| |
Collapse
|
10
|
Xia Y, Wang Z, Hu Y, Zhao P, Li J, Zhang L, Fang R, Zhao J. Isolation, Identification, Genomic Diversity, and Antimicrobial Resistance Analysis of Streptococcus suis in Hubei Province of China from 2021 to 2023. Microorganisms 2024; 12:917. [PMID: 38792744 PMCID: PMC11124115 DOI: 10.3390/microorganisms12050917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/17/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
Streptococcus suis (S. suis) is a zoonotic pathogen capable of causing severe diseases in humans and pigs, including meningitis, sepsis, polyserositis, arthritis, and endocarditis. This study aimed to investigate the biological characteristics of 19 strains of S. suis isolated from diseased pigs in Hubei Province between 2021 and 2023. Through bioinformatics analysis, we investigated the serotype, MLST, pan-genome characteristics, SNP, AMR, and ICE of the 19 S. suis isolates. Among the 19 S. suis strains, ten serotypes were identified, and serotype 9 was the most prevalent (21.05%). Ten new alleles and nine new sequence types (STs) were discovered, with ST28 and ST243 emerging as the predominant STs. The results of the pan-genomic analysis of S. suis indicate that there are 943 core genes, 2259 shell genes, and 5663 cloud genes. Through SNP evolutionary analysis, we identified a strong genetic similarity between SS31 and the reference genome P1/7. The analysis of antibiotic resistance genes revealed widespread presence of erm(B) and tet(O) genes among 19 strains of S. suis. This association may be linked to the high resistance of S. suis to lincosamides, macrolides, and tetracyclines. Integrative and conjugative elements (ICEs) and integrative and mobilizable elements (IMEs) were identified in 16 strains, with a carriage rate of 84.21%, and resistance genes were identified within the ICE/IME elements of 8 strains. Antimicrobial susceptibility testing revealed that all strains showed sensitivity to vancomycin and lincomycin but resistance to tilmicosin, tiamulin, amoxicillin, and doxycycline. This study contributes to our understanding of the genomic diversity of S. suis in Hubei Province of China, providing essential data for the comprehensive prevention and control of S. suis infections in China.
Collapse
Affiliation(s)
- Yingjun Xia
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhaoyang Wang
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanli Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Pengfei Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianhai Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Li Zhang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (Y.X.); (Y.H.); (P.Z.); (J.L.); (L.Z.); (R.F.)
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan 430070, China;
- Key Laboratory of Animal Epidemical Disease and Infectious Zoonoses, Ministry of Agriculture, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
11
|
Wang Q, Han YY, Zhang TJ, Chen X, Lin H, Wang HN, Lei CW. Whole-genome sequencing of Escherichia coli from retail meat in China reveals the dissemination of clinically important antimicrobial resistance genes. Int J Food Microbiol 2024; 415:110634. [PMID: 38401379 DOI: 10.1016/j.ijfoodmicro.2024.110634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/08/2024] [Accepted: 02/18/2024] [Indexed: 02/26/2024]
Abstract
Escherichia coli is one of the important reservoirs of antimicrobial resistance genes (ARG), which often causes food-borne diseases and clinical infections. Contamination with E. coli carrying clinically important antimicrobial resistance genes in retail meat products can be transmitted to humans through the food chain, posing a serious threat to public health. In this study, a total of 330 E. coli strains were isolated from 464 fresh meat samples from 17 food markets in China, two of which were identified as enterotoxigenic and enteropathogenic E. coli. Whole genome sequencing revealed the presence of 146 different sequence types (STs) including 20 new STs, and 315 different clones based on the phylogenetic analysis, indicating the high genetic diversity of E. coli from retail meat products. Antimicrobial resistance profiles showed that 82.42 % E. coli were multidrug-resistant strains. A total of 89 antimicrobial resistance genes were detected and 12 E. coli strains carried clinically important antimicrobial resistance genes blaNDM-1, blaNDM-5, mcr-1, mcr-10 and tet(X4), respectively. Nanopore sequencing revealed that these resistance genes are located on different plasmids with the ability of horizontal transfer, and their genetic structure and environment are closely related to plasmids isolated from humans. Importantly, we reported for the first time the presence of plasmid-mediated mcr-10 in E. coli from retail meat. This study revealed the high genetic diversity of food-borne E. coli in retail meat and emphasized their risk of spreading clinically important antimicrobial resistance genes.
Collapse
Affiliation(s)
- Qin Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Ying-Yue Han
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Tie-Jun Zhang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Xuan Chen
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Heng Lin
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China
| | - Hong-Ning Wang
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| | - Chang-Wei Lei
- College of Life Sciences, Sichuan University, Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, Chengdu, People's Republic of China.
| |
Collapse
|
12
|
Meijers E, Verhees FB, Heemskerk D, Wessels E, Claas ECJ, Boers SA. Automating the Illumina DNA library preparation kit for whole genome sequencing applications on the flowbot ONE liquid handler robot. Sci Rep 2024; 14:8159. [PMID: 38589623 PMCID: PMC11001922 DOI: 10.1038/s41598-024-58963-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 04/05/2024] [Indexed: 04/10/2024] Open
Abstract
Whole-genome sequencing (WGS) is currently making its transition from research tool into routine (clinical) diagnostic practice. The workflow for WGS includes the highly labor-intensive library preparations (LP), one of the most critical steps in the WGS procedure. Here, we describe the automation of the LP on the flowbot ONE robot to minimize the risk of human error and reduce hands-on time (HOT). For this, the robot was equipped, programmed, and optimized to perform the Illumina DNA Prep automatically. Results obtained from 16 LP that were performed both manually and automatically showed comparable library DNA yields (median of 1.5-fold difference), similar assembly quality values, and 100% concordance on the final core genome multilocus sequence typing results. In addition, reproducibility of results was confirmed by re-processing eight of the 16 LPs using the automated workflow. With the automated workflow, the HOT was reduced to 25 min compared to the 125 min needed when performing eight LPs using the manual workflow. The turn-around time was 170 and 200 min for the automated and manual workflow, respectively. In summary, the automated workflow on the flowbot ONE generates consistent results in terms of reliability and reproducibility, while significantly reducing HOT as compared to manual LP.
Collapse
Affiliation(s)
- Erin Meijers
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Fabienne B Verhees
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Dennis Heemskerk
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Els Wessels
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Eric C J Claas
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Stefan A Boers
- Department of Medical Microbiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
13
|
Suleyman G, Shallal A, Ruby A, Chami E, Gubler J, McNamara S, Miles-Jay A, Tibbetts R, Alangaden G. Use of whole genomic sequencing to detect New Delhi metallo-B-lactamase (NDM)-producing Escherichia coli outbreak associated with endoscopic procedures. Infect Control Hosp Epidemiol 2024:1-8. [PMID: 38495009 DOI: 10.1017/ice.2024.36] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND Whole-genome sequencing (WGS) has emerged as an alternative genotyping tool for outbreak investigations in the healthcare setting. We describe the investigation and control of a New Delhi metallo-B-lactamase (NDM)-producing Escherichia coli cluster in Southeast Michigan. METHODS Michigan Bureau of Laboratories identified several closely related NDM-producing E. coli isolates with WGS. An epidemiologic investigation, including case-control study, assessment of infection control practices, and endoscope culturing, was performed to identify source of transmission. Targeted screening of potentially exposed patients was performed following identification of probable source. RESULTS Between July 2021 and February 2023, nine patients were identified. Phylogenetic analysis confirmed the isolates were closely related with less than 26 single nucleotide polymorphism (SNP) differences between isolates, suggesting an epidemiological link. Eight (89%) patients had a duodenoscope and/or gastroscope exposure. Cases were compared with 23 controls. Cases had significantly higher odds of exposure to duodenoscopes (odds ratio 15.0; 95% CI, 1.8-142.2; P = .015). The mean incubation period, estimated as date of procedure to positive index culture, was 86 days (range, 1-320 days). No lapses in endoscope reprocessing were identified; NDM-producing E. coli was not recovered from reprocessed endoscopes or during targeted screening. No additional cases were identified after removal of implicated gastroscopes and replacement of duodenoscope with disposable end caps. CONCLUSIONS In this investigation, WGS was utilized to identify transmission of an NDM-producing E. coli outbreak associated with endoscope exposure. Coupled with epidemiologic data, WGS can facilitate outbreak investigations by rapidly identifying linked cases and potential sources to prevent further transmission.
Collapse
Affiliation(s)
- Geehan Suleyman
- Division of Infectious Diseases, Henry Ford Health, Detroit, MI, USA
| | - Anita Shallal
- Division of Infectious Diseases, Henry Ford Health, Detroit, MI, USA
| | - Abigail Ruby
- Performance Excellence & Quality Department, Henry Ford Hospital, Detroit, MI, USA
| | - Eman Chami
- Performance Excellence & Quality Department, Henry Ford Hospital, Detroit, MI, USA
| | - Jenny Gubler
- Ambulatory Nursing and Quality Department, Henry Ford Health, Detroit, MI, USA
| | - Sara McNamara
- Surveillance for Healthcare-associated and Resistant Pathogens (SHARP) Unit, Michigan Department of Health and Human Services, Lansing, MI, USA
| | - Arianna Miles-Jay
- Bureau of Laboratories, Division of Infectious Diseases, Michigan Department of Health & Human Services, Lansing, MI, USA
| | - Robert Tibbetts
- Department of Pathology, Henry Ford Health, Detroit, MI, USA
| | - George Alangaden
- Division of Infectious Diseases, Henry Ford Health, Detroit, MI, USA
| |
Collapse
|
14
|
Kim DW, Kim JY, Lee DW, Lee HC, Song CS, Lee DH, Kwon JH. Detection of multiple recombinations of avian coronavirus in South Korea by whole-genome analysis. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2024; 118:105565. [PMID: 38309607 DOI: 10.1016/j.meegid.2024.105565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/29/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Infectious bronchitis virus (IBV), an avian coronavirus, has caused considerable damage to the poultry industry. In Korea, indigenous KM91-like and newly introduced QX-like lineages belonging to the GI-19 lineage have been prevalent despite constant vaccination. In this study, complete genome sequences of 23 IBV isolates in Korea from 2010 to 2020 were obtained using next-generation sequencing, and their phylogenetic relationship and recombination events were analyzed. Phylogenetic analysis based on the S1 gene showed that all isolates belonged to the GI-19 lineage and were divided into five subgroups (KM91-like, K40/09-like, and QX-like II to IV). Among the 23 isolates, 14 recombinants were found, including frequent recombination between KM91-like and QX-like strains. In addition, it was observed that other lineages, such as GI-1, GI-13, and GI-16, were involved in recombination. Most recombination breakpoints were detected in the ORF1ab gene, particularly nsp3. However, when considering the size of each genome, recombination occurred more frequently in the 3a, E and 5a genes. Taken together, genetic recombination frequently occurred throughout the entire genome between various IBV strains in Korea, including live attenuated vaccine strain. Our study suggests the necessity of further research on the contribution of recombination of genomes outside the spike region to the biological characteristics of IBV.
