1
|
Denner J. Monitoring for PERV Following Xenotransplantation. Transpl Int 2024; 37:13491. [PMID: 39434857 PMCID: PMC11491343 DOI: 10.3389/ti.2024.13491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/16/2024] [Indexed: 10/23/2024]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs. PERV-A, PERV-B and PERV-C can be released as infectious virus particles and PERV-A and PERV-B can infect human cells in culture. PERV-C does not infect human cells, but high-titer recombinant PERV-A/C can infect them. Retroviruses are able to induce immunosuppression and/or tumors in the infected host. Numerous methods have been developed to study PERV in donor pigs. No PERV infections were observed in infection experiments as well as in preclinical and clinical xenotransplantation trials. Despite this, several strategies have been developed to prevent PERV infection of the recipient. PCR-based and immunological methods are required to screen xenotransplant recipients. Since the proviruses are integrated into the pig genome, PERV infection has to be distinguished from microchimerism, e.g., the presence of pig cells in the recipient, which is common in xenotransplantation. Sensitive PCR methods using pig short interspersed nuclear elements (SINE) sequences allow to detect pig cells easily. Virus infection can also be detected by an increase of viral genomic or mRNA in human cells. The method of choice, however, is to screen for specific antibodies against PERV using different recombinant PERV proteins, purified viruses or peptides.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
2
|
Schmoeckel M, Längin M, Reichart B, Abicht JM, Bender M, Denner J, Marckmann G, Brenner P, Wolf E, Hagl C. [Xenotransplantation of solid organs]. CHIRURGIE (HEIDELBERG, GERMANY) 2024; 95:603-609. [PMID: 38748210 PMCID: PMC11286678 DOI: 10.1007/s00104-024-02093-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/16/2024] [Indexed: 07/30/2024]
Abstract
Transplantation of genetically modified porcine hearts and kidneys could become a solution to the persistent shortage of human organ donors. Progress has been made in genetic engineering of donor pigs, preservation techniques after organ harvesting and immunosuppression using co-stimulation blockade with anti-CD40/CD40L monoclonal antibodies. Progress has also been made in in the development of methods that detect pathogenic porcine viruses and prevent their transmission to the recipient. As normal land breed pig organs continue to grow in the recipient to their original size, different pig breeds (such as Auckland Island pigs) are now used which reach a final size suitable for humans. Alternatively, a knock-out of the growth hormone receptor gene has been established, e.g., in the 10GM genetically modified pigs from Revivicor/United Therapeutics, USA. The first clinical pilot studies including patients suffering from terminal heart failure are expected to start in Germany in about 2 years.
Collapse
Affiliation(s)
- Michael Schmoeckel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland.
| | - Matthias Längin
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Bruno Reichart
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, München, Deutschland
| | - Jan-Michael Abicht
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Martin Bender
- Klinik für Anästhesiologie, LMU Klinikum Großhadern, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Joachim Denner
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Institut für Virologie, Fachbereich für Veterinärmedizin, FU Berlin, Berlin, Deutschland
| | - Georg Marckmann
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Institut für Ethik, Geschichte und Theorie der Medizin, LMU München, München, Deutschland
| | - Paolo Brenner
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
| | - Eckhard Wolf
- DFG-Sonderforschungsbereich TR127 - Xenotransplantation, LMU München, München, Deutschland
- Genzentrum und Center for Innovative Medical Models (CIMM), LMU München, München, Deutschland
| | - Christian Hagl
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum - Standort Großhadern, Marchioninistr. 15, 81377, München, Deutschland
- Partner Site München, Deutsches Zentrum für Herz- und Kreislaufforschung e. V. (DZHK), München, Deutschland
| |
Collapse
|
3
|
Jhelum H, Kaufer B, Denner J. Application of Methods Detecting Xenotransplantation-Relevant Viruses for Screening German Slaughterhouse Pigs. Viruses 2024; 16:1119. [PMID: 39066281 PMCID: PMC11281539 DOI: 10.3390/v16071119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024] Open
Abstract
Detection methods have been developed to prevent transmission of zoonotic or xenozoonotic porcine viruses after transplantation of pig organs or cells to the recipient (xenotransplantation). Eleven xenotransplantation-relevant viruses, including porcine cytomegalovirus, porcine roseolovirus (PCMV/PRV), porcine lymphotropic herpesviruses -1, -2, -3 (PLHV-1, 2, 3), porcine parvovirus (PPV), porcine circovirus 2, 3, 4 (PCV2, 3, 4), hepatitis E virus genotype 3 (HEV3), porcine endogenous retrovirus-C (PERV-C), and recombinant PERV-A/C have been selected. In the past, several pig breeds, minipigs, and genetically modified pigs generated for xenotransplantation had been analyzed using these methods. Here, spleen, liver, and blood samples from 10 German slaughterhouse pigs were screened using both PCR-based and immunological assays. Five viruses: PCMV/PRV, PLHV-1, PLHV-3, and PERV-C, were found in all animals, and PCV3 in one animal. Some animals were latently infected with PCMV/PRV, as only virus-specific antibodies were detected. Others were also PCR positive in the spleen and/or liver, indicative of an ongoing infection. These results provide important information on the viruses that infect German slaughterhouse pigs, and together with the results of previous studies, they reveal that the methods and test strategies efficiently work under field conditions.
Collapse
Affiliation(s)
| | | | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (H.J.); (B.K.)
| |
Collapse
|
4
|
Peterson L, Yacoub MH, Ayares D, Yamada K, Eisenson D, Griffith BP, Mohiuddin MM, Eyestone W, Venter JC, Smolenski RT, Rothblatt M. Physiological basis for xenotransplantation from genetically modified pigs to humans. Physiol Rev 2024; 104:1409-1459. [PMID: 38517040 PMCID: PMC11390123 DOI: 10.1152/physrev.00041.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/23/2024] Open
Abstract
The collective efforts of scientists over multiple decades have led to advancements in molecular and cellular biology-based technologies including genetic engineering and animal cloning that are now being harnessed to enhance the suitability of pig organs for xenotransplantation into humans. Using organs sourced from pigs with multiple gene deletions and human transgene insertions, investigators have overcome formidable immunological and physiological barriers in pig-to-nonhuman primate (NHP) xenotransplantation and achieved prolonged pig xenograft survival. These studies informed the design of Revivicor's (Revivicor Inc, Blacksburg, VA) genetically engineered pigs with 10 genetic modifications (10 GE) (including the inactivation of 4 endogenous porcine genes and insertion of 6 human transgenes), whose hearts and kidneys have now been studied in preclinical human xenotransplantation models with brain-dead recipients. Additionally, the first two clinical cases of pig-to-human heart xenotransplantation were recently performed with hearts from this 10 GE pig at the University of Maryland. Although this review focuses on xenotransplantation of hearts and kidneys, multiple organs, tissues, and cell types from genetically engineered pigs will provide much-needed therapeutic interventions in the future.
Collapse
Affiliation(s)
- Leigh Peterson
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | | | - David Ayares
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - Kazuhiko Yamada
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Daniel Eisenson
- Department of Surgery, Division of Transplantation, Johns Hopkins Medicine, Baltimore, Maryland, United States
| | - Bartley P Griffith
- University of Maryland Medical Center, Baltimore, Maryland, United States
| | | | - Willard Eyestone
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| | - J Craig Venter
- J. Craig Venter Institute, Rockville, Maryland, United States
| | | | - Martine Rothblatt
- United Therapeutics Corporation, Silver Spring, Maryland, United States
| |
Collapse
|
5
|
Schmoeckel M, Längin M, Reichart B, Abicht JM, Bender M, Michel S, Kamla CE, Denner J, Tönjes RR, Schwinzer R, Marckmann G, Wolf E, Brenner P, Hagl C. Current Status of Cardiac Xenotransplantation: Report of a Workshop of the German Heart Transplant Centers, Martinsried, March 3, 2023. Thorac Cardiovasc Surg 2024; 72:273-284. [PMID: 38154473 PMCID: PMC11147670 DOI: 10.1055/a-2235-8854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023]
Abstract
This report comprises the contents of the presentations and following discussions of a workshop of the German Heart Transplant Centers in Martinsried, Germany on cardiac xenotransplantation. The production and current availability of genetically modified donor pigs, preservation techniques during organ harvesting, and immunosuppressive regimens in the recipient are described. Selection criteria for suitable patients and possible solutions to the problem of overgrowth of the xenotransplant are discussed. Obviously microbiological safety for the recipient and close contacts is essential, and ethical considerations to gain public acceptance for clinical applications are addressed. The first clinical trial will be regulated and supervised by the Paul-Ehrlich-Institute as the National Competent Authority for Germany, and the German Heart Transplant Centers agreed to cooperatively select the first patients for cardiac xenotransplantation.
Collapse
Affiliation(s)
- Michael Schmoeckel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
| | - Matthias Längin
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Bruno Reichart
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Jan-Michael Abicht
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Martin Bender
- Klinik für Anaesthesiologie, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Sebastian Michel
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | | | - Joachim Denner
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Virologie, Fachbereich für Veterinärmedizin, Freie Universität Berlin, Berlin, Germany
| | - Ralf Reinhard Tönjes
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Paul-Ehrlich-Institut, Langen, Germany
| | - Reinhard Schwinzer
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Georg Marckmann
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Institut für Ethik, Geschichte und Theorie der Medizin, LMU München, Germany
| | - Eckhard Wolf
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
- Lehrstuhl für Molekulare Tierzucht und Biotechnologie, Genzentrum der LMU München, Germany
| | - Paolo Brenner
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DFG-Transregio-Sonderforschungsbereich TR127—Xenotransplantation, Walter-Brendel-Zentrum für Experimentelle Medizin, LMU München, Germany
| | - Christian Hagl
- Herzchirurgische Klinik und Poliklinik, LMU Klinikum, LMU München, Germany
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung e.V.), Partner Site Munich, Germany
| |
Collapse
|
6
|
Romano V, Passaro ML, Ruzza A, Parekh M, Airaldi M, Levis HJ, Ferrari S, Costagliola C, Semeraro F, Ponzin D. Quality assurance in corneal transplants: Donor cornea assessment and oversight. Surv Ophthalmol 2024; 69:465-482. [PMID: 38199504 DOI: 10.1016/j.survophthal.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/12/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The cornea is the most frequently transplanted human tissue, and corneal transplantation represents the most successful allogeneic transplant worldwide. In order to obtain good surgical outcome and visual rehabilitation and to ensure the safety of the recipient, accurate screening of donors and donor tissues is necessary throughout the process. This mitigates the risks of transmission to the recipient, including infectious diseases and environmental contaminants, and ensures high optical and functional quality of the tissues. The process can be divided into 3 stages: (1) donor evaluation and selection before tissue harvest performed by the retrieval team, (2) tissue analysis during the storage phase conducted by the eye bank technicians after the retrieval, and, (3) tissue quality checks undertaken by the surgeons in the operating room before transplantation. Although process improvements over the years have greatly enhanced safety, quality, and outcome of the corneal transplants, a lack of standardization between centers during certain phases of the process still remains, and may impact on the quality and number of transplanted corneas. Here we detail the donor screening process for the retrieval teams, eye bank operators. and ophthalmic surgeons and examine the limitations associated with each of these stages.
