1
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
2
|
Guillaume O, Butnarasu C, Visentin S, Reimhult E. Interplay between biofilm microenvironment and pathogenicity of Pseudomonas aeruginosa in cystic fibrosis lung chronic infection. Biofilm 2022; 4:100089. [PMID: 36324525 PMCID: PMC9618985 DOI: 10.1016/j.bioflm.2022.100089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 11/07/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a highly, if not the most, versatile microorganism capable of colonizing diverse environments. One of the niches in which PA is able to thrive is the lung of cystic fibrosis (CF) patients. Due to a genetic aberration, the lungs of CF-affected patients exhibit impaired functions, rendering them highly susceptible to bacterial colonization. Once PA attaches to the epithelial surface and transitions to a mucoid phenotype, the infection becomes chronic, and antibiotic treatments become inefficient. Due to the high number of affected people and the severity of this infection, CF-chronic infection is a well-documented disease. Still, numerous aspects of PA CF infection remain unclear. The scientific reports published over the last decades have stressed how PA can adapt to CF microenvironmental conditions and how its surrounding matrix of extracellular polymeric substances (EPS) plays a key role in its pathogenicity. In this context, it is of paramount interest to present the nature of the EPS together with the local CF-biofilm microenvironment. We review how the PA biofilm microenvironment interacts with drugs to contribute to the pathogenicity of CF-lung infection. Understanding why so many drugs are inefficient in treating CF chronic infection while effectively treating planktonic PA is essential to devising better therapeutic targets and drug formulations.
Collapse
Affiliation(s)
- Olivier Guillaume
- 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria,Austrian Cluster for Tissue Regeneration, Austria,Corresponding author. 3D Printing and Biofabrication Group, Institute of Materials Science and Technology, TU Wien (Technische Universität Wien), Getreidemarkt 9/308, 1060, Vienna, Austria.
| | - Cosmin Butnarasu
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Sonja Visentin
- Department of Molecular Biotechnology and Health Science, University of Turin, Turin, 10135, Italy
| | - Erik Reimhult
- Institute of Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences Vienna, Muthgasse 11, 1190, Vienna, Austria
| |
Collapse
|
3
|
Nitric oxide inhibits alginate biosynthesis in Pseudomonas aeruginosa and increases its sensitivity to tobramycin by downregulating algU gene expression. Nitric Oxide 2022; 128:50-58. [PMID: 35987450 DOI: 10.1016/j.niox.2022.08.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 11/23/2022]
Abstract
In the process of chronic cystic fibrosis (CF) infection, Pseudomonas aeruginosa (PA) is converted into a mucoid phenotype characterized by an overproduction of exopolysaccharide alginate. The alginate forms a thick mucus that causes difficulty in patient's breathing, drug resistance and contributes to both the morbidity and mortality of the patient. AlgU of PA, an extracytoplasmic function sigma factor, is responsible for the alginate overproduction and leads to mucoidy and chronic infection of CF patients. In this report, we found that endogenous and exogenous nitric oxide (NO) can significantly reduce algU expression, leading to down-regulation of a series of alginate synthesis-related genes (algD, alg8, algX, and algK), eventually down-regulated alginate synthesis. A fluorescent reporter strain was constructed to clarify the inhibitory effect of alginate synthesis through real-time monitoring in different conditions. The results showed that NO presented inhibitory effect on alginate synthesis in nine clinical PA isolates as in the PA reference strain, and the reduction of alginate was more significant in three mucoid strains (by about 51%, 70% and 61%, respectively, while 47% for the reference strain). In the co-culture system, effect of NO on PA fluorescence intensity is similar to that in monocultures, with the best effect at 10 μM NO donor sodium nitroprusside (SNP). Finally, we examined the changes in the antibiotic susceptibility of PA under NO-inhibited alginate conditions. In the presence of 10 μM SNP, the number of planktonic cells increased, and both adherent and planktonic PA cells showed increased susceptibility to tobramycin. We thus suggest that NO can potentially be employed as a therapeutic strategy to prevent cystic fibrosis lungs from PA infection.
Collapse
|
4
|
Alginate as a Promising Biopolymer in Drug Delivery and Wound Healing: A Review of the State-of-the-Art. Int J Mol Sci 2022; 23:ijms23169035. [PMID: 36012297 PMCID: PMC9409034 DOI: 10.3390/ijms23169035] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 12/20/2022] Open
Abstract
Biopolymeric nanoparticulate systems hold favorable carrier properties for active delivery. The enhancement in the research interest in alginate formulations in biomedical and pharmaceutical research, owing to its biodegradable, biocompatible, and bioadhesive characteristics, reiterates its future use as an efficient drug delivery matrix. Alginates, obtained from natural sources, are the colloidal polysaccharide group, which are water-soluble, non-toxic, and non-irritant. These are linear copolymeric blocks of α-(1→4)-linked l-guluronic acid (G) and β-(1→4)-linked d-mannuronic acid (M) residues. Owing to the monosaccharide sequencing and the enzymatically governed reactions, alginates are well-known as an essential bio-polymer group for multifarious biomedical implementations. Additionally, alginate’s bio-adhesive property makes it significant in the pharmaceutical industry. Alginate has shown immense potential in wound healing and drug delivery applications to date because its gel-forming ability maintains the structural resemblance to the extracellular matrices in tissues and can be altered to perform numerous crucial functions. The initial section of this review will deliver a perception of the extraction source and alginate’s remarkable properties. Furthermore, we have aspired to discuss the current literature on alginate utilization as a biopolymeric carrier for drug delivery through numerous administration routes. Finally, the latest investigations on alginate composite utilization in wound healing are addressed.
Collapse
|
5
|
Liao C, Huang X, Wang Q, Yao D, Lu W. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol 2022; 12:926758. [PMID: 35873152 PMCID: PMC9299443 DOI: 10.3389/fcimb.2022.926758] [Citation(s) in RCA: 89] [Impact Index Per Article: 44.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 06/09/2022] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial infections in severely ill and immunocompromised patients. Ubiquitously disseminated in the environment, especially in hospitals, it has become a major threat to human health due to the constant emergence of drug-resistant strains. Multiple resistance mechanisms are exploited by P. aeruginosa, which usually result in chronic infections difficult to eradicate. Diverse virulence factors responsible for bacterial adhesion and colonization, host immune suppression, and immune escape, play important roles in the pathogenic process of P. aeruginosa. As such, antivirulence treatment that aims at reducing virulence while sparing the bacterium for its eventual elimination by the immune system, or combination therapies, has significant advantages over traditional antibiotic therapy, as the former imposes minimal selective pressure on P. aeruginosa, thus less likely to induce drug resistance. In this review, we will discuss the virulence factors of P. aeruginosa, their pathogenic roles, and recent advances in antivirulence drug discovery for the treatment of P. aeruginosa infections.
Collapse
Affiliation(s)
- Chongbing Liao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Xin Huang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Qingxia Wang
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Dan Yao
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wuyuan Lu
- Key Laboratory of Medical Molecular Virology (Ministry of Education (MOE)/National Health Commission (NHC)/Chinese Academy of Medical Sciences (CAMS)), School of Basic Medical Science, Fudan University, Shanghai, China
- Shanghai Institute of Infectious Disease and Biosecurity, School of Public Health, Fudan University, Shanghai, China
| |
Collapse
|
6
|
Lakshmi SA, Alexpandi R, Shafreen RMB, Tamilmuhilan K, Srivathsan A, Kasthuri T, Ravi AV, Shiburaj S, Pandian SK. Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Arch Microbiol 2022; 204:243. [PMID: 35381886 DOI: 10.1007/s00203-022-02847-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 02/27/2022] [Accepted: 03/14/2022] [Indexed: 12/19/2022]
Abstract
Biofilm formation is a major issue in healthcare settings as 75% of nosocomial infection arises due to biofilm residing bacteria. Exopolysaccharides (EPS), a key component of the biofilm matrix, contribute to the persistence of cells in a complex milieu and defends greatly from exogenous stress and demolition. It has been shown to be vital for biofilm scaffold and pathogenic features. The present study was aimed to investigate the effectiveness of four domain-containing α-amylase from Streptomyces griseus (SGAmy) in disrupting the EPS of multidrug-resistant bacteria, especially methicillin-resistant Staphylococcus aureus (MRSA) and Pseudomonas aeruginosa. In vitro analysis of preformed biofilm unveiled the antibiofilm efficacy of SGAmy against MRSA (85%, p < 0.05) and P. aeruginosa (82%, p < 0.05). The total carbohydrate content in the EPS matrix of MRSA and P. aeruginosa was significantly reduced to 71.75% (p < 0.01) and 74.09% (p < 0.01), respectively. The findings inferred from in vitro analysis were further corroborated through in vivo studies using an experimental model organism, Danio rerio. Remarkably, the survival rate was extended to 88.8% (p < 0.05) and 74.2% (p < 0.05) in MRSA and P. aeruginosa infected fishes, respectively. An examination of gills, kidneys, and intestines of D. rerio organs depicted the reduced level of microbial colonization in SGAmy-treated cohorts and these findings were congruent with bacterial enumeration results.
Collapse
Affiliation(s)
- Selvaraj Alagu Lakshmi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Rajaiah Alexpandi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | | | - Kannapiran Tamilmuhilan
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Adimoolam Srivathsan
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Thirupathi Kasthuri
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Arumugam Veera Ravi
- Department of Biotechnology, Alagappa University, Tamil Nadu, Science Campus, Karaikudi, 630003, India
| | - Sugathan Shiburaj
- Division of Microbiology, Jawaharlal Nehru Tropical Botanic Garden and Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India.,Department of Botany, University of Kerala, Kariavattom, Thiruvananthapuram, Kerala, 695581, India
| | | |
Collapse
|
7
|
Biofilm Survival Strategies in Chronic Wounds. Microorganisms 2022; 10:microorganisms10040775. [PMID: 35456825 PMCID: PMC9025119 DOI: 10.3390/microorganisms10040775] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 01/22/2023] Open
Abstract
Bacterial biofilms residing in chronic wounds are thought to have numerous survival strategies, making them extremely difficult to eradicate and resulting in long-term infections. However, much of our knowledge regarding biofilm persistence stems from in vitro models and experiments performed in vivo in animal models. While the knowledge obtained from such experiments is highly valuable, its direct translation to the human clinical setting should be undertaken with caution. In this review, we highlight knowledge obtained from human clinical samples in different aspects of biofilm survival strategies. These strategies have been divided into segments of the following attributes: altered transcriptomic profiles, spatial distribution, the production of extracellular polymeric substances, an altered microenvironment, inter-and intra-species interactions, and heterogeneity in the bacterial population. While all these attributes are speculated to contribute to the enhanced persistence of biofilms in chronic wounds, only some of them have been demonstrated to exist in human wounds. Some of the attributes have been observed in other clinical diseases while others have only been observed in vitro. Here, we have strived to clarify the limitations of the current knowledge in regard to this specific topic, without ignoring important in vitro and in vivo observations.