Collapse
Affiliation(s)
- Da-Won Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Ji-Yun Kim
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dong-Wook Lee
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyuk-Chae Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Chang-Seon Song
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Dong-Hun Lee
- College of Veterinary Medicine, Konkuk University, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jung-Hoon Kwon
- College of Veterinary Medicine, Kyungpook National University, 80, Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|
15
|
Shen H, Xie J, Gao W, Wang L, Chen L, Qian H, Yu S, Feng B, Yang F. Detection limit of FT-IR-based bacterial typing based on optimized sample preparation and typing model. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123633. [PMID: 37952427 DOI: 10.1016/j.saa.2023.123633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/02/2023] [Accepted: 11/07/2023] [Indexed: 11/14/2023]
Abstract
Accurate and efficient bacterial typing methods are crucial to microbiology. Fourier transform infrared (FT-IR) spectroscopy enables highly distinguishable fingerprint identification of closely related bacterial strains by producing highly specific fingerprints of bacteria, which is increasingly being considered as an alternative to genotypic methods, such as pulsed field gel electrophoresis (PFGE) and whole genome sequencing (WGS), for bacterial typing. Compared with genotypic methods, FT-IR has significant advantages of convenient operation, fast speed, and low cost. Fundamental research into the detection limit based on optimized analytical conditions for FT-IR bacterial typing, which can avoid excessive bacterial culture time or sampling volume, is particularly important, especially in clinical practice. However, the corresponding parameters have not been fully investigated. In this study, we developed a simplified and reliable procedure for sample preparation, optimized the data analysis procedure, and evaluated the FT-IR detection limit based on the above conditions. In particular, we combined the film mold and calcium fluoride plate for sample preparation. We evaluated the detection limit (about 108 CFU/mL) after parameter optimization using hierarchical cluster analysis (HCA) and artificial neural network (ANN). The optimization and evaluation of these key fundamentals will better promote future application of FT-IR-based bacterial typing.
Collapse
Affiliation(s)
- Hao Shen
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jinghang Xie
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenjing Gao
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Li Wang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China
| | | | - Heng Qian
- Shanghai University of Finance and Economics, Shanghai 200433, China
| | - Shaoning Yu
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Bin Feng
- Institute of Mass Spectrometry, School of Material Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Fan Yang
- Kweichow Moutai Group, Renhuai, Guizhou 564501, China.
| |
Collapse
|
16
|
Bray N, Sopwith W, Edmunds M, Vansteenhouse H, Feenstra JDM, Jacobs P, Rajput K, O'Connell AM, Smith ML, Blomquist P, Hatziioanou D, Elson R, Vivancos R, Gallagher E, Wigglesworth MJ, Dominiczak A, Hopkins S, Lake IR. RT-PCR genotyping assays to identify SARS-CoV-2 variants in England in 2021: a design and retrospective evaluation study. THE LANCET. MICROBE 2024; 5:e173-e180. [PMID: 38244555 DOI: 10.1016/s2666-5247(23)00320-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Whole-genome sequencing (WGS) is the gold standard diagnostic tool to identify and genetically characterise emerging pathogen mutations (variants), but cost, capacity, and timeliness limit its use when large populations need rapidly assessing. We assessed the potential of genotyping assays to provide accurate and timely variant information at scale by retrospectively examining surveillance for SARS-CoV-2 variants in England between March and September, 2021, when genotyping assays were used widely for variant detection. METHODS We chose a panel of four RT-PCR genotyping assays to detect circulating variants of SARS-COV-2 in England and developed a decision algorithm to assign a probable SARS-CoV-2 variant to samples using the assay results. We extracted surveillance data from the UK Health Security Agency databases for 115 934 SARS-CoV-2-positive samples (March 1-Sept 6, 2021) when variant information was available from both genotyping and WGS. By comparing the genotyping and WGS variant result, we calculated accuracy metrics (ie, sensitivity, specificity, and positive predictive value [PPV]) and the time difference between the sample collection date and the availability of variant information. We assessed the number of samples with a variant assigned from genotyping or WGS, or both, over time. FINDINGS Genotyping and an initial decision algorithm (April 10-May 11, 2021 data) were accurate for key variant assignment: sensitivities and PPVs were 0·99 (95% CI 0·99-0·99) for the alpha, 1·00 (1·00-1·00) for the beta, and 0·91 (0·80-1·00) for the gamma variants; specificities were 0·97 (0·96-0·98), 1·00 (1·00-1·00), and 1·00 (1·00-1·00), respectively. A subsequent decision algorithm over a longer time period (May 27-Sept 6, 2021 data) remained accurate for key variant assignment: sensitivities were 0·91 (95% CI 0·74-1·00) for the beta, 0·98 (0·98-0·99) for the delta, and 0·93 (0·81-1·00) for the gamma variants; specificities were 1·00 (1·00-1·00), 0·96 (0·96-0·97), and 1·00 (1·00-1·00), respectively; and PPVs were 0·83 (0·62-1·00), 1·00 (1·00-1·00), and 0·78 (0·59-0·97), respectively. Genotyping produced variant information a median of 3 days (IQR 2-4) after the sample collection date, which was faster than with WGS (9 days [8-11]). The flexibility of genotyping enabled a nine-times increase in the quantity of samples tested for variants by this method (from 5000 to 45 000). INTERPRETATION RT-PCR genotyping assays are suitable for high-throughput variant surveillance and could complement WGS, enabling larger scale testing for known variants and timelier results, with important implications for effective public health responses and disease control globally, especially in settings with low WGS capacity. However, the choice of panels of RT-PCR assays is highly dependent on database information on circulating variants generated by WGS, which could limit the use of genotyping assays when new variants are emerging and spreading rapidly. FUNDING UK Health Security Agency and National Institute for Health Research Health Protection Research Unit in Emergency Preparedness and Response.
Collapse
Affiliation(s)
- Neil Bray
- UK Health Security Agency, London, UK
| | | | | | - Harper Vansteenhouse
- UK Health Security Agency, London, UK; BioClavis, Glasgow, UK; NHS Test and Trace, Department of Health & Social Care, London, UK; Alderley Lighthouse Labs, Macclesfield, UK
| | | | - Peter Jacobs
- Thermo Fisher Scientific, South San Francisco, CA, USA
| | - Kamal Rajput
- NHS Test and Trace, Department of Health & Social Care, London, UK
| | | | | | | | | | - Richard Elson
- UK Health Security Agency, London, UK; School of Environmental Sciences, University of East Anglia, Norwich, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK
| | - Roberto Vivancos
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in Gastrointestinal Infections and NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, UK
| | | | | | - Anna Dominiczak
- UK Health Security Agency, London, UK; NHS Test and Trace, Department of Health & Social Care, London, UK; School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Susan Hopkins
- UK Health Security Agency, London, UK; NIHR Health Protection Research Unit in in Health Care Acquired Infections and Antimicrobial Resistance, London, UK
| | - Iain R Lake
- UK Health Security Agency, London, UK; School of Environmental Sciences, University of East Anglia, Norwich, UK; NIHR Health Protection Research Unit in Emergency Preparedness and Response, London, UK.
| |
Collapse
|
17
|
Nafea AM, Wang Y, Wang D, Salama AM, Aziz MA, Xu S, Tong Y. Application of next-generation sequencing to identify different pathogens. Front Microbiol 2024; 14:1329330. [PMID: 38348304 PMCID: PMC10859930 DOI: 10.3389/fmicb.2023.1329330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/18/2023] [Indexed: 02/15/2024] Open
Abstract
Early and precise detection and identification of various pathogens are essential for epidemiological monitoring, disease management, and reducing the prevalence of clinical infectious diseases. Traditional pathogen detection techniques, which include mass spectrometry, biochemical tests, molecular testing, and culture-based methods, are limited in application and are time-consuming. Next generation sequencing (NGS) has emerged as an essential technology for identifying pathogens. NGS is a cutting-edge sequencing method with high throughput that can create massive volumes of sequences with a broad application prospects in the field of pathogen identification and diagnosis. In this review, we introduce NGS technology in detail, summarizes the application of NGS in that identification of different pathogens, including bacteria, fungi, and viruses, and analyze the challenges and outlook for using NGS to identify clinical pathogens. Thus, this work provides a theoretical basis for NGS studies and provides evidence to support the application of NGS in distinguishing various clinical pathogens.
Collapse
Affiliation(s)
- Aljuboori M. Nafea
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Yuer Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Duanyang Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Ahmed M. Salama
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, China
- Medical Laboratory at Sharkia Health Directorate, Ministry of Health, Sharkia, Egypt
| | - Manal A. Aziz
- College of Medicine, Department of Microbiology, Ibn Sina University of Medical and Pharmaceutical Science, Baghdad, Iraq
| | - Shan Xu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Yigang Tong
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
18
|
Hakim H, Glasgow HL, Brazelton JN, Gilliam CH, Richards L, Hayden RT. A prospective bacterial whole-genome-sequencing-based surveillance programme for comprehensive early detection of healthcare-associated infection transmission in paediatric oncology patients. J Hosp Infect 2024; 143:53-63. [PMID: 37939882 DOI: 10.1016/j.jhin.2023.10.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/05/2023] [Accepted: 10/20/2023] [Indexed: 11/10/2023]
Abstract
BACKGROUND Bacterial whole-genome sequencing (WGS) and determination of genetic relatedness is an important tool for investigation of epidemiologically suspected outbreaks. AIM This prospective cohort study evaluated a comprehensive, prospective bacterial WGS-based surveillance programme for early detection of transmission of most bacterial pathogens among patients at a paediatric oncology hospital. METHODS Cultured bacterial isolates from clinical diagnostic specimens collected prospectively from both inpatient and outpatient encounters between January 2019 and December 2021 underwent routine WGS and core genome multi-locus sequence typing to determine isolates' relatedness. Previously collected isolates from January to December 2018 were retrospectively analysed for identification of prior or ongoing transmission. Multi-patient clusters were investigated to identify potential transmission events based on temporal and spatial epidemiological links and interventions were introduced. FINDINGS A total of 1497 bacterial isolates from 1025 patients underwent WGS. A total of 259 genetically related clusters were detected, of which 18 (6.9%) multi-patient clusters involving 38 (3.7%) patients were identified. Sixteen clusters involved two patients each, and two clusters involved three patients. Following investigation, epidemiologically plausible transmission links were identified in five (27.8%) multi-patient clusters. None of the multi-patient clusters were suspected by conventional epidemiological surveillance. CONCLUSION Bacterial WGS-based surveillance for early detection of hospital transmission detected several limited multi-patient clusters that were unrecognized by conventional epidemiological methods. Genomic surveillance helped efficiently focus interventions while reducing unnecessary investigations.