Collapse
Affiliation(s)
- Vito Romano
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; Eye Clinic, ASST Spedali Civili di Brescia, Brescia, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy.
| | - Maria Laura Passaro
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Alessandro Ruzza
- International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto Onlus, Venice, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Mohit Parekh
- Schepens Eye Research Institute of Mass Eye and Ear, Dept. of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Matteo Airaldi
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; Eye Clinic, ASST Spedali Civili di Brescia, Brescia, Italy; Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy; International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto Onlus, Venice, Italy; Schepens Eye Research Institute of Mass Eye and Ear, Dept. of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Hannah J Levis
- Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy; Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Stefano Ferrari
- International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto Onlus, Venice, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Ciro Costagliola
- Department of Neurosciences, Reproductive Sciences and Dentistry, University of Naples "Federico II", Naples, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Francesco Semeraro
- Eye Clinic, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia, Brescia, Italy; Eye Clinic, ASST Spedali Civili di Brescia, Brescia, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| | - Diego Ponzin
- International Center for Ocular Physiopathology, Fondazione Banca Degli Occhi del Veneto Onlus, Venice, Italy; Department of Molecular and Translational Medicine, Università degli Studi di Brescia, Brescia, Italy
| |
Collapse
|
7
|
Ghazi M, Saleh A, Abdallah M, El Masri D, El Masri J, El Ayoubi LM, Hawi J, Jurjus A. Barriers toward xenotransplantation in Arab World. Xenotransplantation 2024; 31:e12852. [PMID: 38526015 DOI: 10.1111/xen.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024]
Abstract
Organ transplant is a crucial therapeutic strategy offering a life-saving and transformative medical intervention. It provides an opportunity to improve their quality of life and increase their lifespan. The shortage of organs remains a critical global challenge, leading to a prolonged waiting times for organ receivers, which contributes to an increase in morbidity and mortality rates. Hence, xenotransplantation offered a promising solution to the global shortage of organs through the use of animal organs, leading to an increase in donor availability, reducing waiting times, minimizing organ trafficking, improving genetic engineering advancements, and driving scientific innovation. Even though xenotransplantation has many benefits in the clinical setting, it has many barriers that are hindering its achievements and constraining its occurrence. Some barriers to xenotransplant are general, such as the immunological barrier, while others are specific to certain regions due to local causes. The Arab region exhibits disparities in clinical settings compared to the global context, marked by the huge economic crisis and a shortage of trained healthcare professionals. Considering the huge resources and advancements needed in the field of xenotransplantation, this review aims to explore the specific barriers toward xenotransplantation in the Arab countries, highlighting the challenges to overcome these barriers.
Collapse
Affiliation(s)
- Maya Ghazi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Aalaa Saleh
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Malak Abdallah
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | - Diala El Masri
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, University of Balamand, Koura, Lebanon
| | - Jad El Masri
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
- Faculty of Medical Sciences, Lebanese University, Beirut, Lebanon
| | | | - Jihad Hawi
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Abdo Jurjus
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
8
|
Du Z, Chen C, Zheng Y, Wang X, Song C. Retroviral Insertion Polymorphism (RIP) of Porcine Endogenous Retroviruses (PERVs) in Pig Genomes. Animals (Basel) 2024; 14:621. [PMID: 38396589 PMCID: PMC10886097 DOI: 10.3390/ani14040621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/29/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Endogenous retroviruses (ERVs) are one of the superfamilies of long terminal repeat retrotransposons (LTRs) in mice and humans. Approximately 8% of the pig genome is composed of sequences derived from LTRs. While the majority of ERVs in pigs have decayed, a small number of full-length copies can still mobilize within the genome. This study investigated the unexplored retroviral insertion polymorphisms (RIPs) generated by the mobilization of full-length ERVs (Fl-ERVs), and evaluated their impact on phenotypic variation to gain insights into the biological role of Fl-ERVs in pigs. Overall, 39 RIPs (insertions or deletions relative to the pig reference genome) generated by Fl-ERVs were predicted by comparative genomic analysis, and 18 of them were confirmed by PCR detection. Four RIP sites (D5, D14, D15, and D18) were further evaluated by population analysis, and all of them displayed polymorphisms in multiple breeds. The RIP site of ERV-D14, which is a Fl-ERV inserted in the STAB2-like gene, was further confirmed by sequencing. Population analysis of the polymorphic site of ERV-D14 reveals that it presents moderate polymorphism information in the Large White pig breed, and the association analysis reveals that the RIP of ERV-D14 is associated with age variations at 30 kg body weight (p < 0.05) and 100 kg body weight (p < 0.01) in the population of Large White pigs (N = 480). Furthermore, the ERV-D14 RIP is associated with changes in the expression of the target gene STAB2-like in the liver, backfat, and leaf fat in Sushan pigs. These data suggest that some Fl-ERVs are still mobilizing in the pig's genome, and contribute to genomic and phenotypic variations.
Collapse
Affiliation(s)
- Zhanyu Du
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
- College of Grassland Resources, Institute of Qinghai-Tibetan Plateau, Southwest Minzu University, Chengdu 610225, China
| | - Cai Chen
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Yao Zheng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Xiaoyan Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| | - Chengyi Song
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China; (Z.D.); (C.C.); (Y.Z.); (X.W.)
| |
Collapse
|
9
|
Otabi H, Miura H, Uryu H, Kobayashi-Harada R, Abe K, Nakano K, Umeyama K, Hasegawa K, Tsukahara T, Nagashima H, Inoue R. Development of a panel for detection of pathogens in xenotransplantation donor pigs. Xenotransplantation 2023; 30:e12825. [PMID: 37771249 DOI: 10.1111/xen.12825] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/11/2023] [Accepted: 08/29/2023] [Indexed: 09/30/2023]
Abstract
There have been high expectations in recent years of using xenotransplantation and regenerative medicine to treat humans, and pigs have been utilized as the donor model. Pigs used for these clinical applications must be microbiologically safe, that is, free of infectious pathogens, to prevent infections not only in livestock, but also in humans. Currently, however, the full spectrum of pathogens that can infect to the human host or cause disease in transplanted porcine organs/cells has not been fully defined. In the present study, we thus aimed to develop a larger panel for the detection of pathogens that could potentially infect xenotransplantation donor pigs. Our newly developed panel, which consisted of 76 highly sensitive PCR detection assays, was able to detect 41 viruses, 1 protozoa, and a broad range of bacteria (by use of universal 16S rRNA primers). The applicability of this panel was validated using blood samples from uterectomy-born piglets, and pathogens suspected to be vertically transmitted from sows to piglets were successfully detected. We estimate that, at least for viruses and bacteria, the number of target pathogens detected by the developed screening panel should suffice to meet the microbiological safety levels required worldwide for xenotransplantation and/or regenerative therapy. This panel provides greater diagnosis options to produce donor pigs so that it would render unnecessary to screen for all pathogens listed. Instead, the new panel could be utilized to detect only required pathogens within a given geographic range where the donor pigs for xenotransplantation have been and/or are being developed.
Collapse
Affiliation(s)
- Hikari Otabi
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Hiroto Miura
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Haruka Uryu
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| | | | - Kanako Abe
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
| | - Kazuaki Nakano
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Kazuhiro Umeyama
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
| | - Koki Hasegawa
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | | | - Hiroshi Nagashima
- Meiji University International Institute for Bio-Resource Research, Kawasaki, Japan
- Laboratory of Medical Bioengineering, Department of Life Sciences, School of Agriculture, Meiji University, Kawasaki, Japan
| | - Ryo Inoue
- Laboratory of Animal Science, Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, Osaka, Japan
- Laboratory of Animal Science, Kyoto Prefectural University, Kyoto, Japan
| |
Collapse
|
10
|
Chabukswar S, Grandi N, Lin LT, Tramontano E. Envelope Recombination: A Major Driver in Shaping Retroviral Diversification and Evolution within the Host Genome. Viruses 2023; 15:1856. [PMID: 37766262 PMCID: PMC10536682 DOI: 10.3390/v15091856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/21/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Endogenous retroviruses (ERVs) are integrated into host DNA as the result of ancient germ line infections, primarily by extinct exogenous retroviruses. Thus, vertebrates' genomes contain thousands of ERV copies, providing a "fossil" record for ancestral retroviral diversity and its evolution within the host genome. Like other retroviruses, the ERV proviral sequence consists of gag, pro, pol, and env genes flanked by long terminal repeats (LTRs). Particularly, the env gene encodes for the envelope proteins that initiate the infection process by binding to the host cellular receptor(s), causing membrane fusion. For this reason, a major element in understanding ERVs' evolutionary trajectory is the characterization of env changes over time. Most of the studies dedicated to ERVs' env have been aimed at finding an "actual" physiological or pathological function, while few of them have focused on how these genes were once acquired and modified within the host. Once acquired into the organism, genome ERVs undergo common cellular events, including recombination. Indeed, genome recombination plays a role in ERV evolutionary dynamics. Retroviral recombination events that might have been involved in env divergence include the acquisition of env genes from distantly related retroviruses, env swapping facilitating multiple cross-species transmission over millions of years, ectopic recombination between the homologous sequences present in different positions in the chromosomes, and template switching during transcriptional events. The occurrence of these recombinational events might have aided in shaping retroviral diversification and evolution until the present day. Hence, this review describes and discusses in detail the reported recombination events involving ERV env to provide the basis for further studies in the field.
Collapse
Affiliation(s)
- Saili Chabukswar
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Nicole Grandi
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| | - Liang-Tzung Lin
- Department of Microbiology and Immunology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan;
- Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Enzo Tramontano
- Laboratory of Molecular Virology, Department of Life and Environmental Sciences, University of Cagliari, 09042 Cagliari, Italy; (S.C.); (N.G.)
| |
Collapse
|
11
|
Flecks M, Fischer N, Krijnse Locker J, Tönjes RR, Godehardt AW. Analysis of PERV-C superinfection resistance using HA-tagged viruses. Retrovirology 2023; 20:14. [PMID: 37605152 PMCID: PMC10440901 DOI: 10.1186/s12977-023-00630-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Accepted: 08/09/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Using pigs as organ donors has advanced xenotransplantation to the point that it is almost ready for clinical use. However, there is still a zoonotic risk associated with xenotransplantation, and the potential transmission of porcine endogenous retroviruses needs to be surveyed. Despite significant attempts to eliminate this risk, by the selection of PERV-C free pigs with low expression of PERV-A, -B, and by the genome-wide inactivation of PERV using CRISPR/Cas9, the impact of superinfection resistance (SIR) was not investigated. SIR is a viral trait that prevents reinfection (superinfection). For PERV, the underlying mechanism is unclear, whether and how cells, that harbor functional PERV, are protected. Using PERV-C(5683) as a reference virus, we investigated SIR in a newly developed in vitro model to pursue the mechanism and confirm its protective effect. RESULTS We developed three PERV-C constructs on the basis of PERV-C(5683), each of which carries a hemagglutinin tag (HA-tag) at a different position of the envelope gene (SP-HA, HA-VRA, and RPep-HA), to distinguish between primary infection and superinfection. The newly generated PERV-C(5683)-HA viruses were characterized while quantifying the viral RNA, reverse transcriptase activity, protein expression analysis, and infection studies. It was demonstrated that SP-HA and RPep-HA were comparable to PERV-C(5683), whereas HA-VRA was not replication competent. SP-HA and RPep-HA were chosen to challenge PERV-C(5683)-positive ST-IOWA cells demonstrating that PERV-C-HA viruses are not able to superinfect those cells. They do not integrate into the genome and are not expressed. CONCLUSIONS The mechanism of SIR applies to PERV-C. The production of PERV-C particles serves as a defense mechanism from superinfection with exogenous PERV-C. It was demonstrated by newly generated PERV-C(5683)-HA clones that might be used as a cutting-edge tool. The HA-tagging of PERV-C is novel, providing a blueprint for the tagging of other human tropic PERV viruses. The tagged viruses are suitable for additional in vitro and in vivo infection studies and will contribute, to basic research on viral invasion and pathogenesis. It will maintain the virus safety of XTx.