Collapse
|
8
|
Babaei N, Rasti B, Zamani H. Does ibuprofen affect the expression of alginate genes in pathogenic Pseudomonas aeruginosa strains? Folia Microbiol (Praha) 2022; 67:617-623. [PMID: 35325409 DOI: 10.1007/s12223-022-00962-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 03/07/2022] [Indexed: 11/25/2022]
Abstract
Conversion to mucoid form is a crucial step in the pathogenesis of P. aeruginosa in burns and cystic fibrosis (CF) patients. Alginate is considered the major component of biofilm and is highly associated with the formation of mucoid biofilm in this species. Nonsteroid anti-inflammatory drugs (NSAIDs), including ibuprofen, have shown promising antibacterial and antibiofilm potential for bacterial pathogens. In this study, we aimed to evaluate the effect of ibuprofen on the expression of alginate synthetase (alg8), GDP-mannose dehydrogenase (algD), and alginate lyase (algL) genes in multiple drug-resistant (MDR) P. aeruginosa strains. The biofilm formation potential and the expression of alg8, algD, and algL among the bacteria treated with ibuprofen (at sub-inhibitory concentration) were investigated using the crystal violet staining and real-time PCR assays, respectively. The minimum inhibitory concentration of ibuprofen for the studied strains was determined 1024-2048 µg/mL. We observed that ibuprofen was able to reduce bacterial biofilm by 51-77%. Also, the expression of alg8, algD, and algL decreased by 32, 52, and 48%, respectively. The reduction of the genes responsible for alginate synthesis indicates promising antivirulece potential of ibuprofen to combat P. aeruginosa infection, especially in burns and CF patients. Our findings suggest that ibuprofen could be used to reduce the pathogenicity of P. aeruginosa that could be used in combination with antibiotics to treat drug-resistant infections.
Collapse
Affiliation(s)
- Nastaran Babaei
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Behnam Rasti
- Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University (IAU), Lahijan, Guilan, Iran
| | - Hojjatolah Zamani
- Department of Biology, Faculty of Science, University of Guilan, Guilan, Iran.
| |
Collapse
|
9
|
Potential Therapeutic Targets for Combination Antibody Therapy against Pseudomonas aeruginosa Infections. Antibiotics (Basel) 2021; 10:antibiotics10121530. [PMID: 34943742 PMCID: PMC8698887 DOI: 10.3390/antibiotics10121530] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 12/12/2022] Open
Abstract
Despite advances in antimicrobial therapy and even the advent of some effective vaccines, Pseudomonas aeruginosa (P. aeruginosa) remains a significant cause of infectious disease, primarily due to antibiotic resistance. Although P. aeruginosa is commonly treatable with readily available therapeutics, these therapies are not always efficacious, particularly for certain classes of patients (e.g., cystic fibrosis (CF)) and for drug-resistant strains. Multi-drug resistant P. aeruginosa infections are listed on both the CDC’s and WHO’s list of serious worldwide threats. This increasing emergence of drug resistance and prevalence of P. aeruginosa highlights the need to identify new therapeutic strategies. Combinations of monoclonal antibodies against different targets and epitopes have demonstrated synergistic efficacy with each other as well as in combination with antimicrobial agents typically used to treat these infections. Such a strategy has reduced the ability of infectious agents to develop resistance. This manuscript details the development of potential therapeutic targets for polyclonal antibody therapies to combat the emergence of multidrug-resistant P. aeruginosa infections. In particular, potential drug targets for combinational immunotherapy against P. aeruginosa are identified to combat current and future drug resistance.
Collapse
|
10
|
Multidimensional Clinical Surveillance of Pseudomonas aeruginosa Reveals Complex Relationships between Isolate Source, Morphology, and Antimicrobial Resistance. mSphere 2021; 6:e0039321. [PMID: 34259555 PMCID: PMC8386403 DOI: 10.1128/msphere.00393-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Antimicrobial susceptibility in Pseudomonas aeruginosa is dependent on a complex combination of host and pathogen-specific factors. Through the profiling of 971 clinical P. aeruginosa isolates from 590 patients and collection of paired patient metadata, we show that antimicrobial resistance is associated with not only patient-centric factors (e.g., cystic fibrosis and antipseudomonal prescription history) but also microbe-specific phenotypes (e.g., mucoid colony morphology). Additionally, isolates from different sources (e.g., respiratory tract, urinary tract) displayed rates of antimicrobial resistance that were correlated with source-specific antimicrobial prescription strategies. Furthermore, isolates from the same patient often displayed a high degree of heterogeneity, highlighting a key challenge facing personalized treatment of infectious diseases. Our findings support novel relationships between isolate and patient-level data sets, providing a potential guide for future antimicrobial treatment strategies. IMPORTANCE P. aeruginosa is a leading cause of nosocomial infection and infection in patients with cystic fibrosis. While P. aeruginosa infection and treatment can be complicated by a variety of antimicrobial resistance and virulence mechanisms, pathogen virulence is rarely recorded in a clinical setting. In this study, we discovered novel relationships between antimicrobial resistance, virulence-linked morphologies, and isolate source in a large and variable collection of clinical P. aeruginosa isolates. Our work motivates the clinical surveillance of virulence-linked P. aeruginosa morphologies as well as the tracking of source-specific antimicrobial prescription and resistance patterns.
Collapse
|
11
|
Kiran GS, Sajayan A, Gopal Priyadharshini, Balakrishnan A, Prathiviraj R, Sabu A, Selvin J. A novel anti-infective molecule nesfactin identified from sponge associated bacteria Nesterenkonia sp. MSA31 against multidrug resistant Pseudomonas aeruginosa. Microb Pathog 2021; 157:104923. [PMID: 34000302 DOI: 10.1016/j.micpath.2021.104923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/29/2022]
Abstract
Overuse of antibiotics coupled with biofilm-forming ability has led to the emergence of multi-drug P. aeruginosa strains worldwide. Quorum sensing is a bacterial cell-cell communication system that regulates the expression of genes, including virulence factors, through production of acyl-homoserine lactones (AHLs) in Pseudomonas aeruginosa. The phenotypic expression of virulence factors in P. aeruginosa is mediated by quorum sensing systems (las and rhl). In this study an anti-infective molecule produced by a marine actinomycetes Nesterenkonia sp. MSA31 was elucidated as lipopeptide by NMR and LC-MS/MS analysis. The new lipopeptide molecule was named Nesfactin. This molecule effectively inhibited virulence phenotypes including production of hemolysin, protease, lipase, phospholipase, esterase, elastase, rhamnolipid, alginate, and pyocyanin, as well as motility and biofilm formation in P. aeruginosa. The high-performance thin layer chromatography (HPTLC) analysis revealed that the lipopeptide (50 μg/mL) inhibited production of the AHLs produced by the las and rhl quorum sensing systems (3-oxo-C12-HSL and C4-HSL, respectively). Docking analysis showed the binding affinity of the ligand towards the quorum sensing receptor molecules. The confocal laser scanning microscopy images showed the anti-biofilm effect of lipopeptide against P. aeruginosa. Nesfactin based hydrogel showed a significant antibiofilm effect on the catheter. This study suggests that the lipopeptide may be an effective anti-virulence treatment for Pseudomonas aeruginosa infections.
Collapse
Affiliation(s)
- George Seghal Kiran
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Arya Sajayan
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Gopal Priyadharshini
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Aarthy Balakrishnan
- Department of Food Science and Technology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - R Prathiviraj
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India
| | - Abdulhameed Sabu
- Department of Biotechnology and Microbiology, Kannur University, Kannur, India
| | - Joseph Selvin
- Department of Microbiology, School of Life Sciences, Pondicherry University, Puducherry, India.
| |
Collapse
|
12
|
Molecular Detection of Drug-Resistance Genes of blaOXA-23-blaOXA-51 and mcr-1 in Clinical Isolates of Pseudomonas aeruginosa. Microorganisms 2021; 9:microorganisms9040786. [PMID: 33918745 PMCID: PMC8069495 DOI: 10.3390/microorganisms9040786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Pseudomonas aeruginosa has caused high rates of mortality due to the appearance of strains with multidrug resistance (MDR) profiles. This study aimed to characterize the molecular profile of virulence and resistance genes in 99 isolates of P. aeruginosa recovered from different clinical specimens. The isolates were identified by the automated method Vitek2, and the antibiotic susceptibility profile was determined using different classes of antimicrobials. The genomic DNA was extracted and amplified by multiplex polymerase chain reaction (mPCR) to detect different virulence and antimicrobial resistance genes. Molecular typing was performed using the enterobacterial repetitive intergenic consensus (ERIC-PCR) technique to determine the clonal relationship among P. aeruginosa isolates. The drug susceptibility profiles of P. aeruginosa for all strains showed high levels of drug resistance, particularly, 27 (27.3%) isolates that exhibited extensively drug-resistant (XDR) profiles, and the other isolates showed MDR profiles. We detected the polymyxin E (mcr-1) gene in one strain that showed resistance against colistin. The genes that confer resistance to oxacillin (blaOXA-23 and blaOXA-51) were present in three isolates. One of these isolates carried both genes. As far as we know from the literature, this is the first report of the presence of blaOXA-23 and blaOXA-51 genes in P. aeruginosa.
Collapse
|
13
|
Burns FN, Alila MA, Zheng H, Patil PD, Ibanez ACS, Luk YY. Exploration of Ligand-receptor Binding and Mechanisms for Alginate Reduction and Phenotype Reversion by Mucoid Pseudomonas aeruginosa. ChemMedChem 2021; 16:1975-1985. [PMID: 33666373 DOI: 10.1002/cmdc.202100121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 11/09/2022]
Abstract
Bacteria in general can develop a wide range of phenotypes under different conditions and external stresses. The phenotypes that reside in biofilms, overproduce exopolymers, and show increased motility often exhibit drug tolerance and drug persistence. In this work, we describe a class of small molecules that delay and inhibit the overproduction of alginate by a non-swarming mucoid Pseudomonas aeruginosa. Among these molecules, selected benzophenone-derived alkyl disaccharides cause the mucoid bacteria to swarm on hydrated soft agar gel and revert the mucoid to a nonmucoid phenotype. The sessile (biofilm) and motile (swarming) phenotypes are controlled by opposing signaling pathways with high and low intracellular levels of bis-(3',5')-cyclic diguanosine monophosphate (cdG), respectively. As our molecules control several of these phenotypes, we explored a protein receptor, pilin of the pili appendages, that is consistent with controlling these bioactivities and signaling pathways. To test this binding hypothesis, we developed a bacterial motility-enabled binding assay that uses the interfacial properties of hydrated gels and bacterial motility to conduct label-free ligand-receptor binding studies. The structure-activity correlation and receptor identification reveal a plausible mechanism for reverting mucoid to nonmucoid phenotypes by binding pili appendages with ligands capable of sequestering and neutralizing reactive oxygen species.