Collapse
Affiliation(s)
- H Hakim
- Department of Infectious Diseases, St. Jude Children's Research Hospital, Memphis, TN, USA; Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - H L Glasgow
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - J N Brazelton
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - C H Gilliam
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - L Richards
- Infection Prevention and Control, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - R T Hayden
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Morton L, Creppage K, Rahman N, Early J, Hartman L, Hydrick A, Kasper M. Challenges and Opportunities in Pathogen Agnostic Sequencing for Public Health Surveillance: Lessons Learned From the Global Emerging Infections Surveillance Program. Health Secur 2024; 22:16-24. [PMID: 38054950 PMCID: PMC10902267 DOI: 10.1089/hs.2023.0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Affiliation(s)
- Lindsay Morton
- Lindsay Morton, MPH, MS, is a Senior Molecular Epidemiologist; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Kathleen Creppage
- Kathleen Creppage, DrPH, MPH, is a Scientific Program Manager and Technical Lead; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Nazia Rahman
- Nazia Rahman, MPH, is a Molecular Epidemiologist and Portfolio Manager; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - June Early
- June Early, MPH, is Global Emerging Infections Surveillance (GEIS) Deputy Chief; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Laurie Hartman
- Laurie Hartman, MS, is a former Laboratory Support Specialist; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Ashley Hydrick
- Ashley Hydrick, DVM, MPH, is a Major, US Army, and former GEIS Focus Area Chief; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| | - Matthew Kasper
- Matthew Kasper, PhD, is a Commander, US Navy, and GEIS Chief; GEIS Branch, Armed Forces Health Surveillance Division, Defense Health Agency, Silver Spring, MD
| |
Collapse
|
20
|
Daaboul D, Oueslati S, Rima M, Kassem II, Mallat H, Birer A, Girlich D, Hamze M, Dabboussi F, Osman M, Naas T. The emergence of carbapenemase-producing Enterobacterales in hospitals: a major challenge for a debilitated healthcare system in Lebanon. Front Public Health 2023; 11:1290912. [PMID: 38074718 PMCID: PMC10699444 DOI: 10.3389/fpubh.2023.1290912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 10/26/2023] [Indexed: 12/18/2023] Open
Abstract
Background Carbapenem- and extended-spectrum cephalosporin-resistant Enterobacterales (CR-E and ESCR-E, respectively) are increasingly isolated worldwide. Information about these bacteria is sporadic in Lebanon and generally relies on conventional diagnostic methods, which is detrimental for a country that is struggling with an unprecedented economic crisis and a collapsing public health system. Here, CR-E isolates from different Lebanese hospitals were characterized. Materials and methods Non-duplicate clinical ESCR-E or CR-E isolates (N = 188) were collected from three hospitals from June 2019 to December 2020. Isolates were identified by MALDI-TOF, and their antibiotic susceptibility by Kirby-Bauer disk diffusion assay. CR-E isolates (n = 33/188) were further analyzed using Illumina-based WGS to identify resistome, MLST, and plasmid types. Additionally, the genetic relatedness of the CR-E isolates was evaluated using an Infrared Biotyper system and compared to WGS. Results Using the Kirby-Bauer disk diffusion assay, only 90 isolates out of the 188 isolates that were collected based on their initial routine susceptibility profile by the three participating hospitals could be confirmed as ESCR-E or CR-E isolates and were included in this study. This collection comprised E. coli (n = 70; 77.8%), K. pneumoniae (n = 13; 14.4%), Enterobacter spp. (n = 6; 6.7%), and Proteus mirabilis (n = 1; 1.1%). While 57 were only ESBL producers the remaining 33 isolates (i.e., 26 E. coli, five K. pneumoniae, one E. cloacae, and one Enterobacter hormaechei) were resistant to at least one carbapenem, of which 20 were also ESBL-producers. Among the 33 CR-E, five different carbapenemase determinants were identified: blaNDM-5 (14/33), blaOXA-244 (10/33), blaOXA-48 (5/33), blaNDM-1 (3/33), and blaOXA-181 (1/33) genes. Notably, 20 CR-E isolates were also ESBL-producers. The analysis of the genetic relatedness revealed a substantial genetic diversity among CR-E isolates, suggesting evolution and transmission from various sources. Conclusion This study highlighted the emergence and broad dissemination of blaNDM-5 and blaOXA-244 genes in Lebanese clinical settings. The weak AMR awareness in the Lebanese community and the ongoing economic and healthcare challenges have spurred self-medication practices. Our findings highlight an urgent need for transformative approaches to combat antimicrobial resistance in both community and hospital settings.
Collapse
Affiliation(s)
- Dina Daaboul
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Saoussen Oueslati
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| | - Mariam Rima
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Issmat I. Kassem
- Center for Food Safety and Department of Food Science and Technology, University of Georgia, Griffin, GA, United States
| | - Hassan Mallat
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Aurélien Birer
- French National Reference Center for Antibiotic Resistance, Clermont-Ferrand, France
| | - Delphine Girlich
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
| | - Monzer Hamze
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Fouad Dabboussi
- Laboratoire Microbiologie Santé et Environment (LMSE), Doctoral School of Sciences and Technology, Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan Osman
- Cornell Atkinson Center for Sustainability, Cornell University, Ithaca, NY, United States
- Department of Public and Ecosystem Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, United States
| | - Thierry Naas
- Faculty of Medicine, Team "Resist" UMR1184, "Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)," INSERM, Université Paris-Saclay, CEA, Health and Therapeutic Innovation (HEALTHI), Le Kremlin-Bicêtre, France
- Bacteriology-Hygiene Unit, Assistance Publique-Hôpitaux de Paris, AP-HP Paris-Saclay, Bicêtre Hospital Le Kremlin-Bicêtre, Paris, France
| |
Collapse
|
21
|
Zhao M, Zhang Y, Li Y, Liu K, Zhang C, Li G. Complete Genome Sequence and Probiotic Properties of Pediococcus acidilactici CLP03 Isolated from Healthy Felis catus. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10187-y. [PMID: 37953343 DOI: 10.1007/s12602-023-10187-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/14/2023]
Abstract
Probiotics are available from various sources, including the gastrointestinal tract of healthy animals. In this study, Pediococcus acidilactici was isolated for the first time from Felis catus and evaluated for its functionality. The findings revealed that P. acidilactici CLP03 exhibited inhibitory properties against pathogenic bacteria (E. coli, Salmonella, S. aureus, P. aeruginosa, and L. monocytogenes). Then, survival of strains exposed to pH 2.5, 0.3% bile salts, 0.5% bile salts, and gastrointestinal fluids was 63.97%, 98.84%, 87.95%, and 52.45%, respectively. Also, P. acidilactici CLP03 demonstrated high hydrophobicity (69.63-82.03%) and self-aggregation (73.51-81.44%), negative for hemolytic, and was susceptible to clindamycin. Finally, the scavenging rates of DPPH, ABTS, and O2- were 53.55%, 54.81%, and 85.13%, respectively, which demonstrated that the strain CLP03 has good oxidation resistance. All these characteristics contribute to the survival, colonization, and functionality of the strain in the gastrointestinal tract, indicating their excellent probiotic potential. On the other hand, animal experiments (KM mice, randomly assigned to four groups) showed that the gavage of CLP03 had no toxic effects on mice, increased the serum SOD content, and decreased the MDA and BUN contents, which revealed gavage of CLP03 significantly increased the antioxidant capacity of mice in vivo. In addition, complete genome annotation showed that P. acidilactici CLP03 had 1976 CDS genes, and the numbers of CRISPR, gene islands, and phages were 8, 3, and 6, respectively. In conclusion, P. acidilactici CLP03 could be a candidate functional cat probiotic to enhance animal health and welfare.
Collapse
Affiliation(s)
- Mengdi Zhao
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
- College of Animal Science and Technology, Jilin Agriculture University, Changchun, 130118, China
| | - Yuanyuan Zhang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yueyao Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Keyuan Liu
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China
| | - Chao Zhang
- Qingdao Function Pet Technology Biology, Qingdao, 266000, China
| | - Guangyu Li
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
22
|
Kitaya S, Baba H, Okamoto M, Sakamoto M, Nakayama A, Takei Y, Seike I, Takei K, Oshima K, Tokuda K, Shiga T, Kanamori H. Severe pneumonia due to Legionella and SARS-CoV-2 co-infection necessitating medical evacuation from a cargo ship. J Travel Med 2023; 30:taad067. [PMID: 37158457 DOI: 10.1093/jtm/taad067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/24/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
Cargo ships are at risk of disease outbreaks like Legionella and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) due to their cramped and shared conditions. A case of medical evacuation due to co-infection of Legionella pneumophila with SARS-CoV-2 highlights the need for international infection control guidelines, information networks and molecular epidemiological approaches for identifying infection routes.
Collapse
Affiliation(s)
- Shiori Kitaya
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Otolaryngology, Head and Neck Surgery, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Hiroaki Baba
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Masahiro Sakamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8575, Japan
| | - Asami Nakayama
- Department of Laboratory Medicine, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Yumiko Takei
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Issei Seike
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Kentarou Takei
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Kengo Oshima
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Koichi Tokuda
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| | - Takuya Shiga
- Intensive Care Unit, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Hajime Kanamori
- Department of Infectious Diseases, Internal Medicine, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
- Department of Intelligent Network for Infection Control, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980-8574, Japan
| |
Collapse
|
23
|
Ballard SA, Sherry NL, Howden BP. Public health implementation of pathogen genomics: the role for accreditation and application of ISO standards. Microb Genom 2023; 9:mgen001097. [PMID: 37590046 PMCID: PMC10483410 DOI: 10.1099/mgen.0.001097] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/04/2023] [Indexed: 08/18/2023] Open
Abstract
Pathogen genomics has transitioned rapidly from the research setting into a powerful tool now routinely used in public health microbiology, for surveillance, outbreak investigations and disease control. As these investigations can have significant public health, treatment and legal impacts, we must ensure the accuracy of these results through validation of testing processes. For laboratories working in this space, it is important to approach this work with a quality and accreditation framework in mind, working towards implementation of quality systems and test validation that meet international regulatory standards. Here we outline the key international standards and processes that lead toward accreditation for pathogen genomics.
