1
|
Veerapandian R, Gadad SS, Jagannath C, Dhandayuthapani S. Live Attenuated Vaccines against Tuberculosis: Targeting the Disruption of Genes Encoding the Secretory Proteins of Mycobacteria. Vaccines (Basel) 2024; 12:530. [PMID: 38793781 PMCID: PMC11126151 DOI: 10.3390/vaccines12050530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Tuberculosis (TB), a chronic infectious disease affecting humans, causes over 1.3 million deaths per year throughout the world. The current preventive vaccine BCG provides protection against childhood TB, but it fails to protect against pulmonary TB. Multiple candidates have been evaluated to either replace or boost the efficacy of the BCG vaccine, including subunit protein, DNA, virus vector-based vaccines, etc., most of which provide only short-term immunity. Several live attenuated vaccines derived from Mycobacterium tuberculosis (Mtb) and BCG have also been developed to induce long-term immunity. Since Mtb mediates its virulence through multiple secreted proteins, these proteins have been targeted to produce attenuated but immunogenic vaccines. In this review, we discuss the characteristics and prospects of live attenuated vaccines generated by targeting the disruption of the genes encoding secretory mycobacterial proteins.
Collapse
Affiliation(s)
- Raja Veerapandian
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Shrikanth S. Gadad
- Center of Emphasis in Cancer, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Genomic Medicine, Houston Methodist Research Institute & Weill Cornell Medical College, Houston, TX 77030, USA
| | - Subramanian Dhandayuthapani
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX 79905, USA
| |
Collapse
|
2
|
Yang J, Rong SJ, Zhou HF, Yang C, Sun F, Li JY. Lysosomal control of dendritic cell function. J Leukoc Biol 2023; 114:518-531. [PMID: 37774493 DOI: 10.1093/jleuko/qiad117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/22/2023] [Accepted: 09/08/2023] [Indexed: 10/01/2023] Open
Abstract
Lysosomal compartments undergo extensive remodeling during dendritic cell (DC) activation to meet the dynamic functional requirements of DCs. Instead of being regarded as stationary and digestive organelles, recent studies have increasingly appreciated the versatile roles of lysosomes in regulating key aspects of DC biology. Lysosomes actively control DC motility by linking calcium efflux to the actomyosin contraction, while enhanced DC lysosomal membrane permeability contributes to the inflammasome activation. Besides, lysosomes provide a platform for the transduction of innate immune signaling and the intricate host-pathogen interplay. Lysosomes and lysosome-associated structures are also critically engaged in antigen presentation and cross-presentation processes, which are pivotal for the induction of antigen-specific adaptive immune response. Through the current review, we emphasize that lysosome targeting strategies serve as vital DC-based immunotherapies in fighting against tumor, infectious diseases, and autoinflammatory disorders.
Collapse
Affiliation(s)
- Jia Yang
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Shan-Jie Rong
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Hai-Feng Zhou
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| | - Chao Yang
- Department of Gerontology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Ling Jiaohu Road No.11, 430000, Wuhan, China
| | - Fei Sun
- Department of Respiratory and Critical Care Medicine, Center for Biomedical Research, NHC Key Laboratory of Respiratory Diseases, Tongji Hospital, Tongji Medical College, Huazhong University of Sciences and Technology, Jiefang Avenue No.1095, 430000, Wuhan, China
| | - Jun-Yi Li
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Jiefang Avenue No.1277, 430000, Wuhan, China
| |
Collapse
|
3
|
Jaiswal S, Kumar S, Velarde de la Cruz E. Exploring the role of the protein tyrosine kinase a (PtkA) in mycobacterial intracellular survival. Tuberculosis (Edinb) 2023; 142:102398. [PMID: 37657276 DOI: 10.1016/j.tube.2023.102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/15/2023] [Accepted: 08/23/2023] [Indexed: 09/03/2023]
Abstract
Mycobacterium tuberculosis (Mtb) continues to define new paradigms of host-pathogen interaction. There are several host proteins known which are regulated by Mtb infection. The proteins which regulate host biological processes like apoptosis, cell processes, stress proteins, metabolic enzymes, etc. are targeted by the pathogens. Mtb proteins interact directly or indirectly with host proteins and play an important role in their persistence and intracellular growth. Mtb is an intracellular pathogen. It remains dormant for years within the host without activating its immune system. Mtb Protein tyrosine kinase (PtkA) regulates host anti-apoptotic protein, metabolic enzymes, and several other proteins that are involved in stress regulation, cell proliferation, protein folding, DNA repair, etc. PtkA regulates other mycobacterial proteins and plays an important role in its growth and survival. Here we summarized the current knowledge of PtkA and reviewed its role in mycobacterial intracellular survival as it regulates several other mycobacterial proteins and host proteins. PtkA regulates PtpA secretion which is essential for mycobacterial virulence and could be used as an attractive drug target.
Collapse
Affiliation(s)
- Swati Jaiswal
- University of Massachusetts Chan Medical School, Worcester, United States.
| | | | | |
Collapse
|
4
|
Maxson ME, Das L, Goldberg MF, Porcelli SA, Chan J, Jacobs WR. Mycobacterium tuberculosis Central Metabolism Is Key Regulator of Macrophage Pyroptosis and Host Immunity. Pathogens 2023; 12:1109. [PMID: 37764917 PMCID: PMC10535942 DOI: 10.3390/pathogens12091109] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Metabolic dysregulation in Mycobacterium tuberculosis results in increased macrophage apoptosis or pyroptosis. However, mechanistic links between Mycobacterium virulence and bacterial metabolic plasticity remain ill defined. In this study, we screened random transposon insertions of M. bovis BCG to identify mutants that induce pyroptotic death of the infected macrophage. Analysis of the transposon insertion sites identified a panel of fdr (functioning death repressor) genes, which were shown in some cases to encode functions central to Mycobacterium metabolism. In-depth studies of one fdr gene, fdr8 (BCG3787/Rv3727), demonstrated its important role in the maintenance of M. tuberculosis and M. bovis BCG redox balance in reductive stress conditions in the host. Our studies expand the subset of known Mycobacterium genes linking bacterial metabolic plasticity to virulence and also reveal that the broad induction of pyroptosis by an intracellular bacterial pathogen is linked to enhanced cellular immunity in vivo.
Collapse
Affiliation(s)
- Michelle E. Maxson
- Program in Cell Biology, The Hospital for Sick Children, Toronto, ON M5G 0A4, Canada;
| | - Lahari Das
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | | | - Steven A. Porcelli
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| | - John Chan
- Department of Medicine, New Jersey Medical School, 205 South Orange Avenue, Newark, NJ 07103, USA;
| | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461, USA; (L.D.); (S.A.P.)
| |
Collapse
|
5
|
Zhang QA, Ma S, Li P, Xie J. The dynamics of Mycobacterium tuberculosis phagosome and the fate of infection. Cell Signal 2023; 108:110715. [PMID: 37192679 DOI: 10.1016/j.cellsig.2023.110715] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/25/2023] [Accepted: 05/12/2023] [Indexed: 05/18/2023]
Abstract
Phagosomes are vesicles produced by phagocytosis of phagocytes, which are crucial in immunity against Mycobacterium tuberculosis (Mtb) infection. After the phagocyte ingests the pathogen, it activates the phagosomes to recruit a series of components and process proteins, to phagocytose, degrade and kill Mtb. Meanwhile, Mtb can resist acid and oxidative stress, block phagosome maturation, and manipulate host immune response. The interaction between Mtb and phagocytes leads to the outcome of infection. The dynamic of this process can affect the cell fate. This article mainly reviews the development and maturation of phagosomes, as well as the dynamics and modifications of Mtb effectors and phagosomes components, and new diagnostic and therapeutic markers involved in phagosomes.
Collapse
Affiliation(s)
- Qi-Ao Zhang
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China
| | - Shaying Ma
- Chongqing Emergency Medical Center, Chongqing the Fourth Hospital, Jiankang Road, Yuzhong, Chongqing 400014, China
| | - Peibo Li
- Chongqing Public Health Medical Center, Chongqing, China
| | - Jianping Xie
- State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Institute of Modern Biopharmaceuticals, Southwest University, Chongqing, China; Chongqing Public Health Medical Center, Chongqing, China.
| |
Collapse
|
6
|
Meng C, Liu J, Kang X, Xu Z, Xu S, Li X, Pan Z, Chen X, Jiao X. Discrepancy in Response of Mouse Dendritic Cells against BCG: Weak Immune Effects of Plasmacytoid Dendritic Cells Compared to Classical Dendritic Cells despite the Uptake of Bacilli. Trop Med Infect Dis 2023; 8:tropicalmed8030140. [PMID: 36977141 PMCID: PMC10057906 DOI: 10.3390/tropicalmed8030140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/25/2023] [Accepted: 02/24/2023] [Indexed: 03/03/2023] Open
Abstract
Tuberculosis (TB), a zoonosis characterized by chronic respiratory infections, is mainly caused by Mycobacterium tuberculosis and is associated with one of the heaviest disease burdens in the world. Dendritic cells (DCs) play a key role and act as a bridge between innate and adaptive immune responses against TB. DCs are divided into distinct subsets. Currently, the response of DCs to mycobacterial infections is poorly understood. Herein, we aimed to evaluate the responses of splenic conventional DCs (cDC) and plasmacytoid DCs (pDC), subsets to Bacillus Calmette–Guérin (BCG) infection in mice. Splenic pDC had a significantly higher infection rate and intracellular bacterial count than cDC and the CD8+ and CD8− cDC subsets after BCG infection. However, the expression levels of CD40, CD80, CD86, and MHC-II molecules were significantly upregulated in splenic cDC and the CD8 cDC subsets compared to pDC during BCG infection. Splenic cDC had a higher expression of IFN-γ and IL-12p70 than pDC, whereas pDC had higher levels of TNF-α and MCP-1 than cDC in mice infected with BCG. At early stages of immunization with BCG containing the Ag85A protein, splenic cDC and pDC could present the Ag85A peptide to a specific T hybridoma; however, cDC had a stronger antigen presenting activity than pDC. In summary, splenic cDC and pDC extensively participate in mouse immune responses against BCG infection in vivo. Although pDC had a higher BCG uptake, cDC induced stronger immunological effects, including activation and maturation, cytokine production, and antigen presentation.