Collapse
Affiliation(s)
- Felicia N Burns
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Mercy A Alila
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Hewen Zheng
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Pankaj D Patil
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Arizza Chiara S Ibanez
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| | - Yan-Yeung Luk
- Department of Chemistry, Syracuse University, 1-014 CST, 111 College Place, Syracuse, NY, 13244, USA
| |
Collapse
|
14
|
Davarzani F, Saidi N, Besharati S, Saderi H, Rasooli I, Owlia P. Evaluation of Antibiotic Resistance Pattern, Alginate and Biofilm Production in Clinical Isolates of Pseudomonas aeruginosa. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:341-349. [PMID: 33747998 PMCID: PMC7956088 DOI: 10.18502/ijph.v50i2.5349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Background Pseudomonas aeruginosa is one of the most common opportunistic bacteria causing nosocomial infections, which has significant resistance to antimicrobial agents. This bacterium is a biofilm and alginate producer. Biofilm increases the bacterial resistance to antibiotics and the immune system. Therefore, the present study was conducted to investigate the biofilm formation, alginate production and antimicrobial resistance patterns in the clinical isolates of P. aeruginosa. Methods One hundred isolates of P. aeruginosa were collected during the study period (from Dec 2017 to Jul 2018) from different clinical samples of the patients admitted to Milad and Pars Hospitals at Tehran, Iran. Isolates were identified and confirmed by phenotypic and genotypic methods. Antimicrobial susceptibility was specified by the disk diffusion method. Biofilm formation and alginate production were measured by microtiter plate and carbazole assay, respectively. Results Sixteen isolates were resistant to all the 12 studied antibiotics. Moreover, 31 isolates were Multidrug-Resistant (MDR). The highest resistance rate was related to ofloxacin (36 isolates) and the least resistance was related to piperacillin-tazobactam (21 isolates). All the isolates could produce the biofilm and alginate. The number of isolates producing strong, medium and weak biofilms was equal to 34, 52, and 14, respectively. Alginate production was more than 400 μg/ml in 39 isolates, 250-400 μg/ml in 51 isolates and less than 250 μg/ml in 10 isolates. Conclusion High prevalence of MDR, biofilm formation, and alginate production were observed among the clinical isolates of P. aeruginosa. The results also showed a significant relationship between the amount of alginate production and the level of biofilm formation.
Collapse
Affiliation(s)
- Fateme Davarzani
- Department of Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Navid Saidi
- Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran
| | - Saeed Besharati
- Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran
| | - Horieh Saderi
- Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran
| | - Iraj Rasooli
- Department of Biology, Faculty of Science, Shahed University, Tehran, Iran
| | - Parviz Owlia
- Molecular Microbiology Research Center (MMRC), Faculty of Medicine, Shahed University, Tehran, Iran
| |
Collapse
|
15
|
Horna G, Ruiz J. Type 3 secretion system of Pseudomonas aeruginosa. Microbiol Res 2021; 246:126719. [PMID: 33582609 DOI: 10.1016/j.micres.2021.126719] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 12/27/2022]
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen, mainly affecting severe patients, such as those in intensive care units (ICUs). High levels of antibiotic resistance and a long battery of virulence factors characterise this pathogen. Among virulence factors, the T3SS (Type 3 Secretion Systems) are especially relevant, being one of the most important virulence factors in P. aeruginosa. T3SS are a complex "molecular syringe" able to inject different effectors in host cells, subverting cell machinery influencing immune responses, and increasing bacterial survival rates. While T3SS have been largely studied and the molecular structure and main effector functions have been established, a series of questions and further points remain to be clarified or established. The key role of T3SS in P. aeruginosa virulence has resulted in the search for T3SS-targeting molecules able to impair their functions and subsequently improve patient outcomes. This review aims to summarise the most relevant features of the P. aeruginosa T3SS.
Collapse
Affiliation(s)
- Gertrudis Horna
- Universidad Catolica Los Angeles de Chimbote, Instituto de Investigación, Chimbote, Peru.
| | - Joaquim Ruiz
- Laboratorio de Microbiología Molecular y Genómica Bacteriana, Universidad Científica del Sur, Panamericana Sur, Km 19, Lima, Peru.
| |
Collapse
|
16
|
UPR modulation of host immunity by Pseudomonas aeruginosa in cystic fibrosis. Clin Sci (Lond) 2020; 134:1911-1934. [PMID: 32537652 DOI: 10.1042/cs20200066] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
Cystic fibrosis (CF) is a progressive multiorgan autosomal recessive disease with devastating impact on the lungs caused by derangements of the CF transmembrane conductance regulator (CFTR) gene. Morbidity and mortality are caused by the triad of impaired mucociliary clearance, microbial infections and chronic inflammation. Pseudomonas aeruginosa is the main respiratory pathogen in individuals with CF infecting most patients in later stages. Despite its recognized clinical impact, molecular mechanisms that underlie P. aeruginosa pathogenesis and the host response to P. aeruginosa infection remain incompletely understood. The nuclear hormone receptor peroxisome proliferator-activated receptor (PPAR) γ (PPARγ), has shown to be reduced in CF airways. In the present study, we sought to investigate the upstream mechanisms repressing PPARγ expression and its impact on airway epithelial host defense. Endoplasmic reticulum-stress (ER-stress) triggered unfolded protein response (UPR) activated by misfolded CFTR and P. aeruginosa infection contributed to attenuated expression of PPARγ. Specifically, the protein kinase RNA (PKR)-like ER kinase (PERK) signaling pathway led to the enhanced expression of the CCAAT-enhancer-binding-protein homologous protein (CHOP). CHOP induction led to the repression of PPARγ expression. Mechanistically, we showed that CHOP induction mediated PPARγ attenuation, impacted the innate immune function of normal and ∆F508 primary airway epithelial cells by reducing expression of antimicrobial peptide (AMP) and paraoxanse-2 (PON-2), as well as enhancing IL-8 expression. Furthermore, mitochondrial reactive oxygen species production (mt-ROS) and ER-stress positive feedforward loop also dysregulated mitochondrial bioenergetics. Additionally, our findings implicate that PPARγ agonist pioglitazone (PIO) has beneficial effect on the host at the multicellular level ranging from host defense to mitochondrial re-energization.
Collapse
|
17
|
Davey N, Rader RR, Chakravarti D. Ananda Mohan ‘Al’ Chakrabarty 1938–2020. Nat Biotechnol 2020. [DOI: 10.1038/s41587-020-00785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Riquelme SA, Lozano C, Moustafa AM, Liimatta K, Tomlinson KL, Britto C, Khanal S, Gill SK, Narechania A, Azcona-Gutiérrez JM, DiMango E, Saénz Y, Planet P, Prince A. CFTR-PTEN-dependent mitochondrial metabolic dysfunction promotes Pseudomonas aeruginosa airway infection. Sci Transl Med 2020; 11:11/499/eaav4634. [PMID: 31270271 DOI: 10.1126/scitranslmed.aav4634] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/12/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor suppressor best known for regulating cell proliferation and metabolism. PTEN forms a complex with the cystic fibrosis (CF) transmembrane conductance regulator (CFTR) at the plasma membrane, and this complex is known to be functionally impaired in CF. Here, we demonstrated that the combined effect of PTEN and CFTR dysfunction stimulates mitochondrial activity, resulting in excessive release of succinate and reactive oxygen species. This environment promoted the colonization of the airway by Pseudomonas aeruginosa, bacteria that preferentially metabolize succinate, and stimulated an anti-inflammatory host response dominated by immune-responsive gene 1 (IRG1) and itaconate. The recruitment of myeloid cells induced by these strains was inefficient in clearing the infection and increased numbers of phagocytes accumulated under CFTR-PTEN axis dysfunction. This central metabolic defect in mitochondrial function due to impaired PTEN activity contributes to P. aeruginosa infection in CF.
Collapse
Affiliation(s)
| | - Carmen Lozano
- Area de Microbiología Molecular, Centro de Investigación Biomédica de la Rioja (CIBIR), Microbiología Molecular, Logroño, LG 26006, Spain
| | - Ahmed M Moustafa
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Kalle Liimatta
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Kira L Tomlinson
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | - Clemente Britto
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Sara Khanal
- Section of Pulmonary, Critical Care, and Sleep Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Simren K Gill
- Department of Pediatrics, Columbia University, New York, NY 10032, USA
| | | | - Jose M Azcona-Gutiérrez
- Departamento de Diagnóstico Biomédico. Laboratorio de Microbiología, Hospital San Pedro, Logroño, LG 26006, Spain
| | - Emily DiMango
- Department of Medicine, Columbia University, New York, NY 10032, USA
| | - Yolanda Saénz
- Area de Microbiología Molecular, Centro de Investigación Biomédica de la Rioja (CIBIR), Microbiología Molecular, Logroño, LG 26006, Spain
| | - Paul Planet
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania and Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alice Prince
- Department of Pediatrics, Columbia University, New York, NY 10032, USA.
| |
Collapse
|
19
|
Blanco-Cabra N, Paetzold B, Ferrar T, Mazzolini R, Torrents E, Serrano L, LLuch-Senar M. Characterization of different alginate lyases for dissolving Pseudomonas aeruginosa biofilms. Sci Rep 2020; 10:9390. [PMID: 32523130 PMCID: PMC7287115 DOI: 10.1038/s41598-020-66293-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 05/15/2020] [Indexed: 12/16/2022] Open
Abstract
Aggregates of Pseudomonas aeruginosa form a protective barrier against antibiotics and the immune system. These barriers, known as biofilms, are associated with several infectious diseases. One of the main components of these biofilms is alginate, a homo- and hetero-polysaccharide that consists of β-D-mannuronate (M) and α-L-guluronate (G) units. Alginate lyases degrade this sugar and have been proposed as biotherapeutic agents to dissolve P. aeruginosa biofilms. However, there are contradictory reports in the literature regarding the efficacy of alginate lyases against biofilms and their synergistic effect with antibiotics. We found that most positive reports used a commercial crude extract from Flavobacterium multivorum as the alginate lyase source. By using anion exchange chromatography coupled to nano LC MS/MS, we identified two distinct enzymes in this extract, one has both polyM and polyG (polyM/G) degradation activities and it is similar in sequence to a broad-spectrum alginate lyase from Flavobacterium sp. S20 (Alg2A). The other enzyme has only polyG activity and it is similar in sequence to AlyA1 from Zobellia galactanivorans. By characterizing both of these enzymes together with three recombinant alginate lyases (a polyM, a polyG and a polyM/G), we showed that only enzymes with polyM/G activity such as Alg2A and A1-II' (alginate lyase from Sphingomonas sp.) are effective in dissolving biofilms. Furthermore, both activities are required to have a synergistic effect with antibiotics.
Collapse
Affiliation(s)
- Núria Blanco-Cabra
- Bacterial infections and antimicrobial therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Tony Ferrar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Rocco Mazzolini
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain
| | - Eduard Torrents
- Bacterial infections and antimicrobial therapies, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Luis Serrano
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
- Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | - Maria LLuch-Senar
- EMBL/CRG Systems Biology Research Unit, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona, 08003, Spain.
| |
Collapse
|
20
|
Parducho KR, Beadell B, Ybarra TK, Bush M, Escalera E, Trejos AT, Chieng A, Mendez M, Anderson C, Park H, Wang Y, Lu W, Porter E. The Antimicrobial Peptide Human Beta-Defensin 2 Inhibits Biofilm Production of Pseudomonas aeruginosa Without Compromising Metabolic Activity. Front Immunol 2020; 11:805. [PMID: 32457749 PMCID: PMC7225314 DOI: 10.3389/fimmu.2020.00805] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/08/2020] [Indexed: 12/13/2022] Open
Abstract
Biofilm production is a key virulence factor that facilitates bacterial colonization on host surfaces and is regulated by complex pathways, including quorum sensing, that also control pigment production, among others. To limit colonization, epithelial cells, as part of the first line of defense, utilize a variety of antimicrobial peptides (AMPs) including defensins. Pore formation is the best investigated mechanism for the bactericidal activity of AMPs. Considering the induction of human beta-defensin 2 (HBD2) secretion to the epithelial surface in response to bacteria and the importance of biofilm in microbial infection, we hypothesized that HBD2 has biofilm inhibitory activity. We assessed the viability and biofilm formation of a pyorubin-producing Pseudomonas aeruginosa strain in the presence and absence of HBD2 in comparison to the highly bactericidal HBD3. At nanomolar concentrations, HBD2 - independent of its chiral state - significantly reduced biofilm formation but not metabolic activity, unlike HBD3, which reduced biofilm and metabolic activity to the same degree. A similar discrepancy between biofilm inhibition and maintenance of metabolic activity was also observed in HBD2 treated Acinetobacter baumannii, another Gram-negative bacterium. There was no evidence for HBD2 interference with the regulation of biofilm production. The expression of biofilm-related genes and the extracellular accumulation of pyorubin pigment, another quorum sensing controlled product, did not differ significantly between HBD2 treated and control bacteria, and in silico modeling did not support direct binding of HBD2 to quorum sensing molecules. However, alterations in the outer membrane protein profile accompanied by surface topology changes, documented by atomic force microscopy, was observed after HBD2 treatment. This suggests that HBD2 induces structural changes that interfere with the transport of biofilm precursors into the extracellular space. Taken together, these data support a novel mechanism of biofilm inhibition by nanomolar concentrations of HBD2 that is independent of biofilm regulatory pathways.