Collapse
Affiliation(s)
- Susan A. Ballard
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St Melbourne, 3000, Australia
| | - Norelle L. Sherry
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St Melbourne, 3000, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Hospital, 145 Studley Rd., Heidelberg, Victoria 3084, Australia
| | - Benjamin P. Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth St Melbourne, 3000, Australia
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
- Department of Infectious Diseases, Austin Hospital, 145 Studley Rd., Heidelberg, Victoria 3084, Australia
- Centre for Pathogen Genomics, The University of Melbourne, Melbourne, Australia
| |
Collapse
|
24
|
Romero-Calle DX, Pedrosa-Silva F, Ribeiro Tomé LM, Fonseca V, Guimarães Benevides R, de Oliveira Santos LTS, de Oliveira T, da Costa MM, Alcantara LCJ, de Carvalho Azevedo VA, Brenig B, Venancio TM, Billington C, Góes-Neto A. Molecular Characterization of Salmonella Phage Wara Isolated from River Water in Brazil. Microorganisms 2023; 11:1837. [PMID: 37513009 PMCID: PMC10384808 DOI: 10.3390/microorganisms11071837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/07/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Antimicrobial resistance is increasing despite new treatments being employed, so novel strategies are required to ensure that bacterial infections remain treatable. Bacteriophages (phages; bacteria viruses) have the potential to be used as natural antimicrobial methods to control bacterial pathogens such as Salmonella spp. A Salmonella phage, Wara, was isolated from environmental water samples at the Subaé River Basin, Salvador de Bahia, Brazil. The basin has environmental impacts in its main watercourses arising from the dumping of domestic and industrial effluents and agricultural and anthropological activities. The phage genome sequence was determined by Oxford Nanopore Technologies (ONT) MinION and Illumina HiSeq sequencing, and assembly was carried out by Racon (MinION) and Unicycler (Illumina, Illumina + MinION). The genome was annotated and compared to other Salmonella phages using various bioinformatics approaches. MinION DNA sequencing combined with Racon assembly gave the best complete genome sequence. Phylogenetic analysis revealed that Wara is a member of the Tequintavirus genus. A lack of lysogeny genes, antimicrobial resistance, and virulence genes indicated that Wara has therapeutic and biocontrol potential against Salmonella species in healthcare and agriculture.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
| | - Vagner Fonseca
- General Coordination of Public Health Laboratories/Secretariat of Health Surveillance, Ministry of Health, Brasília 70800-400, Brazil
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| | | | - Tulio de Oliveira
- KwaZulu-Natal Research Innovation and Sequencing Platform (KRISP), College of Health Sciences, University of KwaZulu Natal, Durban 4001, South Africa
| | - Mateus Matiuzzi da Costa
- Department of Biological Sciences, Federal University of the São Francisco Valley, Petrolina 56304-917, Brazil
| | - Luiz Carlos Junior Alcantara
- Laboratory of Cellular and Molecular Genetics, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil
- Flavivirus Laboratory, Oswaldo Cruz Institute, Rio de Janeiro 21040-900, Brazil
| | | | - Bertram Brenig
- Institute of Veterinary Medicine, University of Göttingen, 37073 Göttingen, Germany
| | - Thiago M Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, Brazil
| |
Collapse
|
25
|
Shobo CO, Amoako DG, Allam M, Ismail A, Essack SY, Bester LA. A Genomic Snapshot of Antibiotic-Resistant Enterococcus faecalis within Public Hospital Environments in South Africa. Glob Health Epidemiol Genom 2023; 2023:6639983. [PMID: 37342729 PMCID: PMC10279497 DOI: 10.1155/2023/6639983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/31/2023] [Accepted: 06/05/2023] [Indexed: 06/23/2023] Open
Abstract
Enterococci are among the most common opportunistic hospital pathogens. This study used whole-genome sequencing (WGS) and bioinformatics to determine the antibiotic resistome, mobile genetic elements, clone and phylogenetic relationship of Enterococcus faecalis isolated from hospital environments in South Africa. This study was carried out from September to November 2017. Isolates were recovered from 11 frequently touched sites by patients and healthcare workers in different wards at 4 levels of healthcare (A, B, C, and D) in Durban, South Africa. Out of the 245 identified E. faecalis isolates, 38 isolates underwent whole-genome sequencing (WGS) on the Illumina MiSeq platform, following microbial identification and antibiotic susceptibility tests. The tet(M) (31/38, 82%) and erm(C) (16/38, 42%) genes were the most common antibiotic-resistant genes found in isolates originating from different hospital environments which corroborated with their antibiotic resistance phenotypes. The isolates harboured mobile genetic elements consisting of plasmids (n = 11) and prophages (n = 14) that were mostly clone-specific. Of note, a large number of insertion sequence (IS) families were found on the IS3 (55%), IS5 (42%), IS1595 (40%), and Tn3 transposons the most predominant. Microbial typing using WGS data revealed 15 clones with 6 major sequence types (ST) belonging to ST16 (n = 7), ST40 (n = 6), ST21 (n = 5), ST126 (n = 3), ST23 (n = 3), and ST386 (n = 3). Phylogenomic analysis showed that the major clones were mostly conserved within specific hospital environments. However, further metadata insights revealed the complex intraclonal spread of these E. faecalis major clones between the sampling sites within each specific hospital setting. The results of these genomic analyses will offer insights into antibiotic-resistantE. faecalis in hospital environments relevant to the design of optimal infection prevention strategies in hospital settings.
Collapse
Affiliation(s)
- Christiana O. Shobo
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- School of Laboratory Medicine and Medical Science, Department of Medical Microbiology, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Daniel G. Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Mushal Allam
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, UAE
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Sequencing Core Facility, National Institute for Communicable Diseases, National Health Laboratory Service, Johannesburg 2131, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| | - Sabiha Y. Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Linda A. Bester
- Biomedical Resource Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science, Engineering and Agriculture, University of Venda, Thohoyandou 0950, South Africa
| |
Collapse
|
26
|
Nwadiugwu MC, Monteiro N. Applied genomics for identification of virulent biothreats and for disease outbreak surveillance. Postgrad Med J 2023; 99:403-410. [PMID: 37294718 DOI: 10.1136/postgradmedj-2021-139916] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 12/18/2021] [Indexed: 12/16/2022]
Abstract
Fortifying our preparedness to cope with biological threats by identifying and targeting virulence factors may be a preventative strategy for curtailing infectious disease outbreak. Virulence factors evoke successful pathogenic invasion, and the science and technology of genomics offers a way of identifying them, their agents and evolutionary ancestor. Genomics offers the possibility of deciphering if the release of a pathogen was intentional or natural by observing sequence and annotated data of the causative agent, and evidence of genetic engineering such as cloned vectors at restriction sites. However, to leverage and maximise the application of genomics to strengthen global interception system for real-time biothreat diagnostics, a complete genomic library of pathogenic and non-pathogenic agents will create a robust reference assembly that can be used to screen, characterise, track and trace new and existing strains. Encouraging ethical research sequencing pathogens found in animals and the environment, as well as creating a global space for collaboration will lead to effective global regulation and biosurveillance.
Collapse
Affiliation(s)
- Martin C Nwadiugwu
- Department of Biomedical Informatics, University of Nebraska Omaha, Omaha, Nebraska, USA
| | - Nelson Monteiro
- The Forsyth Institute, Cambridge, MA, USA
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, MA, USA
| |
Collapse
|
27
|
Thomas C, Methner U, Marz M, Linde J. Oxford nanopore technologies-a valuable tool to generate whole-genome sequencing data for in silico serotyping and the detection of genetic markers in Salmonella. Front Vet Sci 2023; 10:1178922. [PMID: 37323838 PMCID: PMC10267320 DOI: 10.3389/fvets.2023.1178922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 05/04/2023] [Indexed: 06/17/2023] Open
Abstract
Bacteria of the genus Salmonella pose a major risk to livestock, the food economy, and public health. Salmonella infections are one of the leading causes of food poisoning. The identification of serovars of Salmonella achieved by their diverse surface antigens is essential to gain information on their epidemiological context. Traditionally, slide agglutination has been used for serotyping. In recent years, whole-genome sequencing (WGS) followed by in silico serotyping has been established as an alternative method for serotyping and the detection of genetic markers for Salmonella. Until now, WGS data generated with Illumina sequencing are used to validate in silico serotyping methods. Oxford Nanopore Technologies (ONT) opens the possibility to sequence ultra-long reads and has frequently been used for bacterial sequencing. In this study, ONT sequencing data of 28 Salmonella strains of different serovars with epidemiological relevance in humans, food, and animals were taken to investigate the performance of the in silico serotyping tools SISTR and SeqSero2 compared to traditional slide agglutination tests. Moreover, the detection of genetic markers for resistance against antimicrobial agents, virulence, and plasmids was studied by comparing WGS data based on ONT with WGS data based on Illumina. Based on the ONT data from flow cell version R9.4.1, in silico serotyping achieved an accuracy of 96.4 and 92% for the tools SISTR and SeqSero2, respectively. Highly similar sets of genetic markers comparing both sequencing technologies were identified. Taking the ongoing improvement of basecalling and flow cells into account, ONT data can be used for Salmonella in silico serotyping and genetic marker detection.
Collapse
Affiliation(s)
- Christine Thomas
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich Methner
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| | - Manja Marz
- RNA Bioinformatics and High-Throughput Analysis, Friedrich Schiller University Jena, Jena, Germany
| | - Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Federal Research Institute for Animal Health, Friedrich-Loeffler-Institute, Jena, Germany
| |
Collapse
|
28
|
Cheng L, Lan L, Ramalingam M, He J, Yang Y, Gao M, Shi Z. A review of current effective COVID-19 testing methods and quality control. Arch Microbiol 2023; 205:239. [PMID: 37195393 DOI: 10.1007/s00203-023-03579-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/18/2023]
Abstract
COVID-19 is a highly infectious disease caused by the SARS-CoV-2 virus, which primarily affects the respiratory system and can lead to severe illness. The virus is extremely contagious, early and accurate diagnosis of SARS-CoV-2 is crucial to contain its spread, to provide prompt treatment, and to prevent complications. Currently, the reverse transcriptase polymerase chain reaction (RT-PCR) is considered to be the gold standard for detecting COVID-19 in its early stages. In addition, loop-mediated isothermal amplification (LMAP), clustering rule interval short palindromic repeats (CRISPR), colloidal gold immunochromatographic assay (GICA), computed tomography (CT), and electrochemical sensors are also common tests. However, these different methods vary greatly in terms of their detection efficiency, specificity, accuracy, sensitivity, cost, and throughput. Besides, most of the current detection methods are conducted in central hospitals and laboratories, which is a great challenge for remote and underdeveloped areas. Therefore, it is essential to review the advantages and disadvantages of different COVID-19 detection methods, as well as the technology that can enhance detection efficiency and improve detection quality in greater details.
Collapse
Affiliation(s)
- Lijia Cheng
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| | - Liang Lan
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Murugan Ramalingam
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Jianrong He
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Yimin Yang
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Min Gao
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China
| | - Zheng Shi
- Clinical Medical College & Affiliated Hospital, School of Basic Medical Sciences, Chengdu University, Chengdu, 610106, China.
| |
Collapse
|
29
|
Alathari S, Chaput DL, Bolaños LM, Joseph A, Jackson VLN, Verner-Jeffreys D, Paley R, Tyler CR, Temperton B. A Multiplexed, Tiled PCR Method for Rapid Whole-Genome Sequencing of Infectious Spleen and Kidney Necrosis Virus (ISKNV) in Tilapia. Viruses 2023; 15:v15040965. [PMID: 37112945 PMCID: PMC10145788 DOI: 10.3390/v15040965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Tilapia farming is one of the most important sectors in aquaculture worldwide and of major importance to global food security. Infectious spleen and kidney necrosis virus (ISKNV) has been identified as an agent of high morbidity and mortality, threatening tilapia aquaculture. ISKNV was detected in Lake Volta, Ghana, in September 2018 and spread rapidly, with mortality rates between 60 and 90% and losses of more than 10 tonnes of fish per day. Understanding the spread and evolution of viral pathogens is important for control strategies. Here, we developed a tiled-PCR sequencing approach for the whole-genome sequencing of ISKNV, using long read sequencing to enable field-based, real-time genomic surveillance. This work represents the first use of tiled-PCR for whole genome recovery of viruses in aquaculture, with the longest genome target (>110 kb dsDNA) to date. Our protocol was applied to field samples collected from the ISKNV outbreaks from four intensive tilapia cage culture systems across Lake Volta, between October 2018 and May 2022. Despite the low mutation rate of dsDNA viruses, 20 single nucleotide polymorphisms accumulated during the sampling period. Droplet digital PCR identified a minimum requirement of template in a sample to recover 50% of an ISKNV genome at 275 femtograms (2410 viral templates per 5 µL sequencing reaction). Overall, tiled-PCR sequencing of ISKNV provides an informative tool to assist in disease control in aquaculture.