Collapse
Affiliation(s)
- Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Jun Liu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xilong Kang
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Shuangyuan Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, Ministry of Agriculture and Rural Affairs, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Correspondence: (X.C.); (X.J.)
| |
Collapse
|
7
|
Nadolinskaia NI, Kotliarova MS, Goncharenko AV. Fighting Tuberculosis: In Search of a BCG Replacement. Microorganisms 2022; 11:microorganisms11010051. [PMID: 36677343 PMCID: PMC9863999 DOI: 10.3390/microorganisms11010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022] Open
Abstract
Tuberculosis is one of the most threatening infectious diseases and represents an important and significant reason for mortality in high-burden regions. The only licensed vaccine, BCG, is hardly capable of establishing long-term tuberculosis protection and is highly variable in its effectiveness. Even after 100 years of BCG use and research, we still cannot unequivocally answer the question of which immune correlates of protection are crucial to prevent Mycobacterium tuberculosis (Mtb) infection or the progression of the disease. The development of a new vaccine against tuberculosis arises a nontrivial scientific challenge caused by several specific features of the intracellular lifestyle of Mtb and the ability of the pathogen to manipulate host immunity. The purpose of this review is to discuss promising strategies and the possibilities of creating a new vaccine that could replace BCG and provide greater protection. The considered approaches include supplementing mycobacterial strains with immunodominant antigens and genetic engineering aimed at altering the interaction between the bacterium and the host cell, such as the exit from the phagosome. Improved new vaccine strains based on BCG and Mtb undergoing clinical evaluation are also overviewed.
Collapse
|
8
|
Kim H, Shin SJ. Pathological and protective roles of dendritic cells in Mycobacterium tuberculosis infection: Interaction between host immune responses and pathogen evasion. Front Cell Infect Microbiol 2022; 12:891878. [PMID: 35967869 PMCID: PMC9366614 DOI: 10.3389/fcimb.2022.891878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Dendritic cells (DCs) are principal defense components that play multifactorial roles in translating innate immune responses to adaptive immunity in Mycobacterium tuberculosis (Mtb) infections. The heterogeneous nature of DC subsets follows their altered functions by interacting with other immune cells, Mtb, and its products, enhancing host defense mechanisms or facilitating pathogen evasion. Thus, a better understanding of the immune responses initiated, promoted, and amplified or inhibited by DCs in Mtb infection is an essential step in developing anti-tuberculosis (TB) control measures, such as host-directed adjunctive therapy and anti-TB vaccines. This review summarizes the recent advances in salient DC subsets, including their phenotypic classification, cytokine profiles, functional alterations according to disease stages and environments, and consequent TB outcomes. A comprehensive overview of the role of DCs from various perspectives enables a deeper understanding of TB pathogenesis and could be useful in developing DC-based vaccines and immunotherapies.
Collapse
|
9
|
Secretory proteins of
Mycobacterium tuberculosis
and their roles in modulation of host immune responses: focus on therapeutic targets. FEBS J 2022; 289:4146-4171. [DOI: 10.1111/febs.16369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 01/04/2022] [Accepted: 01/21/2022] [Indexed: 12/01/2022]
|
10
|
Quan DH, Kwong AJ, Hansbro PM, Britton WJ. No smoke without fire: the impact of cigarette smoking on the immune control of tuberculosis. Eur Respir Rev 2022; 31:210252. [PMID: 35675921 PMCID: PMC9488690 DOI: 10.1183/16000617.0252-2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/20/2022] [Indexed: 12/12/2022] Open
Abstract
Cigarette smoke (CS) exposure is a key risk factor for both active and latent tuberculosis (TB). It is associated with delayed diagnosis, more severe disease progression, unfavourable treatment outcomes and relapse after treatment. Critically, CS exposure is common in heavily populated areas with a high burden of TB, such as China, India and the Russian Federation. It is therefore prudent to evaluate interventions for TB while taking into account the immunological impacts of CS exposure. This review is a mechanistic examination of how CS exposure impairs innate barrier defences, as well as alveolar macrophage, neutrophil, dendritic cell and T-cell functions, in the context of TB infection and disease.
Collapse
Affiliation(s)
- Diana H Quan
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| | | | - Philip M Hansbro
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Sydney, Australia
| | - Warwick J Britton
- Tuberculosis Research Program at the Centenary Institute, The University of Sydney, Sydney, Australia
- Dept of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, Australia
- D.H. Quan and W.J. Britton contributed equally to this article as lead authors and supervised the work
| |
Collapse
|
11
|
Kowalewicz-Kulbat M, Locht C. Recombinant BCG to Enhance Its Immunomodulatory Activities. Vaccines (Basel) 2022; 10:827. [PMID: 35632582 PMCID: PMC9143156 DOI: 10.3390/vaccines10050827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/10/2022] [Accepted: 05/16/2022] [Indexed: 11/17/2022] Open
Abstract
The bacillus Calmette-Guérin (BCG) is an attenuated Mycobacterium bovis derivative that has been widely used as a live vaccine against tuberculosis for a century. In addition to its use as a tuberculosis vaccine, BCG has also been found to have utility in the prevention or treatment of unrelated diseases, including cancer. However, the protective and therapeutic efficacy of BCG against tuberculosis and other diseases is not perfect. For three decades, it has been possible to genetically modify BCG in an attempt to improve its efficacy. Various immune-modulatory molecules have been produced in recombinant BCG strains and tested for protection against tuberculosis or treatment of several cancers or inflammatory diseases. These molecules include cytokines, bacterial toxins or toxin fragments, as well as other protein and non-protein immune-modulatory molecules. The deletion of genes responsible for the immune-suppressive properties of BCG has also been explored for their effect on BCG-induced innate and adaptive immune responses. Most studies limited their investigations to the description of T cell immune responses that were modified by the genetic modifications of BCG. Some studies also reported improved protection by recombinant BCG against tuberculosis or enhanced therapeutic efficacy against various cancer forms or allergies. However, so far, these investigations have been limited to mouse models, and the prophylactic or therapeutic potential of recombinant BCG strains has not yet been illustrated in other species, including humans, with the exception of a genetically modified BCG strain that is now in late-stage clinical development as a vaccine against tuberculosis. In this review, we provide an overview of the different molecular engineering strategies adopted over the last three decades in order to enhance the immune-modulatory potential of BCG.
Collapse
Affiliation(s)
- Magdalena Kowalewicz-Kulbat
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
| | - Camille Locht
- Department of Immunology and Infectious Biology, Institute of Microbiology, Biotechnology and Immunology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland;
- CHU Lille, Institut Pasteur de Lille, U1019–UMR9017–CIIL–Center for Infection and Immunity of Lille, University Lille, CNRS, Inserm, F-59000 Lille, France
| |
Collapse
|
12
|
A century of attempts to develop an effective tuberculosis vaccine: Why they failed? Int Immunopharmacol 2022; 109:108791. [PMID: 35487086 DOI: 10.1016/j.intimp.2022.108791] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/18/2022] [Accepted: 04/18/2022] [Indexed: 11/23/2022]
Abstract
Tuberculosis (TB) remains a major global health problem despite widespread use of the Bacillus BCG vaccine. This situation is worsened by co-infection with HIV, and the development of multidrug-resistant Mycobacterium tuberculosis (Mtb) strains. Thus, novel vaccine candidates and improved vaccination strategies are urgently needed in order to reduce the incidence of TB and even to eradicate TB by 2050. Over the last few decades, 23 novel TB vaccines have entered into clinical trials, more than 13 new vaccines have reached various stages of preclinical development, and more than 50 potential candidates are in the discovery stage as next-generation vaccines. Nevertheless, why has a century of attempts to introduce an effective TB vaccine failed? Who should be blamed -scientists, human response, or Mtb strategies? Literature review reveals that the elimination of latent or active Mtb infections in a given population seems to be an epigenetic process. With a better understanding of the connections between bacterial infections and gene expression conditions in epigenetic events, opportunities arise in designing protective vaccines or therapeutic agents, particularly as epigenetic processes can be reversed. Therefore, this review provides a brief overview of different approaches towards novel vaccination strategies and the mechanisms underlying these approaches.