Collapse
Affiliation(s)
- Merle Flecks
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Nicole Fischer
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Jacomina Krijnse Locker
- Loewe-DRUID Research Group, Electron Microscopy of Pathogens, Paul-Ehrlich-Institut, Langen, Germany
| | - Ralf R. Tönjes
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| | - Antonia W. Godehardt
- Division of Haematology, Cell and Gene Therapy, Paul-Ehrlich-Institut, Langen, Germany
| |
Collapse
|
12
|
Jhelum H, Bender M, Reichart B, Mokelke M, Radan J, Neumann E, Krabben L, Abicht JM, Kaufer B, Längin M, Denner J. Evidence for Microchimerism in Baboon Recipients of Pig Hearts. Viruses 2023; 15:1618. [PMID: 37515304 PMCID: PMC10385208 DOI: 10.3390/v15071618] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/14/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Xenotransplantation, like allotransplantation, is usually associated with microchimerism, i.e., the presence of cells from the donor in the recipient. Microchimerism was reported in first xenotransplantation trials in humans, as well as in most preclinical trials in nonhuman primates (for review, see Denner, Viruses 2023, 15, 190). When using pigs as xenotransplantation donors, their cells contain porcine endogenous retroviruses (PERVs) in their genome. This makes it difficult to discriminate between microchimerism and PERV infection of the recipient. Here, we demonstrate the appropriate virological methods to be used for the identification of microchimerism, first by screening for porcine cellular genes, and then how to detect infection of the host. Using porcine short interspersed nuclear sequences (SINEs), which have hundreds of thousands of copies in the pig genome, significantly increased the sensitivity of the screening for pig cells. Second, absence of PERV RNA demonstrated an absence of viral genomic RNA or expression as mRNA. Lastly, absence of antibodies against PERV proteins conclusively demonstrated an absence of a PERV infection. When applying these methods for analyzing baboons after pig heart transplantation, microchimerism could be demonstrated and infection excluded in all animals. These methods can be used in future clinical trials.
Collapse
Affiliation(s)
- Hina Jhelum
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Martin Bender
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Bruno Reichart
- Transregional Collaborative Research Center 127, Walter Brendel Centre of Experimental Medicine, LMU Munich, 81377 Munich, Germany
| | - Maren Mokelke
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Julia Radan
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Elisabeth Neumann
- Department of Cardiac Surgery, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Ludwig Krabben
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Benedikt Kaufer
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, 81377 Munich, Germany
| | - Joachim Denner
- Institut of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
13
|
Mao H, Li J, Liao G, Gao M, Yang G, Bao J. The prevention strategies of swine viruses related to xenotransplantation. Virol J 2023; 20:121. [PMID: 37312151 PMCID: PMC10262131 DOI: 10.1186/s12985-023-02090-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
Xenotransplantation is considered a solution for the shortage of organs, and pigs play an indispensable role as donors in xenotransplantation. The biosecurity of pigs, especially the zoonotic viruses carried by pigs, has attracted attention. This review introduces several viruses, including porcine endogenous retroviruses that are integrated into the pig genome in a DNA form, herpesviruses that have been proven to clearly affect recipient survival time in previous xenotransplant surgeries, the zoonotic hepatitis E virus, and the widely distributed porcine circoviruses. The detail virus information, such as structure, caused diseases, transmission pathways, and epidemiology was introduced in the current review. Diagnostic and control measures for these viruses, including detection sites and methods, vaccines, RNA interference, antiviral pigs, farm biosecurity, and drugs, are discussed. The challenges faced, including those posed by other viruses and newly emerged viruses, and the challenges brought by the modes of transmission of the viruses are also summarized.
Collapse
Affiliation(s)
- Hongzhen Mao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
- Center of Infectious Diseases & Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jinyang Li
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guangneng Liao
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Mengyu Gao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Guang Yang
- Experimental Animal Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ji Bao
- Institute of Clinical Pathology, Key Laboratory of Transplant Engineering and Immunology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
14
|
Aschheim K, DeFrancesco L. Xenotransplantation: how close are we? Nat Biotechnol 2023; 41:452-460. [PMID: 37024680 DOI: 10.1038/s41587-023-01730-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
15
|
Peng B, Du L, Zhang T, Chen J, Xu B. Research progress in decellularized extracellular matrix hydrogels for intervertebral disc degeneration. Biomater Sci 2023; 11:1981-1993. [PMID: 36734099 DOI: 10.1039/d2bm01862d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
As one of the most common clinical disorders, low back pain (LBP) influences patient quality of life and causes substantial social and economic burdens. Many factors can result in LBP, the most common of which is intervertebral disc degeneration (IDD). The progression of IDD cannot be alleviated by conservative or surgical treatments, and gene therapy, growth factor therapy, and cell therapy have their own limitations. Recently, research on the use of hydrogel biomaterials for the treatment of IDD has garnered great interest, and satisfactory treatment results have been achieved. This article describes the classification of hydrogels, the methods of decellularized extracellular matrix (dECM) production and the various types of gel formation. The current research on dECM hydrogels for the treatment of IDD is described in detail in this article. First, an overview of the material sources, decellularization methods, and gel formation methods is given. The focus is on research performed over the last three years, which mainly consists of bovine and porcine NP tissues, while for decellularization methods, combinations of several approaches are primarily used. dECM hydrogels have significantly improved mechanical properties after the polymers are cross-linked. The main effects of these gels include induction of stem cell differentiation to intervertebral disc (IVD) cells, good mechanical properties to restore IVD height after polymer cross-linking, and slow release of exosomes. Finally, the challenges and problems still faced by dECM hydrogels for the treatment of IDD are summarised, and potential solutions are proposed. This paper is the first to summarise the research on dECM hydrogels for the treatment of IDD and aims to provide a theoretical reference for subsequent studies.
Collapse
Affiliation(s)
- Bing Peng
- Tianjin University of Traditional Chinese Medicine, No.10, Poyang Lake Road, Jinghai District, Tianjin, 301617, China
| | - Lilong Du
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Tongxing Zhang
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| | - Jiangping Chen
- Liuyang Hospital of Traditional Chinese Medicine, Beizhengzhong Road, Hunan, 410399, China.
| | - Baoshan Xu
- Tianjin Hospital, Tianjin, No.406, Jiefang South Road, Hexi District, Tianjin, 301617, China.
| |
Collapse
|
16
|
Chan JCY, Chaban R, Chang SH, Angel LF, Montgomery RA, Pierson RN. Future of Lung Transplantation: Xenotransplantation and Bioengineering Lungs. Clin Chest Med 2023; 44:201-214. [PMID: 36774165 PMCID: PMC11078107 DOI: 10.1016/j.ccm.2022.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
Xenotransplantation promises to alleviate the issue of donor organ shortages and to decrease waiting times for transplantation. Recent advances in genetic engineering have allowed for the creation of pigs with up to 16 genetic modifications. Several combinations of genetic modifications have been associated with extended graft survival and life-supporting function in experimental heart and kidney xenotransplants. Lung xenotransplantation carries specific challenges related to the large surface area of the lung vascular bed, its innate immune system's intrinsic hyperreactivity to perceived 'danger', and its anatomic vulnerability to airway flooding after even localized loss of alveolocapillary barrier function. This article discusses the current status of lung xenotransplantation, and challenges related to immunology, physiology, anatomy, and infection. Tissue engineering as a feasible alternative to develop a viable lung replacement solution is discussed.
Collapse
Affiliation(s)
- Justin C Y Chan
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA.
| | - Ryan Chaban
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Langenbeckstr. 1, Bau 505, 5. OG55131 Mainz, Germany
| | - Stephanie H Chang
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Luis F Angel
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Robert A Montgomery
- NYU Transplant Institute, New York University, 530 1st Avenue, Suite 7R, New York, NY 10016, USA
| | - Richard N Pierson
- Department of Surgery, Center for Transplantation Sciences, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
| |
Collapse
|
17
|
Montgomery RA, Tang WHW. Cardiac Xenotransplantation: a New Frontier for Advanced Heart Failure. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2023; 25:65-78. [PMID: 38957658 PMCID: PMC11218470 DOI: 10.1007/s11936-023-00977-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/13/2023] [Indexed: 02/11/2023]
Abstract
Purpose of review Cardiac transplantation is a critical treatment for patients with advanced heart failure, offering the ability to markedly improve quality and quantity of life. Unfortunately, this treatment is limited by donor organ availability, despite efforts to increase organ supply and improve donor organ allocation and usage. The transplantation of non-human donor organs (xenotransplantation) offers to readily address many limitations of the current transplantation system; however, scattered attempts to establish this practice have been met with frustration. In this review, we discuss the limitations of the historical attempts and outline recent progress in the field of cardiac xenotransplantation. Recent findings The advent of CRISPR-Cas9 genome editing techniques and emerging commercial and regulatory alignment has led to a flurry of new attempts to establish xenotransplantation as a viable treatment for those with end-stage heart failure. The first xenotransplantation of a genetically modified pig heart to a human recipient on January 7, 2022, highlighted the progress the science of xenotransplantation has made, as well as the need to outline next steps to further establish the practice. Summary The development of a genetically modified porcine model has renewed hope that xenotransplantation might succeed where prior attempts failed, though many barriers remain.
Collapse
Affiliation(s)
- Robert A. Montgomery
- Harrington Heart and Vascular Institute, University Hospitals, Cleveland, OH, USA
| | - W. H. Wilson Tang
- Kaufman Center for Heart Failure Treatment and Recovery, Heart Vascular and Thoracic Institute, Cleveland Clinic, 9500 Euclid Avenue, Desk J3–4, Cleveland, OH 44195, USA
| |
Collapse
|
18
|
Liu Y, Niu Y, Ma X, Xiang Y, Wu D, Li W, Wang T, Niu D. Porcine endogenous retrovirus: classification, molecular structure, regulation, function, and potential risk in xenotransplantation. Funct Integr Genomics 2023; 23:60. [PMID: 36790562 DOI: 10.1007/s10142-023-00984-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Xenotransplantation with porcine organs has been recognized as a promising solution to alleviate the shortage of organs for human transplantation. Porcine endogenous retrovirus (PERV), whose proviral DNAs are integrated in the genome of all pig breeds, is a main microbiological risk for xenotransplantation. Over the last decades, some advances on PERVs' studies have been achieved. Here, we reviewed the current progress of PERVs including the classification, molecular structure, regulation, function in immune system, and potential risk in xenotransplantation. We also discussed the problem of insufficient study on PERVs as well as the questions need to be answered in the future work.