Collapse
Affiliation(s)
- Shayma Alathari
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Dominique L Chaput
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Luis M Bolaños
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Andrew Joseph
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
| | - Victoria L N Jackson
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - David Verner-Jeffreys
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
- Sustainable Aquaculture Futures Centre, University of Exeter, Exeter EX4 4QD, UK
| | - Richard Paley
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), The Nothe, Barrack Road, Weymouth DT4 8UB, UK
| | - Charles R Tyler
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Sustainable Aquaculture Futures Centre, University of Exeter, Exeter EX4 4QD, UK
| | - Ben Temperton
- Department of Biosciences, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| |
Collapse
|
30
|
Whole-Genome Analysis of Antimicrobial-Resistant Salmonella enterica Isolated from Duck Carcasses in Hanoi, Vietnam. Curr Issues Mol Biol 2023; 45:2213-2229. [PMID: 36975513 PMCID: PMC10047438 DOI: 10.3390/cimb45030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella enterica is one of the most dangerous foodborne pathogens listed by the World Health Organization. In this study, whole-duck samples were collected at wet markets in five districts in Hanoi, Vietnam, in October 2019 to assess their Salmonella infection rates and evaluate the susceptibility of the isolated strains to antibiotics currently used in the prophylaxis and treatment of Salmonella infection. Based on the antibiotic resistance profiles, eight multidrug resistance strains were whole-genome-sequenced, and their antibiotic resistance genes, genotypes, multi-locus sequence-based typing (MLST), virulence factors, and plasmids were analyzed. The results of the antibiotic susceptibility test indicate that phenotypic resistance to tetracycline and cefazolin was the most common (82.4%, 28/34 samples). However, all isolates were susceptible to cefoxitin and meropenem. Among the eight sequenced strains, we identified 43 genes associated with resistance to multiple classes of antibiotics such as aminoglycoside, beta-lactam, chloramphenicol, lincosamide, quinolone, and tetracycline. Notably, all strains carried the blaCTX-M-55 gene, which confers resistance to third-generation antibiotics including cefotaxime, cefoperazone, ceftizoxime, and ceftazidime, as well as resistance genes of other broad-spectrum antibiotics used in clinical treatment such as gentamicin, tetracycline, chloramphenicol, and ampicillin. Forty-three different antibiotic resistance genes were predicted to be present in the isolated Salmonella strains’ genomes. In addition, three plasmids were predicted in two strains, 43_S11 and 60_S17. The sequenced genomes also indicated that all strains carried SPI-1, SPI-2, and SPI-3. These SPIs are composed of antimicrobial resistance gene clusters and thus represent a potential threat to public health management. Taken together, this study highlights the extent of multidrug-resistant Salmonella contamination in duck meat in Vietnam.
Collapse
|
31
|
Sharma P, Dahiya S, Kaur P, Kapil A. Computational biology: Role and scope in taming antimicrobial resistance. Indian J Med Microbiol 2023; 41:33-38. [PMID: 36870746 DOI: 10.1016/j.ijmmb.2022.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 12/11/2022] [Accepted: 12/16/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND Infectious diseases pose many challenges due to increasing threat of antimicrobial resistance, which necessitates continuous research to develop novel strategies for development of new molecules with antibacterial activity. In the era of computational biology there are tools and techniques available to address and solve the disease management issues in the field of clinical microbiology. The sequencing techniques, structural biology and machine learning can be implemented collectively to tackle infectious diseases e.g. for the diagnosis, epidemiological typing, pathotyping, antimicrobial resistance detection as well as the discovery of novel drugs and vaccine biomarkers. OBJECTIVES The present review is a narrative review representing a comprehensive literature-based assessment regarding the use of whole genome sequencing, structural biology and machine learning for the diagnosis, molecular typing and antibacterial drug discovery. CONTENT Here, we seek to present an overview of molecular and structural basis of resistance to antibiotics, while focusing on the recent bioinformatics approaches in whole genome sequencing and structural biology. The application of next generation sequencing in management of bacterial infections focusing on investigation of microbial population diversity, genotypic resistance testing and scope for the identification of targets for novel drug and vaccine candidates, has been addressed along with the use of structural biophysics and artificial intelligence.
Collapse
Affiliation(s)
- Priyanka Sharma
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Sushila Dahiya
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Punit Kaur
- Department of Biophysics, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India.
| |
Collapse
|
32
|
Romero-Calle DX, Pedrosa-Silva F, Tomé LMR, Sousa TJ, de Oliveira Santos LTS, de Carvalho Azevedo VA, Brenig B, Benevides RG, Venancio TM, Billington C, Góes-Neto A. Hybrid Genomic Analysis of Salmonella enterica Serovar Enteritidis SE3 Isolated from Polluted Soil in Brazil. Microorganisms 2022; 11:111. [PMID: 36677403 PMCID: PMC9861973 DOI: 10.3390/microorganisms11010111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/04/2023] Open
Abstract
In Brazil, Salmonella enterica serovar Enteritidis is a significant health threat. Salmonella enterica serovar Enteritidis SE3 was isolated from soil at the Subaé River in Santo Amaro, Brazil, a region contaminated with heavy metals and organic waste. Illumina HiSeq and Oxford Nanopore Technologies MinION sequencing were used for de novo hybrid assembly of the Salmonella SE3 genome. This approach yielded 10 contigs with 99.98% identity with S. enterica serovar Enteritidis OLF-SE2-98984-6. Twelve Salmonella pathogenic islands, multiple virulence genes, multiple antimicrobial gene resistance genes, seven phage defense systems, seven prophages and a heavy metal resistance gene were encoded in the genome. Pangenome analysis of the S. enterica clade, including Salmonella SE3, revealed an open pangenome, with a core genome of 2137 genes. Our study showed the effectiveness of a hybrid sequence assembly approach for environmental Salmonella genome analysis using HiSeq and MinION data. This approach enabled the identification of key resistance and virulence genes, and these data are important to inform the control of Salmonella and heavy metal pollution in the Santo Amaro region of Brazil.
Collapse
Affiliation(s)
- Danitza Xiomara Romero-Calle
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Francisnei Pedrosa-Silva
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Luiz Marcelo Ribeiro Tomé
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Thiago J. Sousa
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | | | - Vasco Ariston de Carvalho Azevedo
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Burckhardtweg, University of Göttingen, 37073 Göttingen, Germany
| | - Raquel Guimarães Benevides
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
| | - Thiago M. Venancio
- Laboratory of Chemistry, Function of Proteins and Peptides, Center for Biosciences and Biotechnology, Darcy Ribeiro North Fluminense State University (UENF), Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Craig Billington
- Health & Environment Group, Institute of Environmental Sciences and Research, P.O. Box 29-181, Christchurch 8540, New Zealand
| | - Aristóteles Góes-Neto
- Postgraduate Program in Biotechnology, State University of Feira de Santana (UEFS), Av. Transnordestina S/N, Feira de Santana 44036-900, BA, Brazil
- Molecular and Computational Biology of Fungi Laboratory, Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
- Department of Biological Sciences, Feira de Santana State University (UEFS), Feira de Santana 44036-900, BA, Brazil
- Laboratory of Cellular and Molecular Genetics, Department of Genetics, Ecology and Evolution, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil
| |
Collapse
|
33
|
Pruss A, Kwiatkowski P, Masiuk H, Bilska I, Giedrys-Kalemba S, Dołęgowska B. Epidemiological Analysis of Extended-Spectrum β-Lactamase-Producing Klebsiella pneumoniae Outbreak in a Neonatal Clinic in Poland. Antibiotics (Basel) 2022; 12:antibiotics12010050. [PMID: 36671251 PMCID: PMC9855008 DOI: 10.3390/antibiotics12010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/26/2022] [Indexed: 12/30/2022] Open
Abstract
Klebsiella pneumoniae is one of the most common etiological agents isolated from epidemic outbreaks in neonatal wards. We describe how an extended-spectrum β-lactamase-producing K. pneumoniae (ESBL-KP) outbreak in a neonatal ward was extinguished. During the outbreak, which lasted over two months, 26 neonates were tested for K. pneumoniae, and 42 environmental swabs were taken. Drug susceptibility was determined for the isolated strains, and their virulence and phylogenetic similarity were checked. ESBL-KP colonization was confirmed in 18 neonates, and six were also confirmed to be infected. All strains isolated from patients represented one clonal type, K. pneumoniae. One strain isolated from an environmental source was determined to be a unique pulsed-field gel electrophoresis pattern. Gestational age and Apgar score were assessed as statistically significant for neonates with ESBL-KP infection. The epidemiological measures taken have been successful, and no further cases appeared. Immediate tightening of hospital hygiene rules, screening of all hospitalized neonates, and cohorting ESBL-KP-positive patients proved effective in controlling and ending the outbreak. The lack of ESBL-KP in the environment suggests that the outbreak was transmitted by colonized hospital staff. This theory could be confirmed by introducing mandatory screening for medical personnel.
Collapse
Affiliation(s)
- Agata Pruss
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
- Correspondence: ; Tel.: +48-91-466-16-55
| | - Helena Masiuk
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Iwona Bilska
- Microbiological Laboratory, Independent Public Clinical Hospital No. 1 in Szczecin, Unii Lubelskiej 1, 71-252 Szczecin, Poland
| | - Stefania Giedrys-Kalemba
- Department of Medical Microbiology, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University in Szczecin, Powstancow Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
34
|
Nucleic Acid-Based Detection of Pythium insidiosum: A Systematic Review. J Fungi (Basel) 2022; 9:jof9010027. [PMID: 36675848 PMCID: PMC9863793 DOI: 10.3390/jof9010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/10/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
Pythiosis, a life-threatening infectious condition caused by Pythium insidiosum, has been increasingly reported in humans and animals worldwide. Antifungal drugs usually fail to control the pathogen. The surgical removal of an infected organ is the treatment of choice. Many affected patients die due to advanced infection. A timely and accurate diagnosis could lead to a better prognosis in pythiosis patients and save their lives. Although a standard culture method is available in microbiological laboratories, it is time-consuming, laborious, and insensitive for P. insidiosum identification. Immunological assays have been developed to improve the diagnosis of pythiosis. However, immunological methods are commercially unavailable and primarily detect anti-P. insidiosum antibodies, which constitute indirect evidence of pythiosis, making it challenging to differentiate a past from a recent infection. Moreover, such immunological tests cannot diagnose patients with a local infection, such as in the eye. Nucleic acid-based tests (NATs) are efficient for the direct and rapid detection of P. insidiosum DNA in trace-amount or culture-negative specimens. The reagents and equipment required for NATs are usually available in molecular diagnostic laboratories. Herein, we provide a systematic review to comprehensively present the principal and clinical usages, advantages, and limitations of such NATs in the detection of P. insidiosum. Various NATs have been established to detect P. insidiosum, which can be classified into amplification-based (i.e., PCR assays, isothermal tests, and next-generation sequencing methods) and non-amplification-based (i.e., DNA hybridization) techniques. This concise review on NATs constitutes an up-to-date reference with which healthcare professionals can learn about and decide upon which detection method is suitable for their respective laboratory environments.