Collapse
|
13
|
Waeckerle-Men Y, Kotkowska ZK, Bono G, Duda A, Kolm I, Varypataki EM, Amstutz B, Meuli M, Høgset A, Kündig TM, Halin C, Sander P, Johansen P. Photochemically-Mediated Inflammation and Cross-Presentation of Mycobacterium bovis BCG Proteins Stimulates Strong CD4 and CD8 T-Cell Responses in Mice. Front Immunol 2022; 13:815609. [PMID: 35173729 PMCID: PMC8841863 DOI: 10.3389/fimmu.2022.815609] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/10/2022] [Indexed: 11/13/2022] Open
Abstract
Conventional vaccines are very efficient in the prevention of bacterial infections caused by extracellular pathogens due to effective stimulation of pathogen-specific antibodies. In contrast, considering that intracellular surveillance by antibodies is not possible, they are typically less effective in preventing or treating infections caused by intracellular pathogens such as Mycobacterium tuberculosis. The objective of the current study was to use so-called photochemical internalization (PCI) to deliver a live bacterial vaccine to the cytosol of antigen-presenting cells (APCs) for the purpose of stimulating major histocompatibility complex (MHC) I-restricted CD8 T-cell responses. For this purpose, Mycobacterium bovis BCG (BCG) was combined with the photosensitiser tetraphenyl chlorine disulfonate (TPCS2a) and injected intradermally into mice. TPCS2a was then activated by illumination of the injection site with light of defined energy. Antigen-specific CD4 and CD8 T-cell responses were monitored in blood, spleen, and lymph nodes at different time points thereafter using flow cytometry, ELISA and ELISPOT. Finally, APCs were infected and PCI-treated in vitro for analysis of their activation of T cells in vitro or in vivo after autologous vaccination of mice. Combination of BCG with PCI induced stronger BCG-specific CD4 and CD8 T-cell responses than treatment with BCG only or with BCG and TPCS2a without light. The overall T-cell responses were multifunctional as characterized by the production of IFN-γ, TNF-α, IL-2 and IL-17. Importantly, PCI induced cross-presentation of BCG proteins for stimulation of antigen-specific CD8 T-cells that were particularly producing IFN-γ and TNF-α. PCI further facilitated antigen presentation by causing up-regulation of MHC and co-stimulatory proteins on the surface of APCs as well as their production of TNF-α and IL-1β in vivo. Furthermore, PCI-based vaccination also caused local inflammation at the site of vaccination, showing strong infiltration of immune cells, which could contribute to the stimulation of antigen-specific immune responses. This study is the first to demonstrate that a live microbial vaccine can be combined with a photochemical compound and light for cross presentation of antigens to CD8 T cells. Moreover, the results revealed that PCI treatment strongly improved the immunogenicity of M. bovis BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Zuzanna K. Kotkowska
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Géraldine Bono
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Agathe Duda
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Isabel Kolm
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Eleni M. Varypataki
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Beat Amstutz
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Michael Meuli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | | | - Thomas M. Kündig
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
| | - Cornelia Halin
- Institute of Pharmaceutical Sciences, ETH Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- National Center for Mycobacteria, University of Zurich, Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich and University Hospital Zurich, Zurich, Switzerland
- *Correspondence: Pål Johansen,
| |
Collapse
|
14
|
Setiabudiawan TP, Reurink RK, Hill PC, Netea MG, van Crevel R, Koeken VACM. Protection against tuberculosis by Bacillus Calmette-Guérin (BCG) vaccination: A historical perspective. MED 2022; 3:6-24. [PMID: 35590145 DOI: 10.1016/j.medj.2021.11.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/23/2023]
Abstract
Bacillus Calmette-Guérin (BCG) was developed exactly 100 years ago, and it is still the only licensed tuberculosis (TB) vaccine and the most frequently administered of all vaccines worldwide. Despite universal vaccination policies in TB-endemic settings, the burden of TB remains high. Although BCG protects against Mycobacterium tuberculosis infection and TB disease, the level of protection varies greatly between age groups and settings. In this review, we present a historical perspective and describe the evidence for BCG's ability to protect against TB as well as the factors that influence protection. We also present the immunological mechanisms through which BCG vaccination induces protection, focusing on T cell, B cell, and innate immunity. Finally, we discuss several possibilities to boost BCG's efficacy, including alternative vaccination routes, BCG revaccination, and use of recombinant BCG vaccines, and describe the knowledge gaps that exist with respect to BCG's protection against TB.
Collapse
Affiliation(s)
- Todia P Setiabudiawan
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Remi K Reurink
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands
| | - Philip C Hill
- Centre for International Health, University of Otago, Dunedin, North Dunedin 9016, New Zealand
| | - Mihai G Netea
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Human Genomics Laboratory, Craiova University of Medicine and Pharmacy, Craiova, Județul Dolj 200349, Romania
| | - Reinout van Crevel
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Valerie A C M Koeken
- Department of Internal Medicine and Radboud Center for Infectious Diseases (RCI), Radboud University Medical Center, Nijmegen, Gelderland 6525 GA, the Netherlands; Department of Computational Biology for Individualised Infection Medicine, Centre for Individualised Infection Medicine (CiiM), a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany; TWINCORE, a joint venture between the Helmholtz-Centre for Infection Research (HZI) and the Hannover Medical School (MHH), Hannover 30625, Germany.
| |
Collapse
|
15
|
Sontyana B, Shrivastava R, Battu S, Ghosh S, Mukhopadhyay S. Phagosome maturation and modulation of macrophage effector function by intracellular pathogens: target for therapeutics. Future Microbiol 2021; 17:59-76. [PMID: 34877879 DOI: 10.2217/fmb-2021-0101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macrophages are important cells that regulate various innate functions. Macrophages after engulfment of pathogens proceed for phagosome maturation and finally fuse with lysosomes to kill pathogens. Although pathogen degradation is one of the important functions of phagosomes, various immune-effector functions of macrophages are also dependent on the phagosome maturation process. This review discusses signaling processes regulating phagosome maturation as well as various effector functions of macrophages such as apoptosis, antigen presentation, autophagy and inflammasome that are dependent on the phagosome maturation process. It also discusses strategies adopted by various intracellular pathogens to counteract these functions to evade intracellular destruction mechanisms. These studies may give direction for the development of new therapeutics to control various intracellular infections.
Collapse
Affiliation(s)
- Brahmaji Sontyana
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Rohini Shrivastava
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India.,Graduate Studies, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India
| | - Srikanth Battu
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| | - Sudip Ghosh
- Molecular Biology Unit, ICMR-National Institute of Nutrition, Jamai Osmania PO, Hyderabad, 500007, Telangana, India
| | - Sangita Mukhopadhyay
- Laboratory of Molecular Cell Biology, Centre for DNA Fingerprinting & Diagnostics (CDFD), Inner Ring Road, Uppal, Hyderabad, 500039, Telangana, India
| |
Collapse
|
16
|
Cho T, Khatchadourian C, Nguyen H, Dara Y, Jung S, Venketaraman V. A review of the BCG vaccine and other approaches toward tuberculosis eradication. Hum Vaccin Immunother 2021; 17:2454-2470. [PMID: 33769193 PMCID: PMC8475575 DOI: 10.1080/21645515.2021.1885280] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/29/2021] [Indexed: 02/02/2023] Open
Abstract
Despite aggressive eradication efforts, Tuberculosis (TB) remains a global health burden, one that disproportionally affects poorer, less developed nations. The only vaccine approved for TB, the Bacillus of Calmette and Guérin (BCG) vaccine remains controversial because it's stated efficacy has been cited as anywhere from 0 to 80%. Nevertheless, there have been exciting discoveries about the mechanism of action of the BCG vaccine that suggests it has a role in immunization schedules today. We review recent data suggesting the vaccine imparts protection against both tuberculosis and non-tuberculosis pathogens via a newly discovered immune system called trained immunity. BCG's efficacy also appears to be tied to its affect on granulocytes at the epigenetic and hematopoietic stem cell levels, which we discuss in this article at length. We also write about how the different strains of the BCG vaccine elicit different immune responses, suggesting that certain BCG strains are more immunogenic than others. Finally, our review delves into how the current vaccine is being reformulated to be more efficacious, and track the development of the next generation vaccines against TB.
Collapse
Affiliation(s)
- Thomas Cho
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | | | - Huy Nguyen
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Yash Dara
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Shuna Jung
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
| | - Vishwanath Venketaraman
- College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA, USA
- Graduate College of Biomedical Sciences, Western University of Health Sciences, Pomona, CA, USA
| |
Collapse
|
17
|
Saralahti AK, Uusi-Mäkelä MIE, Niskanen MT, Rämet M. Integrating fish models in tuberculosis vaccine development. Dis Model Mech 2020; 13:13/8/dmm045716. [PMID: 32859577 PMCID: PMC7473647 DOI: 10.1242/dmm.045716] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Tuberculosis is a chronic infection by Mycobacterium tuberculosis that results in over 1.5 million deaths worldwide each year. Currently, there is only one vaccine against tuberculosis, the Bacillus Calmette–Guérin (BCG) vaccine. Despite widespread vaccination programmes, over 10 million new M. tuberculosis infections are diagnosed yearly, with almost half a million cases caused by antibiotic-resistant strains. Novel vaccination strategies concentrate mainly on replacing BCG or boosting its efficacy and depend on animal models that accurately recapitulate the human disease. However, efforts to produce new vaccines against an M. tuberculosis infection have encountered several challenges, including the complexity of M. tuberculosis pathogenesis and limited knowledge of the protective immune responses. The preclinical evaluation of novel tuberculosis vaccine candidates is also hampered by the lack of an appropriate animal model that could accurately predict the protective effect of vaccines in humans. Here, we review the role of zebrafish (Danio rerio) and other fish models in the development of novel vaccines against tuberculosis and discuss how these models complement the more traditional mammalian models of tuberculosis. Summary: In this Review, we discuss how zebrafish (Danio rerio) and other fish models can complement the more traditional mammalian models in the development of novel vaccines against tuberculosis.
Collapse
Affiliation(s)
- Anni K Saralahti
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Meri I E Uusi-Mäkelä
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mirja T Niskanen
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland
| | - Mika Rämet
- Laboratory of Experimental Immunology, BioMediTech, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland .,Vaccine Research Center, Faculty of Medicine and Health Technology, Tampere University, Tampere FI-33014, Finland.,PEDEGO Research Unit, Medical Research Center, University of Oulu, Oulu FI-90014, Finland.,Department of Children and Adolescents, Oulu University Hospital, Oulu FI-90029, Finland
| |
Collapse
|
18
|
Abstract
Mycobacterium tuberculosis remains the leading cause of death attributed to a single infectious organism. Bacillus Calmette-Guerin (BCG), the standard vaccine against M. tuberculosis, is thought to prevent only 5% of all vaccine-preventable deaths due to tuberculosis, thus an alternative vaccine is required. One of the principal barriers to vaccine development against M. tuberculosis is the complexity of the immune response to infection, with uncertainty as to what constitutes an immunological correlate of protection. In this paper, we seek to give an overview of the immunology of M. tuberculosis infection, and by doing so, investigate possible targets of vaccine development. This encompasses the innate, adaptive, mucosal and humoral immune systems. Though MVA85A did not improve protection compared with BCG alone in a large-scale clinical trial, the correlates of protection this has revealed, in addition to promising results from candidate such as VPM1002, M72/ASO1E and H56:IC31 point to a brighter future in the field of TB vaccine development.