Collapse
Affiliation(s)
- Kevin R. Parducho
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Brent Beadell
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Tiffany K. Ybarra
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Mabel Bush
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Erick Escalera
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Aldo T. Trejos
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Andy Chieng
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Marlon Mendez
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Chance Anderson
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Hyunsook Park
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| | - Yixian Wang
- Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, CA, United States
| | - Wuyuan Lu
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Edith Porter
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
21
|
Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00559-19. [PMID: 31792010 DOI: 10.1128/jb.00559-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner.IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.
Collapse
|
22
|
Abstract
In this issue of Journal of Bacteriology, Price et al. show that the Pseudomonas aeruginosa-produced exopolysaccharide alginate protects Staphylococcus aureus by dampening the expression of P. aeruginosa virulence products that usually inhibit S. aureus respiration and cell membrane integrity when the two organisms compete in other environments (C. E. Price, D. G. Brown, D. H. Limoli, V. V. Phelan, and G. A. O'Toole, J Bacteriol 202:e00559-19, 2020, https://doi.org/10.1128/jb.00559-19). This is the first report that exogenously added alginate affects P. aeruginosa competition and provides a partial explanation for S. aureus and P. aeruginosa coinfections in cystic fibrosis.
Collapse
|
23
|
Assessment of Antibacterial Activity and the Effect of Copper and Iron Zerovalent Nanoparticles on Gene Expression DnaK in Pseudomonas aeruginosa. BIONANOSCIENCE 2020. [DOI: 10.1007/s12668-019-00692-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Chanasit W, Gonzaga ZJC, Rehm BHA. Analysis of the alginate O-acetylation machinery in Pseudomonas aeruginosa. Appl Microbiol Biotechnol 2020; 104:2179-2191. [PMID: 31900562 DOI: 10.1007/s00253-019-10310-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 11/06/2019] [Accepted: 12/08/2019] [Indexed: 12/11/2022]
Abstract
O-acetylation of alginate produced by the opportunistic human pathogen Pseudomonas aeruginosa significantly contributes to its pathogenesis. Three proteins, AlgI, AlgJ and AlgF have been implicated to form a complex and act together with AlgX for O-acetylation of alginate. AlgI was proposed to transfer the acetyl group across the cytoplasmic membrane, while periplasmic AlgJ was hypothesised to transfer the acetyl group to AlgX that acetylates alginate. To elucidate the proposed O-acetylation multiprotein complex, isogenic knockout mutants of algI, algJ and algF genes were generated in the constitutively alginate overproducing P. aeruginosa PDO300 to enable mutual stability studies. All knockout mutants were O-acetylation negative and complementation with the respective genes in cis or trans restored O-acetylation of alginate. Interestingly, only the AlgF deletion impaired alginate production suggesting a link to the alginate polymerisation/secretion multiprotein complex. Mutual stability experiments indicated that AlgI and AlgF interact independent of AlgJ as well as impact on stability of the alginate polymerisation/secretion multiprotein complex. Deletion of AlgJ did not destabilise AlgX and vice versa. When the alginate polymerase, Alg8, was absent, then AlgI and AlgF stability was strongly impaired supporting a link of the O-acetylation machinery with alginate polymerisation. Pull-down experiments suggested that AlgI interacts with AlgJ, while AlgF interacts with AlgJ and AlgI. Overall, these results suggested that AlgI-AlgJ-AlgF form a multiprotein complex linked via Alg8 to the envelope-spanning alginate polymerisation/secretion multiprotein complex to mediate O-acetylation of nascent alginate. Here, we provide the first insight on how the O-acetylation machinery is associated with alginate production.
Collapse
Affiliation(s)
- Wankuson Chanasit
- Department of Biology, Faculty of Science, Thaksin University, Pa Phayom, Patthalung, 93210, Thailand
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Brisbane, QLD, 4111, Australia.
| |
Collapse
|
25
|
Alginate/Chitosan Particle-Based Drug Delivery Systems for Pulmonary Applications. Pharmaceutics 2019; 11:pharmaceutics11080379. [PMID: 31382357 PMCID: PMC6722511 DOI: 10.3390/pharmaceutics11080379] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a complex, potentially life-threatening disease that is most effectively treated through the administration of antibiotics (e.g., colistimethate sodium). Chronic infection with Pseudomonas aeruginosa is one of the most significant events in the pathogenesis of cystic fibrosis, and tobramycin is the treatment of choice for those patients with chronic P. aeruginosa infection who are deteriorating despite regular administration of colistimethate sodium. Effective treatment can be challenging due to the accumulation of thickened mucus in the pulmonary environment, and here we describe the results of our investigation into the development of alginate/chitosan particles prepared via precipitation for such environments. Tobramycin loading and release from the alginate/chitosan particles was investigated, with evidence of both uptake and release of sufficient tobramycin to inhibit P. aeruginosa in vitro. Functionalisation of the alginate/chitosan particles with secretory leukocyte protease inhibitor (SLPI) was shown to help inhibit the inflammatory response associated with lung infections (via inhibition of neutrophil elastase activity) and enhance their interaction with cystic fibrosis mucus (assayed via reduction of the depth of particle penetration into the mucus) in vitro, which have prospects to enhance their efficacy in vivo.
Collapse
|
26
|
de Melo ACC, da Mata Gomes A, Melo FL, Ardisson-Araújo DMP, de Vargas APC, Ely VL, Kitajima EW, Ribeiro BM, Wolff JLC. Characterization of a bacteriophage with broad host range against strains of Pseudomonas aeruginosa isolated from domestic animals. BMC Microbiol 2019; 19:134. [PMID: 31208333 PMCID: PMC6580649 DOI: 10.1186/s12866-019-1481-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 05/07/2019] [Indexed: 12/16/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen and one of the leading causes of nosocomial infections. Moreover, the species can cause severe infections in cystic fibrosis patients, in burnt victims and cause disease in domestic animals. The control of these infections is often difficult due to its vast repertoire of mechanisms for antibiotic resistance. Phage therapy investigation with P. aeruginosa bacteriophages has aimed mainly the control of human diseases. In the present work, we have isolated and characterized a new bacteriophage, named Pseudomonas phage BrSP1, and investigated its host range against 36 P. aeruginosa strains isolated from diseased animals and against P. aeruginosa ATCC strain 27853. Results We have isolated a Pseudomonas aeruginosa phage from sewage. We named this virus Pseudomonas phage BrSP1. Our electron microscopy analysis showed that phage BrSP1 had a long tail structure found in members of the order Caudovirales. “In vitro” biological assays demonstrated that phage BrSP1 was capable of maintaining the P. aeruginosa population at low levels for up to 12 h post-infection. However, bacterial growth resumed afterward and reached levels similar to non-treated samples at 24 h post-infection. Host range analysis showed that 51.4% of the bacterial strains investigated were susceptible to phage BrSP1 and efficiency of plating (EOP) investigation indicated that EOP values in the strains tested varied from 0.02 to 1.72. Analysis of the phage genome revealed that it was a double-stranded DNA virus with 66,189 bp, highly similar to the genomes of members of the genus Pbunavirus, a group of viruses also known as PB1-like viruses. Conclusion The results of our “in vitro” bioassays and of our host range analysis suggested that Pseudomonas phage BrSP1 could be included in a phage cocktail to treat veterinary infections. Our EOP investigation confirmed that EOP values differ considerably among different bacterial strains. Comparisons of complete genome sequences indicated that phage BrSP1 is a novel species of the genus Pbunavirus. The complete genome of phage BrSP1 provides additional data that may help the broader understanding of pbunaviruses genome evolution. Electronic supplementary material The online version of this article (10.1186/s12866-019-1481-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anna Cristhina Carmine de Melo
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Amanda da Mata Gomes
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil
| | - Fernando L Melo
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - Daniel M P Ardisson-Araújo
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria, Av. Roraima, 1000, Cidade Universitária, Santa Maria, RS, CEP 97105-900, Brazil
| | - Agueda Palmira Castagna de Vargas
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Valessa Lunkes Ely
- Departamento de Medicina Veterinária Preventiva (DMVP), Centro de Ciências Rurais (CCR)Avenida Roraima, Universidade Federal de Santa Maria, 1000. Prédio 44, Sala 5137, Santa Maria, RS, CEP 97105-900, Brazil
| | - Elliot W Kitajima
- NAP/MEPA, Departamento de Fitopatologia e Nematologia, ESALQ, Universidade de São Paulo, Piracicaba, SP, Brazil
| | - Bergmann M Ribeiro
- Departamento de Biologia Celular, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, DF, Brazil
| | - José Luiz Caldas Wolff
- CCBS - Curso de Ciências Biológicas, Laboratório de Biologia Molecular e Virologia, Prédio 28, primeiro andar, Universidade Presbiteriana Mackenzie, Rua da Consolação, 896, Consolação, São Paulo, SP, CEP 01302-907, Brazil.
| |
Collapse
|
27
|
Role of Viscoelasticity in Bacterial Killing by Antimicrobials in Differently Grown Pseudomonas aeruginosa Biofilms. Antimicrob Agents Chemother 2019; 63:AAC.01972-18. [PMID: 30745390 DOI: 10.1128/aac.01972-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 12/28/2018] [Indexed: 01/04/2023] Open
Abstract
Pseudomonas aeruginosa colonizes the sputum of most adult cystic fibrosis patients, forming difficult-to-eradicate biofilms in which bacteria are protected in their self-produced extracellular polymeric substance (EPS) matrices. EPS provide biofilms with viscoelastic properties, causing time-dependent relaxation after stress-induced deformation, according to multiple characteristic time constants. These time constants reflect different biofilm (matrix) components. Since the viscoelasticity of biofilms has been related to antimicrobial penetration but not yet bacterial killing, this study aims to relate killing of P. aeruginosa, in its biofilm mode of growth, by three antimicrobials to biofilm viscoelasticity. P. aeruginosa biofilms were grown for 18 h in a constant-depth film fermenter, with mucin-containing artificial sputum medium (ASM+), artificial sputum medium without mucin (ASM-), or Luria-Bertani (LB) broth; this yielded 100-μm-thick biofilms that differed in their amounts of matrix environmental DNA (eDNA) and polysaccharides. Low-load compression testing, followed by three-element Maxwell analyses, showed that the fastest relaxation component, associated with unbound water, was most important in LB-medium-grown biofilms. Slower components due to water with dissolved polysaccharides, insoluble polysaccharides, and eDNA were most important in the relaxation of ASM+-grown biofilms. ASM--grown biofilms showed intermediate stress relaxation. P. aeruginosa in LB-medium-grown biofilms was killed most by exposure to tobramycin, colistin, or an antimicrobial peptide, while ASM+ provided the most protective matrix, with less water and most insoluble polysaccharides and eDNA. In conclusion, stress relaxation of P. aeruginosa biofilms grown in different media revealed differences in matrix composition that, within the constraints of the antimicrobials and growth media applied, correlated with the matrix protection offered against different antimicrobials.