Collapse
|
35
|
Singh J, Stoitsova S, Zakrzewska K, Henszel L, Rosińska M, Duffell E. Healthcare-associated hepatitis B and C transmission to patients in the EU/EEA and UK: a systematic review of reported outbreaks between 2006 and 2021. BMC Public Health 2022; 22:2260. [PMID: 36463162 PMCID: PMC9719626 DOI: 10.1186/s12889-022-14726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 09/26/2022] [Indexed: 12/07/2022] Open
Abstract
Healthcare-associated transmission was the second most common hepatitis B (HBV) and hepatitis C (HCV) transmission route according to 2006-2012 European surveillance data, but data quality and completeness issues hinder comprehensive characterisation of this important issue. We carried out a systematic review of published literature on healthcare-associated transmission of HBV or HCV in European Union (EU) and European Economic Area (EEA) countries and the United Kingdom to complement surveillance data and identify higher-risk settings. We searched the PubMed and Embase databases and grey literature over the period January 2006 to September 2021, for publications reporting transmission events after 2000 in the EU/EEA and UK related to a healthcare setting or procedure. We collected data on the country, number of patients, setting type and route of transmission. In 65 publications from 16 countries, 43 HBV and 48 HCV events were identified resulting in 442 newly infected patients. Most events were reported from Italy (7 HBV and 12 HCV), Germany (8 HBV and 5 HCV) and the United Kingdom (8 HBV and 5 HCV). The number of patients infected from a single source within an event ranged from 1 to 53. Five large outbreaks of over 20 cases were identified, including two in Poland and one each in Belgium, Hungary and Slovakia. The majority of transmission events occurred through blood transfusions or in dialysis units. However, there were a number of outbreaks in seemingly low risk settings such as CT/MRI scanning units. A failure to adequately follow infection prevention control (IPC) precautions was reported in 30% of included studies. Healthcare-associated transmission of hepatitis B and C continues to occur in a range of community and hospital settings across EU/EEA countries and often results in large outbreaks, although the true extent of the situation cannot be fully determined due to under-reporting. Strict IPC precautions should be implemented across all healthcare settings and regularly audited, and surveillance systems strengthened and standardised to allow for comprehensive and consistent reporting of nosocomial transmission of hepatitis across the EU.
Collapse
Affiliation(s)
- Jasleen Singh
- grid.418914.10000 0004 1791 8889European Centre for Disease Prevention and Control, Stockholm, Sweden
| | - Savina Stoitsova
- grid.418914.10000 0004 1791 8889European Programme for Intervention Epidemiology Training, European Centre for Disease Prevention and Control, Stockholm, Sweden ,grid.415789.60000 0001 1172 7414National Institute of Public Health NIH, National Research Institute, Warsaw, Poland
| | - Karolina Zakrzewska
- grid.415789.60000 0001 1172 7414National Institute of Public Health NIH, National Research Institute, Warsaw, Poland
| | - Lukasz Henszel
- grid.415789.60000 0001 1172 7414National Institute of Public Health NIH, National Research Institute, Warsaw, Poland
| | - Magdalena Rosińska
- grid.415789.60000 0001 1172 7414National Institute of Public Health NIH, National Research Institute, Warsaw, Poland
| | - Erika Duffell
- grid.418914.10000 0004 1791 8889European Centre for Disease Prevention and Control, Stockholm, Sweden
| |
Collapse
|
36
|
Optimized conditions for Listeria, Salmonella and Escherichia whole genome sequencing using the Illumina iSeq100 platform with point-and-click bioinformatic analysis. PLoS One 2022; 17:e0277659. [PMID: 36449522 PMCID: PMC9710801 DOI: 10.1371/journal.pone.0277659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 11/01/2022] [Indexed: 12/05/2022] Open
Abstract
Whole-genome sequencing (WGS) data have become an integral component of public health investigations and clinical diagnostics. Still, many veterinary diagnostic laboratories cannot afford to implement next generation sequencing (NGS) due to its high cost and the lack of bioinformatic knowledge of the personnel to analyze NGS data. Trying to overcome these problems, and make NGS accessible to every diagnostic laboratory, thirteen veterinary diagnostic laboratories across the United States (US) initiated the assessment of Illumina iSeq100 sequencing platform for whole genome sequencing of important zoonotic foodborne pathogens Escherichia coli, Listeria monocytogenes, and Salmonella enterica. The work presented in this manuscript is a continuation of this multi-laboratory effort. Here, seven AAVLD accredited diagnostic laboratories explored a further reduction in sequencing costs and the usage of user-friendly platforms for genomic data analysis. Our investigation showed that the same genomic library quality could be achieved by using a quarter of the recommended reagent volume and, therefore a fraction of the actual price, and confirmed that Illumina iSeq100 is the most affordable sequencing technology for laboratories with low WGS demand. Furthermore, we prepared step-by-step protocols for genomic data analysis in three popular user-friendly software (BaseSpace, Geneious, and GalaxyTrakr), and we compared the outcomes in terms of genome assembly quality, and species and antimicrobial resistance gene (AMR) identification. No significant differences were found in assembly quality, and the three analysis methods could identify the target bacteria species. However, antimicrobial resistance genes were only identified using BaseSpace and GalaxyTrakr; and GalaxyTrakr was the best tool for this task.
Collapse
|
37
|
Khan MAA, Ghosh P, Chowdhury R, Hossain F, Mahmud A, Faruque ASG, Ahmed T, Abd El Wahed A, Mondal D. Feasibility of MinION Nanopore Rapid Sequencing in the Detection of Common Diarrhea Pathogens in Fecal Specimen. Anal Chem 2022; 94:16658-16666. [DOI: 10.1021/acs.analchem.2c02771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Md Anik Ashfaq Khan
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 1, 04103Leipzig, Germany
| | - Prakash Ghosh
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Rajashree Chowdhury
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Faria Hossain
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Araf Mahmud
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Abu S. G. Faruque
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Tahmeed Ahmed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Ahmed Abd El Wahed
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| | - Dinesh Mondal
- Nutrition and Clinical Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
- Laboratory Sciences and Services Division, International Centre for Diarrheal Disease Research, Bangladesh, Dhaka-1212, Bangladesh
| |
Collapse
|
38
|
The Innovative Informatics Approaches of High-Throughput Technologies in Livestock: Spearheading the Sustainability and Resiliency of Agrigenomics Research. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111893. [PMID: 36431028 PMCID: PMC9695872 DOI: 10.3390/life12111893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022]
Abstract
For more than a decade, next-generation sequencing (NGS) has been emerging as the mainstay of agrigenomics research. High-throughput technologies have made it feasible to facilitate research at the scale and cost required for using this data in livestock research. Scale frameworks of sequencing for agricultural and livestock improvement, management, and conservation are partly attributable to innovative informatics methodologies and advancements in sequencing practices. Genome-wide sequence-based investigations are often conducted worldwide, and several databases have been created to discover the connections between worldwide scientific accomplishments. Such studies are beginning to provide revolutionary insights into a new era of genomic prediction and selection capabilities of various domesticated livestock species. In this concise review, we provide selected examples of the current state of sequencing methods, many of which are already being used in animal genomic studies, and summarize the state of the positive attributes of genome-based research for cattle (Bos taurus), sheep (Ovis aries), pigs (Sus scrofa domesticus), horses (Equus caballus), chickens (Gallus gallus domesticus), and ducks (Anas platyrhyncos). This review also emphasizes the advantageous features of sequencing technologies in monitoring and detecting infectious zoonotic diseases. In the coming years, the continued advancement of sequencing technologies in livestock agrigenomics will significantly influence the sustained momentum toward regulatory approaches that encourage innovation to ensure continued access to a safe, abundant, and affordable food supplies for future generations.
Collapse
|
39
|
Persistence of Rare Salmonella Typhi Genotypes Susceptible to First-Line Antibiotics in the Remote Islands of Samoa. mBio 2022; 13:e0192022. [PMID: 36094088 PMCID: PMC9600463 DOI: 10.1128/mbio.01920-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
For decades, the remote island nation of Samoa (population ~200,000) has faced endemic typhoid fever despite improvements in water quality, sanitation, and economic development. We recently described the epidemiology of typhoid fever in Samoa from 2008 to 2019 by person, place, and time; however, the local Salmonella enterica serovar Typhi (S. Typhi) population structure, evolutionary origins, and genomic features remained unknown. Herein, we report whole genome sequence analyses of 306 S. Typhi isolates from Samoa collected between 1983 and 2020. Phylogenetics revealed a dominant population of rare genotypes 3.5.4 and 3.5.3, together comprising 292/306 (95.4%) of Samoan versus 2/4934 (0.04%) global S. Typhi isolates. Three distinct 3.5.4 genomic sublineages were identified, and their defining polymorphisms were determined. These dominant Samoan genotypes, which likely emerged in the 1970s, share ancestry with other 3.5 clade isolates from South America, Southeast Asia, and Oceania. Additionally, a 106-kb pHCM2 phenotypically cryptic plasmid, detected in a 1992 Samoan S. Typhi isolate, was identified in 106/306 (34.6%) of Samoan isolates; this is more than double the observed proportion of pHCM2-containing isolates in the global collection. In stark contrast with global S. Typhi trends, resistance-conferring polymorphisms were detected in only 15/306 (4.9%) of Samoan S. Typhi, indicating overwhelming susceptibility to antibiotics that are no longer effective in most of South and Southeast Asia. This country-level genomic framework can help local health authorities in their ongoing typhoid surveillance and control efforts, as well as fill a critical knowledge gap in S. Typhi genomic data from Oceania. IMPORTANCE In this study, we used whole genome sequencing and comparative genomics analyses to characterize the population structure, evolutionary origins, and genomic features of S. Typhi associated with decades of endemic typhoid fever in Samoa. Our analyses of Samoan isolates from 1983 to 2020 identified a rare S. Typhi population in Samoa that likely emerged around the early 1970s and evolved into sublineages that are presently dominant. The dominance of these endemic genotypes in Samoa is not readily explained by genomic content or widespread acquisition of antimicrobial resistance. These data establish the necessary framework for future genomic surveillance of S. Typhi in Samoa for public health benefit.