Collapse
Affiliation(s)
- Benedict Brazier
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| | - Helen McShane
- The Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7DQ UK
| |
Collapse
|
19
|
Opportunities for Overcoming Mycobacterium tuberculosis Drug Resistance: Emerging Mycobacterial Targets and Host-Directed Therapy. Int J Mol Sci 2019; 20:ijms20122868. [PMID: 31212777 PMCID: PMC6627145 DOI: 10.3390/ijms20122868] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 05/31/2019] [Accepted: 06/06/2019] [Indexed: 02/08/2023] Open
Abstract
The ever-increasing incidence of drug-resistant Mycobacterium tuberculosis infections has invigorated the focus on the discovery and development of novel treatment options. The discovery and investigation of essential mycobacterial targets is of utmost importance. In addition to the discovery of novel targets, focusing on non-lethal pathways and the use of host-directed therapies has gained interest. These adjunctive treatment options could not only lead to increased antibiotic susceptibility of Mycobacterium tuberculosis, but also have the potential to avoid the emergence of drug resistance. Host-directed therapies, on the other hand, can also reduce the associated lung pathology and improve disease outcome. This review will provide an outline of recent opportunities.
Collapse
|
20
|
Xu Z, Xia A, Li X, Zhu Z, Shen Y, Jin S, Lan T, Xie Y, Wu H, Meng C, Sun L, Yin Y, Chen X, Jiao X. Rapid loss of early antigen-presenting activity of lymph node dendritic cells against Ag85A protein following Mycobacterium bovis BCG infection. BMC Immunol 2018; 19:19. [PMID: 29940854 PMCID: PMC6019797 DOI: 10.1186/s12865-018-0258-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/18/2018] [Indexed: 02/07/2023] Open
Abstract
Background Control of Mycobacterium tuberculosis (Mtb) infection requires CD4+ T-cell responses and major histocompatibility complex class II (MHC II) presentation of Mtb antigens (Ags). Dendritic cells (DCs) are the most potent of the Ag-presenting cells and are central to the initiation of T-cell immune responses. Much research has indicated that DCs play an important role in anti-mycobacterial immune responses at early infection time points, but the kinetics of Ag presentation by these cells during these events are incompletely understood. Results In the present study, we evaluated in vivo dynamics of early Ag presentation by murine lymph-node (LN) DCs in response to Mycobacterium bovis bacillus Calmette–Guérin (BCG) Ag85A protein. Results showed that the early Ag-presenting activity of murine DCs induced by M. bovis BCG Ag85A protein in vivo was transient, appearing at 4 h and being barely detectable at 72 h. The transcription levels of CIITA, MHC II and the expression of MHC II molecule on the cell surface increased following BCG infection. Moreover, BCG was found to survive within the inguinal LN DC pool, representing a continuing source of mycobacterial Ag85A protein, with which LN DCs formed Ag85A peptide-MHCII complexes in vivo. Conclusions Our results demonstrate that a decrease in Ag85A peptide production as a result of the inhibition of Ag processing to is largely responsible for the short duration of Ag presentation by LN DCs during BCG infection in vivo.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Aihong Xia
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Xin Li
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Zhaocheng Zhu
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yechi Shen
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Shanshan Jin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Tian Lan
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Yuqing Xie
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Han Wu
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China
| | - Yuelan Yin
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, No. 48 Wenhui East Road, Yangzhou, 225009, Jiangsu, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| | - Xinan Jiao
- Key Laboratory of Prevention and Control of Biological Hazard Factors (Animal Origin) for Agrifood Safety and Quality, MOA of China, Yangzhou University, Yangzhou, China. .,Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, China.
| |
Collapse
|
21
|
Nieuwenhuizen NE, Kaufmann SHE. Next-Generation Vaccines Based on Bacille Calmette-Guérin. Front Immunol 2018; 9:121. [PMID: 29459859 PMCID: PMC5807593 DOI: 10.3389/fimmu.2018.00121] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/15/2018] [Indexed: 11/13/2022] Open
Abstract
Tuberculosis (TB), caused by the intracellular bacterium Mycobacterium tuberculosis (Mtb), remains a major health threat. A live, attenuated mycobacterium known as Bacille Calmette-Guérin (BCG), derived from the causative agent of cattle TB, Mycobacterium bovis, has been in clinical use as a vaccine for 90 years. The current incidence of TB demonstrates that BCG fails to protect sufficiently against pulmonary TB, the major disease manifestation and source of dissemination. The protective efficacy of BCG is on average 50% but varies substantially with geographical location and is poorer in those with previous exposure to mycobacteria. BCG can also cause adverse reactions in immunocompromised individuals. However, BCG has contributed to reduced infant TB mortality by protecting against extrapulmonary TB. In addition, BCG has been associated with reduced general childhood mortality by stimulating immune responses. In order to improve the efficacy of BCG, two major strategies have been employed. The first involves the development of recombinant live mycobacterial vaccines with improved efficacy and safety. The second strategy is to boost BCG with subunit vaccines containing Mtb antigens. This article reviews recombinant BCG strains that have been tested against TB in animal models. This includes BCG strains that have been engineered to induce increased immune responses by the insertion of genes for Mtb antigens, mammalian cytokines, or host resistance factors, the insertion of bacterial toxin-derived adjuvants, and the manipulation of bacterial genes in order to increase antigen presentation and immune activation. Subunit vaccines for boosting BCG are also briefly discussed.
Collapse
|
22
|
Ferraris DM, Miggiano R, Rossi F, Rizzi M. Mycobacterium tuberculosis Molecular Determinants of Infection, Survival Strategies, and Vulnerable Targets. Pathogens 2018; 7:E17. [PMID: 29389854 PMCID: PMC5874743 DOI: 10.3390/pathogens7010017] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 01/26/2018] [Accepted: 01/28/2018] [Indexed: 12/13/2022] Open
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis, an ancient disease which, still today, represents a major threat for the world population. Despite the advances in medicine and the development of effective antitubercular drugs, the cure of tuberculosis involves prolonged therapies which complicate the compliance and monitoring of drug administration and treatment. Moreover, the only available antitubercular vaccine fails to provide an effective shield against adult lung tuberculosis, which is the most prevalent form. Hence, there is a pressing need for effective antitubercular drugs and vaccines. This review highlights recent advances in the study of selected M. tuberculosis key molecular determinants of infection and vulnerable targets whose structures could be exploited for the development of new antitubercular agents.
Collapse
Affiliation(s)
- Davide M Ferraris
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Riccardo Miggiano
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Franca Rossi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| | - Menico Rizzi
- Department of Pharmaceutical Sciences, Università del Piemonte Orientale "A. Avogadro", Largo Donegani 2, 28100 Novara, Italy.
| |
Collapse
|
23
|
Dal Molin M, Gut M, Rominski A, Haldimann K, Becker K, Sander P. Molecular Mechanisms of Intrinsic Streptomycin Resistance in Mycobacterium abscessus. Antimicrob Agents Chemother 2018; 62:e01427-17. [PMID: 29061744 PMCID: PMC5740355 DOI: 10.1128/aac.01427-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Accepted: 10/17/2017] [Indexed: 12/29/2022] Open
Abstract
Streptomycin, the first drug used for the treatment of tuberculosis, shows limited activity against the highly resistant pathogen Mycobacterium abscessus We recently identified two aminoglycoside-acetylating genes [aac(2') and eis2] which, however, do not affect susceptibility to streptomycin. This suggests the existence of a discrete mechanism of streptomycin resistance. M. abscessus BLASTP analysis identified MAB_2385 as a close homologue of the 3″-O-phosphotransferase [APH(3″)] from the opportunistic pathogen Mycobacterium fortuitum as a putative streptomycin resistance determinant. Heterologous expression of MAB_2385 in Mycobacterium smegmatis increased the streptomycin MIC, while the gene deletion mutant M. abscessus ΔMAB_2385 showed increased streptomycin susceptibility. The MICs of other aminoglycosides were not altered in M. abscessus ΔMAB_2385. This demonstrates that MAB_2385 encodes a specific and prime innate streptomycin resistance determinant in M. abscessus We further explored the feasibility of applying rpsL-based streptomycin counterselection to generate gene deletion mutants in M. abscessus Spontaneous streptomycin-resistant mutants of M. abscessus ΔMAB_2385 were selected, and we demonstrated that the wild-type rpsL is dominant over the mutated rpsLK43R in merodiploid strains. In a proof of concept study, we exploited this phenotype for construction of a targeted deletion mutant, thereby establishing an rpsL-based counterselection method in M. abscessus.
Collapse
Affiliation(s)
- Michael Dal Molin
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Myriam Gut
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Anna Rominski
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Klara Haldimann
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Katja Becker
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Peter Sander
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
- Nationales Zentrum für Mykobakterien, Zürich, Switzerland
| |
Collapse
|
24
|
Bizzell E, Sia JK, Quezada M, Enriquez A, Georgieva M, Rengarajan J. Deletion of BCG Hip1 protease enhances dendritic cell and CD4 T cell responses. J Leukoc Biol 2017; 103:739-748. [PMID: 29345365 DOI: 10.1002/jlb.4a0917-363rr] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/29/2017] [Accepted: 12/02/2017] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) play a key role in the generation of CD4 T cell responses to pathogens. Mycobacterium tuberculosis (Mtb) harbors immune evasion mechanisms that impair DC responses and prevent optimal CD4 T cell immunity. The vaccine strain Mycobacterium bovis Bacille Calmette-Guérin (BCG) shares many of the immune evasion proteins utilized by Mtb, but the role of these proteins in DC and T cell responses elicited by BCG is poorly understood. We previously reported that the Mtb serine protease, Hip1, promotes sub-optimal DC responses during infection. Here, we tested the hypothesis that BCG Hip1 modulates DC functions and prevents optimal antigen-specific CD4 T cell responses that limit the immunogenicity of BCG. We generated a strain of BCG lacking hip1 (BCGΔhip1) and show that it has superior capacity to induce DC maturation and cytokine production compared with the parental BCG. Furthermore, BCGΔhip1-infected DCs were more effective at driving the production of IFN-γ and IL-17 from antigen-specific CD4 T cells in vitro. Mucosal transfer of BCGΔhip1-infected DCs into mouse lungs induced robust CD4 T cell activation in vivo and generated antigen-specific polyfunctional CD4 T cell responses in the lungs. Importantly, BCGΔhip1-infected DCs enhanced control of pulmonary bacterial burden following Mtb aerosol challenge compared with the transfer of BCG-infected DCs. These results reveal that BCG employs Hip1 to impair DC activation, leading to attenuated lung CD4 T cell responses with limited capacity to control Mtb burden after challenge.