Collapse
Affiliation(s)
- Yu Liu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yifan Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiang Ma
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.,College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.,Jinhua Jinfan Feed Co., Ltd, Jinhua, Zhejiang, 321000, China
| | - Yun Xiang
- Jinhua Academy of Agricultural Sciences, Jinhua, Zhejiang, 321000, China
| | - De Wu
- Postdoctoral Research Station, Jinhua Development Zone, Jinhua, Zhejiang, 321000, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang, 310058, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu, 211300, China.
| | - Dong Niu
- College of Animal Science and Technology & College of Veterinary Medicine, Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Provincial Engineering Research Center for Animal Health Diagnostics & Advanced Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China Australia Joint Laboratory for Animal Health Big Data Analytics, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
19
|
Reichart B, Cooper DKC, Längin M, Tönjes RR, Pierson RN, Wolf E. Cardiac xenotransplantation: from concept to clinic. Cardiovasc Res 2023; 118:3499-3516. [PMID: 36461918 PMCID: PMC9897693 DOI: 10.1093/cvr/cvac180] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 12/05/2022] Open
Abstract
For many patients with terminal/advanced cardiac failure, heart transplantation is the most effective, durable treatment option, and offers the best prospects for a high quality of life. The number of potentially life-saving donated human organs is far fewer than the population who could benefit from a new heart, resulting in increasing numbers of patients awaiting replacement of their failing heart, high waitlist mortality, and frequent reliance on interim mechanical support for many of those deemed among the best candidates but who are deteriorating as they wait. Currently, mechanical assist devices supporting left ventricular or biventricular heart function are the only alternative to heart transplant that is in clinical use. Unfortunately, the complication rate with mechanical assistance remains high despite advances in device design and patient selection and management, and the quality of life of the patients even with good outcomes is only moderately improved. Cardiac xenotransplantation from genetically multi-modified (GM) organ-source pigs is an emerging new option as demonstrated by the consistent long-term success of heterotopic (non-life-supporting) abdominal and life-supporting orthotopic porcine heart transplantation in baboons, and by a recent 'compassionate use' transplant of the heart from a GM pig with 10 modifications into a terminally ill patient who survived for 2 months. In this review, we discuss pig heart xenotransplantation as a concept, including pathobiological aspects related to immune rejection, coagulation dysregulation, and detrimental overgrowth of the heart, as well as GM strategies in pigs to prevent or minimize these problems. Additional topics discussed include relevant results of heterotopic and orthotopic heart transplantation experiments in the pig-to-baboon model, microbiological and virologic safety concepts, and efficacy requirements for initiating formal clinical trials. An adequate regulatory and ethical framework as well as stringent criteria for the selection of patients will be critical for the safe clinical development of cardiac xenotransplantation, which we expect will be clinically tested during the next few years.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Centre for Experimental Medicine, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - David K C Cooper
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich 81377, Germany
| | - Ralf R Tönjes
- Division of Medical Biotechnology, Paul-Ehrlich-Institute, Langen 63225, Germany
| | - Richard N Pierson
- Center for Transplantation Sciences, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02129, USA
- Division of Cardiac Surgery, Department of Surgery, Massachusetts General Hospital/Harvard Medical School, Boston, MA 02114, USA
| | - Eckhard Wolf
- Gene Centre and Centre for Innovative Medical Models (CiMM), Ludwig-Maximilians-Universität München, Munich 81377, Germany
| |
Collapse
|
20
|
Kort-Mascort J, Flores-Torres S, Peza-Chavez O, Jang JH, Pardo LA, Tran SD, Kinsella J. Decellularized ECM hydrogels: prior use considerations, applications, and opportunities in tissue engineering and biofabrication. Biomater Sci 2023; 11:400-431. [PMID: 36484344 DOI: 10.1039/d2bm01273a] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Tissue development, wound healing, pathogenesis, regeneration, and homeostasis rely upon coordinated and dynamic spatial and temporal remodeling of extracellular matrix (ECM) molecules. ECM reorganization and normal physiological tissue function, require the establishment and maintenance of biological, chemical, and mechanical feedback mechanisms directed by cell-matrix interactions. To replicate the physical and biological environment provided by the ECM in vivo, methods have been developed to decellularize and solubilize tissues which yield organ and tissue-specific bioactive hydrogels. While these biomaterials retain several important traits of the native ECM, the decellularizing process, and subsequent sterilization, and solubilization result in fragmented, cleaved, or partially denatured macromolecules. The final product has decreased viscosity, moduli, and yield strength, when compared to the source tissue, limiting the compatibility of isolated decellularized ECM (dECM) hydrogels with fabrication methods such as extrusion bioprinting. This review describes the physical and bioactive characteristics of dECM hydrogels and their role as biomaterials for biofabrication. In this work, critical variables when selecting the appropriate tissue source and extraction methods are identified. Common manual and automated fabrication techniques compatible with dECM hydrogels are described and compared. Fabrication and post-manufacturing challenges presented by the dECM hydrogels decreased mechanical and structural stability are discussed as well as circumvention strategies. We further highlight and provide examples of the use of dECM hydrogels in tissue engineering and their role in fabricating complex in vitro 3D microenvironments.
Collapse
Affiliation(s)
| | | | - Omar Peza-Chavez
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | - Joyce H Jang
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| | | | - Simon D Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Joseph Kinsella
- Department of Bioengineering, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
21
|
Zheng S, Zhong H, Zhou X, Chen M, Li W, Zi Y, Chi Y, Wang J, Zheng W, Zou Q, Lai L, Tang C. Efficient and Safe Editing of Porcine Endogenous Retrovirus Genomes by Multiple-Site Base-Editing Editor. Cells 2022; 11:cells11243975. [PMID: 36552739 PMCID: PMC9776866 DOI: 10.3390/cells11243975] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 12/13/2022] Open
Abstract
Gene-modified miniature pigs serve as alternative tissue and organ donors for xenotransplantation to alleviate the shortage of human allogenic organs. However, the high copy number of porcine endogenous retrovirus (PERV) genomes integrates with the porcine genome, which has a potential risk of cross-species transmission and hinders the clinical practice of xenotransplantation. Recently, CRISPR/Cas9 has been used to inactivate PERVs. However, Cas9 also triggers severe DNA damage at multiple integrated PERV sites in the porcine genome, which induces senescence and apoptosis of porcine cells. In this study, the cytosine base editor (CBE), an efficient and safe editor that does not cause DNA double strand breaks (DSBs), was used for PERV editing to reduce cytotoxic effects. Seven sgRNAs were set to target gag and pol loci of PERVs to induce premature stop codons. We found that approximately 10% of cell clones were completely inactivated for PERVs in pig ST cells, and the plasmid that was used for editing the PERVs did not integrate into host genome and influence the karyotype of the modified cells. Our studies offer a powerful and safe strategy for further generating PERV-knockout pigs using base editors.
Collapse
Affiliation(s)
- Shuwen Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Haiwen Zhong
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China
| | - Xiaoqing Zhou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Min Chen
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Wansheng Li
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yin Zi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Yue Chi
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Jinling Wang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Wei Zheng
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
| | - Qingjian Zou
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| | - Liangxue Lai
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| | - Chengcheng Tang
- Guangdong Provincial Key Laboratory of Large Animal Models for Biomedicine, School of Biotechnology and Health Science, Wuyi University, Jiangmen 529020, China
- Correspondence: (Q.Z.); (L.L.); (C.T.); Tel.: +86-188-2094-8706 (Q.Z.)
| |
Collapse
|
22
|
Jiang T, Ling Z, Zhou Z, Chen X, Chen L, Liu S, Sun Y, Yang J, Yang B, Huang J, Huang L. Construction of a transposase accessible chromatin landscape reveals chromatin state of repeat elements and potential causal variant for complex traits in pigs. J Anim Sci Biotechnol 2022; 13:112. [PMID: 36217153 PMCID: PMC9552403 DOI: 10.1186/s40104-022-00767-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/10/2022] [Indexed: 11/13/2022] Open
Abstract
Background A comprehensive landscape of chromatin states for multiple mammalian tissues is essential for elucidating the molecular mechanism underlying regulatory variants on complex traits. However, the genome-wide chromatin accessibility has been only reported in limited tissue types in pigs. Results Here we report a genome-wide landscape of chromatin accessibility of 20 tissues in two female pigs at ages of 6 months using ATAC-seq, and identified 557,273 merged peaks, which greatly expanded the pig regulatory element repository. We revealed tissue-specific regulatory elements which were associated with tissue-relevant biological functions. We identified both positive and negative significant correlations between the regulatory elements and gene transcripts, which showed distinct distributions in terms of their strength and distances from corresponding genes. We investigated the presence of transposable elements (TEs) in open chromatin regions across all tissues, these included identifications of porcine endogenous retroviruses (PERVs) exhibiting high accessibility in liver and homology of porcine specific virus sequences to universally accessible transposable elements. Furthermore, we prioritized a potential causal variant for polyunsaturated fatty acid in the muscle. Conclusions Our data provides a novel multi-tissues accessible chromatin landscape that serve as an important resource for interpreting regulatory sequences in tissue-specific and conserved biological functions, as well as regulatory variants of loci associated with complex traits in pigs. Supplementary Information The online version contains supplementary material available at 10.1186/s40104-022-00767-3.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Ziqi Ling
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Zhimin Zhou
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Xiaoyun Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Liqing Chen
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Sha Liu
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Yingchun Sun
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Jiawen Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| | - Bin Yang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Jianzhen Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China.
| | - Lusheng Huang
- State Key Laboratory of Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, 330045, China
| |
Collapse
|
23
|
Singh G, Senapati S, Satpathi S, Behera PK, Das B, Nayak B. Establishment of decellularized extracellular matrix scaffold derived from caprine pancreas as a novel alternative template over porcine pancreatic scaffold for prospective biomedical application. FASEB J 2022; 36:e22574. [PMID: 36165227 DOI: 10.1096/fj.202200807r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 08/25/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
In this study, the caprine pancreas has been presented as an alternative to the porcine organ for pancreatic xenotransplantation with lesser risk factors. The obtained caprine pancreas underwent a systematic cycle of detergent perfusion for decellularization. It was perfused using anionic (0.5% w/v sodium dodecyl sulfate) as well as non-ionic (0.1% v/v triton X-100, t-octyl phenoxy polyethoxy ethanol) detergents and washed intermittently with 1XPBS supplemented with 0.1% v/v antibiotic and nucleases in a gravitation-driven set-up. After 48 h, a white decellularized pancreas was obtained, and its extracellular matrix (ECM) content was examined for scaffold-like properties. The ECM content was assessed for removal of cellular content, and nuclear material was evaluated with temporal H&E staining. Quantified DNA was found to be present in a negligible amount in the resultant decellularized pancreas tissue (DPT), thus prohibiting it from triggering any immunogenicity. Collagen and fibronectin were confirmed to be preserved upon trichrome and immunohistochemical staining, respectively. SEM and AFM images reveal interconnected collagen fibril networks in the DPT, confirming that collagen was unaffected. sGAG was visualized using Prussian blue staining and quantified with DMMB assay, where DPT has effectively retained this ECM component. Uniaxial tensile analysis revealed that DPT possesses better elasticity than NPT (native pancreatic tissue). Physical parameters like tensile strength, stiffness, biodegradation, and swelling index were retained in the DPT with negligible loss. The cytocompatibility analysis of DPT has shown no cytotoxic effect for up to 72 h on normal insulin-producing cells (MIN-6) and cancerous glioblastoma (LN229) cells in vitro. The scaffold was recellularized using isolated mouse islets, which have established in vitro cell proliferation for up to 9 days. The scaffold received at the end of the decellularization cycle was found to be non-toxic to the cells, retained biological and physical properties of the native ECM, suitable for recellularization, and can be used as a safer and better alternative as a transplantable organ from a xenogeneic source.