Collapse
|
28
|
Zaidi TS, Zaidi T, Pier GB. Antibodies to Conserved Surface Polysaccharides Protect Mice Against Bacterial Conjunctivitis. Invest Ophthalmol Vis Sci 2019; 59:2512-2519. [PMID: 29847658 PMCID: PMC5963004 DOI: 10.1167/iovs.18-23795] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Purpose Bacterial conjunctivitis is a major problem in ocular health. Little is known about protective immune effectors in the conjunctiva. We evaluated whether opsonic antibody to the conserved surface/capsular polysaccharide poly-N-acetyl glucosamine (PNAG) expressed by Streptococcus pneumoniae and Staphylococcus aureus was protective against bacterial conjunctivitis, as well as an antibody to the Pseudomonas aeruginosa surface polysaccharide alginate. Methods Bacteria were injected directly into the conjunctivae of either A/J mice or into conjunctivae of wild type C57Bl/6 mice for comparisons to responses of recombination activating gene 1-knock out (RAG 1 KO) or germ-free mice in the C57Bl/6 genetic background. Human IgG1 monoclonal antibodies (MAb) to either PNAG or alginate were administered as follows: direct injection of 10 μg into the conjunctivae or topical application onto the cornea 4, 24, and 32 hours post infection; or intraperitoneal injection of 200 μg 18 hours prior to and then 4, 24, and 32-hours postinfection. After 48 hours, eyes were scored for pathology, mice were euthanized, and CFU/conjunctiva was determined. Results All methods of antibody administration reduced S. pneumoniae, S. aureus, or P. aeruginosa pathology and bacterial levels in the conjunctivae. Histopathologic analysis showed severe inflammatory cell infiltrates in conjunctivae of mice treated with control MAb, whereas immune mice showed only very mild cellular infiltration. The protective effect of MAb to PNAG was abolished in RAG 1 KO and germ-free mice. Conclusions Antibodies to both PNAG and alginate demonstrated therapeutic efficacy in models of S. pneumoniae, S. aureus, and P. aeruginosa conjunctivitis, validating the protective capacity of antibodies to surface polysaccharides in distinct ocular tissues.
Collapse
Affiliation(s)
- Tanweer S Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Tauqeer Zaidi
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| | - Gerald B Pier
- Division of Infectious Diseases, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, United States
| |
Collapse
|
29
|
Interaction of gentamicin sulfate with alginate and consequences on the physico-chemical properties of alginate-containing biofilms. Int J Biol Macromol 2018; 121:390-397. [PMID: 30304700 DOI: 10.1016/j.ijbiomac.2018.10.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 10/04/2018] [Accepted: 10/05/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND Alginate is one of the main extracellular polymeric substances (EPS) in biofilms of Cystic Fibrosis (CF) patients suffering from pulmonary infections. Gentamicin sulfate (GS) can strongly bind to alginate resulting in loss of pharmacological activity; however neither the mechanism nor its repercussion is fully understood. In this study, we investigated how GS modifies the alginate macromolecular network and its microenvironment. MATERIAL AND METHODS Alginate gels of two different compositions (either enriched in guluronate units (G) or enriched in mannuronate units (M)) were crosslinked with Ca2+ and exposed to GS at varying times and concentrations. The complexes formed were characterized via turbidimetry, mechanical tests, swelling assay, calorimetry techniques, nuclear magnetic resonance, Ca2+ displacement, macromolecular probe diffusion and pH alteration. RESULTS In presence of GS, the alginate network and its environment undergo a tremendous reorganization in terms of gel density, stiffness, diffusion property, presence and state of the water molecules. We noted that the intensity of those alterations is directly dependent on the polysaccharide motif composition (ratio M/G). CONCLUSION Our results underline the importance of alginate as biofilm component, its pernicious role during antibiotherapy and could represent a potential macromolecular target to improve anti-infectious therapies.
Collapse
|
30
|
Meskini M, Esmaeili D. The study of formulated Zoush ointment against wound infection and gene expression of virulence factors Pseudomonas aeruginosa. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:185. [PMID: 29903005 PMCID: PMC6003004 DOI: 10.1186/s12906-018-2251-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 06/07/2018] [Indexed: 01/29/2023]
Abstract
BACKGROUND The outbreak of MDR and XDR strains of Pseudomonas aeruginosa and increased resistance to infection in burn patients recommend the issue of infection control. In this research, we study ZOUSH herbal ointment for gene silencing of Pseudomonas aeruginosa. METHODS The herbal ZOUSH ointment was formulated by alcoholic extracts of plants Satureja khuzestaniea, Zataria multiflora, Mentha Mozaffariani Jamzad, honey, and polyurethane. The MIC and disk diffusion tests were examined by single, binary, tertiary and five compounds. Three-week-old mice were considered to be second-degree infections by Pseudomonas aeruginosa. During the interval of 5 days, cultures were done from the liver, blood, and wound by four consecutive quarters and counting of Pseudomonas aeruginosa was reported in the liver. In this study, silver sulfadiazine ointments and Akbar were used as a positive control. The gene gyrA reference was used as the control. Real-time RT-PCR results were evaluated based on Livak as the comparative Ct method. RESULTS The In vitro results indicated that wound infection was improved by healing wound size in the treatment groups compared to control treatment group. In this research, the changes in gene expression were evaluated by molecular technique Real-time RT-PCR. The results showed downregulation exoS, lasA, and lasB after treatment with ZOUSH ointment. SPSS Analyses showed that reduction of expressions in genes exoS, lasA and lasB after treatment with ZOUSH ointment were significantly meaningful (p < 0.05). CONCLUSION Our study showed that ZOUSH ointment has the positive effect for gene silencing Pseudomonas aeruginosa in the mouse model with the second-degree burn. The positive effects decreased in the number of bacteria by reducing the expression of virulence bacteria genes as exoS, lasA and lasB and improvement of wound healing.
Collapse
Affiliation(s)
- Maryam Meskini
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department Of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Davoud Esmaeili
- Department of Microbiology and Applied Microbiology Research Center, Systems Biology and Poisonings Institute and Department Of Microbiology, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Malhotra S, Limoli DH, English AE, Parsek MR, Wozniak DJ. Mixed Communities of Mucoid and Nonmucoid Pseudomonas aeruginosa Exhibit Enhanced Resistance to Host Antimicrobials. mBio 2018; 9:e00275-18. [PMID: 29588399 PMCID: PMC5874919 DOI: 10.1128/mbio.00275-18] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa causes chronic pulmonary infections in patients with cystic fibrosis (CF). P. aeruginosa mucoid conversion, defined by overproduction of the exopolysaccharide alginate, correlates with accelerated decline in CF patient lung function. Recalcitrance of the mucoid phenotype to clearance by antibiotics and the immune response is well documented. However, despite advantages conferred by mucoidy, mucoid variants often revert to a nonmucoid phenotype both in vitro and in vivo Mixed populations of mucoid isolates and nonmucoid revertants are recovered from CF lungs, suggesting a selective benefit for coexistence of these variants. In this study, cocultures of mucoid and nonmucoid variants exhibited enhanced resistance to two host antimicrobials: LL-37, a cationic antimicrobial peptide, and hydrogen peroxide (H2O2). Alginate production by mucoid isolates protected nonmucoid variants in consortia from LL-37, as addition of alginate exogenously to nonmucoid variants abrogated LL-37 killing. Conversely, nonmucoid revertants shielded mucoid variants from H2O2 stress via catalase (KatA) production, which was transcriptionally repressed by AlgT and AlgR, central regulators of alginate biosynthesis. Furthermore, extracellular release of KatA by nonmucoid revertants was dependent on lys, encoding an endolysin implicated in autolysis and extracellular DNA (eDNA) release. Overall, these data provide a rationale to study interactions of P. aeruginosa mucoid and nonmucoid variants as contributors to evasion of innate immunity and persistence within the CF lung.IMPORTANCEP. aeruginosa mucoid conversion within lungs of cystic fibrosis (CF) patients is a hallmark of chronic infection and predictive of poor prognosis. The selective benefit of mixed populations of mucoid and nonmucoid variants, often isolated from chronically infected CF patients, has not been explored. Here, we show that mixed-variant communities of P. aeruginosa demonstrate advantages in evasion of innate antimicrobials via production of shared goods: alginate and catalase. These data argue for therapeutically targeting multiple constituents (both mucoid and nonmucoid variants) within diversified P. aeruginosa communities in vivo, as these variants can differentially shield one another from components of the host response.
Collapse
Affiliation(s)
- Sankalp Malhotra
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Dominique H Limoli
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, USA
| | - Anthony E English
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
| | - Matthew R Parsek
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
32
|
Kora AJ, Sashidhar R. Biogenic silver nanoparticles synthesized with rhamnogalacturonan gum: Antibacterial activity, cytotoxicity and its mode of action. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2014.10.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
|
33
|
Hill PJ, Scordo JM, Arcos J, Kirkby SE, Wewers MD, Wozniak DJ, Torrelles JB. Modifications of Pseudomonas aeruginosa cell envelope in the cystic fibrosis airway alters interactions with immune cells. Sci Rep 2017; 7:4761. [PMID: 28684799 PMCID: PMC5500645 DOI: 10.1038/s41598-017-05253-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 05/25/2017] [Indexed: 11/10/2022] Open
Abstract
Pseudomonas aeruginosa is a ubiquitous environmental organism and an opportunistic pathogen that causes chronic lung infections in the airways of cystic fibrosis (CF) patients as well as other immune-compromised individuals. During infection, P. aeruginosa enters the terminal bronchioles and alveoli and comes into contact with alveolar lining fluid (ALF), which contains homeostatic and antimicrobial hydrolytic activities, termed hydrolases. These hydrolases comprise an array of lipases, glycosidases, and proteases and thus, they have the potential to modify lipids, carbohydrates and proteins on the surface of invading microbes. Here we show that hydrolase levels between human ALF from healthy and CF patients differ. CF-ALF influences the P. aeruginosa cell wall by reducing the content of one of its major polysaccharides, Psl. This CF-ALF induced Psl reduction does not alter initial bacterial attachment to surfaces but reduces biofilm formation. Importantly, exposure of P. aeruginosa to CF-ALF drives the activation of neutrophils and triggers their oxidative response; thus, defining human CF-ALF as a new innate defense mechanism to control P. aeruginosa infection, but at the same time potentially adding to the chronic inflammatory state of the lung in CF patients.