Collapse
Affiliation(s)
- Erica Bizzell
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | | | - Melanie Quezada
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Ana Enriquez
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA
| | - Maria Georgieva
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA.,Current affiliation: Maria Georgieva, Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Jyothi Rengarajan
- Emory Vaccine Center, Emory University, Atlanta, Georgia, USA.,Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
25
|
Kaufmann SHE, Dockrell HM, Drager N, Ho MM, McShane H, Neyrolles O, Ottenhoff THM, Patel B, Roordink D, Spertini F, Stenger S, Thole J, Verreck FAW, Williams A. TBVAC2020: Advancing Tuberculosis Vaccines from Discovery to Clinical Development. Front Immunol 2017; 8:1203. [PMID: 29046674 PMCID: PMC5632681 DOI: 10.3389/fimmu.2017.01203] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/11/2017] [Indexed: 01/24/2023] Open
Abstract
TBVAC2020 is a research project supported by the Horizon 2020 program of the European Commission (EC). It aims at the discovery and development of novel tuberculosis (TB) vaccines from preclinical research projects to early clinical assessment. The project builds on previous collaborations from 1998 onwards funded through the EC framework programs FP5, FP6, and FP7. It has succeeded in attracting new partners from outstanding laboratories from all over the world, now totaling 40 institutions. Next to the development of novel vaccines, TB biomarker development is also considered an important asset to facilitate rational vaccine selection and development. In addition, TBVAC2020 offers portfolio management that provides selection criteria for entry, gating, and priority settings of novel vaccines at an early developmental stage. The TBVAC2020 consortium coordinated by TBVI facilitates collaboration and early data sharing between partners with the common aim of working toward the development of an effective TB vaccine. Close links with funders and other consortia with shared interests further contribute to this goal.
Collapse
Affiliation(s)
- Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Hazel M Dockrell
- Immunology and Infection Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Nick Drager
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | - Mei Mei Ho
- Bacteriology Division, MHRA-NIBSC, Potters Bar, United Kingdom
| | | | - Olivier Neyrolles
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse, CNRS, UPS, Toulouse, France
| | | | - Brij Patel
- RegExcel Consulting Ltd, Surrey, United Kingdom
| | | | | | | | - Jelle Thole
- Tuberculosis Vaccine Initiative (TBVI), Lelystad, Netherlands
| | | | | | | |
Collapse
|
26
|
Abstract
Bacille Calmette-Guérin (BCG), the only tuberculosis (TB) vaccine in clinical practice, has limitations in efficacy, immunogenicity and safety. Much current TB vaccine research focuses on engineering live mycobacteria to interfere with phagosome biology and host intracellular pathways including apoptosis and autophagy, with candidates such as BCG Δzmp1, BCG ΔureC::hly, BCG::ESX-1Mmar, Mtb ΔphoP ΔfadD26, Mtb ΔRD1 ΔpanCD and M. smegmatis Δesx-3::esx-3(Mtb) in the development pipeline. Correlates of protection in preclinical studies include increased central memory CD4+ T cells and recruitment of antigen-specific T cells to the lungs, with mucosal vaccination found to be superior to parenteral vaccination. Finally, recent studies suggest beneficial non-specific effects of BCG on immunity, which should be taken into account when considering these vaccines for BCG replacement.
Collapse
|
27
|
Mycobacterium tuberculosis EsxH inhibits ESCRT-dependent CD4 + T-cell activation. Nat Microbiol 2016; 2:16232. [PMID: 27918526 DOI: 10.1038/nmicrobiol.2016.232] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 10/17/2016] [Indexed: 01/10/2023]
Abstract
Mycobacterium tuberculosis (Mtb) establishes a persistent infection, despite inducing antigen-specific T-cell responses. Although T cells arrive at the site of infection, they do not provide sterilizing immunity. The molecular basis of how Mtb impairs T-cell function is not clear. Mtb has been reported to block major histocompatibility complex class II (MHC-II) antigen presentation; however, no bacterial effector or host-cell target mediating this effect has been identified. We recently found that Mtb EsxH, which is secreted by the Esx-3 type VII secretion system, directly inhibits the endosomal sorting complex required for transport (ESCRT) machinery. Here, we showed that ESCRT is required for optimal antigen processing; correspondingly, overexpression and loss-of-function studies demonstrated that EsxH inhibited the ability of macrophages and dendritic cells to activate Mtb antigen-specific CD4+ T cells. Compared with the wild-type strain, the esxH-deficient strain induced fivefold more antigen-specific CD4+ T-cell proliferation in the mediastinal lymph nodes of mice. We also found that EsxH undermined the ability of effector CD4+ T cells to recognize infected macrophages and clear Mtb. These results provide a molecular explanation for how Mtb impairs the adaptive immune response.
Collapse
|
28
|
Vemula MH, Medisetti R, Ganji R, Jakkala K, Sankati S, Chatti K, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Assists Mycobacterial Dissemination in Zebrafish. Front Microbiol 2016; 7:1347. [PMID: 27621726 PMCID: PMC5002425 DOI: 10.3389/fmicb.2016.01347] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/15/2016] [Indexed: 11/15/2022] Open
Abstract
Zinc metalloprotease-1 (Zmp1) from Mycobacterium tuberculosis (M.tb), the tuberculosis (TB) causing bacillus, is a virulence factor involved in inflammasome inactivation and phagosome maturation arrest. We earlier reported that Zmp1 was secreted under granuloma-like stress conditions, induced Th2 cytokine microenvironment and was highly immunogenic in TB patients as evident from high anti-Zmp1 antibody titers in their sera. In this study, we deciphered a new physiological role of Zmp1 in mycobacterial dissemination. Exogenous treatment of THP-1 cells with 500 nM and 1 μM of recombinant Zmp1 (rZmp1) resulted in necrotic cell death. Apart from inducing secretion of necrotic cytokines, TNFα, IL-6, and IL-1β, it also induced the release of chemotactic chemokines, MCP-1, MIP-1β, and IL-8, suggesting its likely function in cell migration and mycobacterial dissemination. This was confirmed by Gap closure and Boyden chamber assays, where Zmp1 treated CHO or THP-1 cells showed ∼2 fold increased cell migration compared to the untreated cells. Additionally, Zebrafish-M. marinum based host–pathogen model was used to study mycobacterial dissemination in vivo. Td-Tomato labeled M. marinum (TdM. marinum) when injected with rZmp1 showed increased dissemination to tail region from the site of injection as compared to the untreated control fish in a dose-dependent manner. Summing up these observations along with the earlier reports, we propose that Zmp1, a multi-faceted protein, when released by mycobacteria in granuloma, may lead to necrotic cell damage and release of chemotactic chemokines by surrounding infected macrophages, attracting new immune cells, which in turn may lead to fresh cellular infections, thus assisting mycobacterial dissemination.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | | | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Swetha Sankati
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Kiranam Chatti
- Biology Department, Dr. Reddy's Institute of Life Sciences Hyderabad, India
| | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
29
|
Meng C, Wang X, Xu Z, Hu M, Liu J, Pan Z, Chen X, Jiao X. Murine Flt3 ligand-generated plasmacytoid and conventional dendritic cells display functional differentiation in activation, inflammation, and antigen presentation during BCG infection in vitro. In Vitro Cell Dev Biol Anim 2016; 53:67-76. [PMID: 27496194 DOI: 10.1007/s11626-016-0076-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 07/22/2016] [Indexed: 12/31/2022]
Abstract
Dendritic cells (DCs) are composed of distinct subsets. Their immunologic functions (especially in pathogenic infection, such as with mycobacteria) are poorly understood, largely because of their rarity and difficulty of preparation. We used the murine Fms-like tyrosine kinase 3 (Flt3) ligand to generate conventional DCs (FL-cDCs) and plasmacytoid DCs (FL-pDCs) and further evaluated their immunological responses to bacillus Calmette-Guérin (BCG) infection in vitro. BCG cells were observed inside both FL-cDCs and FL-pDCs by confocal microscopy, as confirmed by flow cytometric analysis showing a low infection rate of approximately 6 %, which was similar to in vivo results. The CD40, CD80, CD86, and MHC-II proteins were significantly upregulated in both FL-cDCs and -pDCs beginning at 4 h post-BCG exposure. FL-pDCs secreted TNF-α and IL-6 earlier and at significantly higher levels in the first 12 h following infection, but demonstrated delayed and weak activation and maturation compared to FL-cDCs. Although both subsets proved capable of presenting a mycobacterial antigen, FL-pDCs exhibited weaker activity in this respect than did FL-cDCs. In summary, the existence of FL-generated cDCs and pDCs imply functional differentiation in activation, inflammation, and antigen presentation, although both cells types participated extensively in the immune response to BCG infection.
Collapse
Affiliation(s)
- Chuang Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoyan Wang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Maozhi Hu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.,Testing Center, Yangzhou University, Yangzhou, Jiangsu, China
| | - Jiaying Liu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, China.
| |
Collapse
|
30
|
Vemula MH, Ganji R, Sivangala R, Jakkala K, Gaddam S, Penmetsa S, Banerjee S. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-Specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients. Front Microbiol 2016; 7:418. [PMID: 27065979 PMCID: PMC4814508 DOI: 10.3389/fmicb.2016.00418] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/15/2016] [Indexed: 11/20/2022] Open
Abstract
Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis, the tuberculosis (TB) causing bacilli in human is cleared by cell-mediated immunity (CMI) with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI) is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches toward vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M. tuberculosis Zinc metalloprotease-1 (Zmp1), a secretory protein essential for intracellular survival and pathogenesis of M. tuberculosis. We observed that Zmp1 was secreted by in vitro grown M. tuberculosis under granuloma-like stress conditions (acidic, oxidative, iron deficiency, and nutrient deprivation) and generated Th2 cytokine microenvironment upon exogenous treatment of peripheral blood mononulear cells PBMCs with recombinant Zmp1 (rZmp1). This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n = 121) as against healthy control (n = 62), household contacts (n = 89) and non-specific infection controls (n = 23). A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL) to paucibacillary smear-negative pulmonary tuberculosis (PTB) cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen candidates for prime-boost vaccination strategies or extrapolated as markers for disease detection and progression.