Collapse
Affiliation(s)
- Garima Singh
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | | | | | - Biswajit Das
- Tumor Microenvironment and Animal Models Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Bismita Nayak
- Immunology and Molecular Medicine Laboratory, Department of Life Science, National Institute of Technology, Rourkela, India
| |
Collapse
|
24
|
Denner J. Virus Safety of Xenotransplantation. Viruses 2022; 14:1926. [PMID: 36146732 PMCID: PMC9503113 DOI: 10.3390/v14091926] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 01/06/2023] Open
Abstract
The practice of xenotransplantation using pig islet cells or organs is under development to alleviate the shortage of human donor islet cells or organs for the treatment of diabetes or organ failure. Multiple genetically modified pigs were generated to prevent rejection. Xenotransplantation may be associated with the transmission of potentially zoonotic porcine viruses. In order to prevent this, we developed highly sensitive PCR-based, immunologicals and other methods for the detection of numerous xenotransplantation-relevant viruses. These methods were used for the screening of donor pigs and xenotransplant recipients. Of special interest are the porcine endogenous retroviruses (PERVs) that are integrated in the genome of all pigs, which are able to infect human cells, and that cannot be eliminated by methods that other viruses can. We showed, using droplet digital PCR, that the number of PERV proviruses is different in different pigs (usually around 60). Furthermore, the copy number is different in different organs of a single pig, indicating that PERVs are active in the living animals. We showed that in the first clinical trials treating diabetic patients with pig islet cells, no porcine viruses were transmitted. However, in preclinical trials transplanting pig hearts orthotopically into baboons, porcine cytomegalovirus (PCMV), a porcine roseolovirus (PCMV/PRV), and porcine circovirus 3 (PCV3), but no PERVs, were transmitted. PCMV/PRV transmission resulted in a significant reduction of the survival time of the xenotransplant. PCMV/PRV was also transmitted in the first pig heart transplantation to a human patient and possibly contributed to the death of the patient. Transmission means that the virus was detected in the recipient, however it remains unclear whether it can infect primate cells, including human cells. We showed previously that PCMV/PRV can be eliminated from donor pigs by early weaning. PERVs were also not transmitted by inoculation of human cell-adapted PERV into small animals, rhesus monkey, baboons and cynomolgus monkeys, even when pharmaceutical immunosuppression was applied. Since PERVs were not transmitted in clinical, preclinical, or infection experiments, it remains unclear whether they should be inactivated in the pig genome by CRISPR/Cas. In summary, by using our sensitive methods, the safety of xenotransplantation can be ensured.
Collapse
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
25
|
Chaban R, Cooper DKC, Pierson RN. Pig heart and lung xenotransplantation: Present status. J Heart Lung Transplant 2022; 41:1014-1022. [PMID: 35659792 PMCID: PMC10124776 DOI: 10.1016/j.healun.2022.04.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/14/2022] [Accepted: 04/24/2022] [Indexed: 11/19/2022] Open
Abstract
The recent pig heart transplant in a patient at the University of Maryland Medical Center has stimulated renewed interest in the xenotransplantation of organs from genetically engineered pigs. The barriers to the use of pigs as sources of organs have largely been overcome by 2 approaches - (1) the deletion of expression of the three known pig carbohydrate xenoantigens against which humans have preformed antibodies, and (2) the transgenic introduction of human 'protective' proteins, such as complement-regulatory proteins. These gene modifications, coupled with immunosuppressive therapy based on blockade of the CD40/CD154 costimulation pathway, have resulted in survival of baboons with life-supporting pig heart grafts for almost 9 months. The initial clinical success at the University of Maryland reinforces encouraging preclinical results. It suggests that pig hearts are likely to provide an effective bridge to an allotransplant, but their utility for destination therapy remains uncertain. Because of additional complex immunobiological problems, the same approach has been less successful in preclinical lung xenograft transplantation, where survival is still measured in days or weeks. The first formal clinical trials of pig heart transplantation may include patients who do not have access to an allotransplant, those with contraindications for mechanical circulatory support, those in need of retransplantation or with a high level of panel-reactive antibodies. Infants with complex congenital heart disease, should also be considered.
Collapse
Affiliation(s)
- Ryan Chaban
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; Department of Cardiovascular Surgery, University Hospital of Johannes Gutenberg University, Mainz, Germany.
| | - David K C Cooper
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Richard N Pierson
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
26
|
Nashan B. Porcine cytomegalovirus in xenotransplantation: The new frontier in human transplantation? HEALTH CARE SCIENCE 2022; 1:11-13. [PMID: 38939358 PMCID: PMC11080633 DOI: 10.1002/hcs2.7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/26/2022] [Indexed: 06/29/2024]
Affiliation(s)
- Björn Nashan
- Department of Organ Transplantation CenterFirst Affiliated Hospital of University of Science and Technology of ChinaHefeiAnhuiChina
| |
Collapse
|
27
|
Denner J. Risk of pathogenic virus transmission by somatic cell nuclear transfer (SCNT): implications for xenotransplantation. Biol Reprod 2022; 107:717-722. [PMID: 35699429 DOI: 10.1093/biolre/ioac120] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/13/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Using somatic cell nuclear transfer (SCNT) for the generation of cloned and transgenic animals bears the risk of transmission of viruses, either by the oocyte or by the introduced donor cell. There is evidence that the zona pellucida (ZP) surrounding the oocyte prevents virus infection, however, virus infections despite intact ZP were reported. Furthermore, the protective ZP has to be penetrated in order to place the somatic cell in the oocyte's perivitelline space during SCNT. Transmission of viruses represents also a severe problem during in vitro fertilization (IVF). Genetically modified and IVF-produced pigs serve as an important biomedical model for numerous diseases and it is important to evaluate whether infections of the model animals can falsify the research data. Of special significance is this topic in the case of xenotransplantation using genetically modified pigs as donor animals, because transmission of porcine viruses may be harmful for the human recipient. This was repeatedly demonstrated in preclinical pig to non-human primate trials. Therefore, donor pigs, oocytes used for SCNT and genetically modified donor cells should be screened for potentially zoonotic viruses when creating genetically modified pigs designed for xenotransplantation.
Collapse
|
28
|
Inadvertent Transfer of Murine VL30 Retrotransposons to CAR-T Cells. ADVANCES IN CELL AND GENE THERAPY 2022; 2022. [PMID: 36081760 PMCID: PMC9450689 DOI: 10.1155/2022/6435077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
For more than a decade, genetically engineered autologous T-cells have been successfully employed as immunotherapy drugs for patients with incurable blood cancers. The active components in some of these game-changing medicines are autologous T-cells that express viral vector-delivered chimeric antigen receptors (CARs), which specifically target proteins that are preferentially expressed on cancer cells. Some of these therapeutic CAR expressing T-cells (CAR-Ts) are engineered via transduction with
-retroviral vectors (
-RVVs) produced in a stable producer cell line that was derived from murine PG13 packaging cells (ATCC CRL-10686). Earlier studies reported on the copackaging of murine virus-like 30S RNA (VL30) genomes with
-retroviral vectors generated in murine stable packaging cells. In an earlier study, VL30 mRNA was found to enhance the metastatic potential of human melanoma cells. These findings raise biosafety concerns regarding the possibility that therapeutic CAR-Ts have been inadvertently contaminated with potentially oncogenic VL30 retrotransposons. In this study, we demonstrated the presence of infectious VL30 particles in PG13 cell-conditioned media and observed the ability of these particles to deliver transcriptionally active VL30 genomes to human cells. Notably, VL30 genomes packaged by HIV-1-based vector particles transduced naïve human cells in culture. Furthermore, we detected the transfer and expression of VL30 genomes in clinical-grade CAR-T cells generated by transduction with PG13 cell-derived
-retroviral vectors. Our findings raise biosafety concerns regarding the use of murine packaging cell lines in ongoing clinical applications.
Collapse
|
29
|
Chen JQ, Zhang MP, Tong XK, Li JQ, Zhang Z, Huang F, Du HP, Zhou M, Ai HS, Huang LS. Scan of the endogenous retrovirus sequences across the swine genome and survey of their copy number variation and sequence diversity among various Chinese and Western pig breeds. Zool Res 2022; 43:423-441. [PMID: 35437972 PMCID: PMC9113972 DOI: 10.24272/j.issn.2095-8137.2021.379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 04/12/2022] [Indexed: 11/21/2022] Open
Abstract
In pig-to-human xenotransplantation, the transmission risk of porcine endogenous retroviruses (PERVs) is of great concern. However, the distribution of PERVs in pig genomes, their genetic variation among Eurasian pigs, and their evolutionary history remain unclear. We scanned PERVs in the current pig reference genome (assembly Build 11.1), and identified 36 long complete or near-complete PERVs (lcPERVs) and 23 short incomplete PERVs (siPERVs). Besides three known PERVs (PERV-A, -B, and -C), four novel types (PERV-JX1, -JX2, -JX3, and -JX4) were detected in this study. According to evolutionary analyses, the newly discovered PERVs were more ancient, and PERV-Bs probably experienced a bottleneck ~0.5 million years ago (Ma). By analyzing 63 high-quality porcine whole-genome resequencing data, we found that the PERV copy numbers in Chinese pigs were lower (32.0±4.0) than in Western pigs (49.1±6.5). Additionally, the PERV sequence diversity was lower in Chinese pigs than in Western pigs. Regarding the lcPERV copy numbers, PERV-A and -JX2 in Western pigs were higher than in Chinese pigs. Notably, Bama Xiang (BMX) pigs had the lowest PERV copy number (27.8±5.1), and a BMX individual had no PERV-C and the lowest PERV copy number (23), suggesting that BMX pigs were more suitable for screening and/or modification as xenograft donors. Furthermore, we identified 451 PERV transposon insertion polymorphisms (TIPs), of which 86 were shared by all 10 Chinese and Western pig breeds. Our findings provide systematic insights into the genomic distribution, variation, evolution, and possible biological function of PERVs.