Collapse
|
40
|
Mackie J, Kinoti WM, Chahal SI, Lovelock DA, Campbell PR, Tran-Nguyen LTT, Rodoni BC, Constable FE. Targeted Whole Genome Sequencing (TWG-Seq) of Cucumber Green Mottle Mosaic Virus Using Tiled Amplicon Multiplex PCR and Nanopore Sequencing. PLANTS (BASEL, SWITZERLAND) 2022; 11:2716. [PMID: 36297740 PMCID: PMC9607580 DOI: 10.3390/plants11202716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Rapid and reliable detection tools are essential for disease surveillance and outbreak management, and genomic data is essential to determining pathogen origin and monitoring of transmission pathways. Low virus copy number and poor RNA quality can present challenges for genomic sequencing of plant viruses, but this can be overcome by enrichment of target nucleic acid. A targeted whole genome sequencing (TWG-Seq) approach for the detection of cucumber green mottle mosaic virus (CGMMV) has been developed where overlapping amplicons generated using two multiplex RT-PCR assays are then sequenced using the Oxford Nanopore MinION. Near complete coding region sequences were assembled with ≥100× coverage for infected leaf tissue dilution samples with RT-qPCR cycle quantification (Cq) values from 11.8 to 38 and in seed dilution samples with Cq values 13.8 to 27. Consensus sequences assembled using this approach showed greater than 99% nucleotide similarity when compared to genomes produced using metagenomic sequencing. CGMMV could be confidently detected in historical seed isolates with degraded RNA. Whilst limited access to, and costs associated with second-generation sequencing platforms can influence diagnostic outputs, the portable Nanopore technology offers an affordable high throughput sequencing alternative when combined with TWG-Seq for low copy or degraded samples.
Collapse
Affiliation(s)
- Joanne Mackie
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| | - Wycliff M. Kinoti
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Sumit I. Chahal
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - David A. Lovelock
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
| | - Paul R. Campbell
- Horticulture and Forestry Science, Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, QLD 4102, Australia
| | | | - Brendan C. Rodoni
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| | - Fiona E. Constable
- School of Applied Systems Biology, La Trobe University, Melbourne, VIC 3083, Australia
- Agriculture Victoria Research, Department of Jobs, Precincts and Regions, AgriBio, Melbourne, VIC 3083, Australia
| |
Collapse
|
41
|
Core Genome Multilocus Sequence Typing Scheme for Improved Characterization and Epidemiological Surveillance of Pathogenic Brucella. J Clin Microbiol 2022; 60:e0031122. [PMID: 35852343 PMCID: PMC9387271 DOI: 10.1128/jcm.00311-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Brucellosis poses a significant burden to human and animal health worldwide. Robust and harmonized molecular epidemiological approaches and population studies that include routine disease screening are needed to efficiently track the origin and spread of Brucella strains. Core genome multilocus sequence typing (cgMLST) is a powerful genotyping system commonly used to delineate pathogen transmission routes for disease surveillance and control. Except for Brucella melitensis, cgMLST schemes for Brucella species are currently not established. Here, we describe a novel cgMLST scheme that covers multiple Brucella species. We first determined the phylogenetic breadth of the genus using 612 Brucella genomes. We selected 1,764 genes that were particularly well conserved and typeable in at least 98% of these genomes. We tested the new scheme on 600 genomes and found high agreement with the whole-genome-based single nucleotide polymorphism (SNP) analysis. Next, we applied the scheme to reanalyze the genome of Brucella strains from epidemiologically linked outbreaks. We demonstrated the applicability of the new scheme for high-resolution typing required in outbreak investigations as previously reported with whole-genome SNP methods. We also used the novel scheme to define the global population structure of the genus using 1,322 Brucella genomes. Finally, we demonstrated the possibility of tracing distribution of Brucella strains by performing cluster analysis of cgMLST profiles and found nearly identical cgMLST profiles in different countries. Our results show that sequencing depth of more than 40-fold is optimal for allele calling with this scheme. In summary, this study describes a novel Brucella-wide cgMLST scheme that is applicable in Brucella molecular epidemiology and helps in accurately tracking and thus controlling the sources of infection. The scheme is publicly accessible and should represent a valuable resource for laboratories with limited computational resources and bioinformatics expertise.
Collapse
|
42
|
Gupta AK, Kumar M. Benchmarking and Assessment of Eight De Novo Genome Assemblers on Viral Next-Generation Sequencing Data, Including the SARS-CoV-2. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2022; 26:372-381. [PMID: 35759429 DOI: 10.1089/omi.2022.0042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Viral genomics has become crucial in clinical diagnostics and ecology, not to mention to stem the COVID-19 pandemic. Whole-genome sequencing (WGS) is pivotal in gaining an improved understanding of viral evolution, genomic epidemiology, infectious outbreaks, pathobiology, clinical management, and vaccine development. Genome assembly is one of the crucial steps in WGS data analyses. A series of different assemblers has been developed with the advent of high-throughput next-generation sequencing (NGS). Various studies have reported the evaluation of these assembly tools on distinct datasets; however, these lack data from viral origin. In this study, we performed a comparative evaluation and benchmarking of eight de novo assemblers: SOAPdenovo, Velvet, assembly by short sequences (ABySS), iterative De Bruijn graph assembler (IDBA), SPAdes, Edena, iterative virus assembler, and VICUNA on the viral NGS data from distinct Illumina (GAIIx, Hiseq, Miseq, and Nextseq) platforms. WGS data of diverse viruses, that is, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), dengue virus 3, human immunodeficiency virus 1, hepatitis B virus, human herpesvirus 8, human papillomavirus 16, rhinovirus A, and West Nile virus, were utilized to assess these assemblers. Performance metrics such as genome fraction recovery, assembly lengths, NG50, N50, contig length, contig numbers, mismatches, and misassemblies were analyzed. Overall, three assemblers, that is, SPAdes, IDBA, and ABySS, performed consistently well, including for genome assembly of SARS-CoV-2. These assembly methods should be considered and recommended for future studies of viruses. The study also suggests that implementing two or more assembly approaches should be considered in viral NGS studies, especially in clinical settings. Taken together, the benchmarking of eight de novo genome assemblers reported in this study can inform future public health and ecology research concerning the viruses, the COVID-19 pandemic, and viral outbreaks.
Collapse
Affiliation(s)
- Amit Kumar Gupta
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
| | - Manoj Kumar
- Virology Unit and Bioinformatics Centre, Institute of Microbial Technology, Council of Scientific and Industrial Research (CSIR), Chandigarh, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
43
|
Gerace E, Mancuso G, Midiri A, Poidomani S, Zummo S, Biondo C. Recent Advances in the Use of Molecular Methods for the Diagnosis of Bacterial Infections. Pathogens 2022; 11:pathogens11060663. [PMID: 35745518 PMCID: PMC9229729 DOI: 10.3390/pathogens11060663] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 12/14/2022] Open
Abstract
Infections caused by bacteria have a major impact on public health-related morbidity and mortality. Despite major advances in the prevention and treatment of bacterial infections, the latter continue to represent a significant economic and social burden worldwide. The WHO compiled a list of six highly virulent multidrug-resistant bacteria named ESKAPE (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species) responsible for life-threatening diseases. Taken together with Clostridioides difficile, Escherichia coli, Campylobacter spp., (C. jejuni and C. coli), Legionella spp., Salmonella spp., and Neisseria gonorrhoeae, all of these microorganisms are the leading causes of nosocomial infections. The rapid and accurate detection of these pathogens is not only important for the early initiation of appropriate antibiotic therapy, but also for resolving outbreaks and minimizing subsequent antimicrobial resistance. The need for ever-improving molecular diagnostic techniques is also of fundamental importance for improving epidemiological surveillance of bacterial infections. In this review, we aim to discuss the recent advances on the use of molecular techniques based on genomic and proteomic approaches for the diagnosis of bacterial infections. The advantages and limitations of each of the techniques considered are also discussed.
Collapse
Affiliation(s)
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Stefano Poidomani
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Sebastiana Zummo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
| | - Carmelo Biondo
- Department of Human Pathology, University of Messina, 98125 Messina, Italy; (G.M.); (A.M.); (S.P.); (S.Z.)
- Correspondence: ; Tel.: +39-090-2213322
| |
Collapse
|
44
|
Prajapati A, Yogisharadhya R, Mohanty NN, Mendem SK, Nizamuddin A, Chanda MM, Shivachandra SB. Whole-genome sequence analysis of Clostridium chauvoei isolated from clinical case of black quarter (BQ) from India. Arch Microbiol 2022; 204:328. [PMID: 35576020 DOI: 10.1007/s00203-022-02924-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 04/04/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Black quarter (BQ) is an infectious disease affecting cattle and small ruminants worldwide caused by Gram-positive anaerobic bacterium Clostridium chauvoei. In this study, a draft genome sequence of C. chauvoei NIVEDIBQ1 strain isolated from clinical case of black quarter was analyzed. Sequence analysis indicated that genome had 2653 predicted coding DNA sequences, harbored numerous genes, mobile genetic elements for pathogenesis, and virulence factors. Computational analysis revealed that strain contained 30 virulence-associated genes. An intact genomic region highly similar to the Clostridium phage was present in the genome. Presence of CRISPR systems and the transposon components likely contribute to the genome plasticity. Strain encode diverse spectrum of degradative carbohydrate-active enzymes (CAZymes). Comparative SNP analysis revealed that the genomes of the C. chauvoei strains analyzed were highly conserved. Phylogenetic analysis of strains and available genome (n = 21) based on whole-genome multi-locus sequence typing (wgMLST) and core orthologous genes showed the clustering of strains into two different clusters suggesting geographical links.
Collapse
Affiliation(s)
- Awadhesh Prajapati
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Revanaiah Yogisharadhya
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Nihar Nalini Mohanty
- CCS-National Institute of Animal Health (NIAH), Baghpat, Uttar Pradesh, 250609, India
| | - Suresh Kumar Mendem
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Azharuddin Nizamuddin
- Department of Animal Husbandry and Veterinary Services, State Semen Collection Centre, Hessarghatta, Bengaluru, Karnataka, 560089, India
| | - Mohammed Mudassar Chanda
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India
| | - Sathish Bhadravati Shivachandra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics (NIVEDI), Yelahanka, Karnataka, 560064, Bengaluru, India.
| |
Collapse
|
45
|
Zhou Y, Ren M, Zhang P, Jiang D, Yao X, Luo Y, Yang Z, Wang Y. Application of Nanopore Sequencing in the Detection of Foodborne Microorganisms. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1534. [PMID: 35564242 PMCID: PMC9100974 DOI: 10.3390/nano12091534] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 12/21/2022]
Abstract
Foodborne pathogens have become the subject of intense interest because of their high incidence and mortality worldwide. In the past few decades, people have developed many methods to solve this challenge. At present, methods such as traditional microbial culture methods, nucleic acid or protein-based pathogen detection methods, and whole-genome analysis are widely used in the detection of pathogenic microorganisms in food. However, these methods are limited by time-consuming, cumbersome operations or high costs. The development of nanopore sequencing technology offers the possibility to address these shortcomings. Nanopore sequencing, a third-generation technology, has the advantages of simple operation, high sensitivity, real-time sequencing, and low turnaround time. It can be widely used in the rapid detection and serotyping of foodborne pathogens. This review article discusses foodborne diseases, the principle of nanopore sequencing technology, the application of nanopore sequencing technology in foodborne pathogens detection, as well as its development prospects.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Yin Wang
- Key Laboratory of Animal Diseases and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (Y.Z.); (M.R.); (P.Z.); (D.J.); (X.Y.); (Y.L.); (Z.Y.)