Collapse
Affiliation(s)
- Mani H Vemula
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Rakesh Ganji
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Ramya Sivangala
- Department of Immunology, Bhagwan Mahavir Medical Research Center Hyderabad, India
| | - Kiran Jakkala
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| | - Sumanlatha Gaddam
- Department of Immunology, Bhagwan Mahavir Medical Research CenterHyderabad, India; Department of Genetics, Osmania UniversityHyderabad, India
| | | | - Sharmistha Banerjee
- Department of Biochemistry, School of Life Sciences, University of Hyderabad Hyderabad, India
| |
Collapse
|
31
|
Xu ZZ, Chen X, Hu T, Meng C, Wang XB, Rao Y, Zhang XM, Yin YL, Pan ZM, Jiao XA. Evaluation of Immunogenicity and Protective Efficacy Elicited by Mycobacterium bovis BCG Overexpressing Ag85A Protein against Mycobacterium tuberculosis Aerosol Infection. Front Cell Infect Microbiol 2016; 6:3. [PMID: 26858942 PMCID: PMC4729882 DOI: 10.3389/fcimb.2016.00003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2015] [Accepted: 01/08/2016] [Indexed: 01/15/2023] Open
Abstract
Mycobacterium bovis bacillus Calmette-Guérin (BCG) is currently the only vaccine available for preventing tuberculosis (TB), however, BCG has varying success in preventing pulmonary TB. In this study, a recombinant BCG (rBCG::Ag85A) strain overexpressing the immunodominant Ag85A antigen was constructed, and its immunogenicity and protective efficacy were evaluated. Our results indicated that the Ag85A protein was successfully overexpressed in rBCG::Ag85A, and the Ag85A peptide–MHC complexes on draining lymph node dendritic cells of C57BL/6 mice infected with rBCG::Ag85A were detectable 4 h post-infection. The C57BL/6 mice infected with this strain had stronger antigen-specific interferon-gamma (IFN-γ) responses and higher antibody titers than those immunized with BCG, and the protective experiments showed that rBCG::Ag85A can enhance protection against Mycobacterium tuberculosis (M. tuberculosis) H37Rv infection compared to the BCG vaccine alone. Our results demonstrate the potential of rBCG::Ag85A as a candidate vaccine against TB.
Collapse
Affiliation(s)
- Zheng Zhong Xu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Ting Hu
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xiao Bo Wang
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Yan Rao
- ABSL-3 Lab, Wuhan University Wuhan, China
| | - Xiao Ming Zhang
- Unit of Innate Defense and Immune Modulation, Institute Pasteur of Shanghai, Chinese Academy of Sciences Shanghai, China
| | - Yue Lan Yin
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Zhi Ming Pan
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| | - Xin An Jiao
- Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University Yangzhou, China
| |
Collapse
|
32
|
Yang JY, Wang P, Li CY, Dong S, Song XY, Zhang XY, Xie BB, Zhou BC, Zhang YZ, Chen XL. Characterization of a New M13 Metallopeptidase from Deep-Sea Shewanella sp. E525-6 and Mechanistic Insight into Its Catalysis. Front Microbiol 2016; 6:1498. [PMID: 26779153 PMCID: PMC4701951 DOI: 10.3389/fmicb.2015.01498] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 12/11/2015] [Indexed: 12/17/2022] Open
Abstract
Bacterial extracellular peptidases are important for bacterial nutrition and organic nitrogen degradation in the ocean. While many peptidases of the M13 family from terrestrial animals and bacteria are studied, there has been no report on M13 peptidases from marine bacteria. Here, we characterized an M13 peptidase, PepS, from the deep-sea sedimentary strain Shewanella sp. E525-6, and investigated its substrate specificity and catalytic mechanism. The gene pepS cloned from strain E525-6 contains 2085 bp and encodes an M13 metallopeptidase. PepS was expressed in Escherichia coli and purified. Among the characterized M13 peptidases, PepS shares the highest sequence identity (47%) with Zmp1 from Mycobacterium tuberculosis, indicating that PepS is a new member of the M13 family. PepS had the highest activity at 30°C and pH 8.0. It retained 15% activity at 0°C. Its half life at 40°C was only 4 min. These properties indicate that PepS is a cold-adapted enzyme. The smallest substrate for PepS is pentapeptide, and it is probably unable to cleave peptides of more than 30 residues. PepS prefers to hydrolyze peptide bonds with P1′ hydrophobic residues. Structural and mutational analyses suggested that His531, His535 and Glu592 coordinate the catalytic zinc ion in PepS, Glu532 acts as a nucleophile, and His654 is probably involved in the transition state stabilization. Asp538 and Asp596 can stablize the orientations of His531 and His535, and Arg660 can stablize the orientation of Asp596. These results help in understanding marine bacterial peptidases and organic nitrogen degradation.
Collapse
Affiliation(s)
- Jin-Yu Yang
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Peng Wang
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Chun-Yang Li
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Sheng Dong
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Xiao-Yan Song
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Xi-Ying Zhang
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Bin-Bin Xie
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Bai-Cheng Zhou
- Marine Biotechnology Research Center, Shandong University Jinan, China
| | - Yu-Zhong Zhang
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| | - Xiu-Lan Chen
- Marine and Agricultural Biotechnology Laboratory, State Key Laboratory of Microbial Technology, Shandong UniversityJinan, China; Marine Biotechnology Research Center, Shandong UniversityJinan, China
| |
Collapse
|
33
|
Hjálmsdóttir Á, Bühler C, Vonwil V, Roveri M, Håkerud M, Wäckerle-Men Y, Gander B, Johansen P. Cytosolic Delivery of Liposomal Vaccines by Means of the Concomitant Photosensitization of Phagosomes. Mol Pharm 2016; 13:320-9. [PMID: 26704885 DOI: 10.1021/acs.molpharmaceut.5b00394] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
One of the greatest pharmaceutical challenges in vaccinology is the delivery of antigens to the cytosol of antigen-presenting cells (APCs) in order to allow for the stimulation of major histocompatibility complex (MHC) class I-restricted CD8(+) T-cell responses, which may act on intracellular infections or cancer. Recently, we described a novel method for cytotoxic T-lymphocyte (CTL) vaccination by combining antigens with a photosensitizer and light for cytosolic antigen delivery. The goal of the current project was to test this immunization method with particle-based formulations. Liposomes were prepared from dipalmitoylphosphatidylcholine and cholesterol, and the antigen ovalbumin (OVA) or the photosensitizer tetraphenyl chlorine disulfonate (TPCS2a) was separately encapsulated. C57BL/6 mice were immunized intradermally with OVA liposomes or a combination of OVA and TPCS2a liposomes, and light was applied the next day for activation of the photosensitizer resulting in cytosolic release of antigen from phagosomes. Immune responses were tested both after a prime only regime and after a prime-boost scheme with a repeat immunization 2 weeks post priming. Antigen-specific CD8(+) T-cell responses and antibody responses were analyzed ex vivo by flow cytometry and ELISA methods. The physicochemical stability of liposomes upon storage and light exposure was analyzed in vitro. Immunization with both TPCS2a- and OVA-containing liposomes greatly improved CD8(+) T-cell responses as compared to immunization without TPCS2a and as measured by proliferation in vivo and cytokine secretion ex vivo. In contrast, OVA-specific antibody responses (IgG1 and IgG2c) were reduced after immunization with TPCS2a-containing liposomes. The liposomal formulation protected the photosensitizer from light-induced inactivation during storage. In conclusion, the photosensitizer TPCS2a was successfully formulated in liposomes and enabled a shift from MHC class II to MHC class I antigen processing and presentation for stimulation of strong CD8(+) T-cell responses. Therefore, photosensitive particulate vaccines may have the potential to add to current vaccine practice a new method of vaccination that, as opposed to current vaccines, can stimulate strong CD8(+) T-cell responses.
Collapse
Affiliation(s)
- Ásdís Hjálmsdóttir
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Céline Bühler
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Vera Vonwil
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Maurizio Roveri
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Monika Håkerud
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland.,Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital , Montebello, 0310 Oslo, Norway
| | - Ying Wäckerle-Men
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| | - Bruno Gander
- Institute of Pharmaceutical Sciences, ETH Zurich , Vladimir-Prelog-Weg 1-5/10, 8093 Zurich, Switzerland
| | - Pål Johansen
- Department of Dermatology, University of Zurich , Gloriastrasse 31, 8091 Zurich, Switzerland
| |
Collapse
|
34
|
Hmama Z, Peña-Díaz S, Joseph S, Av-Gay Y. Immunoevasion and immunosuppression of the macrophage by Mycobacterium tuberculosis. Immunol Rev 2015; 264:220-32. [PMID: 25703562 DOI: 10.1111/imr.12268] [Citation(s) in RCA: 200] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
By virtue of their position at the crossroads between the innate and adaptive immune response, macrophages play an essential role in the control of bacterial infections. Paradoxically, macrophages serve as the natural habitat to Mycobacterium tuberculosis (Mtb). Mtb subverts the macrophage's mechanisms of intracellular killing and antigen presentation, leading ultimately to the development of tuberculosis (TB) disease. Here, we describe mechanisms of Mtb uptake by the macrophage and address key macrophage functions that are targeted by Mtb-specific effector molecules enabling this pathogen to circumvent host immune response. The macrophage functions described in this review include fusion between phagosomes and lysosomes, production of reactive oxygen and nitrogen species, antigen presentation and major histocompatibility complex class II expression and trafficking, as well as autophagy and apoptosis. All these are Mtb-targeted key cellular pathways, normally working in concert in the macrophage to recognize, respond, and activate 'proper' immune responses. We further analyze and discuss major molecular interactions between Mtb virulence factors and key macrophage proteins and provide implications for vaccine and drug development.