Collapse
Affiliation(s)
- Jia-Qi Chen
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Ming-Peng Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Xin-Kai Tong
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Jing-Quan Li
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Zhou Zhang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Fei Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hui-Peng Du
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Meng Zhou
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China
| | - Hua-Shui Ai
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| | - Lu-Sheng Huang
- State Key Laboratory for Swine Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, Jiangxi 330045, China. E-mail:
| |
Collapse
|
30
|
Lu TF, Sun B, Yu TY, Wu YJ, Zhou J, Wu SG. Porcine Endogenous Retroviruses: Quantification of the Viral Copy Number for the Four Miniature Pig Breeds in China. Front Microbiol 2022; 13:840347. [PMID: 35369498 PMCID: PMC8965148 DOI: 10.3389/fmicb.2022.840347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/12/2022] [Indexed: 11/13/2022] Open
Abstract
Domestic pigs has served not only as one of the most important economy livestock but also as ideal organ-source animals owing to similarity in anatomy, physiology, and organ size to humans. Howerer, the barrier of the cross-species transmission risk of porcine endogenous retrovirus (PERVs) blocked the pig-to-human xenotransplantation. PERVs are integrated into pigs’ genomes and cannot be eliminated by designated or specified pathogen-free breeding. PERVs are an important biosafety issue in xenotransplantation because they can be released from normal pig cells and infect human cells in vitro under certain conditions. Screening and analyzing the presence of PERVs in pig genome will provide essential parameters for pig breed sources. In China, four miniature pig breeds, such as Guizhou miniature pig (GZ), Bama miniature pig (BM), Wuzhishan miniature pig (WZS), and Juema miniature pig (JM), were the main experimental miniature pig breeds, which were widely used. In this study, PCR was performed to amplify env-A, env-B, and env-C for all individuals from the four breeds. The results revealed that PERV env-A and env-B were detected in all individuals and the lowest ratios of PERV env-C was 17.6% (3/17) in the GZ breed. Then, PERV pol and GAPDH were detected using the droplet digital PCR (ddPCR) method. As the reference of GAPDH copy number, the copy numbers of PERVs were at the median of 12, 16, 14, and 16 in the four miniature pig breeds (GZ, BM, WZS, and JM), respectively. Furthermore, the copy number of the PERV pol gene in many organs from the GZ breed was analyzed using ddPCR. The copy numbers of PERV pol gene were at the median of 7 copies, 8 copies, 8 copies, 11 copies, 5 copies, 6 copies, and 7 copies in heart, liver, spleen, lung, kidney, muscle, and skin, and the maximum number was 11 copies in the lung. The minimum number was 5 copies in the kidney as the reference of GAPDH. These data suggest that GZ breed has the lower PERVs copy number in the genome, and may be an ideal organ-source miniature pig breed for the study of the pig-to-human xenotransplantation.
Collapse
Affiliation(s)
- Tao-Feng Lu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Bo Sun
- The First Clinical Medical College, Jinan University, Guangzhou, China
| | - Tai-Yong Yu
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yan-Jun Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jie Zhou
- Shanghai Laboratory Animal Research Center, Shanghai, China
| | - Shu-Guang Wu
- Institute for Laboratory Animal Research, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
31
|
Halecker S, Papatsiros V, Psalla D, Krabben L, Kaufer B, Denner J. Virological Characterization of Pigs with Erythema Multiforme. Microorganisms 2022; 10:652. [PMID: 35336226 PMCID: PMC8949330 DOI: 10.3390/microorganisms10030652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Erythema multiforme in pigs is an acute, self-limiting disease characterized by red skin areas and often associated with anorexia, fever and respiratory problems. The cause of the disease remains unknown. In a recent study, animals of a commercial breeding herd in Greece were examined, and all animals were found seropositive for porcine reproductive and respiratory syndrome virus (PRRSV). However, neither PRRSV and porcine circovirus type 2 (PCV2) viremia nor antibodies against Aujeszky's disease virus, African swine fever virus and classical swine fever virus were detected. Here, an extended examination of these pigs was performed on a wide range of porcine viruses using highly sensitive polymerase chain reaction (PCR)-based methods. Affected skin of five animals revealed the presence of porcine lymphotropic herpesvirus-1 (PLHV-1) in all cases, PLHV-2 in one animal and PLHV-3 in four animals. However, neither porcine cytomegalovirus (PCMV) nor porcine circoviruses (PCV1, PCV2, PCV3 and PCV4) were detected. In blood samples, PLHV-1 was present in two animals and PLHV-2, PCV2 and PCV3 in one individual, with PCMV, PCV1 and PCV4 in none of the animals. In one animal, four viruses were found in the blood (PLHV-1, PLHV-2, PCV2 and PCV3). A PRRSV viremia was also not detected. All animals carried porcine endogenous retrovirus C (PERV-C) in their genome, but recombinant PERV-A/C was not detected. The results suggest that porcine viruses may be involved in erythema multiforme in these animals and that further studies are needed to assess the role of these pathogens in the disease.
Collapse
Affiliation(s)
- Sabrina Halecker
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Vasileios Papatsiros
- Clinic of Medicine (Porcine Medicine), Faculty of Veterinary Medicine, University of Thessaly, GR 43100 Karditsa, Greece;
| | - Dimitra Psalla
- Laboratory of Pathology, School of Veterinary Medicine, Aristotle University of Thessaloniki, GR 54124 Thessaloniki, Greece;
| | - Ludwig Krabben
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Free University Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| |
Collapse
|
32
|
Fischer N, Gulich B, Tönjes RR, Godehardt AW. Limited environmental stability of infectious porcine endogenous retrovirus type C; Usage of reverse transcriptase in combination with viral RNA as markers for infectious virus. Xenotransplantation 2022; 29:e12738. [DOI: 10.1111/xen.12738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 01/27/2022] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Affiliation(s)
- Nicole Fischer
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | - Barbara Gulich
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | - Ralf R. Tönjes
- Division of Medical Biotechnology Paul‐Ehrlich‐Institut Langen Germany
| | | |
Collapse
|
33
|
Halecker S, Krabben L, Kristiansen Y, Krüger L, Möller L, Becher D, Laue M, Kaufer B, Reimer C, Denner J. Rare isolation of human-tropic recombinant porcine endogenous retroviruses PERV-A/C from Göttingen minipigs. Virol J 2022; 19:30. [PMID: 35189916 PMCID: PMC8862210 DOI: 10.1186/s12985-022-01742-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 01/06/2022] [Indexed: 12/22/2022] Open
Abstract
Background Porcine endogenous retroviruses (PERVs) can infect human cells and pose a risk for xenotransplantation when pig cells, tissues or organs are transplanted to human recipients. Xenotransplantation holds great promise to overcome the shortage of human donor organs after solving the problems of rejection, functionality and virus safety. We recently described the transmission of a human-tropic recombinant PERV-A/C, designated PERV-F, from peripheral blood mononuclear cells (PBMCs) of a Göttingen Minipig (GöMP) to human 293 cells (Krüger et al., in Viruses 12(1):38, 2019). The goal of this study was to characterize PERV-F in more detail and to analyze the probability of virus isolation from other animals. Methods The recombination site in the envelope (env) gene, the long terminal repeats (LTR), the proteins and the morphology of the recombinant PERV-F were characterized by polymerase chain reaction (PCR), sequencing, Western blot analysis, immunofluorescence, and transmissible electron microscopy. Mitogen-stimulated PBMCs from 47 additional pigs, including 17 new GöMP, were co-cultured with highly susceptible human 293 T cells, and the PERV-A/C prevalence and PERV transmission was analyzed by PCR. Results PERV-F, isolated from a GöMP, is an infectious human-tropic PERV-A/C virus with a novel type of recombination in the env gene. The length of the LTR of PERV-F increased after passaging on human cells. In a few minipigs, but not in German landrace pigs, PERV-A/C were found. There was no transmission of human-tropic PERV-A/C from additional 47 pigs, including 17 GöMP, to human cells. Conclusion These data show that human-tropic recombinant PERV-A/C proviruses can only be found in a very small number of minipigs, but not in other pigs, and that their isolation as infectious virus able to replicate on human cells is an extremely rare event, even when using highly susceptible 293 cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12985-022-01742-0.
Collapse
|
34
|
Ma Y, Jia J, Fan R, Lu Y, Zhao X, Zhong Y, Yang J, Ma L, Wang Y, Lv M, Yang H, Mou L, Dai Y, Feng S, Zhang J. Screening and Identification of the First Non-CRISPR/Cas9-Treated Chinese Miniature Pig With Defective Porcine Endogenous Retrovirus pol Genes. Front Immunol 2022; 12:797608. [PMID: 35126361 PMCID: PMC8807647 DOI: 10.3389/fimmu.2021.797608] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/29/2021] [Indexed: 11/13/2022] Open
Abstract
Pig to human xenotransplantation is considered to be a possible approach to alleviate the shortage of human allografts. Porcine endogenous retrovirus (PERV) is the most significant pathogen in xenotransplantation. We screened for pigs that consistently did not transmit human-tropic replication competent PERVs (HTRC PERVs), namely, non-transmitting pigs. Then, we conducted whole-genome resequencing and full-length transcriptome sequencing to further investigate the sequence characteristics of one non-transmitting pig. Using in vitro transmission assays, we found 5 (out of 105) pigs of the Chinese Wuzhishan minipig inbred line that did not transmit PERV to human cells, i.e., non-transmitting pigs. Whole-genome resequencing and full-length transcriptome sequencing of one non-transmitting pig showed that all of the pol genes were defective at both the genome and transcript levels. We speculate that the defective PERV pol genes in this pig might be attributable to the long-term inbreeding process. This discovery is promising for the development of a strain of highly homozygous and genetically stable pigs with defective PERV pol genes as a source animal species for xenotransplantation.
Collapse
Affiliation(s)
- Yuyuan Ma
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Junting Jia
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Rui Fan
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Ying Lu
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Xiong Zhao
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yadi Zhong
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Jierong Yang
- Research and Development Department, Grand Life Science and Technology. Ltd., Beijing, China
| | - Limin Ma
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Yanlin Wang
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Maomin Lv
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
| | - Haiyuan Yang
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
| | - Lisha Mou
- Shenzhen Xenotransplantation Medical Engineering Research and Development Center, Shenzhen Institute of Translational Medicine, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Yifan Dai
- Department of Medical Genetics, School of Basic Medical Science, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Shutang Feng
- Research and Development Department, Grand Life Science and Technology. Ltd., Beijing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| | - Jingang Zhang
- National Medical Products Administration (NMPA) Key Laboratory for Quality Control of Blood Products, Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Beijing, China
- *Correspondence: Jingang Zhang, ; Shutang Feng, ; Yifan Dai, ; Lisha Mou,
| |
Collapse
|
35
|
Halecker S, Metzger J, Strube C, Krabben L, Kaufer B, Denner J. Virological and Parasitological Characterization of Mini-LEWE Minipigs Using Improved Screening Methods and an Overview of Data on Various Minipig Breeds. Microorganisms 2021; 9:microorganisms9122617. [PMID: 34946218 PMCID: PMC8706741 DOI: 10.3390/microorganisms9122617] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 01/04/2023] Open
Abstract
Minipigs play an important role in biomedical research and have also been used as donor animals in xenotransplantation. To serve as a donor in xenotransplantation, the animals must be free of potential zoonotic viruses, bacteria and parasites. Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs and cannot be eliminated as most of the other pig viruses can. PERV-A and PERV-B infect human cells in cell culture and are integrated in all pigs, whereas PERV-C infects only pig cells and it is found in many, but not all pigs. Minipigs are known for a high prevalence of recombinant PERV-A/C viruses able to infect human cells (Denner and Schuurman, Viruses, 2021;13:1869). Here, Mini-LEWE minipigs are screened for the first time for pig viruses including PERV. Peripheral blood mononuclear cells (PBMCs) from 10 animals were screened using PCR-based methods (PCR, RT-PCR, and real-time PCR). In comparison with our previous screening assays, numerous improvements were introduced, e.g., the usage of gene blocks as a PCR standard and foreign RNA to control reverse transcription in RT-PCR. Using these improved detection methods, Mini-LEWE pigs were found to be negative for porcine cytomegalovirus (PCMV), porcine lymphotropic herpesviruses (PLHV-1, -2 and -3), porcine circoviruses (PCV1, 2, 3 and 4), porcine parvovirus (PPV) and hepatitis E virus (HEV). All animals carried PERV-A, PERV-B and PERV-C in their genome. PERV-A/C was not found. In contrast to all other minipig breeds (Göttingen minipigs, Aachen minipigs, Yucatan micropig, Massachusetts General Hospital miniature pigs), Mini-LEWE minipigs have less viruses and no PERV-A/C. Parasitological screening showed that none of the Mini-LEWE minipigs harbored ecto- and gastrointestinal parasites, but at least one animal tested positive for anti-Toxoplasma gondii antibodies.