| |
Collapse
|
46
|
Choi S, Kim KW, Ku KB, Kim SJ, Park C, Park D, Kim S, Yi H. Human Alphacoronavirus Universal Primers for Genome Amplification and Sequencing. Front Microbiol 2022; 13:789665. [PMID: 35401489 PMCID: PMC8990890 DOI: 10.3389/fmicb.2022.789665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Rapid and accurate sequencing covering the entire genome is essential to identify genetic variations of viral pathogens. However, due to the low viral titers in clinical samples, certain amplification steps are required for viral genome sequencing. At present, there are no universal primers available for alphacoronaviruses and that, since these viruses have diverse strains, new primers specific to the target strain must be continuously developed for sequencing. Thus, in this study, we aimed to develop a universal primer set valid for all human alphacoronaviruses and applicable to samples containing trace amounts of the virus. To this aim, we designed overlapping primer pairs capable of amplifying the entire genome of all known human alphacoronaviruses. The selected primers, named the AC primer set, were composed of 10 primer pairs stretching over the entire genome of alphacoronaviruses, and produced PCR products of the expected size (3-5 kb) from both the HCoV-229E and HCoV-NL63 strains. After genome amplification, an evaluation using various sequencing platforms was carried out. The amplicon library sequencing data were assembled into complete genome sequences in all sequencing strategies examined in this study. The sequencing accuracy varied depending on the sequencing technology, but all sequencing methods showed a sequencing error of less than 0.01%. In the mock clinical specimen, the detection limit was 10-3 PFU/ml (102 copies/ml). The AC primer set and experimental procedure optimized in this study may enable the fast diagnosis of mutant alphacoronaviruses in future epidemics.
Collapse
Affiliation(s)
- Sungmi Choi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
| | - Kwan Woo Kim
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea
| | - Keun Bon Ku
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Seong-Jun Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea
| | - Changwoo Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
| | - Dongju Park
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Biological Science, Chungnam National University, Daejeon, South Korea
| | - Seil Kim
- Center for Convergent Research of Emerging Virus Infection, Korea Research Institute of Chemical Technology, Daejeon, South Korea.,Microbiological Analysis Team, Group for Biometrology, Korea Research Institute of Standards and Science (KRISS), Daejeon, South Korea.,Department of Bio-Analysis Science, University of Science and Technology, Daejeon, South Korea
| | - Hana Yi
- Interdisciplinary Program in Precision Public Health, Korea University, Seoul, South Korea.,School of Biosystems and Biomedical Sciences, Korea University, Seoul, South Korea
| |
Collapse
|
47
|
Normand AC, Chaline A, Mohammad N, Godmer A, Acherar A, Huguenin A, Ranque S, Tannier X, Piarroux R. Identification of a clonal population of Aspergillus flavus by MALDI-TOF mass spectrometry using deep learning. Sci Rep 2022; 12:1575. [PMID: 35091651 PMCID: PMC8799650 DOI: 10.1038/s41598-022-05647-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 01/10/2022] [Indexed: 11/21/2022] Open
Abstract
The spread of fungal clones is hard to detect in the daily routines in clinical laboratories, and there is a need for new tools that can facilitate clone detection within a set of strains. Currently, Matrix Assisted Laser Desorption-Ionization Time-of-Flight Mass Spectrometry is extensively used to identify microbial isolates at the species level. Since most of clinical laboratories are equipped with this technology, there is a question of whether this equipment can sort a particular clone from a population of various isolates of the same species. We performed an experiment in which 19 clonal isolates of Aspergillus flavus initially collected on contaminated surgical masks were included in a set of 55 A. flavus isolates of various origins. A simple convolutional neural network (CNN) was trained to detect the isolates belonging to the clone. In this experiment, the training and testing sets were totally independent, and different MALDI-TOF devices (Microflex) were used for the training and testing phases. The CNN was used to correctly sort a large portion of the isolates, with excellent (> 93%) accuracy for two of the three devices used and with less accuracy for the third device (69%), which was older and needed to have the laser replaced.
Collapse
Affiliation(s)
- Anne-Cécile Normand
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France.
| | - Aurélien Chaline
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France
- Section Informatique et Communication, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Noshine Mohammad
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Alexandre Godmer
- Département de Bactériologie, Hôpital Saint-Antoine, AP-HP, Sorbonne Université, Paris, France
- Centre d'Immunologie et des Maladies Infectieuses, INSERM, U1135, Sorbonne Université, Paris, France
| | - Aniss Acherar
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| | - Antoine Huguenin
- Université de Reims Champagne Ardenne, ESCAPE EA7510, 51100, Reims, France
- Laboratoire de Parasitologie Mycologie, Pôle de Biopathologie, CHU de Reims Hôpital Maison Blanche, 51100, Reims, France
| | | | - Xavier Tannier
- Sorbonne Université, Université Sorbonne Paris Nord, INSERM, Laboratoire d'Informatique Médicale et d'Ingénierie des connaissances en e-Santé, LIMICS, Paris, France
| | - Renaud Piarroux
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Service de Parasitologie-Mycologie, 75013, Paris, France
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique, AP-HP, Hôpital Pitié-Salpêtrière, 75013, Paris, France
| |
Collapse
|
48
|
Mtetwa HN, Amoah ID, Kumari S, Bux F, Reddy P. The source and fate of Mycobacterium tuberculosis complex in wastewater and possible routes of transmission. BMC Public Health 2022; 22:145. [PMID: 35057793 PMCID: PMC8781043 DOI: 10.1186/s12889-022-12527-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/06/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The Mycobacterium tuberculosis complex (MTBC) consists of causative agents of both human and animal tuberculosis and is responsible for over 10 million annual infections globally. Infections occur mainly through airborne transmission, however, there are possible indirect transmissions through a faecal-oral route which is poorly reported. This faecal-oral transmission could be through the occurrence of the microbe in environments such as wastewater. This manuscript, therefore, reviews the source and fate of MTBC in the wastewater environment, including the current methods in use and the possible risks of infections. RESULTS The reviewed literature indicates that about 20% of patients with pulmonary TB may have extra-pulmonary manifestations such as GITB, resulting in shedding in feaces and urine. This could potentially be the reason for the detection of MTBC in wastewater. MTBC concentrations of up to 5.5 × 105 (±3.9 × 105) copies/L of untreated wastewater have been reported. Studies have indicated that wastewater may provide these bacteria with the required nutrients for their growth and could potentially result in environmental transmission. However, 98.6 (± 2.7) %, removal during wastewater treatment, through physical-chemical decantation (primary treatment) and biofiltration (secondary treatment) has been reported. Despite these reports, several studies observed the presence of MTBC in treated wastewater via both culture-dependent and molecular techniques. CONCLUSION The detection of viable MTBC cells in either treated or untreated wastewater, highlights the potential risks of infection for wastewater workers and communities close to these wastewater treatment plants. The generation of aerosols during wastewater treatment could be the main route of transmission. Additionally, direct exposure to the wastewater containing MTBC could potentially contribute to indirect transmissions which may lead to pulmonary or extra-pulmonary infections. This calls for the implementation of risk reduction measures aimed at protecting the exposed populations.
Collapse
Affiliation(s)
- Hlengiwe N Mtetwa
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology (IWWT), Durban University of Technology, PO Box 1334, Durban, 4000, South Africa
| | - Poovendhree Reddy
- Department of Community Health Studies, Faculty of Health Sciences, Durban University of Technology, PO Box 1334, Durban, 4000, South Africa.
| |
Collapse
|
49
|
Suminda GGD, Bhandari S, Won Y, Goutam U, Kanth Pulicherla K, Son YO, Ghosh M. High-throughput sequencing technologies in the detection of livestock pathogens, diagnosis, and zoonotic surveillance. Comput Struct Biotechnol J 2022; 20:5378-5392. [PMID: 36212529 PMCID: PMC9526013 DOI: 10.1016/j.csbj.2022.09.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 12/03/2022] Open
Abstract
Increasing globalization, agricultural intensification, urbanization, and climatic changes have resulted in a significant recent increase in emerging infectious zoonotic diseases. Zoonotic diseases are becoming more common, so innovative, effective, and integrative research is required to better understand their transmission, ecological implications, and dynamics at wildlife-human interfaces. High-throughput sequencing (HTS) methodologies have enormous potential for unraveling these contingencies and improving our understanding, but they are only now beginning to be realized in livestock research. This study investigates the current state of use of sequencing technologies in the detection of livestock pathogens such as bovine, dogs (Canis lupus familiaris), sheep (Ovis aries), pigs (Sus scrofa), horses (Equus caballus), chicken (Gallus gallus domesticus), and ducks (Anatidae) as well as how it can improve the monitoring and detection of zoonotic infections. We also described several high-throughput sequencing approaches for improved detection of known, unknown, and emerging infectious agents, resulting in better infectious disease diagnosis, as well as surveillance of zoonotic infectious diseases. In the coming years, the continued advancement of sequencing technologies will improve livestock research and hasten the development of various new genomic and technological studies on farm animals.
Collapse
|
50
|
Lorente-Leal V, Farrell D, Romero B, Álvarez J, de Juan L, Gordon SV. Performance and Agreement Between WGS Variant Calling Pipelines Used for Bovine Tuberculosis Control: Toward International Standardization. Front Vet Sci 2022; 8:780018. [PMID: 34970617 PMCID: PMC8712436 DOI: 10.3389/fvets.2021.780018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 11/25/2021] [Indexed: 11/29/2022] Open
Abstract
Whole genome sequencing (WGS) and allied variant calling pipelines are a valuable tool for the control and eradication of infectious diseases, since they allow the assessment of the genetic relatedness of strains of animal pathogens. In the context of the control of tuberculosis (TB) in livestock, mainly caused by Mycobacterium bovis, these tools offer a high-resolution alternative to traditional molecular methods in the study of herd breakdown events. However, despite the increased use and efforts in the standardization of WGS methods in human tuberculosis around the world, the application of these WGS-enabled approaches to control TB in livestock is still in early development. Our study pursued an initial evaluation of the performance and agreement of four publicly available pipelines for the analysis of M. bovis WGS data (vSNP, SNiPgenie, BovTB, and MTBseq) on a set of simulated Illumina reads generated from a real-world setting with high TB prevalence in cattle and wildlife in the Republic of Ireland. The overall performance of the evaluated pipelines was high, with recall and precision rates above 99% once repeat-rich and problematic regions were removed from the analyses. In addition, when the same filters were applied, distances between inferred phylogenetic trees were similar and pairwise comparison revealed that most of the differences were due to the positioning of polytomies. Hence, under the studied conditions, all pipelines offer similar performance for variant calling to underpin real-world studies of M. bovis transmission dynamics.
Collapse
Affiliation(s)
- Víctor Lorente-Leal
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Damien Farrell
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Beatriz Romero
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Julio Álvarez
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Lucía de Juan
- VISAVET Health Surveillance Center, Universidad Complutense de Madrid, Madrid, Spain.,Animal Health Department, Faculty of Veterinary Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Stephen V Gordon
- UCD School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| |
Collapse
|