Collapse
Affiliation(s)
- Preston J Hill
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Julia M Scordo
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Jesús Arcos
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Stephen E Kirkby
- Nationwide Children's Hospital, Section of Pulmonary Medicine, Columbus, OH, 43205, USA.,Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA
| | - Mark D Wewers
- Department of Internal Medicine, Pulmonary, Critical Care and Sleep Medicine Division, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA.,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, USA
| | - Daniel J Wozniak
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, USA. .,Department of Microbiology, The Ohio State University, Columbus, OH, 43210, USA.
| | - Jordi B Torrelles
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, 43210, USA. .,Center for Microbial Interface Biology, The Ohio State University, Columbus, OH, 43210, USA.
| |
Collapse
|
34
|
Activation Mechanism and Cellular Localization of Membrane-Anchored Alginate Polymerase in Pseudomonas aeruginosa. Appl Environ Microbiol 2017; 83:AEM.03499-16. [PMID: 28258142 DOI: 10.1128/aem.03499-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 02/23/2017] [Indexed: 12/11/2022] Open
Abstract
The exopolysaccharide alginate, produced by the opportunistic human pathogen Pseudomonas aeruginosa, confers a survival advantage to the bacterium by contributing to the formation of characteristic biofilms during infection. Membrane-anchored proteins Alg8 (catalytic subunit) and Alg44 (copolymerase) constitute the alginate polymerase that is being activated by the second messenger molecule bis-(3', 5')-cyclic dimeric GMP (c-di-GMP), but the mechanism of activation remains elusive. To shed light on the c-di-GMP-mediated activation of alginate polymerization in vivo, an in silico structural model of Alg8 fused to the c-di-GMP binding PilZ domain informed by the structure of cellulose synthase, BcsA, was developed. This structural model was probed by site-specific mutagenesis and different cellular levels of c-di-GMP. Results suggested that c-di-GMP-mediated activation of alginate polymerization involves amino acids residing at two loops, including H323 (loop A) and T457 and E460 (loop B), surrounding the catalytic site in the predicted model. The activities of the respective Alg8 variants suggested that c-di-GMP-mediated control of substrate access to the catalytic site of Alg8 is dissimilar to the known activation mechanism of BcsA. Alg8 variants responded differently to various c-di-GMP levels, while MucR imparted c-di-GMP for activation of alginate polymerase. Furthermore, we showed that Alg44 copolymerase constituted a stable dimer, with its periplasmic domains required for protein localization and alginate polymerization and modification. Superfolder green fluorescent protein (GFP) fusions of Alg8 and Alg44 showed a nonuniform, punctate, and patchy arrangement of both proteins surrounding the cell. Overall, this study provides insights into the c-di-GMP-mediated activation of alginate polymerization while assigning functional roles to Alg8 and Alg44, including their subcellular localization and distribution.IMPORTANCE The exopolysaccharide alginate is an important biofilm component of the opportunistic human pathogen P. aeruginosa and the principal cause of the mucoid phenotype that is the hallmark of chronic infections of cystic fibrosis patients. The production of alginate is mediated by interacting membrane proteins Alg8 and Alg44, while their activity is posttranslationally regulated by the second messenger c-di-GMP, a well-known regulator of the synthesis of a range of other exopolysaccharides in bacteria. This study provides new insights into the unknown activation mechanism of alginate polymerization by c-di-GMP. Experimental evidence that the activation of alginate polymerization requires the engagement of specific amino acid residues residing at the catalytic domain of Alg8 glycosyltransferase was obtained, and these residues are proposed to exert an allosteric effect on the PilZAlg44 domain upon c-di-GMP binding. This mechanism is dissimilar to the proposed mechanism of the autoinhibition of cellulose polymerization imposed by salt bridge formation between amino acid residues and released upon c-di-GMP binding, leading to activation of polymerization. On the other hand, conserved amino acid residues in the periplasmic domain of Alg44 were found to be involved in alginate polymerization as well as modification events, i.e., acetylation and epimerization. Due to the critical role of c-di-GMP in the regulation of many biological processes, particularly the motility-sessility switch and also the emergence of persisting mucoid phenotypes, these results aid to reach a better understanding of biofilm-associated regulatory networks and c-di-GMP signaling and might assist the development of inhibitory drugs.
Collapse
|
35
|
Abstract
Chronic colonization of the lungs by Pseudomonas aeruginosa is one of the major causes of morbidity and mortality in cystic fibrosis (CF) patients. To gain insights into the characteristic biofilm phenotype of P. aeruginosa in the CF lungs, mimicking the CF lung environment is critical. We previously showed that growth of the non-CF-adapted P. aeruginosa PAO1 strain in a rotating wall vessel, a device that simulates the low fluid shear (LS) conditions present in the CF lung, leads to the formation of in-suspension, self-aggregating biofilms. In the present study, we determined the phenotypic and transcriptomic changes associated with the growth of a highly adapted, transmissible P. aeruginosa CF strain in artificial sputum medium under LS conditions. Robust self-aggregating biofilms were observed only under LS conditions. Growth under LS conditions resulted in the upregulation of genes involved in stress response, alginate biosynthesis, denitrification, glycine betaine biosynthesis, glycerol metabolism, and cell shape maintenance, while genes involved in phenazine biosynthesis, type VI secretion, and multidrug efflux were downregulated. In addition, a number of small RNAs appeared to be involved in the response to shear stress. Finally, quorum sensing was found to be slightly but significantly affected by shear stress, resulting in higher production of autoinducer molecules during growth under high fluid shear (HS) conditions. In summary, our study revealed a way to modulate the behavior of a highly adapted P. aeruginosa CF strain by means of introducing shear stress, driving it from a biofilm lifestyle to a more planktonic lifestyle. Biofilm formation by Pseudomonas aeruginosa is one of the hallmarks of chronic cystic fibrosis (CF) lung infections. The biofilm matrix protects this bacterium from antibiotics as well as from the immune system. Hence, the prevention or reversion of biofilm formation is believed to have a great impact on treatment of chronic P. aeruginosa CF lung infections. In the present study, we showed that it is possible to modulate the behavior of a highly adapted transmissible P. aeruginosa CF isolate at both the transcriptomic and phenotypic levels by introducing shear stress in a CF-like environment, driving it from a biofilm to a planktonic lifestyle. Consequently, the results obtained in this study are of great importance with regard to therapeutic applications that introduce shear stress in the lungs of CF patients.
Collapse
|
36
|
Biofilm formation mechanisms and targets for developing antibiofilm agents. Future Med Chem 2016; 7:493-512. [PMID: 25875875 DOI: 10.4155/fmc.15.6] [Citation(s) in RCA: 382] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Biofilms are communities of microorganisms that are attached to a surface and play a significant role in the persistence of bacterial infections. Bacteria within a biofilm are several orders of magnitude more resistant to antibiotics, compared with planktonic bacteria. Thus far, no drugs are in clinical use that specifically target bacterial biofilms. This is probably because until recently the molecular details of biofilm formation were poorly understood. Bacteria integrate information from the environment, such as quorum-sensing autoinducers and nutrients, into appropriate biofilm-related gene expression, and the identity of the key players, such as cyclic dinucleotide second messengers and regulatory RNAs are beginning to be uncovered. Herein, we highlight the current understanding of the processes that lead to biofilm formation in many bacteria.
Collapse
|
37
|
Islan GA, Dini C, Bartel LC, Bolzán AD, Castro GR. Characterization of smart auto-degradative hydrogel matrix containing alginate lyase to enhance levofloxacin delivery against bacterial biofilms. Int J Pharm 2015; 496:953-64. [DOI: 10.1016/j.ijpharm.2015.10.050] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/23/2015] [Accepted: 10/17/2015] [Indexed: 02/01/2023]
|
38
|
Oligoribonuclease is the primary degradative enzyme for pGpG in Pseudomonas aeruginosa that is required for cyclic-di-GMP turnover. Proc Natl Acad Sci U S A 2015; 112:E5048-57. [PMID: 26305945 DOI: 10.1073/pnas.1507245112] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial second messenger cyclic di-GMP (c-di-GMP) controls biofilm formation and other phenotypes relevant to pathogenesis. Cyclic-di-GMP is synthesized by diguanylate cyclases (DGCs). Phosphodiesterases (PDE-As) end signaling by linearizing c-di-GMP to 5'-phosphoguanylyl-(3',5')-guanosine (pGpG), which is then hydrolyzed to two GMP molecules by yet unidentified enzymes termed PDE-Bs. We show that pGpG inhibits a PDE-A from Pseudomonas aeruginosa. In a dual DGC and PDE-A reaction, excess pGpG extends the half-life of c-di-GMP, indicating that removal of pGpG is critical for c-di-GMP homeostasis. Thus, we sought to identify the PDE-B enzyme(s) responsible for pGpG degradation. A differential radial capillary action of ligand assay-based screen for pGpG binding proteins identified oligoribonuclease (Orn), an exoribonuclease that hydrolyzes two- to five-nucleotide-long RNAs. Purified Orn rapidly converts pGpG into GMP. To determine whether Orn is the primary enzyme responsible for degrading pGpG, we assayed cell lysates of WT and ∆orn strains of P. aeruginosa PA14 for pGpG stability. The lysates from ∆orn showed 25-fold decrease in pGpG hydrolysis. Complementation with WT, but not active site mutants, restored hydrolysis. Accumulation of pGpG in the ∆orn strain could inhibit PDE-As, increasing c-di-GMP concentration. In support, we observed increased transcription from the c-di-GMP-regulated pel promoter. Additionally, the c-di-GMP-governed auto-aggregation and biofilm phenotypes were elevated in the ∆orn strain in a pel-dependent manner. Finally, we directly detect elevated pGpG and c-di-GMP in the ∆orn strain. Thus, we identified that Orn serves as the primary PDE-B enzyme that removes pGpG, which is necessary to complete the final step in the c-di-GMP degradation pathway.
Collapse
|
39
|
Quigley KJ, Reynolds CJ, Goudet A, Raynsford EJ, Sergeant R, Quigley A, Worgall S, Bilton D, Wilson R, Loebinger MR, Maillere B, Altmann DM, Boyton RJ. Chronic Infection by Mucoid Pseudomonas aeruginosa Associated with Dysregulation in T-Cell Immunity to Outer Membrane Porin F. Am J Respir Crit Care Med 2015; 191:1250-64. [PMID: 25789411 PMCID: PMC4476516 DOI: 10.1164/rccm.201411-1995oc] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 03/19/2015] [Indexed: 11/16/2022] Open
Abstract
RATIONALE Pseudomonas aeruginosa (PA) is an environmental pathogen that commonly infects individuals with cystic fibrosis (CF) and non-CF bronchiectasis, impacting morbidity and mortality. To understand the pathobiology of interactions between the bacterium and host adaptive immunity and to inform rational vaccine design, it is important to understand the adaptive immune correlates of disease. OBJECTIVES To characterize T-cell immunity to the PA antigen outer membrane porin F (OprF) by analyzing immunodominant epitopes in relation to infection status. METHODS Patients with non-CF bronchiectasis were stratified by frequency of PA isolation. T-cell IFN-γ immunity to OprF and its immunodominant epitopes was characterized. Patterns of human leukocyte antigen (HLA) restriction of immunodominant epitopes were defined using HLA class II transgenic mice. Immunity was characterized with respect to cytokine and chemokine secretion, antibody response, and T-cell activation transcripts. MEASUREMENTS AND MAIN RESULTS Patients were stratified according to whether PA was never, sometimes (<50%), or frequently (≥50%) isolated from sputum. Patients with frequent PA sputum-positive isolates were more likely to be infected by mucoid PA, and they showed a narrow T-cell epitope response and a relative reduction in Th1 polarizing transcription factors but enhanced immunity with respect to antibody production, innate cytokines, and chemokines. CONCLUSIONS We have defined the immunodominant, HLA-restricted T-cell epitopes of OprF. Our observation that chronic infection is associated with a response of narrowed specificity, despite strong innate and antibody immunity, may help to explain susceptibility in these individuals and pave the way for better vaccine design to achieve protective immunity.