Collapse
Affiliation(s)
- Sabrina Halecker
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Julia Metzger
- Research Group Veterinary Functional Genomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Hannover, 30559 Hannover, Germany
| | - Christina Strube
- Institute for Parasitology, Centre for Infection Medicine, University of Veterinary Medicine Hannover, 30559 Hannover, Germany;
| | - Ludwig Krabben
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Benedikt Kaufer
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
| | - Joachim Denner
- Institute of Virology, Freie Universität Berlin, 14163 Berlin, Germany; (S.H.); (L.K.); (B.K.)
- Correspondence: ; Tel.: +49-30-8386-3059
| |
Collapse
|
36
|
Denner J. Porcine Endogenous Retroviruses and Xenotransplantation, 2021. Viruses 2021; 13:v13112156. [PMID: 34834962 PMCID: PMC8625113 DOI: 10.3390/v13112156] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/20/2021] [Indexed: 12/25/2022] Open
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and some of them are able to infect human cells. Therefore, PERVs pose a risk for xenotransplantation, the transplantation of pig cells, tissues, or organ to humans in order to alleviate the shortage of human donor organs. Up to 2021, a huge body of knowledge about PERVs has been accumulated regarding their biology, including replication, recombination, origin, host range, and immunosuppressive properties. Until now, no PERV transmission has been observed in clinical trials transplanting pig islet cells into diabetic humans, in preclinical trials transplanting pig cells and organs into nonhuman primates with remarkable long survival times of the transplant, and in infection experiments with several animal species. Nevertheless, in order to prevent virus transmission to the recipient, numerous strategies have been developed, including selection of PERV-C-free animals, RNA interference, antiviral drugs, vaccination, and genome editing. Furthermore, at present there are no more experimental approaches to evaluate the full risk until we move to the clinic.
Collapse
Affiliation(s)
- Joachim Denner
- Department of Veterinary Medicine, Institute of Virology, Free University Berlin, 14163 Berlin, Germany
| |
Collapse
|
37
|
High Prevalence of Recombinant Porcine Endogenous Retroviruses (PERV-A/Cs) in Minipigs: A Review on Origin and Presence. Viruses 2021; 13:v13091869. [PMID: 34578447 PMCID: PMC8473008 DOI: 10.3390/v13091869] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 12/17/2022] Open
Abstract
Minipigs play an important role in biomedical research and they have also been used as donor animals for preclinical xenotransplantations. Since zoonotic microorganisms including viruses can be transmitted when pig cells, tissues or organs are transplanted, virus safety is an important feature in xenotransplantation. Whereas most porcine viruses can be eliminated from pig herds by different strategies, this is not possible for porcine endogenous retroviruses (PERVs). PERVs are integrated in the genome of pigs and some of them release infectious particles able to infect human cells. Whereas PERV-A and PERV-B are present in all pigs and can infect cells from humans and other species, PERV-C is present in most, but not all pigs and infects only pig cells. Recombinant viruses between PERV-A and PERV-C have been found in some pigs; these recombinants infect human cells and are characterized by high replication rates. PERV-A/C recombinants have been found mainly in minipigs of different origin. The possible reasons of this high prevalence of PERV-A/C in minipigs, including inbreeding and higher numbers and expression of replication-competent PERV-C in these animals, are discussed in this review. Based on these data, it is highly recommended to use only pig donors in clinical xenotransplantation that are negative for PERV-C.
Collapse
|
38
|
Reichart B, Längin M, Denner J, Schwinzer R, Cowan PJ, Wolf E. Pathways to Clinical Cardiac Xenotransplantation. Transplantation 2021; 105:1930-1943. [PMID: 33350675 DOI: 10.1097/tp.0000000000003588] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Heart transplantation is the only long-lasting lifesaving option for patients with terminal cardiac failure. The number of available human organs is however far below the actual need, resulting in substantial mortality of patients while waiting for a human heart. Mechanical assist devices are used to support cardiac function but are associated with a high risk of severe complications and poor quality of life for the patients. Consistent success in orthotopic transplantation of genetically modified pig hearts into baboons indicates that cardiac xenotransplantation may become a clinically applicable option for heart failure patients who cannot get a human heart transplant. In this overview, we project potential paths to clinical cardiac xenotransplantation, including the choice of genetically modified source pigs; associated requirements of microbiological, including virological, safety; optimized matching of source pig and recipient; and specific treatments of the donor heart after explantation and of the recipients. Moreover, selection of patients and the regulatory framework will be discussed.
Collapse
Affiliation(s)
- Bruno Reichart
- Walter Brendel Center for Experimental Medicine, LMU Munich, Munich, Germany
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, LMU Munich, Munich, Germany
| | - Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| | - Reinhard Schwinzer
- Department of General-, Visceral-, and Transplantation Surgery, Transplant Laboratory, Hannover Medical School, Hannover, Germany
| | - Peter J Cowan
- Immunology Research Centre, St. Vincent's Hospital Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, VIC, Australia
| | - Eckhard Wolf
- Institute of Molecular Animal Breeding and Biotechnology, Gene Center, LMU Munich, Munich, Germany
- Department of Veterinary Sciences, and Center for Innovative Medical Models (CiMM), LMU Munich, Munich, Germany
| |
Collapse
|
39
|
Infectivity assessment of porcine endogenous retrovirus using high-throughput sequencing technologies. Biologicals 2021; 71:1-8. [PMID: 34039532 DOI: 10.1016/j.biologicals.2021.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 11/20/2022] Open
Abstract
Xenogenic cell-based therapeutic products are expected to alleviate the chronic shortage of human donor organs. For example, porcine islet cell products are currently under development for the treatment of human diabetes. As porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the case of products that use living pig cells as raw materials. Although several PERV sequences exist in the porcine genome, not all have the ability to infect human cells. Therefore, polymerase chain reaction analysis, which amplifies a portion of the target gene, may not accurately assess the infection risk. Here, we determined porcine genome sequences and evaluated the infectivity of PERVs using high-throughput sequencing technologies. RNA sequencing was performed on both PERV-infected human cells and porcine cells, and reads mapped to PERV sequences were examined. The normalized number of the reads mapped to PERV regions was able to predict the infectivity of PERVs, indicating that it would be useful for evaluation of the PERV infection risk prior to transplantation of porcine products.
Collapse
|
40
|
Zhang W, Du A, Liu S, Lv M, Chen S. Research progress in decellularized extracellular matrix-derived hydrogels. Regen Ther 2021; 18:88-96. [PMID: 34095366 PMCID: PMC8142036 DOI: 10.1016/j.reth.2021.04.002] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/21/2021] [Accepted: 04/27/2021] [Indexed: 12/17/2022] Open
Abstract
Decellularized extracellular matrix (dECM) is widely used in regenerative medicine as a scaffold material due to its unique biological activity and good biocompatibility. Hydrogel is a three-dimensional network structure polymer with high water content and high swelling that can simulate the water environment of human tissues, has good biocompatibility, and can exchange nutrients, oxygen, and waste with cells. At present, hydrogel is the ideal biological material for tissue engineering. In recent years, rapid development of the hydrogel theory and technology and progress in the use of dECM to form hydrogels have attracted considerable attention to dECM hydrogels as an innovative method for tissue engineering and regenerative medicine. This article introduces the classification of hydrogels, and focuses on the history and formation of dECM hydrogels, the source of dECM, the application of dECM hydrogels in tissue engineering and the commercial application of dECM materials.
Collapse
Affiliation(s)
- Wenhui Zhang
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Aoling Du
- Medical College, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China
| | - Shun Liu
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| | - Mingyue Lv
- Anesthesia Class 1 of Chuanshan College, South China University, Hengyang, Hunan 421001, China
| | - Shenghua Chen
- Institute of Applied Anatomy and Reproductive Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
41
|
Abstract
Genetically modified animals, especially rodents, are widely used in biomedical research. However, non-rodent models are required for efficient translational medicine and preclinical studies. Owing to the similarity in the physiological traits of pigs and humans, genetically modified pigs may be a valuable resource for biomedical research. Somatic cell nuclear transfer (SCNT) using genetically modified somatic cells has been the primary method for the generation of genetically modified pigs. However, site-specific gene modification in porcine cells is inefficient and requires laborious and time-consuming processes. Recent improvements in gene-editing systems, such as zinc finger nucleases, transcription activator-like effector nucleases, and the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (CRISPR/Cas) system, represent major advances. The efficient introduction of site-specific modifications into cells via gene editors dramatically reduces the effort and time required to generate genetically modified pigs. Furthermore, gene editors enable direct gene modification during embryogenesis, bypassing the SCNT procedure. The application of gene editors has progressively expanded, and a range of strategies is now available for porcine gene engineering. This review provides an overview of approaches for the generation of genetically modified pigs using gene editors, and highlights the current trends, as well as the limitations, of gene editing in pigs.
Collapse
Affiliation(s)
- Fuminori Tanihara
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan.,Center for Development of Advanced Medical Technology, Jichi Medical University, Tochigi 329-0498, Japan
| | - Maki Hirata
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| | - Takeshige Otoi
- Faculty of Bioscience and Bioindustry, Tokushima University, Tokushima 770-8513, Japan
| |
Collapse
|
42
|
Denner J. Detection of cell-free pig DNA using integrated PERV sequences to monitor xenotransplant tissue damage and rejection. Xenotransplantation 2021; 28:e12688. [PMID: 33779009 DOI: 10.1111/xen.12688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/09/2021] [Accepted: 03/18/2021] [Indexed: 11/27/2022]
Affiliation(s)
- Joachim Denner
- Institute of Virology, Free University Berlin, Berlin, Germany
| |
Collapse
|
43
|
Abstract
PURPOSE OF REVIEW Human islet transplantation has proven to be a highly effective treatment for patients with labile type 1 diabetes mellitus, which can free patients from daily glucose monitoring and insulin injections. However, the shortage of islet donors limits its' broad application. Porcine islet xenotransplantation presents a solution to the donor shortage and recent advances in genetic modification and immunosuppressive regimens provide renewed enthusiasm for the potential of this treatment. RECENT FINDINGS Advances in genetic editing technology are leading to multigene modified porcine islet donors with alterations in expression of known xenoantigens, modifications of their complement and coagulation systems, and modifications to gain improved immunological compatibility. Recent NHP-based trials of costimulation blockade using CD154 blockade show promising improvements in islet survival, whereas results targeting CD40 are less consistent. Furthermore, trials using IL-6 receptor antagonism have yet to demonstrate improvement in glucose control and suffer from poor graft revascularization. SUMMARY This review will detail the current status of islet xenotransplantation as a potential treatment for type I diabetes mellitus, focusing on recent advances in porcine xenogeneic islet production, assessment in nonhuman primate preclinical models, the outcome of human clinical trials and review barriers to translation of xenoislets to the clinic.