Collapse
Affiliation(s)
- Zakaria Hmama
- Department of Medicine, Division of Infectious Diseases, Infection and Immunity Research Center, University of British Columbia, Vancouver, BC, Canada
| | | | | | | |
Collapse
|
35
|
Xu Z, Meng C, Qiang B, Gu H, Sun L, Yin Y, Pan Z, Chen X, Jiao X. Differential Effects of Mycobacterium bovis BCG on Macrophages and Dendritic Cells from Murine Spleen. Int J Mol Sci 2015; 16:24127-38. [PMID: 26473844 PMCID: PMC4632742 DOI: 10.3390/ijms161024127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 11/29/2022] Open
Abstract
Macrophages (MΦ) and dendritic cells (DCs) are both pivotal antigen presenting cells capable of inducing specific cellular responses to inhaled mycobacteria, and thus, they may be important in the initiation of early immune responses to mycobacterial infection. In this study, we evaluated and compared the roles of murine splenic DCs and MΦs in immunity against Mycobacterium bovis Bacillus Calmette-Guérin (M.bovis BCG). The number of internalized rBCG-GFP observed was obviously greater in murine splenic MΦs compared with DCs, and the intracellular reactive oxygen species (ROS), inducible nitric oxide synthase (iNOS) and nitric oxide (NO) levels in MΦs were all higher than in DCs. DCs have a stronger capacity for presenting Ag85A peptide to specific T hybridoma and when the murine splenic MΦs were infected with BCG and rBCG::Ag85A, low level of antigen presenting activity was detected. These data suggest that murine splenic MΦs participate in mycobacteria uptake, killing and inducing inflammatory response, whereas the murine splenic DCs are primarily involved in specific antigen presentation and T cell activation.
Collapse
Affiliation(s)
- Zhengzhong Xu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Chuang Meng
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Bin Qiang
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Hongyan Gu
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Lin Sun
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Yuelan Yin
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Zhiming Pan
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xiang Chen
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| | - Xinan Jiao
- Jiangsu Key Laboratory of Zoonosis/Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
36
|
Ng TW, Saavedra-Ávila NA, Kennedy SC, Carreño LJ, Porcelli SA. Current efforts and future prospects in the development of live mycobacteria as vaccines. Expert Rev Vaccines 2015; 14:1493-507. [PMID: 26366616 DOI: 10.1586/14760584.2015.1089175] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis (Mtb) remains a major goal in the effort to reduce the enormous global burden of disease caused by this pathogen. Whole-cell vaccines based on live mycobacteria with attenuated virulence represent an appealing approach, providing broad antigen exposure and intrinsic adjuvant properties to prime durable immune responses. However, designing vaccine strains with an optimal balance between attenuation and immunogenicity has proven to be extremely challenging. Recent basic and clinical research efforts have broadened our understanding of Mtb pathogenesis and created numerous new vaccine candidates that have been designed to overcome different aspects of immune evasion by Mtb. In this review, we provide an overview of the current efforts to create improved vaccines against tuberculosis based on modifications of live attenuated mycobacteria. In addition, we discuss the use of such vaccine strains as vectors for stimulating protective immunity against other infectious diseases and cancers.
Collapse
Affiliation(s)
- Tony W Ng
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Noemí A Saavedra-Ávila
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Steven C Kennedy
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Leandro J Carreño
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA.,b 2 Millennium Institute on Immunology and Immunotherapy, Programa Disciplinario de Inmunologia, Instituto de Ciencias Biomedicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Steven A Porcelli
- a 1 Albert Einstein College of Medicine - Microbiology & Immunology, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| |
Collapse
|
37
|
Developing whole mycobacteria cell vaccines for tuberculosis: Workshop proceedings, Max Planck Institute for Infection Biology, Berlin, Germany, July 9, 2014. Vaccine 2015; 33:3047-55. [DOI: 10.1016/j.vaccine.2015.03.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/12/2015] [Accepted: 03/18/2015] [Indexed: 11/28/2022]
|
38
|
Sander P, Clark S, Petrera A, Vilaplana C, Meuli M, Selchow P, Zelmer A, Mohanan D, Andreu N, Rayner E, Dal Molin M, Bancroft GJ, Johansen P, Cardona PJ, Williams A, Böttger EC. Deletion of zmp1 improves Mycobacterium bovis BCG-mediated protection in a guinea pig model of tuberculosis. Vaccine 2015; 33:1353-9. [DOI: 10.1016/j.vaccine.2015.01.058] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 01/14/2015] [Indexed: 11/15/2022]
|
39
|
The endothelin system has a significant role in the pathogenesis and progression of Mycobacterium tuberculosis infection. Infect Immun 2014; 82:5154-65. [PMID: 25267836 DOI: 10.1128/iai.02304-14] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Tuberculosis (TB) remains a major global health problem, and although multiple studies have addressed the relationship between Mycobacterium tuberculosis and the host on an immunological level, few studies have addressed the impact of host physiological responses. Proteases produced by bacteria have been associated with important alterations in the host tissues, and a limited number of these enzymes have been characterized in mycobacterial species. M. tuberculosis produces a protease called Zmp1, which appears to be associated with virulence and has a putative action as an endothelin-converting enzyme. Endothelins are a family of vasoactive peptides, of which 3 distinct isoforms exist, and endothelin 1 (ET-1) is the most abundant and the best-characterized isoform. The aim of this work was to characterize the Zmp1 protease and evaluate its role in pathogenicity. Here, we have shown that M. tuberculosis produces and secretes an enzyme with ET-1 cleavage activity. These data demonstrate a possible role of Zmp1 for mycobacterium-host interactions and highlights its potential as a drug target. Moreover, the results suggest that endothelin pathways have a role in the pathogenesis of M. tuberculosis infections, and ETA or ETB receptor signaling can modulate the host response to the infection. We hypothesize that a balance between Zmp1 control of ET-1 levels and ETA/ETB signaling can allow M. tuberculosis adaptation and survival in the lung tissues.
Collapse
|
40
|
Leunda A, Baldo A, Goossens M, Huygen K, Herman P, Romano M. Novel GMO-Based Vaccines against Tuberculosis: State of the Art and Biosafety Considerations. Vaccines (Basel) 2014; 2:463-99. [PMID: 26344627 PMCID: PMC4494264 DOI: 10.3390/vaccines2020463] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/24/2014] [Accepted: 05/06/2014] [Indexed: 12/13/2022] Open
Abstract
Novel efficient vaccines are needed to control tuberculosis (TB), a major cause of morbidity and mortality worldwide. Several TB vaccine candidates are currently in clinical and preclinical development. They fall into two categories, the one of candidates designed as a replacement of the Bacille Calmette Guérin (BCG) to be administered to infants and the one of sub-unit vaccines designed as booster vaccines. The latter are designed as vaccines that will be administered to individuals already vaccinated with BCG (or in the future with a BCG replacement vaccine). In this review we provide up to date information on novel tuberculosis (TB) vaccines in development focusing on the risk assessment of candidates composed of genetically modified organisms (GMO) which are currently evaluated in clinical trials. Indeed, these vaccines administered to volunteers raise biosafety concerns with respect to human health and the environment that need to be assessed and managed.
Collapse
Affiliation(s)
- Amaya Leunda
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Aline Baldo
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Martine Goossens
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Kris Huygen
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| | - Philippe Herman
- Biosafety and Biotechnology Unit, Scientific Institute of Public Health, 14 Juliette Wytsman Street, Brussels 1050, Belgium.
| | - Marta Romano
- Immunology Unit, Scientific Institute of Public Health, 642 Engeland Street, Brussels 1180, Belgium.
| |
Collapse
|
41
|
Discovery of the first potent and selective Mycobacterium tuberculosis Zmp1 inhibitor. Bioorg Med Chem Lett 2014; 24:2508-11. [DOI: 10.1016/j.bmcl.2014.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 11/24/2022]
|
42
|
Khatri B, Whelan A, Clifford D, Petrera A, Sander P, Vordermeier HM. BCG Δzmp1 vaccine induces enhanced antigen specific immune responses in cattle. Vaccine 2014; 32:779-84. [PMID: 24394444 DOI: 10.1016/j.vaccine.2013.12.055] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 12/10/2013] [Accepted: 12/18/2013] [Indexed: 10/25/2022]
Abstract
Mycobacterium bovis (M. bovis) causes major economy and public health problem in numerous countries. In Great Britain, despite the use of a test-and-slaughter strategy, the incidence of bovine tuberculosis (bTB) in cattle has steadily risen in recent years. One strategy being considered to reduce the burden of bTB in cattle is the development of an efficient vaccine. The only current potentially available vaccine against tuberculosis, live attenuated M. bovis bacille Calmette-Guérin (BCG), has demonstrated variable efficacy in both humans and cattle and the development of improved vaccination strategies for cattle is a research priority. In this study we assessed the immunogenicity in cattle of two recombinant BCG strains, namely BCG Pasteur Δzmp1::aph and BCG Danish Δzmp1. By applying a recently defined predictive immune-correlate of protection (T cell memory responses measured by cultured ELISPOT), we have compared these two recombinant BCG with wild-type BCG Danish SSI. Our results demonstrated that both strains induced superior T cell memory responses compared to wild-type BCG. These data provide support for the prioritisation of testing BCG Danish Δzmp1 in vaccination/M. bovis challenge studies to determine its protective efficacy.