Collapse
Affiliation(s)
- Kathryn J. Quigley
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Medical Research Council and Asthma United Kingdom Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection, Hammersmith Hospital, Imperial College, London, United Kingdom
| | - Catherine J. Reynolds
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Medical Research Council and Asthma United Kingdom Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection, Hammersmith Hospital, Imperial College, London, United Kingdom
| | - Amelie Goudet
- CEA-Saclay, Institute of Biology and Technologies, SIMOPRO, Labex LERMIT, Labex VRI, Gif Sur Yvette, France
| | - Eleanor J. Raynsford
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Medical Research Council and Asthma United Kingdom Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection, Hammersmith Hospital, Imperial College, London, United Kingdom
| | - Ruhena Sergeant
- H & I Laboratory, Hammersmith Hospital, Imperial College, National Health Service Trust, London, United Kingdom
| | - Andrew Quigley
- Structural Genomics Consortium, Oxford University, Oxford, United Kingdom
| | - Stefan Worgall
- Department of Genetic Medicine and
- Department of Pediatrics, Weill Cornell Medical College, New York, New York; and
| | - Diana Bilton
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Robert Wilson
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Michael R. Loebinger
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| | - Bernard Maillere
- CEA-Saclay, Institute of Biology and Technologies, SIMOPRO, Labex LERMIT, Labex VRI, Gif Sur Yvette, France
| | - Daniel M. Altmann
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Medical Research Council and Asthma United Kingdom Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection, Hammersmith Hospital, Imperial College, London, United Kingdom
| | - Rosemary J. Boyton
- Lung Immunology Group, Infectious Diseases and Immunity, Department of Medicine, Medical Research Council and Asthma United Kingdom Centre in Allergic Mechanisms of Asthma, Centre for Respiratory Infection, Hammersmith Hospital, Imperial College, London, United Kingdom
- Host Defence Unit, Department of Respiratory Medicine, Royal Brompton and Harefield National Health Service Foundation Trust, London, United Kingdom
| |
Collapse
|
40
|
Inhibition of Quorum Sensing-Controlled Virulence Factors and Biofilm Formation in Pseudomonas aeruginosa by Culture Extract from Novel Bacterial Species of Paenibacillus Using a Rat Model of Chronic Lung Infection. INTERNATIONAL JOURNAL OF BACTERIOLOGY 2015; 2015:671562. [PMID: 26904749 PMCID: PMC4745456 DOI: 10.1155/2015/671562] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Accepted: 12/11/2014] [Indexed: 01/23/2023]
Abstract
Quorum sensing (QS) is a key regulator of virulence factors and biofilm formation in Gram-negative bacteria such as Pseudomonas aeruginosa. Microorganisms that inhabit soil are of strategic importance in the discovery of compounds with anti-QS properties. The objective of the study was to test the culture extract of a taxonomically novel species of Paenibacillus strain 139SI for its inhibitory effects on the QS-controlled virulence factors and biofilm formation of Pseudomonas aeruginosa both in vitro and in vivo. The Paenibacillus sp. culture extract was used to test its anti-QS effects on the LasA protease, LasB elastase, pyoverdin production, and biofilm formation of P. aeruginosa as well as evaluate its therapeutic effects on lung bacteriology, pathology, hematological profile, and serum antibody responses of experimental animals in a rat model of chronic lung infection. Results showed significant decrease in the activities of QS-controlled LasA protease, LasB elastase pyoverdin, and biofilm formation of P. aeruginosa caused by the culture extract. Moreover, the extract significantly prolonged the survival times of rats and facilitated the clearance of biofilm infections from infected lungs. In conclusion, the antiquorum sensing effects of culture extract from a novel species of Paenibacillus provide new insights to combat biofilm-associated infections.
Collapse
|
41
|
Min KB, Lee KM, Oh YT, Yoon SS. Nonmucoid conversion of mucoid Pseudomonas aeruginosa induced by sulfate-stimulated growth. FEMS Microbiol Lett 2014; 360:157-66. [PMID: 25227776 DOI: 10.1111/1574-6968.12600] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 09/11/2014] [Indexed: 11/27/2022] Open
Abstract
Alginate-overproducing mucoid Pseudomonas aeruginosa, responsible for chronic airway infections in cystic fibrosis (CF) patients, is resistant to antibiotic treatments and host immune clearance. In this study, we performed a phenotype microarray screen and identified sulfate ion as a molecule that can suppress alginate production. When a mucoid P. aeruginosa strain CM21 and additional mucoid isolates were grown with 5% sodium sulfate, significantly decreased levels of alginate were produced. Suppression of alginate production was also induced by other sulfate salts. Expression of a reporter gene fused to the algD promoter was considerably decreased when grown with sulfate. Furthermore, bacterial cell shape was abnormally altered in CM21, but not in PAO1, a prototype nonmucoid strain, suggesting that sulfate-stimulated cell shape change is associated with transcriptional suppression of the alginate operon. Finally, a CM21 lpxC mutant defective in lipid A biosynthesis continued to produce alginate and maintained the correct cell shape when grown with sulfate. These results suggest a potential involvement of lipoploysaccharide biosynthesis in the sulfate-induced reversion to nonmucoid phenotype. This study proposes a novel strategy that can be potentially applied to treat persistent infection by recalcitrant mucoid P. aeruginosa.
Collapse
Affiliation(s)
- Kyung Bae Min
- Department of Microbiology and Immunology, Brain Korea PLUS Project for Medical Science, Seoul, Korea
| | | | | | | |
Collapse
|
42
|
Baker P, Ricer T, Moynihan PJ, Kitova EN, Walvoort MTC, Little DJ, Whitney JC, Dawson K, Weadge JT, Robinson H, Ohman DE, Codée JDC, Klassen JS, Clarke AJ, Howell PL. P. aeruginosa SGNH hydrolase-like proteins AlgJ and AlgX have similar topology but separate and distinct roles in alginate acetylation. PLoS Pathog 2014; 10:e1004334. [PMID: 25165982 PMCID: PMC4148444 DOI: 10.1371/journal.ppat.1004334] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2014] [Accepted: 07/08/2014] [Indexed: 02/05/2023] Open
Abstract
The O-acetylation of polysaccharides is a common modification used by pathogenic organisms to protect against external forces. Pseudomonas aeruginosa secretes the anionic, O-acetylated exopolysaccharide alginate during chronic infection in the lungs of cystic fibrosis patients to form the major constituent of a protective biofilm matrix. Four proteins have been implicated in the O-acetylation of alginate, AlgIJF and AlgX. To probe the biological function of AlgJ, we determined its structure to 1.83 Å resolution. AlgJ is a SGNH hydrolase-like protein, which while structurally similar to the N-terminal domain of AlgX exhibits a distinctly different electrostatic surface potential. Consistent with other SGNH hydrolases, we identified a conserved catalytic triad composed of D190, H192 and S288 and demonstrated that AlgJ exhibits acetylesterase activity in vitro. Residues in the AlgJ signature motifs were found to form an extensive network of interactions that are critical for O-acetylation of alginate in vivo. Using two different electrospray ionization mass spectrometry (ESI-MS) assays we compared the abilities of AlgJ and AlgX to bind and acetylate alginate. Binding studies using defined length polymannuronic acid revealed that AlgJ exhibits either weak or no detectable polymer binding while AlgX binds polymannuronic acid specifically in a length-dependent manner. Additionally, AlgX was capable of utilizing the surrogate acetyl-donor 4-nitrophenyl acetate to catalyze the O-acetylation of polymannuronic acid. Our results, combined with previously published in vivo data, suggest that the annotated O-acetyltransferases AlgJ and AlgX have separate and distinct roles in O-acetylation. Our refined model for alginate acetylation places AlgX as the terminal acetlytransferase and provides a rationale for the variability in the number of proteins required for polysaccharide O-acetylation. Bacteria utilize many defense strategies to protect themselves against external forces. One mechanism used by the bacterium Pseudomonas aeruginosa is the production of the long sugar polymer alginate. The bacteria use this polymer to form a biofilm – a barrier to protect against antibiotics and the host immune response. During its biosynthesis alginate undergoes a chemical modification whereby acetate is added to the polymer. Acetylation of alginate is important as this modification makes the bacterial biofilm less susceptible to recognition and clearance by the host immune system. In this paper we present the atomic structure of AlgJ; one of four proteins required for O-acetylation of the polymer. AlgJ is structurally similar to AlgX, which we have shown previously is also required for alginate acetylation. To understand why both enzymes are required for O-acetylation we functionally characterized the proteins and found that although AlgJ exhibits acetylesterase activity – catalyzing the removal of acetyl groups from a surrogate substrate – it does not bind to short mannuornic acid polymers. In contrast, AlgX bound alginate in a length-dependent manner and was capable of transfering acetate from a surrogate substrate onto alginate. This has allowed us to not only understand how acetate is added to alginate, but increases our understanding of how acetate is added to other bacterial sugar polymers.
Collapse
Affiliation(s)
- Perrin Baker
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Tyler Ricer
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Patrick J. Moynihan
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Elena N. Kitova
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | | | - Dustin J. Little
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - John C. Whitney
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Karen Dawson
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Joel T. Weadge
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Howard Robinson
- Photon Sciences Division, Brookhaven National Laboratory, Upton, New York, United States of America
| | - Dennis E. Ohman
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center and McGuire Veterans Affairs Medical Center, Richmond, Virginia, United States of America
| | - Jeroen D. C. Codée
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands
| | - John S. Klassen
- Alberta Glycomics Centre and Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Anthony J. Clarke
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - P. Lynne Howell
- Program in Molecular Structure and Function, Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
43
|
Laverty G, Gorman SP, Gilmore BF. Biomolecular Mechanisms of Pseudomonas aeruginosa and Escherichia coli Biofilm Formation. Pathogens 2014; 3:596-632. [PMID: 25438014 PMCID: PMC4243431 DOI: 10.3390/pathogens3030596] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 07/10/2014] [Accepted: 07/14/2014] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa and Escherichia coli are the most prevalent Gram-negative biofilm forming medical device associated pathogens, particularly with respect to catheter associated urinary tract infections. In a similar manner to Gram-positive bacteria, Gram-negative biofilm formation is fundamentally determined by a series of steps outlined more fully in this review, namely adhesion, cellular aggregation, and the production of an extracellular polymeric matrix. More specifically this review will explore the biosynthesis and role of pili and flagella in Gram-negative adhesion and accumulation on surfaces in Pseudomonas aeruginosa and Escherichia coli. The process of biofilm maturation is compared and contrasted in both species, namely the production of the exopolysaccharides via the polysaccharide synthesis locus (Psl), pellicle Formation (Pel) and alginic acid synthesis in Pseudomonas aeruginosa, and UDP-4-amino-4-deoxy-l-arabinose and colonic acid synthesis in Escherichia coli. An emphasis is placed on the importance of the LuxR homologue sdiA; the luxS/autoinducer-II; an autoinducer-III/epinephrine/norepinephrine and indole mediated Quorum sensing systems in enabling Gram-negative bacteria to adapt to their environments. The majority of Gram-negative biofilms consist of polysaccharides of a simple sugar structure (either homo- or heteropolysaccharides) that provide an optimum environment for the survival and maturation of bacteria, allowing them to display increased resistance to antibiotics and predation.