Collapse
|
44
|
Denner J. The origin of porcine endogenous retroviruses (PERVs). Arch Virol 2021; 166:1007-1013. [PMID: 33547957 DOI: 10.1007/s00705-020-04925-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/05/2020] [Indexed: 12/21/2022]
Abstract
Porcine endogenous retroviruses (PERVs) are integrated in the genome of all pigs, and they produce viral particles that are able to infect human cells and therefore pose a special risk for xenotransplantation. In contrast to other pig microorganisms that also pose a risk, such as porcine cytomegalovirus and hepatitis E virus, PERVs cannot be eliminated from pigs by vaccines, antiviral drugs, early weaning, or embryo transfer. Since PERVs are relevant for xenotransplantation, their biology and origin are of great interest. Recent studies have shown that PERVs are the result of a transspecies transmission of precursor retroviruses from different animals and further evolution in the pig genome. PERVs acquired different long terminal repeats (LTRs), and recombination took place. In parallel, it has been shown that the activity of the LTRs and recombination in the envelope are important for the transmissibility and pathogenesis of PERVs. Transspecies transmission of retroviruses is common, a well-known example being the transmission of precursor retroviruses from non-human primates to humans, resulting in human immunodeficiency virus (HIV). Here, recent findings concerning the origin of PERVs, their LTRs, and recombination events that occurred during evolution are reviewed and compared with other findings regarding transspecies transmission of retroviruses.
Collapse
Affiliation(s)
- Joachim Denner
- Robert Koch Institute, Berlin, Germany. .,Institute for Virology, Free University, Berlin, Germany.
| |
Collapse
|
45
|
Krüger L, Böttger J, Huang CA, Denner J. Absence of porcine endogenous retrovirus (PERV) production from pig lymphoma cell lines. Virus Res 2021; 295:198286. [PMID: 33418025 DOI: 10.1016/j.virusres.2020.198286] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/13/2020] [Accepted: 12/26/2020] [Indexed: 12/25/2022]
Abstract
Porcine endogenous retroviruses (PERVs) -A and -B are integrated in the genome of all pigs, whereas PERV-C is found in many, but not all pigs. Some immortalized pig cell lines, among them lymphoma cells, but also mitogen activated primary lymphocytes have been shown to release virus particles, which were able to infect human cells and some of them were recombinant PERV-A/C. Since retroviruses can induce lymphomas, two newly established pig lymphoma cell lines and an older one (L23) were analysed for PERV expression. All three lines harboured PERV-A, PERV-B and PERV-C proviruses, but PERV-A/C recombinants were found only in the genome of L23 cells. The expression at the RNA level was very low and no protein expression and particle release was observed, suggesting that PERVs were not involved in the pathogenesis of these lymphomas. However, all three cell lines were infected with the porcine lymphotropic herpesvirus-3 (PLHV-3), which may have been involved in lymphoma development.
Collapse
Affiliation(s)
- Luise Krüger
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany
| | | | - Christene A Huang
- Department of Surgery, University of Colorado Denver / Anschutz Medical Campus, Division of Plastic & Reconstructive Surgery Division of Transplant Surgery, 12700 East 19th Ave, Aurora, CO, 80045, USA
| | - Joachim Denner
- Robert Koch Institute, Nordufer 20, 13353, Berlin, Germany.
| |
Collapse
|
46
|
Niu D, Ma X, Yuan T, Niu Y, Xu Y, Sun Z, Ping Y, Li W, Zhang J, Wang T, Church GM. Porcine genome engineering for xenotransplantation. Adv Drug Deliv Rev 2021; 168:229-245. [PMID: 32275950 DOI: 10.1016/j.addr.2020.04.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/28/2020] [Accepted: 04/06/2020] [Indexed: 02/06/2023]
Abstract
The extreme shortage of human donor organs for treatment of patients with end-stage organ failures is well known. Xenotransplantation, which might provide unlimited organ supply, is a most promising strategy to solve this problem. Domestic pigs are regarded as ideal organ-source animals owing to similarity in anatomy, physiology and organ size to humans as well as high reproductive capacity and low maintenance cost. However, several barriers, which include immune rejection, inflammation and coagulative dysfunctions, as well as the cross-species transmission risk of porcine endogenous retrovirus, blocked the pig-to-human xenotransplantation. With the rapid development of genome engineering technologies and the potent immunosuppressive medications in recent years, these barriers could be eliminated through genetic modification of pig genome together with the administration of effective immunosuppressants. A number of candidate genes involved in the regulation of immune response, inflammation and coagulation have been explored to optimize porcine xenograft survival in non-human primate recipients. PERV inactivation in pigs has also been accomplished to firmly address the safety issue in pig-to-human xenotransplantation. Many encouraging preclinical milestones have been achieved with some organs surviving for years. Therefore, the clinical trials of some promising organs, such as islet, kidney and heart, are aimed to be launched in the near future.
Collapse
Affiliation(s)
- Dong Niu
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Xiang Ma
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, China-Australian Joint Laboratory for Animal Health Big Data Analytics, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou, P.R. China
| | - Taoyan Yuan
- Institute of Animal Husbandry and Veterinary Science, Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang 310021, China
| | - Yifan Niu
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China
| | - Yibin Xu
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhongxin Sun
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China
| | - Yuan Ping
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Weifen Li
- College of Animal Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Jufang Zhang
- Cosmetic & Plastic Surgery Department, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310006, China.
| | - Tao Wang
- Nanjing Kgene Genetic Engineering Co., Ltd, Nanjing, Jiangsu 211300, China.
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
47
|
Kono K, Kataoka K, Yuan Y, Yusa K, Uchida K, Sato Y. A highly sensitive method for the detection of recombinant PERV-A/C env RNA using next generation sequencing technologies. Sci Rep 2020; 10:21935. [PMID: 33318655 PMCID: PMC7736861 DOI: 10.1038/s41598-020-78890-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022] Open
Abstract
Several xenogenic cell-based therapeutic products are currently under development around the world for the treatment of human diseases. Porcine islet cell products for treating human diabetes are a typical example. Since porcine cells possess endogenous retrovirus (PERV), which can replicate in human cells in vitro, the potential transmission of PERV has raised concerns in the development of these products. Four subgroups of infectious PERV have been identified, namely PERV-A, -B, -C, and recombinant PERV-A/C. Among them, PERV-A/C shows a high titre and there was a paper reported that an incidence of PERV-A/C viremia was increased in diseased pigs; thus, it would be important to monitor the emergence of PERV-A/C after transplantation of porcine products. In this study, we developed a highly sensitive method for the detection of PERV-A/C using next generation sequencing (NGS) technologies. A model PERV-C spiked with various doses of PERV-A/C were amplified by RT-PCR and the amplicons were analysed by NGS. We found that the NGS analysis allowed the detection of PERV-A/C at the abundance ratios of 1% and 0.1% with true positive rates of 100% and 57%, respectively, indicating that it would be useful for the rapid detection of PERV-A/C emergence after transplantation of porcine products.
Collapse
Affiliation(s)
- Ken Kono
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Kiyoko Kataoka
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan
| | - Yuzhe Yuan
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Keisuke Yusa
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Kazuhisa Uchida
- Graduate School of Science, Technology and Innovation, Kobe University, Hyogo, Japan
| | - Yoji Sato
- Division of Cell-Based Therapeutic Products, National Institute of Health Sciences, 3-25-26 Tonomachi, Kawasaki Ward, Kawasaki City, Kanagawa, 210-9501, Japan. .,Department of Translational Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan. .,Department of Cellular and Gene Therapy Products, Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan.
| |
Collapse
|
48
|
Denner J, Längin M, Reichart B, Krüger L, Fiebig U, Mokelke M, Radan J, Mayr T, Milusev A, Luther F, Sorvillo N, Rieben R, Brenner P, Walz C, Wolf E, Roshani B, Stahl-Hennig C, Abicht JM. Impact of porcine cytomegalovirus on long-term orthotopic cardiac xenotransplant survival. Sci Rep 2020; 10:17531. [PMID: 33067513 PMCID: PMC7568528 DOI: 10.1038/s41598-020-73150-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 09/09/2020] [Indexed: 12/12/2022] Open
Abstract
Xenotransplantation using pig organs has achieved survival times up to 195 days in pig orthotopic heart transplantation into baboons. Here we demonstrate that in addition to an improved immunosuppressive regimen, non-ischaemic preservation with continuous perfusion and control of post-transplantation growth of the transplant, prevention of transmission of the porcine cytomegalovirus (PCMV) plays an important role in achieving long survival times. For the first time we demonstrate that PCMV transmission in orthotopic pig heart xenotransplantation was associated with a reduced survival time of the transplant and increased levels of IL-6 and TNFα were found in the transplanted baboon. Furthermore, high levels of tPA-PAI-1 complexes were found, suggesting a complete loss of the pro-fibrinolytic properties of the endothelial cells. These data show that PCMV has an important impact on transplant survival and call for elimination of PCMV from donor pigs.
Collapse
Affiliation(s)
| | - Matthias Längin
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Bruno Reichart
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | | | | | - Maren Mokelke
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia Radan
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Tanja Mayr
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Anastasia Milusev
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Fabian Luther
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Nicoletta Sorvillo
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Robert Rieben
- Department of Biomedical Research (DMBR), University of Bern, Bern, Switzerland
| | - Paolo Brenner
- Department of Cardiac Surgery, University Hospital, Maximilians-Universität München, Munich, Germany
| | - Christoph Walz
- Institute of Pathology, Faculty of Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Eckhard Wolf
- Animal Breeding and Biotechnology, Gene Center and Department of Veterinary Sciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Berit Roshani
- Unit of Infection Models, German Primate Center, Göttingen, Germany
| | | | - Jan-Michael Abicht
- Department of Anaesthesiology, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
- Walter Brendel Centre of Experimental Medicine, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
49
|
Extensive germline genome engineering in pigs. Nat Biomed Eng 2020; 5:134-143. [PMID: 32958897 DOI: 10.1038/s41551-020-00613-9] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 08/22/2020] [Indexed: 12/30/2022]
Abstract
The clinical applicability of porcine xenotransplantation-a long-investigated alternative to the scarce availability of human organs for patients with organ failure-is limited by molecular incompatibilities between the immune systems of pigs and humans as well as by the risk of transmitting porcine endogenous retroviruses (PERVs). We recently showed the production of pigs with genomically inactivated PERVs. Here, using a combination of CRISPR-Cas9 and transposon technologies, we show that pigs with all PERVs inactivated can also be genetically engineered to eliminate three xenoantigens and to express nine human transgenes that enhance the pigs' immunological compatibility and blood-coagulation compatibility with humans. The engineered pigs exhibit normal physiology, fertility and germline transmission of the 13 genes and 42 alleles edited. Using in vitro assays, we show that cells from the engineered pigs are resistant to human humoral rejection, cell-mediated damage and pathogenesis associated with dysregulated coagulation. The extensive genome engineering of pigs for greater compatibility with the human immune system may eventually enable safe and effective porcine xenotransplantation.
Collapse
|
50
|
Chen Y, Chen M, Duan X, Cui J. Ancient origin and complex evolution of porcine endogenous retroviruses. BIOSAFETY AND HEALTH 2020. [DOI: 10.1016/j.bsheal.2020.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|