Collapse
Affiliation(s)
- Bhagwati Khatri
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom.
| | - Adam Whelan
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| | - Derek Clifford
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| | - Agnese Petrera
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Peter Sander
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; Nationales Zentrum für Mykobakterien (NZM), Gloriastrasse 30/32, 8006 Zurich, Switzerland
| | - H Martin Vordermeier
- Department of Bovine Tuberculosis, Animal Health and Veterinary Laboratories Agency, Surrey, United Kingdom
| |
Collapse
|
43
|
Håkerud M, Waeckerle-Men Y, Selbo PK, Kündig TM, Høgset A, Johansen P. Intradermal photosensitisation facilitates stimulation of MHC class-I restricted CD8 T-cell responses of co-administered antigen. J Control Release 2014; 174:143-50. [DOI: 10.1016/j.jconrel.2013.11.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 12/13/2022]
|
44
|
Talat Iqbal N, Hussain R. Non-specific immunity of BCG vaccine: A perspective of BCG immunotherapy. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.trivac.2014.08.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
45
|
Bakhru P, Sirisaengtaksin N, Soudani E, Mukherjee S, Khan A, Jagannath C. BCG vaccine mediated reduction in the MHC-II expression of macrophages and dendritic cells is reversed by activation of Toll-like receptors 7 and 9. Cell Immunol 2013; 287:53-61. [PMID: 24384074 DOI: 10.1016/j.cellimm.2013.11.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 11/25/2013] [Accepted: 11/27/2013] [Indexed: 11/25/2022]
Abstract
Tuberculosis is a major cause of death in mankind and BCG vaccine protects against childhood but not adult tuberculosis. BCG avoids lysosomal fusion in macrophages decreasing peptides required for activating CD4 T cells and Th1 immunity while suppressing the expression of MHC-II by antigen presenting cells (APCs). An in vitro model of antigen presentation showed that ligands for TLR-9, 7, 4 and 1/2 increased the ability of APCs to present antigen-85B of BCG to CD4 T cells, which correlated with an increase in MHC-II expression. TLR-activation led to a down-regulation of MARCH1 ubiquitin ligase which prevents the degradation of MHC-II and decreased IL-10 also contributed to an increase in MHC-II. TLR-activation induced up-regulation of MHC-II was inhibited by the blockade of IRAK, NF-kB, and MAPKs. TLR-7 and TLR-9 ligands had the most effective adjuvant like effect on MHC-II of APCs which allowed BCG vaccine mediated activation of CD4 T cells.
Collapse
Affiliation(s)
- Pearl Bakhru
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Natalie Sirisaengtaksin
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Emily Soudani
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Seema Mukherjee
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Arshad Khan
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA
| | - Chinnaswamy Jagannath
- Department of Pathology and Laboratory Medicine, University of Texas Medical School at Houston, Houston, TX 77030, USA.
| |
Collapse
|
46
|
Shoen CM, DeStefano MS, Hager CC, Tham KT, Braunstein M, Allen AD, Gates HO, Cynamon MH, Kernodle DS. A Modified Bacillus Calmette-Guérin (BCG) Vaccine with Reduced Activity of Antioxidants and Glutamine Synthetase Exhibits Enhanced Protection of Mice despite Diminished in Vivo Persistence. Vaccines (Basel) 2013; 1:34-57. [PMID: 26343849 PMCID: PMC4552197 DOI: 10.3390/vaccines1010034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 12/18/2012] [Accepted: 01/05/2013] [Indexed: 01/02/2023] Open
Abstract
Early attempts to improve BCG have focused on increasing the expression of prominent antigens and adding recombinant toxins or cytokines to influence antigen presentation. One such modified BCG vaccine candidate has been withdrawn from human clinical trials due to adverse effects. BCG was derived from virulent Mycobacterium bovis and retains much of its capacity for suppressing host immune responses. Accordingly, we have used a different strategy for improving BCG based on reducing its immune suppressive capacity. We made four modifications to BCG Tice to produce 4dBCG and compared it to the parent vaccine in C57Bl/6 mice. The modifications included elimination of the oxidative stress sigma factor SigH, elimination of the SecA2 secretion channel, and reductions in the activity of iron co-factored superoxide dismutase and glutamine synthetase. After IV inoculation of 4dBCG, 95% of vaccine bacilli were eradicated from the spleens of mice within 60 days whereas the titer of BCG Tice was not significantly reduced. Subcutaneous vaccination with 4dBCG produced greater protection than vaccination with BCG against dissemination of an aerosolized challenge of M. tuberculosis to the spleen at 8 weeks post-challenge. At this time, 4dBCG-vaccinated mice also exhibited altered lung histopathology compared to BCG-vaccinated mice and control mice with less well-developed lymphohistiocytic nodules in the lung parenchyma. At 26 weeks post-challenge, 4dBCG-vaccinated mice but not BCG-vaccinated mice had significantly fewer challenge bacilli in the lungs than control mice. In conclusion, despite reduced persistence in mice a modified BCG vaccine with diminished antioxidants and glutamine synthetase is superior to the parent vaccine in conferring protection against M. tuberculosis. The targeting of multiple immune suppressive factors produced by BCG is a promising strategy for simultaneously improving vaccine safety and effectiveness.
Collapse
Affiliation(s)
| | | | - Cynthia C Hager
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Kyi-Toe Tham
- Department of Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Medical Center, Nashville, TN 37212, USA.
| | - Miriam Braunstein
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC 27599, USA.
| | - Alexandria D Allen
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | - Hiriam O Gates
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| | | | - Douglas S Kernodle
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
- Veterans Affairs Medical Center, Nashville, TN 37212, USA.
- Department of Microbiology, Immunology and Pathology, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
| |
Collapse
|
47
|
Waeckerle-Men Y, Bruffaerts N, Liang Y, Jurion F, Sander P, Kündig TM, Huygen K, Johansen P. Lymph node targeting of BCG vaccines amplifies CD4 and CD8 T-cell responses and protection against Mycobacterium tuberculosis. Vaccine 2012; 31:1057-64. [PMID: 23273509 DOI: 10.1016/j.vaccine.2012.12.034] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 11/07/2012] [Accepted: 12/12/2012] [Indexed: 02/01/2023]
Abstract
Vaccination with Mycobacterium bovis BCG provides limited protection against pulmonary tuberculosis and a risk of dissemination in immune-compromised vaccinees. For the development of new TB vaccines that stimulate strong T-cell responses a variety of strategies is being followed, especially recombinant BCG and attenuated M. tuberculosis. The objective of the current study was to test potential benefits of vaccination through direct lymph-node targeting of wildtype BCG; the recommended route of vaccination with BCG is intradermal. C57BL/6 mice were immunised with BCG by intradermal, subcutaneous or intralymphatic injections. Cellular immune responses and protection against M. tuberculosis were determined. Intralymphatic vaccination was 100-1000 times more effective in stimulating BCG-specific immune responses than intradermal or subcutaneous immunisation. Intralymphatic administration stimulated high frequencies of mycobacterium-specific lymphocytes with strong proliferating capacity and production of TNF-α, IL-2, IL-17 and, especially, IFN-γ secretion by. CD4 and CD8 T cells. Most importantly, intralymphatic vaccination with 2×10(3)CFU BCG induced sustained protection against M. tuberculosis in intratracheally challenged C57BL/6 mice, whereas subcutaneous vaccination with 2×10(5)CFU BCG conferred only a transient protection. Hence, direct administration of M. bovis BCG to lymph nodes demonstrates that efficient targeting to lymph nodes may help to overcome the efficacy problems of vaccination with BCG.
Collapse
Affiliation(s)
- Ying Waeckerle-Men
- Department of Dermatology, University Hospital Zurich, Gloriastrasse 31, 8091 Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Cayabyab MJ, Macovei L, Campos-Neto A. Current and novel approaches to vaccine development against tuberculosis. Front Cell Infect Microbiol 2012; 2:154. [PMID: 23230563 PMCID: PMC3515764 DOI: 10.3389/fcimb.2012.00154] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 11/20/2012] [Indexed: 11/29/2022] Open
Abstract
Antibiotics and vaccines are the two most successful medical countermeasures that humans have created against a number of pathogens. However a select few e.g., Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB) have evaded eradication by vaccines and therapeutic approaches. TB is a global public health problem that kills 1.4 million people per year. The past decade has seen significant progress in developing new vaccine candidates, but the most fundamental questions in understanding disease progression and protective host responses that are responsible for controlling Mtb infection still remain poorly resolved. Current TB treatment requires intense chemotherapy with several antimicrobials, while the only approved vaccine is the classical viable whole-cell based Bacille-Calmette-Guerin (BCG) that protects children from severe forms of TB, but fails to protect adults. Taken together, there is a growing need to conduct basic and applied research to develop novel vaccine strategies against TB. This review is focused on the discussion surrounding current strategies and innovations being explored to discover new protective antigens, adjuvants, and delivery systems in the hopes of creating an efficacious TB vaccine.
Collapse
Affiliation(s)
- Mark J Cayabyab
- Forsyth Institute Cambridge, MA, USA ; Harvard School of Dental Medicine Boston, MA, USA
| | | | | |
Collapse
|
49
|
Kaufmann SHE, Gengenbacher M. Recombinant live vaccine candidates against tuberculosis. Curr Opin Biotechnol 2012; 23:900-7. [DOI: 10.1016/j.copbio.2012.03.007] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 03/05/2012] [Accepted: 03/12/2012] [Indexed: 11/28/2022]
|
50
|
Compeer EB, Flinsenberg TWH, van der Grein SG, Boes M. Antigen processing and remodeling of the endosomal pathway: requirements for antigen cross-presentation. Front Immunol 2012; 3:37. [PMID: 22566920 PMCID: PMC3342355 DOI: 10.3389/fimmu.2012.00037] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Accepted: 02/16/2012] [Indexed: 12/29/2022] Open
Abstract
Cross-presentation of endocytosed antigen as peptide/class I major histocompatibility complex complexes plays a central role in the elicitation of CD8+ T cell clones that mediate anti-viral and anti-tumor immune responses. While it has been clear that there are specific subsets of professional antigen presenting cells capable of antigen cross-presentation, identification of mechanisms involved is still ongoing. Especially amongst dendritic cells (DC), there are specialized subsets that are highly proficient at antigen cross-presentation. We here present a focused survey on the cell biological processes in the endosomal pathway that support antigen cross-presentation. This review highlights DC-intrinsic mechanisms that facilitate the cross-presentation of endocytosed antigen, including receptor-mediated uptake, maturation-induced endosomal sorting of membrane proteins, dynamic remodeling of endosomal structures and cell surface-directed endosomal trafficking. We will conclude with the description of pathogen-induced deviation of endosomal processing, and discuss how immune evasion strategies pertaining endosomal trafficking may preclude antigen cross-presentation.
Collapse
Affiliation(s)
- Ewoud Bernardus Compeer
- Department of Pediatric Immunology, University Medical Center Utrecht/Wilhelmina Children's Hospital Utrecht, Netherlands
| | | | | | | |
Collapse
|