Collapse
Affiliation(s)
- Garry Laverty
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Sean P Gorman
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| | - Brendan F Gilmore
- Biomaterials, Biofilm and Infection Control Research Group, School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
44
|
Okkotsu Y, Little AS, Schurr MJ. The Pseudomonas aeruginosa AlgZR two-component system coordinates multiple phenotypes. Front Cell Infect Microbiol 2014; 4:82. [PMID: 24999454 PMCID: PMC4064291 DOI: 10.3389/fcimb.2014.00082] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Accepted: 06/02/2014] [Indexed: 01/28/2023] Open
Abstract
Pseudomonas aeruginosa is an opportunistic pathogen that causes a multitude of infections. These infections can occur at almost any site in the body and are usually associated with a breach of the innate immune system. One of the prominent sites where P. aeruginosa causes chronic infections is within the lungs of cystic fibrosis patients. P. aeruginosa uses two-component systems that sense environmental changes to differentially express virulence factors that cause both acute and chronic infections. The P. aeruginosa AlgZR two component system is one of its global regulatory systems that affects the organism's fitness in a broad manner. This two-component system is absolutely required for two P. aeruginosa phenotypes: twitching motility and alginate production, indicating its importance in both chronic and acute infections. Additionally, global transcriptome analyses indicate that it regulates the expression of many different genes, including those associated with quorum sensing, type IV pili, type III secretion system, anaerobic metabolism, cyanide and rhamnolipid production. This review examines the complex AlgZR regulatory network, what is known about the structure and function of each protein, and how it relates to the organism's ability to cause infections.
Collapse
Affiliation(s)
- Yuta Okkotsu
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Alexander S Little
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| | - Michael J Schurr
- Department of Microbiology, University of Colorado School of Medicine Aurora, CO, USA
| |
Collapse
|
45
|
Qin X. Chronic pulmonary pseudomonal infection in patients with cystic fibrosis: A model for early phase symbiotic evolution. Crit Rev Microbiol 2014; 42:144-57. [PMID: 24766052 DOI: 10.3109/1040841x.2014.907235] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gain of "antimicrobial resistance" and "adaptive virulence" has been the dominant view of Pseudomonas aeruginosa (Pa) in cystic fibrosis (CF) in the progressively damaged host airway over the course of this chronic infection. However, the pathogenic effects of CF airway-adapted Pa strains are notably reduced. We propose that CF Pa and other bacterial cohabitants undergo host adaptation which resembles the changes found in bacterial symbionts in animal hosts. Development of clonally selected and intraspecific isogenic Pa strains which display divergent colony morphology, growth rate, auxotrophy, and antibiotic susceptibility in vitro suggests an adaptive sequence of infective exploitation-parasitism-symbiotic evolution driven by host defenses. Most importantly, the emergence of CF pseudomonal auxotrophy is frequently associated with a few specific amino acids. The selective retention or loss of specific amino acid biosynthesis in CF-adapted Pa reflects bacterium-host symbiosis and coevolution during chronic infection, not nutrient availability. This principle also argues against the long-standing concept of dietary availability leading to evolution of essential amino acid requirements in humans. A novel model of pseudomonal adaptation through multicellular bacterial syntrophy is proposed to explain early events in bacterial gene decay and decreased (not increased) virulence due to symbiotic response to host defense.
Collapse
Affiliation(s)
- Xuan Qin
- a Microbiology Laboratory, Seattle Children's Hospital , and.,b Department of Laboratory Medicine , University of Washington , School of Medicine Seattle , Washington , USA
| |
Collapse
|
46
|
Su JQ, Wei B, Xu CY, Qiao M, Zhu YG. Functional metagenomic characterization of antibiotic resistance genes in agricultural soils from China. ENVIRONMENT INTERNATIONAL 2014; 65:9-15. [PMID: 24412260 DOI: 10.1016/j.envint.2013.12.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Revised: 09/13/2013] [Accepted: 12/13/2013] [Indexed: 05/12/2023]
Abstract
Soil has been regarded as a rich source of antibiotic resistance genes (ARGs) due to the complex microbial community and diverse antibiotic-producing microbes in soil, however, little is known about the ARGs in unculturable bacteria. To investigate the diversity and distribution of ARGs in soil and assess the impact of agricultural practice on the ARGs, we screened soil metagenomic library constructed using DNA from four different agricultural soil for ARGs. We identified 45 clones conferring resistance to minocycline, tetracycline, streptomycin, gentamicin, kanamycin, amikacin, chloramphenicol and rifampicin. The similarity of identified ARGs with the closest protein in GenBank ranged from 26% to 92%, with more than 60% of identified ARGs had low similarity less than 60% at amino acid level. The identified ARGs include aminoglycoside acetyltransferase, aminoglycoside 6-adenyltransferase, ADP-ribosyl transferase, ribosome protection protein, transporters and other antibiotic resistant determinants. The identified ARGs from the soil with manure application account for approximately 70% of the total ARGs in this study, implying that manure amendment may increase the diversity of antibiotic resistance genes in soil bacteria. These results suggest that antibiotic resistance in soil remains unexplored and functional metagenomic approach is powerful in discovering novel ARGs and resistant mechanisms.
Collapse
Affiliation(s)
- Jian Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Bei Wei
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Chun Yan Xu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Min Qiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; State Key Lab of Urban and Regional Ecology, Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
47
|
Yin Y, Damron FH, Withers TR, Pritchett CL, Wang X, Schurr MJ, Yu HD. Expression of mucoid induction factor MucE is dependent upon the alternate sigma factor AlgU in Pseudomonas aeruginosa. BMC Microbiol 2013; 13:232. [PMID: 24138584 PMCID: PMC3819740 DOI: 10.1186/1471-2180-13-232] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Alginate overproduction in P. aeruginosa, also referred to as mucoidy, is a poor prognostic marker for patients with cystic fibrosis (CF). We previously reported the construction of a unique mucoid strain which overexpresses a small envelope protein MucE leading to activation of the protease AlgW. AlgW then degrades the anti-sigma factor MucA thus releasing the alternative sigma factor AlgU/T (σ(22)) to initiate transcription of the alginate biosynthetic operon. RESULTS In the current study, we mapped the mucE transcriptional start site, and determined that P(mucE) activity was dependent on AlgU. Additionally, the presence of triclosan and sodium dodecyl sulfate was shown to cause an increase in P(mucE) activity. It was observed that mucE-mediated mucoidy in CF isolates was dependent on both the size of MucA and the genotype of algU. We also performed shotgun proteomic analysis with cell lysates from the strains PAO1, VE2 (PAO1 with constitutive expression of mucE) and VE2ΔalgU (VE2 with in-frame deletion of algU). As a result, we identified nine algU-dependent and two algU-independent proteins that were affected by overexpression of MucE. CONCLUSIONS Our data indicates there is a positive feedback regulation between MucE and AlgU. Furthermore, it seems likely that MucE may be part of the signal transduction system that senses certain types of cell wall stress to P. aeruginosa.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Hongwei D Yu
- Department of Biochemistry and Microbiology, Joan C, Edwards School of Medicine at Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
48
|
Yin Y, Withers TR, Wang X, Yu HD. Evidence for sigma factor competition in the regulation of alginate production by Pseudomonas aeruginosa. PLoS One 2013; 8:e72329. [PMID: 23991093 PMCID: PMC3750012 DOI: 10.1371/journal.pone.0072329] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Accepted: 07/08/2013] [Indexed: 11/18/2022] Open
Abstract
Alginate overproduction, or mucoidy, plays an important role in the pathogenesis of P. aeruginosa lung infection in cystic fibrosis (CF). Mucoid strains with mucA mutations predominantly populate in chronically-infected patients. However, the mucoid strains can revert to nonmucoidy in vitro through suppressor mutations. We screened a mariner transposon library using CF149, a non-mucoid clinical isolate with a misssense mutation in algU (AlgUA61V). The wild type AlgU is a stress-related sigma factor that activates transcription of alginate biosynthesis. Three mucoid mutants were identified with transposon insertions that caused 1) an overexpression of AlgUA61V, 2) an overexpression of the stringent starvation protein A (SspA), and 3) a reduced expression of the major sigma factor RpoD (σ70). Induction of AlgUA61Vin trans caused conversion to mucoidy in CF149 and PAO1DalgU, suggesting that AlgUA61V is functional in activating alginate production. Furthermore, the level of AlgUA61V was increased in all three mutants relative to CF149. However, compared to the wild type AlgU, AlgUA61V had a reduced activity in promoting alginate production in PAO1ΔalgU. SspA and three other anti-σ70 orthologues, P. aeruginosa AlgQ, E. coli Rsd, and T4 phage AsiA, all induced mucoidy, suggesting that reducing activity of RpoD is linked to mucoid conversion in CF149. Conversely, RpoD overexpression resulted in suppression of mucoidy in all mucoid strains tested, indicating that sigma factor competition can regulate mucoidy. Additionally, an RpoD-dependent promoter (PssrA) was more active in non-mucoid strains than in isogenic mucoid variants. Altogether, our results indicate that the anti-σ70 factors can induce conversion to mucoidy in P. aeruginosa CF149 with algU-suppressor mutation via modulation of RpoD.
Collapse
Affiliation(s)
- Yeshi Yin
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - T. Ryan Withers
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
| | - Xin Wang
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Hongwei D. Yu
- Department of Biochemistry and Microbiology, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Department of Pediatrics, Joan C. Edwards School of Medicine at Marshall University, Huntington, West Virginia, United States of America
- Progenesis Technologies, LLC, Huntington, West Virginia, United States of America
- * E-mail:
| |
Collapse
|
49
|
Islan GA, Bosio VE, Castro GR. Alginate lyase and ciprofloxacin co-immobilization on biopolymeric microspheres for cystic fibrosis treatment. Macromol Biosci 2013; 13:1238-48. [PMID: 23966229 DOI: 10.1002/mabi.201300134] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Revised: 04/25/2013] [Indexed: 11/11/2022]
Abstract
A new formulation is described based on biopolymeric microspheres containing alginate lyase (AL) and ciprofloxacin (Cip) for sustainable oral delivery in CF patients. Alginate (ALG) and high-methoxyl pectin (HMP) are selected as the biopolymers to develop a composite matrix. ALG microspheres coated with HMP and ALG-HMP blend are gelled in water/organic solvents mixtures, obtaining Cip encapsulations from 46.0 to 100.0%. ALG-HMP shows a Cip sustainable release profile and is able to encapsulate 90.0% of AL, showing 76.0% enzyme activity after release under simulated intestinal conditions. The developed system is a promising delivery carrier to treat chronic infection of Pseudomonas aeruginosa and to reduce the viscoelasticity of the mucus accumulated into intestine of CF patients.
Collapse
Affiliation(s)
- German A Islan
- Nanobiomaterials Laboratory, Applied Biotechnology Institute (CINDEFI, UNLP-CONICET CCT La Plata) - School of Sciences, Universidad Nacional de La Plata, Calle 47 y 115, CP 1900, La Plata, Argentina
| | | | | |
Collapse
|
50
|
Lecaille F, Naudin C, Sage J, Joulin-Giet A, Courty A, Andrault PM, Veldhuizen RA, Possmayer F, Lalmanach G. Specific cleavage of the lung surfactant protein A by human cathepsin S may impair its antibacterial properties. Int J Biochem Cell Biol 2013; 45:1701-9. [DOI: 10.1016/j.biocel.2013.05.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/07/2013] [Accepted: 05/14/2013] [Indexed: 11/25/2022]
|